2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35 * $DragonFly: src/sys/kern/kern_time.c,v 1.39 2007/02/03 18:05:58 corecode Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
50 #include <sys/vnode.h>
51 #include <sys/sysctl.h>
53 #include <vm/vm_extern.h>
54 #include <sys/msgport2.h>
55 #include <sys/thread2.h>
60 * Time of day and interval timer support.
62 * These routines provide the kernel entry points to get and set
63 * the time-of-day and per-process interval timers. Subroutines
64 * here provide support for adding and subtracting timeval structures
65 * and decrementing interval timers, optionally reloading the interval
66 * timers when they expire.
69 static int nanosleep1 (struct timespec
*rqt
,
70 struct timespec
*rmt
);
71 static int settime (struct timeval
*);
72 static void timevalfix (struct timeval
*);
74 static int sleep_hard_us
= 100;
75 SYSCTL_INT(_kern
, OID_AUTO
, sleep_hard_us
, CTLFLAG_RW
, &sleep_hard_us
, 0, "")
78 settime(struct timeval
*tv
)
80 struct timeval delta
, tv1
, tv2
;
81 static struct timeval maxtime
, laststep
;
85 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
86 lwkt_setcpu_self(globaldata_find(0));
91 timevalsub(&delta
, &tv1
);
94 * If the system is secure, we do not allow the time to be
95 * set to a value earlier than 1 second less than the highest
96 * time we have yet seen. The worst a miscreant can do in
97 * this circumstance is "freeze" time. He couldn't go
100 * We similarly do not allow the clock to be stepped more
101 * than one second, nor more than once per second. This allows
102 * a miscreant to make the clock march double-time, but no worse.
104 if (securelevel
> 1) {
105 if (delta
.tv_sec
< 0 || delta
.tv_usec
< 0) {
107 * Update maxtime to latest time we've seen.
109 if (tv1
.tv_sec
> maxtime
.tv_sec
)
112 timevalsub(&tv2
, &maxtime
);
113 if (tv2
.tv_sec
< -1) {
114 tv
->tv_sec
= maxtime
.tv_sec
- 1;
115 kprintf("Time adjustment clamped to -1 second\n");
118 if (tv1
.tv_sec
== laststep
.tv_sec
) {
122 if (delta
.tv_sec
> 1) {
123 tv
->tv_sec
= tv1
.tv_sec
+ 1;
124 kprintf("Time adjustment clamped to +1 second\n");
130 ts
.tv_sec
= tv
->tv_sec
;
131 ts
.tv_nsec
= tv
->tv_usec
* 1000;
136 lwkt_setcpu_self(globaldata_find(origcpu
));
144 sys_clock_gettime(struct clock_gettime_args
*uap
)
148 switch(uap
->clock_id
) {
151 return (copyout(&ats
, uap
->tp
, sizeof(ats
)));
152 case CLOCK_MONOTONIC
:
154 return (copyout(&ats
, uap
->tp
, sizeof(ats
)));
162 sys_clock_settime(struct clock_settime_args
*uap
)
164 struct thread
*td
= curthread
;
169 if ((error
= suser(td
)) != 0)
171 switch(uap
->clock_id
) {
173 if ((error
= copyin(uap
->tp
, &ats
, sizeof(ats
))) != 0)
175 if (ats
.tv_nsec
< 0 || ats
.tv_nsec
>= 1000000000)
177 /* XXX Don't convert nsec->usec and back */
178 TIMESPEC_TO_TIMEVAL(&atv
, &ats
);
179 error
= settime(&atv
);
187 sys_clock_getres(struct clock_getres_args
*uap
)
191 switch(uap
->clock_id
) {
193 case CLOCK_MONOTONIC
:
195 * Round up the result of the division cheaply
196 * by adding 1. Rounding up is especially important
197 * if rounding down would give 0. Perfect rounding
201 ts
.tv_nsec
= 1000000000 / sys_cputimer
->freq
+ 1;
202 return(copyout(&ts
, uap
->tp
, sizeof(ts
)));
211 * This is a general helper function for nanosleep() (aka sleep() aka
214 * If there is less then one tick's worth of time left and
215 * we haven't done a yield, or the remaining microseconds is
216 * ridiculously low, do a yield. This avoids having
217 * to deal with systimer overheads when the system is under
218 * heavy loads. If we have done a yield already then use
219 * a systimer and an uninterruptable thread wait.
