Reset ifnet.if_timer in bge_stop()
[dragonfly/port-amd64.git] / sys / dev / netif / bge / if_bge.c
blob99c07fe962dab6c14b01b8e17b95b74cb36e481e
1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34 * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.77 2007/05/12 08:39:56 sephe Exp $
39 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
41 * Written by Bill Paul <wpaul@windriver.com>
42 * Senior Engineer, Wind River Systems
46 * The Broadcom BCM5700 is based on technology originally developed by
47 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51 * frames, highly configurable RX filtering, and 16 RX and TX queues
52 * (which, along with RX filter rules, can be used for QOS applications).
53 * Other features, such as TCP segmentation, may be available as part
54 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55 * firmware images can be stored in hardware and need not be compiled
56 * into the driver.
58 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
61 * The BCM5701 is a single-chip solution incorporating both the BCM5700
62 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63 * does not support external SSRAM.
65 * Broadcom also produces a variation of the BCM5700 under the "Altima"
66 * brand name, which is functionally similar but lacks PCI-X support.
68 * Without external SSRAM, you can only have at most 4 TX rings,
69 * and the use of the mini RX ring is disabled. This seems to imply
70 * that these features are simply not available on the BCM5701. As a
71 * result, this driver does not implement any support for the mini RX
72 * ring.
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/queue.h>
82 #include <sys/rman.h>
83 #include <sys/serialize.h>
84 #include <sys/socket.h>
85 #include <sys/sockio.h>
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 #include <net/ifq_var.h>
95 #include <net/vlan/if_vlan_var.h>
97 #include <dev/netif/mii_layer/mii.h>
98 #include <dev/netif/mii_layer/miivar.h>
99 #include <dev/netif/mii_layer/brgphyreg.h>
101 #include <bus/pci/pcidevs.h>
102 #include <bus/pci/pcireg.h>
103 #include <bus/pci/pcivar.h>
105 #include <dev/netif/bge/if_bgereg.h>
107 /* "device miibus" required. See GENERIC if you get errors here. */
108 #include "miibus_if.h"
110 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
111 #define BGE_MIN_FRAME 60
114 * Various supported device vendors/types and their names. Note: the
115 * spec seems to indicate that the hardware still has Alteon's vendor
116 * ID burned into it, though it will always be overriden by the vendor
117 * ID in the EEPROM. Just to be safe, we cover all possibilities.
119 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */
121 static struct bge_type bge_devs[] = {
122 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
123 "3COM 3C996 Gigabit Ethernet" },
125 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
126 "Alteon BCM5700 Gigabit Ethernet" },
127 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
128 "Alteon BCM5701 Gigabit Ethernet" },
130 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
131 "Altima AC1000 Gigabit Ethernet" },
132 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
133 "Altima AC1002 Gigabit Ethernet" },
134 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
135 "Altima AC9100 Gigabit Ethernet" },
137 { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
138 "Apple BCM5701 Gigabit Ethernet" },
140 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
141 "Broadcom BCM5700 Gigabit Ethernet" },
142 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
143 "Broadcom BCM5701 Gigabit Ethernet" },
144 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
145 "Broadcom BCM5702 Gigabit Ethernet" },
146 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
147 "Broadcom BCM5702X Gigabit Ethernet" },
148 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
149 "Broadcom BCM5702 Gigabit Ethernet" },
150 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
151 "Broadcom BCM5703 Gigabit Ethernet" },
152 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
153 "Broadcom BCM5703X Gigabit Ethernet" },
154 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
155 "Broadcom BCM5703 Gigabit Ethernet" },
156 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
157 "Broadcom BCM5704C Dual Gigabit Ethernet" },
158 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
159 "Broadcom BCM5704S Dual Gigabit Ethernet" },
160 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
161 "Broadcom BCM5704S Dual Gigabit Ethernet" },
162 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
163 "Broadcom BCM5705 Gigabit Ethernet" },
164 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
165 "Broadcom BCM5705F Gigabit Ethernet" },
166 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
167 "Broadcom BCM5705K Gigabit Ethernet" },
168 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
169 "Broadcom BCM5705M Gigabit Ethernet" },
170 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
171 "Broadcom BCM5705M Gigabit Ethernet" },
172 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
173 "Broadcom BCM5714C Gigabit Ethernet" },
174 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
175 "Broadcom BCM5714S Gigabit Ethernet" },
176 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
177 "Broadcom BCM5715 Gigabit Ethernet" },
178 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
179 "Broadcom BCM5715S Gigabit Ethernet" },
180 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
181 "Broadcom BCM5720 Gigabit Ethernet" },
182 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
183 "Broadcom BCM5721 Gigabit Ethernet" },
184 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
185 "Broadcom BCM5722 Gigabit Ethernet" },
186 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
187 "Broadcom BCM5750 Gigabit Ethernet" },
188 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
189 "Broadcom BCM5750M Gigabit Ethernet" },
190 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
191 "Broadcom BCM5751 Gigabit Ethernet" },
192 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
193 "Broadcom BCM5751F Gigabit Ethernet" },
194 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
195 "Broadcom BCM5751M Gigabit Ethernet" },
196 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
197 "Broadcom BCM5752 Gigabit Ethernet" },
198 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
199 "Broadcom BCM5752M Gigabit Ethernet" },
200 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
201 "Broadcom BCM5753 Gigabit Ethernet" },
202 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
203 "Broadcom BCM5753F Gigabit Ethernet" },
204 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
205 "Broadcom BCM5753M Gigabit Ethernet" },
206 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
207 "Broadcom BCM5754 Gigabit Ethernet" },
208 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
209 "Broadcom BCM5754M Gigabit Ethernet" },
210 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
211 "Broadcom BCM5755 Gigabit Ethernet" },
212 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
213 "Broadcom BCM5755M Gigabit Ethernet" },
214 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
215 "Broadcom BCM5756 Gigabit Ethernet" },
216 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
217 "Broadcom BCM5780 Gigabit Ethernet" },
218 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
219 "Broadcom BCM5780S Gigabit Ethernet" },
220 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
221 "Broadcom BCM5781 Gigabit Ethernet" },
222 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
223 "Broadcom BCM5782 Gigabit Ethernet" },
224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
225 "Broadcom BCM5786 Gigabit Ethernet" },
226 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
227 "Broadcom BCM5787 Gigabit Ethernet" },
228 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
229 "Broadcom BCM5787F Gigabit Ethernet" },
230 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
231 "Broadcom BCM5787M Gigabit Ethernet" },
232 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
233 "Broadcom BCM5788 Gigabit Ethernet" },
234 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
235 "Broadcom BCM5789 Gigabit Ethernet" },
236 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
237 "Broadcom BCM5901 Fast Ethernet" },
238 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
239 "Broadcom BCM5901A2 Fast Ethernet" },
240 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
241 "Broadcom BCM5903M Fast Ethernet" },
243 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
244 "SysKonnect Gigabit Ethernet" },
246 { 0, 0, NULL }
249 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
250 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
251 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
252 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
253 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
255 static int bge_probe(device_t);
256 static int bge_attach(device_t);
257 static int bge_detach(device_t);
258 static void bge_txeof(struct bge_softc *);
259 static void bge_rxeof(struct bge_softc *);
261 static void bge_tick(void *);
262 static void bge_stats_update(struct bge_softc *);
263 static void bge_stats_update_regs(struct bge_softc *);
264 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
266 static void bge_intr(void *);
267 static void bge_start(struct ifnet *);
268 static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void bge_init(void *);
270 static void bge_stop(struct bge_softc *);
271 static void bge_watchdog(struct ifnet *);
272 static void bge_shutdown(device_t);
273 static int bge_suspend(device_t);
274 static int bge_resume(device_t);
275 static int bge_ifmedia_upd(struct ifnet *);
276 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
278 static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
279 static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
281 static void bge_setmulti(struct bge_softc *);
282 static void bge_setpromisc(struct bge_softc *);
284 static int bge_alloc_jumbo_mem(struct bge_softc *);
285 static void bge_free_jumbo_mem(struct bge_softc *);
286 static struct bge_jslot
287 *bge_jalloc(struct bge_softc *);
288 static void bge_jfree(void *);
289 static void bge_jref(void *);
290 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
291 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
292 static int bge_init_rx_ring_std(struct bge_softc *);
293 static void bge_free_rx_ring_std(struct bge_softc *);
294 static int bge_init_rx_ring_jumbo(struct bge_softc *);
295 static void bge_free_rx_ring_jumbo(struct bge_softc *);
296 static void bge_free_tx_ring(struct bge_softc *);
297 static int bge_init_tx_ring(struct bge_softc *);
299 static int bge_chipinit(struct bge_softc *);
300 static int bge_blockinit(struct bge_softc *);
302 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
303 static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
304 #ifdef notdef
305 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
306 #endif
307 static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
308 static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
310 static int bge_miibus_readreg(device_t, int, int);
311 static int bge_miibus_writereg(device_t, int, int, int);
312 static void bge_miibus_statchg(device_t);
313 static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
314 static void bge_tbi_link_upd(struct bge_softc *, uint32_t);
315 static void bge_copper_link_upd(struct bge_softc *, uint32_t);
317 static void bge_reset(struct bge_softc *);
319 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
320 static void bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
321 bus_size_t, int);
322 static int bge_dma_alloc(struct bge_softc *);
323 static void bge_dma_free(struct bge_softc *);
324 static int bge_dma_block_alloc(struct bge_softc *, bus_size_t,
325 bus_dma_tag_t *, bus_dmamap_t *,
326 void **, bus_addr_t *);
327 static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
330 * Set following tunable to 1 for some IBM blade servers with the DNLK
331 * switch module. Auto negotiation is broken for those configurations.