221 * If there is more then a tick's worth of time left,
222 * calculate the baseline ticks and use an interruptable
223 * tsleep, then handle the fine-grained delay on the next
224 * loop. This usually results in two sleeps occuring, a long one
228 ns1_systimer(systimer_t info
)
230 lwkt_schedule(info
->data
);
234 nanosleep1(struct timespec
*rqt
, struct timespec
*rmt
)
237 struct timespec ts
, ts2
, ts3
;
242 if (rqt
->tv_nsec
< 0 || rqt
->tv_nsec
>= 1000000000)
244 if (rqt
->tv_sec
< 0 || (rqt
->tv_sec
== 0 && rqt
->tv_nsec
== 0))
247 timespecadd(&ts
, rqt
); /* ts = target timestamp compare */
248 TIMESPEC_TO_TIMEVAL(&tv
, rqt
); /* tv = sleep interval */
253 struct systimer info
;
255 ticks
= tv
.tv_usec
/ tick
; /* approximate */
257 if (tv
.tv_sec
== 0 && ticks
== 0) {
258 thread_t td
= curthread
;
259 if (tried_yield
|| tv
.tv_usec
< sleep_hard_us
) {
263 crit_enter_quick(td
);
264 systimer_init_oneshot(&info
, ns1_systimer
,
266 lwkt_deschedule_self(td
);
269 systimer_del(&info
); /* make sure it's gone */
271 error
= iscaught(td
->td_lwp
);
272 } else if (tv
.tv_sec
== 0) {
273 error
= tsleep(&nanowait
, PCATCH
, "nanslp", ticks
);
275 ticks
= tvtohz_low(&tv
); /* also handles overflow */
276 error
= tsleep(&nanowait
, PCATCH
, "nanslp", ticks
);
279 if (error
&& error
!= EWOULDBLOCK
) {
280 if (error
== ERESTART
)
283 timespecsub(&ts
, &ts2
);
290 if (timespeccmp(&ts2
, &ts
, >=))
293 timespecsub(&ts3
, &ts2
);
294 TIMESPEC_TO_TIMEVAL(&tv
, &ts3
);
300 sys_nanosleep(struct nanosleep_args
*uap
)
306 error
= copyin(uap
->rqtp
, &rqt
, sizeof(rqt
));
310 error
= nanosleep1(&rqt
, &rmt
);
313 * copyout the residual if nanosleep was interrupted.
315 if (error
&& uap
->rmtp
)
316 error
= copyout(&rmt
, uap
->rmtp
, sizeof(rmt
));
322 sys_gettimeofday(struct gettimeofday_args
*uap
)
329 if ((error
= copyout((caddr_t
)&atv
, (caddr_t
)uap
->tp
,
334 error
= copyout((caddr_t
)&tz
, (caddr_t
)uap
->tzp
,
341 sys_settimeofday(struct settimeofday_args
*uap
)
343 struct thread
*td
= curthread
;
348 if ((error
= suser(td
)))
350 /* Verify all parameters before changing time. */
352 if ((error
= copyin((caddr_t
)uap
->tv
, (caddr_t
)&atv
,
355 if (atv
.tv_usec
< 0 || atv
.tv_usec
>= 1000000)
359 (error
= copyin((caddr_t
)uap
->tzp
, (caddr_t
)&atz
, sizeof(atz
))))
361 if (uap
->tv
&& (error
= settime(&atv
)))
369 kern_adjtime_common(void)
371 if ((ntp_delta
>= 0 && ntp_delta
< ntp_default_tick_delta
) ||
372 (ntp_delta
< 0 && ntp_delta
> -ntp_default_tick_delta
))
373 ntp_tick_delta
= ntp_delta
;
374 else if (ntp_delta
> ntp_big_delta
)
375 ntp_tick_delta
= 10 * ntp_default_tick_delta
;
376 else if (ntp_delta
< -ntp_big_delta
)
377 ntp_tick_delta
= -10 * ntp_default_tick_delta
;
378 else if (ntp_delta
> 0)
379 ntp_tick_delta
= ntp_default_tick_delta
;
381 ntp_tick_delta
= -ntp_default_tick_delta
;
385 kern_adjtime(int64_t delta
, int64_t *odelta
)
389 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
390 lwkt_setcpu_self(globaldata_find(0));
395 kern_adjtime_common();
399 lwkt_setcpu_self(globaldata_find(origcpu
));
403 kern_get_ntp_delta(int64_t *delta
)
407 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
408 lwkt_setcpu_self(globaldata_find(0));
415 lwkt_setcpu_self(globaldata_find(origcpu
));
419 kern_reladjtime(int64_t delta
)
423 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
424 lwkt_setcpu_self(globaldata_find(0));
428 kern_adjtime_common();
432 lwkt_setcpu_self(globaldata_find(origcpu
));
436 kern_adjfreq(int64_t rate
)
440 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
441 lwkt_setcpu_self(globaldata_find(0));
444 ntp_tick_permanent
= rate
;
448 lwkt_setcpu_self(globaldata_find(origcpu
));
453 sys_adjtime(struct adjtime_args
*uap
)
455 struct thread
*td
= curthread
;
457 int64_t ndelta
, odelta
;
460 if ((error
= suser(td
)))
463 copyin((caddr_t
)uap
->delta
, (caddr_t
)&atv
, sizeof(struct timeval
))))
467 * Compute the total correction and the rate at which to apply it.