333 static int bge_fake_autoneg = 0;
334 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
336 static device_method_t bge_methods[] = {
337 /* Device interface */
338 DEVMETHOD(device_probe, bge_probe),
339 DEVMETHOD(device_attach, bge_attach),
340 DEVMETHOD(device_detach, bge_detach),
341 DEVMETHOD(device_shutdown, bge_shutdown),
342 DEVMETHOD(device_suspend, bge_suspend),
343 DEVMETHOD(device_resume, bge_resume),
345 /* bus interface */
346 DEVMETHOD(bus_print_child, bus_generic_print_child),
347 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
349 /* MII interface */
350 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
351 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
352 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
354 { 0, 0 }
357 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
358 static devclass_t bge_devclass;
360 DECLARE_DUMMY_MODULE(if_bge);
361 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
362 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
364 static uint32_t
365 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
367 device_t dev = sc->bge_dev;
368 uint32_t val;
370 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
371 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
372 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
373 return (val);
376 static void
377 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
379 device_t dev = sc->bge_dev;
381 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
382 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
383 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
386 #ifdef notdef
387 static uint32_t
388 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
390 device_t dev = sc->bge_dev;
392 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
393 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
395 #endif
397 static void
398 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
400 device_t dev = sc->bge_dev;
402 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
403 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
406 static void
407 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
409 CSR_WRITE_4(sc, off, val);
413 * Read a byte of data stored in the EEPROM at address 'addr.' The
414 * BCM570x supports both the traditional bitbang interface and an
415 * auto access interface for reading the EEPROM. We use the auto
416 * access method.
418 static uint8_t
419 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
421 int i;
422 uint32_t byte = 0;
425 * Enable use of auto EEPROM access so we can avoid
426 * having to use the bitbang method.
428 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
430 /* Reset the EEPROM, load the clock period. */
431 CSR_WRITE_4(sc, BGE_EE_ADDR,
432 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
433 DELAY(20);
435 /* Issue the read EEPROM command. */
436 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
438 /* Wait for completion */
439 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
440 DELAY(10);
441 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
442 break;
445 if (i == BGE_TIMEOUT) {
446 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
447 return(1);
450 /* Get result. */
451 byte = CSR_READ_4(sc, BGE_EE_DATA);
453 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
455 return(0);
459 * Read a sequence of bytes from the EEPROM.
461 static int
462 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
464 size_t i;
465 int err;
466 uint8_t byte;
468 for (byte = 0, err = 0, i = 0; i < len; i++) {
469 err = bge_eeprom_getbyte(sc, off + i, &byte);
470 if (err)
471 break;
472 *(dest + i) = byte;
475 return(err ? 1 : 0);
478 static int
479 bge_miibus_readreg(device_t dev, int phy, int reg)
481 struct bge_softc *sc;
482 struct ifnet *ifp;
483 uint32_t val, autopoll;
484 int i;
486 sc = device_get_softc(dev);
487 ifp = &sc->arpcom.ac_if;
490 * Broadcom's own driver always assumes the internal
491 * PHY is at GMII address 1. On some chips, the PHY responds
492 * to accesses at all addresses, which could cause us to
493 * bogusly attach the PHY 32 times at probe type. Always
494 * restricting the lookup to address 1 is simpler than
495 * trying to figure out which chips revisions should be
496 * special-cased.
498 if (phy != 1)
499 return(0);
501 /* Reading with autopolling on may trigger PCI errors */
502 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
503 if (autopoll & BGE_MIMODE_AUTOPOLL) {
504 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
505 DELAY(40);
508 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
509 BGE_MIPHY(phy)|BGE_MIREG(reg));
511 for (i = 0; i < BGE_TIMEOUT; i++) {
512 val = CSR_READ_4(sc, BGE_MI_COMM);
513 if (!(val & BGE_MICOMM_BUSY))
514 break;
517 if (i == BGE_TIMEOUT) {
518 if_printf(ifp, "PHY read timed out\n");
519 val = 0;
520 goto done;
523 val = CSR_READ_4(sc, BGE_MI_COMM);
525 done:
526 if (autopoll & BGE_MIMODE_AUTOPOLL) {
527 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
528 DELAY(40);
531 if (val & BGE_MICOMM_READFAIL)
532 return(0);
534 return(val & 0xFFFF);
537 static int
538 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
540 struct bge_softc *sc;
541 uint32_t autopoll;
542 int i;
544 sc = device_get_softc(dev);
546 /* Reading with autopolling on may trigger PCI errors */
547 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
548 if (autopoll & BGE_MIMODE_AUTOPOLL) {
549 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
550 DELAY(40);
553 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
554 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
556 for (i = 0; i < BGE_TIMEOUT; i++) {
557 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
558 break;
561 if (autopoll & BGE_MIMODE_AUTOPOLL) {
562 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
563 DELAY(40);
566 if (i == BGE_TIMEOUT) {
567 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
568 return(0);
571 return(0);
574 static void
575 bge_miibus_statchg(device_t dev)
577 struct bge_softc *sc;
578 struct mii_data *mii;
580 sc = device_get_softc(dev);
581 mii = device_get_softc(sc->bge_miibus);
583 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
584 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
585 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
586 } else {
587 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
590 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
591 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
592 } else {
593 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
598 * Memory management for jumbo frames.
600 static int
601 bge_alloc_jumbo_mem(struct bge_softc *sc)
603 struct ifnet *ifp = &sc->arpcom.ac_if;
604 struct bge_jslot *entry;
605 uint8_t *ptr;
606 bus_addr_t paddr;
607 int i, error;
610 * Create tag for jumbo mbufs.