468 * Round the adjustment down to a whole multiple of the per-tick
469 * delta, so that after some number of incremental changes in
470 * hardclock(), tickdelta will become zero, lest the correction
471 * overshoot and start taking us away from the desired final time.
473 ndelta
= (int64_t)atv
.tv_sec
* 1000000000 + atv
.tv_usec
* 1000;
474 kern_adjtime(ndelta
, &odelta
);
477 atv
.tv_sec
= odelta
/ 1000000000;
478 atv
.tv_usec
= odelta
% 1000000000 / 1000;
479 (void) copyout((caddr_t
)&atv
, (caddr_t
)uap
->olddelta
,
480 sizeof(struct timeval
));
486 sysctl_adjtime(SYSCTL_HANDLER_ARGS
)
491 if (req
->newptr
!= NULL
) {
492 if (suser(curthread
))
494 error
= SYSCTL_IN(req
, &delta
, sizeof(delta
));
497 kern_reladjtime(delta
);
501 kern_get_ntp_delta(&delta
);
502 error
= SYSCTL_OUT(req
, &delta
, sizeof(delta
));
507 * delta is in nanoseconds.
510 sysctl_delta(SYSCTL_HANDLER_ARGS
)
512 int64_t delta
, old_delta
;
515 if (req
->newptr
!= NULL
) {
516 if (suser(curthread
))
518 error
= SYSCTL_IN(req
, &delta
, sizeof(delta
));
521 kern_adjtime(delta
, &old_delta
);
524 if (req
->oldptr
!= NULL
)
525 kern_get_ntp_delta(&old_delta
);
526 error
= SYSCTL_OUT(req
, &old_delta
, sizeof(old_delta
));
531 * frequency is in nanoseconds per second shifted left 32.
532 * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
535 sysctl_adjfreq(SYSCTL_HANDLER_ARGS
)
540 if (req
->newptr
!= NULL
) {
541 if (suser(curthread
))
543 error
= SYSCTL_IN(req
, &freqdelta
, sizeof(freqdelta
));
548 kern_adjfreq(freqdelta
);
551 if (req
->oldptr
!= NULL
)
552 freqdelta
= ntp_tick_permanent
* hz
;
553 error
= SYSCTL_OUT(req
, &freqdelta
, sizeof(freqdelta
));
560 SYSCTL_NODE(_kern
, OID_AUTO
, ntp
, CTLFLAG_RW
, 0, "NTP related controls");
561 SYSCTL_PROC(_kern_ntp
, OID_AUTO
, permanent
,
562 CTLTYPE_QUAD
|CTLFLAG_RW
, 0, 0,
563 sysctl_adjfreq
, "Q", "permanent correction per second");
564 SYSCTL_PROC(_kern_ntp
, OID_AUTO
, delta
,
565 CTLTYPE_QUAD
|CTLFLAG_RW
, 0, 0,
566 sysctl_delta
, "Q", "one-time delta");
567 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, big_delta
, CTLFLAG_RD
,
568 &ntp_big_delta
, sizeof(ntp_big_delta
), "Q",
569 "threshold for fast adjustment");
570 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, tick_delta
, CTLFLAG_RD
,
571 &ntp_tick_delta
, sizeof(ntp_tick_delta
), "LU",
572 "per-tick adjustment");
573 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, default_tick_delta
, CTLFLAG_RD
,
574 &ntp_default_tick_delta
, sizeof(ntp_default_tick_delta
), "LU",
575 "default per-tick adjustment");
576 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, next_leap_second
, CTLFLAG_RW
,
577 &ntp_leap_second
, sizeof(ntp_leap_second
), "LU",
579 SYSCTL_INT(_kern_ntp
, OID_AUTO
, insert_leap_second
, CTLFLAG_RW
,
580 &ntp_leap_insert
, 0, "insert or remove leap second");
581 SYSCTL_PROC(_kern_ntp
, OID_AUTO
, adjust
,
582 CTLTYPE_QUAD
|CTLFLAG_RW
, 0, 0,
583 sysctl_adjtime
, "Q", "relative adjust for delta");
586 * Get value of an interval timer. The process virtual and
587 * profiling virtual time timers are kept in the p_stats area, since
588 * they can be swapped out. These are kept internally in the
589 * way they are specified externally: in time until they expire.