611 * This is really a bit of a kludge. We allocate a special
612 * jumbo buffer pool which (thanks to the way our DMA
613 * memory allocation works) will consist of contiguous
614 * pages. This means that even though a jumbo buffer might
615 * be larger than a page size, we don't really need to
616 * map it into more than one DMA segment. However, the
617 * default mbuf tag will result in multi-segment mappings,
618 * so we have to create a special jumbo mbuf tag that
619 * lets us get away with mapping the jumbo buffers as
620 * a single segment. I think eventually the driver should
621 * be changed so that it uses ordinary mbufs and cluster
622 * buffers, i.e. jumbo frames can span multiple DMA
623 * descriptors. But that's a project for another day.
627 * Create DMA stuffs for jumbo RX ring.
629 error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
630 &sc->bge_cdata.bge_rx_jumbo_ring_tag,
631 &sc->bge_cdata.bge_rx_jumbo_ring_map,
632 (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
633 &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
634 if (error) {
635 if_printf(ifp, "could not create jumbo RX ring\n");
636 return error;
640 * Create DMA stuffs for jumbo buffer block.
642 error = bge_dma_block_alloc(sc, BGE_JMEM,
643 &sc->bge_cdata.bge_jumbo_tag,
644 &sc->bge_cdata.bge_jumbo_map,
645 (void **)&sc->bge_ldata.bge_jumbo_buf,
646 &paddr);
647 if (error) {
648 if_printf(ifp, "could not create jumbo buffer\n");
649 return error;
652 SLIST_INIT(&sc->bge_jfree_listhead);
655 * Now divide it up into 9K pieces and save the addresses
656 * in an array. Note that we play an evil trick here by using
657 * the first few bytes in the buffer to hold the the address
658 * of the softc structure for this interface. This is because
659 * bge_jfree() needs it, but it is called by the mbuf management
660 * code which will not pass it to us explicitly.
662 for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
663 entry = &sc->bge_cdata.bge_jslots[i];
664 entry->bge_sc = sc;
665 entry->bge_buf = ptr;
666 entry->bge_paddr = paddr;
667 entry->bge_inuse = 0;
668 entry->bge_slot = i;
669 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
671 ptr += BGE_JLEN;
672 paddr += BGE_JLEN;
674 return 0;
677 static void
678 bge_free_jumbo_mem(struct bge_softc *sc)
680 /* Destroy jumbo RX ring. */
681 bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
682 sc->bge_cdata.bge_rx_jumbo_ring_map,
683 sc->bge_ldata.bge_rx_jumbo_ring);
685 /* Destroy jumbo buffer block. */
686 bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
687 sc->bge_cdata.bge_jumbo_map,
688 sc->bge_ldata.bge_jumbo_buf);
692 * Allocate a jumbo buffer.
694 static struct bge_jslot *
695 bge_jalloc(struct bge_softc *sc)
697 struct bge_jslot *entry;
699 lwkt_serialize_enter(&sc->bge_jslot_serializer);
700 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
701 if (entry) {
702 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
703 entry->bge_inuse = 1;
704 } else {
705 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
707 lwkt_serialize_exit(&sc->bge_jslot_serializer);
708 return(entry);
712 * Adjust usage count on a jumbo buffer.
714 static void
715 bge_jref(void *arg)
717 struct bge_jslot *entry = (struct bge_jslot *)arg;
718 struct bge_softc *sc = entry->bge_sc;
720 if (sc == NULL)
721 panic("bge_jref: can't find softc pointer!");
723 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
724 panic("bge_jref: asked to reference buffer "
725 "that we don't manage!");
726 } else if (entry->bge_inuse == 0) {
727 panic("bge_jref: buffer already free!");
728 } else {
729 atomic_add_int(&entry->bge_inuse, 1);
734 * Release a jumbo buffer.
736 static void
737 bge_jfree(void *arg)
739 struct bge_jslot *entry = (struct bge_jslot *)arg;
740 struct bge_softc *sc = entry->bge_sc;
742 if (sc == NULL)
743 panic("bge_jfree: can't find softc pointer!");
745 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
746 panic("bge_jfree: asked to free buffer that we don't manage!");
747 } else if (entry->bge_inuse == 0) {
748 panic("bge_jfree: buffer already free!");
749 } else {
751 * Possible MP race to 0, use the serializer. The atomic insn
752 * is still needed for races against bge_jref().
754 lwkt_serialize_enter(&sc->bge_jslot_serializer);
755 atomic_subtract_int(&entry->bge_inuse, 1);
756 if (entry->bge_inuse == 0) {
757 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
758 entry, jslot_link);
760 lwkt_serialize_exit(&sc->bge_jslot_serializer);
766 * Intialize a standard receive ring descriptor.
768 static int
769 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
771 struct mbuf *m_new = NULL;
772 struct bge_dmamap_arg ctx;
773 bus_dma_segment_t seg;
774 struct bge_rx_bd *r;
775 int error;
777 if (m == NULL) {
778 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
779 if (m_new == NULL)
780 return ENOBUFS;
781 } else {
782 m_new = m;
783 m_new->m_data = m_new->m_ext.ext_buf;
785 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
787 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
788 m_adj(m_new, ETHER_ALIGN);
790 ctx.bge_maxsegs = 1;
791 ctx.bge_segs = &seg;
792 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
793 sc->bge_cdata.bge_rx_std_dmamap[i],
794 m_new, bge_dma_map_mbuf, &ctx,
795 BUS_DMA_NOWAIT);
796 if (error || ctx.bge_maxsegs == 0) {
797 if (m == NULL)
798 m_freem(m_new);
799 return ENOMEM;
802 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
804 r = &sc->bge_ldata.bge_rx_std_ring[i];
805 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
806 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
807 r->bge_flags = BGE_RXBDFLAG_END;
808 r->bge_len = m_new->m_len;
809 r->bge_idx = i;
811 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
812 sc->bge_cdata.bge_rx_std_dmamap[i],
813 BUS_DMASYNC_PREREAD);
814 return 0;
818 * Initialize a jumbo receive ring descriptor. This allocates
819 * a jumbo buffer from the pool managed internally by the driver.
821 static int
822 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
824 struct mbuf *m_new = NULL;
825 struct bge_jslot *buf;
826 struct bge_rx_bd *r;
827 bus_addr_t paddr;
829 if (m == NULL) {
830 /* Allocate the mbuf. */
831 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
832 if (m_new == NULL)
833 return(ENOBUFS);
835 /* Allocate the jumbo buffer */
836 buf = bge_jalloc(sc);
837 if (buf == NULL) {
838 m_freem(m_new);
839 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
840 "-- packet dropped!\n");
841 return ENOBUFS;
844 /* Attach the buffer to the mbuf. */
845 m_new->m_ext.ext_arg = buf;
846 m_new->m_ext.ext_buf = buf->bge_buf;
847 m_new->m_ext.ext_free = bge_jfree;
848 m_new->m_ext.ext_ref = bge_jref;
849 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
851 m_new->m_flags |= M_EXT;
852 } else {
853 KKASSERT(m->m_flags & M_EXT);
854 m_new = m;
855 buf = m_new->m_ext.ext_arg;
857 m_new->m_data = m_new->m_ext.ext_buf;
858 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
860 paddr = buf->bge_paddr;
861 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
862 m_adj(m_new, ETHER_ALIGN);
863 paddr += ETHER_ALIGN;
866 /* Set up the descriptor. */
867 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
869 r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
870 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
871 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
872 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
873 r->bge_len = m_new->m_len;
874 r->bge_idx = i;
876 return 0;
880 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
881 * that's 1MB or memory, which is a lot. For now, we fill only the first
882 * 256 ring entries and hope that our CPU is fast enough to keep up with
883 * the NIC.
885 static int
886 bge_init_rx_ring_std(struct bge_softc *sc)
888 int i;
890 for (i = 0; i < BGE_SSLOTS; i++) {
891 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
892 return(ENOBUFS);
895 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
896 sc->bge_cdata.bge_rx_std_ring_map,
897 BUS_DMASYNC_PREWRITE);
899 sc->bge_std = i - 1;
900 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
902 return(0);
905 static void
906 bge_free_rx_ring_std(struct bge_softc *sc)
908 int i;
910 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
911 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
912 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
913 sc->bge_cdata.bge_rx_std_dmamap[i]);
914 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
915 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
917 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
918 sizeof(struct bge_rx_bd));
922 static int
923 bge_init_rx_ring_jumbo(struct bge_softc *sc)
925 int i;
926 struct bge_rcb *rcb;
928 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
929 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
930 return(ENOBUFS);
933 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
934 sc->bge_cdata.bge_rx_jumbo_ring_map,
935 BUS_DMASYNC_PREWRITE);
937 sc->bge_jumbo = i - 1;
939 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
940 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
941 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
943 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
945 return(0);
948 static void
949 bge_free_rx_ring_jumbo(struct bge_softc *sc)
951 int i;
953 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
954 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
955 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
956 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
958 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
959 sizeof(struct bge_rx_bd));
963 static void
964 bge_free_tx_ring(struct bge_softc *sc)
966 int i;
968 for (i = 0; i < BGE_TX_RING_CNT; i++) {
969 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
970 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
971 sc->bge_cdata.bge_tx_dmamap[i]);
972 m_freem(sc->bge_cdata.bge_tx_chain[i]);
973 sc->bge_cdata.bge_tx_chain[i] = NULL;
975 bzero(&sc->bge_ldata.bge_tx_ring[i],
976 sizeof(struct bge_tx_bd));
980 static int
981 bge_init_tx_ring(struct bge_softc *sc)
983 sc->bge_txcnt = 0;
984 sc->bge_tx_saved_considx = 0;
985 sc->bge_tx_prodidx = 0;
987 /* Initialize transmit producer index for host-memory send ring. */
988 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
990 /* 5700 b2 errata */
991 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
992 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
994 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
995 /* 5700 b2 errata */
996 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
997 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
999 return(0);
1002 static void
1003 bge_setmulti(struct bge_softc *sc)
1005 struct ifnet *ifp;
1006 struct ifmultiaddr *ifma;
1007 uint32_t hashes[4] = { 0, 0, 0, 0 };
1008 int h, i;
1010 ifp = &sc->arpcom.ac_if;
1012 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1013 for (i = 0; i < 4; i++)
1014 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1015 return;
1018 /* First, zot all the existing filters. */
1019 for (i = 0; i < 4; i++)
1020 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1022 /* Now program new ones. */
1023 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1024 if (ifma->ifma_addr->sa_family != AF_LINK)
1025 continue;
1026 h = ether_crc32_le(
1027 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1028 ETHER_ADDR_LEN) & 0x7f;
1029 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1032 for (i = 0; i < 4; i++)
1033 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1037 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1038 * self-test results.