591 * The real time interval timer is kept in the process table slot
592 * for the process, and its value (it_value) is kept as an
593 * absolute time rather than as a delta, so that it is easy to keep
594 * periodic real-time signals from drifting.
596 * Virtual time timers are processed in the hardclock() routine of
597 * kern_clock.c. The real time timer is processed by a timeout
598 * routine, called from the softclock() routine. Since a callout
599 * may be delayed in real time due to interrupt processing in the system,
600 * it is possible for the real time timeout routine (realitexpire, given below),
601 * to be delayed in real time past when it is supposed to occur. It
602 * does not suffice, therefore, to reload the real timer .it_value from the
603 * real time timers .it_interval. Rather, we compute the next time in
604 * absolute time the timer should go off.
608 sys_getitimer(struct getitimer_args
*uap
)
610 struct proc
*p
= curproc
;
612 struct itimerval aitv
;
614 if (uap
->which
> ITIMER_PROF
)
617 if (uap
->which
== ITIMER_REAL
) {
619 * Convert from absolute to relative time in .it_value
620 * part of real time timer. If time for real time timer
621 * has passed return 0, else return difference between
622 * current time and time for the timer to go off.
624 aitv
= p
->p_realtimer
;
625 if (timevalisset(&aitv
.it_value
)) {
626 getmicrouptime(&ctv
);
627 if (timevalcmp(&aitv
.it_value
, &ctv
, <))
628 timevalclear(&aitv
.it_value
);
630 timevalsub(&aitv
.it_value
, &ctv
);
633 aitv
= p
->p_timer
[uap
->which
];
636 return (copyout((caddr_t
)&aitv
, (caddr_t
)uap
->itv
,
637 sizeof (struct itimerval
)));
642 sys_setitimer(struct setitimer_args
*uap
)
644 struct itimerval aitv
;
646 struct itimerval
*itvp
;
647 struct proc
*p
= curproc
;
650 if (uap
->which
> ITIMER_PROF
)
653 if (itvp
&& (error
= copyin((caddr_t
)itvp
, (caddr_t
)&aitv
,
654 sizeof(struct itimerval
))))
656 if ((uap
->itv
= uap
->oitv
) &&
657 (error
= sys_getitimer((struct getitimer_args
*)uap
)))
661 if (itimerfix(&aitv
.it_value
))
663 if (!timevalisset(&aitv
.it_value
))
664 timevalclear(&aitv
.it_interval
);
665 else if (itimerfix(&aitv
.it_interval
))
668 if (uap
->which
== ITIMER_REAL
) {
669 if (timevalisset(&p
->p_realtimer
.it_value
))
670 callout_stop(&p
->p_ithandle
);
671 if (timevalisset(&aitv
.it_value
))
672 callout_reset(&p
->p_ithandle
,
673 tvtohz_high(&aitv
.it_value
), realitexpire
, p
);
674 getmicrouptime(&ctv
);
675 timevaladd(&aitv
.it_value
, &ctv
);
676 p
->p_realtimer
= aitv
;
678 p
->p_timer
[uap
->which
] = aitv
;
685 * Real interval timer expired:
686 * send process whose timer expired an alarm signal.
687 * If time is not set up to reload, then just return.
688 * Else compute next time timer should go off which is > current time.
689 * This is where delay in processing this timeout causes multiple
690 * SIGALRM calls to be compressed into one.
691 * tvtohz_high() always adds 1 to allow for the time until the next clock
692 * interrupt being strictly less than 1 clock tick, but we don't want
693 * that here since we want to appear to be in sync with the clock
694 * interrupt even when we're delayed.
697 realitexpire(void *arg
)
700 struct timeval ctv
, ntv
;
702 p
= (struct proc
*)arg
;
704 if (!timevalisset(&p
->p_realtimer
.it_interval
)) {
705 timevalclear(&p
->p_realtimer
.it_value
);
710 timevaladd(&p
->p_realtimer
.it_value
,
711 &p
->p_realtimer
.it_interval
);
712 getmicrouptime(&ctv
);
713 if (timevalcmp(&p
->p_realtimer
.it_value
, &ctv
, >)) {
714 ntv
= p
->p_realtimer
.it_value
;
715 timevalsub(&ntv
, &ctv
);
716 callout_reset(&p
->p_ithandle
, tvtohz_low(&ntv
),
726 * Check that a proposed value to load into the .it_value or
727 * .it_interval part of an interval timer is acceptable, and
728 * fix it to have at least minimal value (i.e. if it is less
729 * than the resolution of the clock, round it up.)