1040 static int
1041 bge_chipinit(struct bge_softc *sc)
1043 int i;
1044 uint32_t dma_rw_ctl;
1046 /* Set endian type before we access any non-PCI registers. */
1047 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1050 * Check the 'ROM failed' bit on the RX CPU to see if
1051 * self-tests passed.
1053 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1054 if_printf(&sc->arpcom.ac_if,
1055 "RX CPU self-diagnostics failed!\n");
1056 return(ENODEV);
1059 /* Clear the MAC control register */
1060 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1063 * Clear the MAC statistics block in the NIC's
1064 * internal memory.
1066 for (i = BGE_STATS_BLOCK;
1067 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1068 BGE_MEMWIN_WRITE(sc, i, 0);
1070 for (i = BGE_STATUS_BLOCK;
1071 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1072 BGE_MEMWIN_WRITE(sc, i, 0);
1074 /* Set up the PCI DMA control register. */
1075 if (sc->bge_flags & BGE_FLAG_PCIE) {
1076 /* PCI Express */
1077 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1078 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1079 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1080 } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1081 /* PCI-X bus */
1082 if (BGE_IS_5714_FAMILY(sc)) {
1083 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1084 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1085 /* XXX magic values, Broadcom-supplied Linux driver */
1086 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1087 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1088 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1089 } else {
1090 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1092 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1094 * The 5704 uses a different encoding of read/write
1095 * watermarks.
1097 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1098 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1099 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1100 } else {
1101 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1102 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1103 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1104 (0x0F);
1108 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1109 * for hardware bugs.
1111 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1112 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1113 uint32_t tmp;
1115 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1116 if (tmp == 0x6 || tmp == 0x7)
1117 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1119 } else {
1120 /* Conventional PCI bus */
1121 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1122 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1123 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1124 (0x0F);
1127 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1128 sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1129 sc->bge_asicrev == BGE_ASICREV_BCM5705)
1130 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1131 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1134 * Set up general mode register.
1136 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1137 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1138 BGE_MODECTL_TX_NO_PHDR_CSUM);
1141 * Disable memory write invalidate. Apparently it is not supported
1142 * properly by these devices.
1144 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1146 /* Set the timer prescaler (always 66Mhz) */
1147 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1149 return(0);
1152 static int
1153 bge_blockinit(struct bge_softc *sc)
1155 struct bge_rcb *rcb;
1156 bus_size_t vrcb;
1157 bge_hostaddr taddr;
1158 uint32_t val;
1159 int i;
1162 * Initialize the memory window pointer register so that
1163 * we can access the first 32K of internal NIC RAM. This will
1164 * allow us to set up the TX send ring RCBs and the RX return
1165 * ring RCBs, plus other things which live in NIC memory.
1167 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1169 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1171 if (!BGE_IS_5705_PLUS(sc)) {
1172 /* Configure mbuf memory pool */
1173 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1174 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1175 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1176 else
1177 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1179 /* Configure DMA resource pool */
1180 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1181 BGE_DMA_DESCRIPTORS);
1182 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1185 /* Configure mbuf pool watermarks */
1186 if (BGE_IS_5705_PLUS(sc)) {
1187 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1188 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1189 } else {
1190 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1191 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1193 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1195 /* Configure DMA resource watermarks */
1196 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1197 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1199 /* Enable buffer manager */
1200 if (!BGE_IS_5705_PLUS(sc)) {
1201 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1202 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1204 /* Poll for buffer manager start indication */
1205 for (i = 0; i < BGE_TIMEOUT; i++) {
1206 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1207 break;
1208 DELAY(10);
1211 if (i == BGE_TIMEOUT) {
1212 if_printf(&sc->arpcom.ac_if,
1213 "buffer manager failed to start\n");
1214 return(ENXIO);
1218 /* Enable flow-through queues */
1219 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1220 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1222 /* Wait until queue initialization is complete */
1223 for (i = 0; i < BGE_TIMEOUT; i++) {
1224 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1225 break;
1226 DELAY(10);
1229 if (i == BGE_TIMEOUT) {
1230 if_printf(&sc->arpcom.ac_if,
1231 "flow-through queue init failed\n");
1232 return(ENXIO);
1235 /* Initialize the standard RX ring control block */
1236 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1237 rcb->bge_hostaddr.bge_addr_lo =
1238 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1239 rcb->bge_hostaddr.bge_addr_hi =
1240 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1241 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1242 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1243 if (BGE_IS_5705_PLUS(sc))
1244 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1245 else
1246 rcb->bge_maxlen_flags =
1247 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1248 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1249 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1250 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1251 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1252 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1255 * Initialize the jumbo RX ring control block
1256 * We set the 'ring disabled' bit in the flags
1257 * field until we're actually ready to start
1258 * using this ring (i.e. once we set the MTU
1259 * high enough to require it).
1261 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1262 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1264 rcb->bge_hostaddr.bge_addr_lo =
1265 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1266 rcb->bge_hostaddr.bge_addr_hi =
1267 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1268 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1269 sc->bge_cdata.bge_rx_jumbo_ring_map,
1270 BUS_DMASYNC_PREREAD);
1271 rcb->bge_maxlen_flags =
1272 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1273 BGE_RCB_FLAG_RING_DISABLED);
1274 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1275 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1276 rcb->bge_hostaddr.bge_addr_hi);
1277 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1278 rcb->bge_hostaddr.bge_addr_lo);
1279 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1280 rcb->bge_maxlen_flags);
1281 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1283 /* Set up dummy disabled mini ring RCB */
1284 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1285 rcb->bge_maxlen_flags =
1286 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1287 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1288 rcb->bge_maxlen_flags);
1292 * Set the BD ring replentish thresholds. The recommended
1293 * values are 1/8th the number of descriptors allocated to
1294 * each ring.
1296 if (BGE_IS_5705_PLUS(sc))
1297 val = 8;
1298 else
1299 val = BGE_STD_RX_RING_CNT / 8;
1300 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1301 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1304 * Disable all unused send rings by setting the 'ring disabled'
1305 * bit in the flags field of all the TX send ring control blocks.
1306 * These are located in NIC memory.
1308 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1309 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1310 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1311 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1312 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1313 vrcb += sizeof(struct bge_rcb);
1316 /* Configure TX RCB 0 (we use only the first ring) */
1317 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1318 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1319 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1320 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1321 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1322 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1323 if (!BGE_IS_5705_PLUS(sc)) {
1324 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1325 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1328 /* Disable all unused RX return rings */
1329 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1330 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1331 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1332 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1333 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1334 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1335 BGE_RCB_FLAG_RING_DISABLED));
1336 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1337 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1338 (i * (sizeof(uint64_t))), 0);
1339 vrcb += sizeof(struct bge_rcb);
1342 /* Initialize RX ring indexes */
1343 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1344 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1345 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1348 * Set up RX return ring 0
1349 * Note that the NIC address for RX return rings is 0x00000000.
1350 * The return rings live entirely within the host, so the
1351 * nicaddr field in the RCB isn't used.
1353 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1354 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1355 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1356 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1357 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1358 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1359 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1361 /* Set random backoff seed for TX */
1362 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1363 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1364 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1365 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1366 BGE_TX_BACKOFF_SEED_MASK);
1368 /* Set inter-packet gap */
1369 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1372 * Specify which ring to use for packets that don't match
1373 * any RX rules.
1375 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1378 * Configure number of RX lists. One interrupt distribution
1379 * list, sixteen active lists, one bad frames class.
1381 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1383 /* Inialize RX list placement stats mask. */
1384 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1385 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1387 /* Disable host coalescing until we get it set up */
1388 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1390 /* Poll to make sure it's shut down. */
1391 for (i = 0; i < BGE_TIMEOUT; i++) {
1392 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1393 break;
1394 DELAY(10);
1397 if (i == BGE_TIMEOUT) {
1398 if_printf(&sc->arpcom.ac_if,
1399 "host coalescing engine failed to idle\n");
1400 return(ENXIO);
1403 /* Set up host coalescing defaults */
1404 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1405 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1406 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1407 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1408 if (!BGE_IS_5705_PLUS(sc)) {
1409 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1410 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1412 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1413 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1415 /* Set up address of statistics block */
1416 if (!BGE_IS_5705_PLUS(sc)) {
1417 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1418 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1419 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1420 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1422 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1423 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1424 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1427 /* Set up address of status block */
1428 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1429 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1430 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1431 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1432 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1433 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1435 /* Turn on host coalescing state machine */
1436 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1438 /* Turn on RX BD completion state machine and enable attentions */
1439 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1440 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1442 /* Turn on RX list placement state machine */
1443 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1445 /* Turn on RX list selector state machine. */
1446 if (!BGE_IS_5705_PLUS(sc))
1447 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1449 /* Turn on DMA, clear stats */
1450 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1451 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1452 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1453 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1454 ((sc->bge_flags & BGE_FLAG_TBI) ?