732 itimerfix(struct timeval
*tv
)
735 if (tv
->tv_sec
< 0 || tv
->tv_sec
> 100000000 ||
736 tv
->tv_usec
< 0 || tv
->tv_usec
>= 1000000)
738 if (tv
->tv_sec
== 0 && tv
->tv_usec
!= 0 && tv
->tv_usec
< tick
)
744 * Decrement an interval timer by a specified number
745 * of microseconds, which must be less than a second,
746 * i.e. < 1000000. If the timer expires, then reload
747 * it. In this case, carry over (usec - old value) to
748 * reduce the value reloaded into the timer so that
749 * the timer does not drift. This routine assumes
750 * that it is called in a context where the timers
751 * on which it is operating cannot change in value.
754 itimerdecr(struct itimerval
*itp
, int usec
)
757 if (itp
->it_value
.tv_usec
< usec
) {
758 if (itp
->it_value
.tv_sec
== 0) {
759 /* expired, and already in next interval */
760 usec
-= itp
->it_value
.tv_usec
;
763 itp
->it_value
.tv_usec
+= 1000000;
764 itp
->it_value
.tv_sec
--;
766 itp
->it_value
.tv_usec
-= usec
;
768 if (timevalisset(&itp
->it_value
))
770 /* expired, exactly at end of interval */
772 if (timevalisset(&itp
->it_interval
)) {
773 itp
->it_value
= itp
->it_interval
;
774 itp
->it_value
.tv_usec
-= usec
;
775 if (itp
->it_value
.tv_usec
< 0) {
776 itp
->it_value
.tv_usec
+= 1000000;
777 itp
->it_value
.tv_sec
--;
780 itp
->it_value
.tv_usec
= 0; /* sec is already 0 */
785 * Add and subtract routines for timevals.
786 * N.B.: subtract routine doesn't deal with
787 * results which are before the beginning,
788 * it just gets very confused in this case.
792 timevaladd(struct timeval
*t1
, struct timeval
*t2
)
795 t1
->tv_sec
+= t2
->tv_sec
;
796 t1
->tv_usec
+= t2
->tv_usec
;
801 timevalsub(struct timeval
*t1
, struct timeval
*t2
)
804 t1
->tv_sec
-= t2
->tv_sec
;
805 t1
->tv_usec
-= t2
->tv_usec
;
810 timevalfix(struct timeval
*t1
)
813 if (t1
->tv_usec
< 0) {
815 t1
->tv_usec
+= 1000000;
817 if (t1
->tv_usec
>= 1000000) {
819 t1
->tv_usec
-= 1000000;
824 * ratecheck(): simple time-based rate-limit checking.
827 ratecheck(struct timeval
*lasttime
, const struct timeval
*mininterval
)
829 struct timeval tv
, delta
;
832 getmicrouptime(&tv
); /* NB: 10ms precision */
834 timevalsub(&delta
, lasttime
);
837 * check for 0,0 is so that the message will be seen at least once,
838 * even if interval is huge.
840 if (timevalcmp(&delta
, mininterval
, >=) ||
841 (lasttime
->tv_sec
== 0 && lasttime
->tv_usec
== 0)) {
850 * ppsratecheck(): packets (or events) per second limitation.
852 * Return 0 if the limit is to be enforced (e.g. the caller
853 * should drop a packet because of the rate limitation).
855 * maxpps of 0 always causes zero to be returned. maxpps of -1
856 * always causes 1 to be returned; this effectively defeats rate
859 * Note that we maintain the struct timeval for compatibility
860 * with other bsd systems. We reuse the storage and just monitor
861 * clock ticks for minimal overhead.
864 ppsratecheck(struct timeval
*lasttime
, int *curpps
, int maxpps
)
869 * Reset the last time and counter if this is the first call
870 * or more than a second has passed since the last update of
874 if (lasttime
->tv_sec
== 0 || (u_int
)(now
- lasttime
->tv_sec
) >= hz
) {
875 lasttime
->tv_sec
= now
;
877 return (maxpps
!= 0);
879 (*curpps
)++; /* NB: ignore potential overflow */
880 return (maxpps
< 0 || *curpps
< maxpps
);