1455 BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1457 /* Set misc. local control, enable interrupts on attentions */
1458 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1460 #ifdef notdef
1461 /* Assert GPIO pins for PHY reset */
1462 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1463 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1464 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1465 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1466 #endif
1468 /* Turn on DMA completion state machine */
1469 if (!BGE_IS_5705_PLUS(sc))
1470 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1472 /* Turn on write DMA state machine */
1473 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1474 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1475 sc->bge_asicrev == BGE_ASICREV_BCM5787)
1476 val |= (1 << 29); /* Enable host coalescing bug fix. */
1477 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1479 /* Turn on read DMA state machine */
1480 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1481 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1483 /* Turn on RX data completion state machine */
1484 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1486 /* Turn on RX BD initiator state machine */
1487 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1489 /* Turn on RX data and RX BD initiator state machine */
1490 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1492 /* Turn on Mbuf cluster free state machine */
1493 if (!BGE_IS_5705_PLUS(sc))
1494 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1496 /* Turn on send BD completion state machine */
1497 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1499 /* Turn on send data completion state machine */
1500 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1502 /* Turn on send data initiator state machine */
1503 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1505 /* Turn on send BD initiator state machine */
1506 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1508 /* Turn on send BD selector state machine */
1509 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1511 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1512 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1513 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1515 /* ack/clear link change events */
1516 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1517 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1518 BGE_MACSTAT_LINK_CHANGED);
1519 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1521 /* Enable PHY auto polling (for MII/GMII only) */
1522 if (sc->bge_flags & BGE_FLAG_TBI) {
1523 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1524 } else {
1525 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1526 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1527 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1528 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1529 BGE_EVTENB_MI_INTERRUPT);
1534 * Clear any pending link state attention.
1535 * Otherwise some link state change events may be lost until attention
1536 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1537 * It's not necessary on newer BCM chips - perhaps enabling link
1538 * state change attentions implies clearing pending attention.
1540 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1541 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1542 BGE_MACSTAT_LINK_CHANGED);
1544 /* Enable link state change attentions. */
1545 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1547 return(0);
1551 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1552 * against our list and return its name if we find a match. Note
1553 * that since the Broadcom controller contains VPD support, we
1554 * can get the device name string from the controller itself instead
1555 * of the compiled-in string. This is a little slow, but it guarantees
1556 * we'll always announce the right product name.
1558 static int
1559 bge_probe(device_t dev)
1561 struct bge_softc *sc;
1562 struct bge_type *t;
1563 char *descbuf;
1564 uint16_t product, vendor;
1566 product = pci_get_device(dev);
1567 vendor = pci_get_vendor(dev);
1569 for (t = bge_devs; t->bge_name != NULL; t++) {
1570 if (vendor == t->bge_vid && product == t->bge_did)
1571 break;
1574 if (t->bge_name == NULL)
1575 return(ENXIO);
1577 sc = device_get_softc(dev);
1578 descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1579 ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1580 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1581 device_set_desc_copy(dev, descbuf);
1582 if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1583 sc->bge_flags |= BGE_FLAG_NO_3LED;
1584 kfree(descbuf, M_TEMP);
1585 return(0);
1588 static int
1589 bge_attach(device_t dev)
1591 struct ifnet *ifp;
1592 struct bge_softc *sc;
1593 uint32_t hwcfg = 0;
1594 uint32_t mac_addr = 0;
1595 int error = 0, rid;
1596 uint8_t ether_addr[ETHER_ADDR_LEN];
1598 sc = device_get_softc(dev);
1599 sc->bge_dev = dev;
1600 callout_init(&sc->bge_stat_timer);
1601 lwkt_serialize_init(&sc->bge_jslot_serializer);
1604 * Map control/status registers.
1606 pci_enable_busmaster(dev);
1608 rid = BGE_PCI_BAR0;
1609 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1610 RF_ACTIVE);
1612 if (sc->bge_res == NULL) {
1613 device_printf(dev, "couldn't map memory\n");
1614 return ENXIO;
1617 sc->bge_btag = rman_get_bustag(sc->bge_res);
1618 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1620 /* Save ASIC rev. */
1621 sc->bge_chipid =
1622 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1623 BGE_PCIMISCCTL_ASICREV;
1624 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1625 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1627 /* Save chipset family. */
1628 switch (sc->bge_asicrev) {
1629 case BGE_ASICREV_BCM5700:
1630 case BGE_ASICREV_BCM5701:
1631 case BGE_ASICREV_BCM5703:
1632 case BGE_ASICREV_BCM5704:
1633 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1634 break;
1636 case BGE_ASICREV_BCM5714_A0:
1637 case BGE_ASICREV_BCM5780:
1638 case BGE_ASICREV_BCM5714:
1639 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1640 /* Fall through */
1642 case BGE_ASICREV_BCM5750:
1643 case BGE_ASICREV_BCM5752:
1644 case BGE_ASICREV_BCM5755:
1645 case BGE_ASICREV_BCM5787:
1646 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1647 /* Fall through */
1649 case BGE_ASICREV_BCM5705:
1650 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1651 break;
1655 * Set various quirk flags.
1658 sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1659 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1660 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1661 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1662 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1663 sc->bge_asicrev == BGE_ASICREV_BCM5906)
1664 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1666 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1667 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1668 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1670 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1671 sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1672 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1674 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1675 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1677 if (BGE_IS_5705_PLUS(sc)) {
1678 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1679 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1680 uint32_t product = pci_get_device(dev);
1682 if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1683 product != PCI_PRODUCT_BROADCOM_BCM5756)
1684 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1685 if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1686 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1687 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1688 sc->bge_flags |= BGE_FLAG_BER_BUG;
1692 /* Allocate interrupt */
1693 rid = 0;
1695 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1696 RF_SHAREABLE | RF_ACTIVE);
1698 if (sc->bge_irq == NULL) {
1699 device_printf(dev, "couldn't map interrupt\n");
1700 error = ENXIO;
1701 goto fail;
1705 * Check if this is a PCI-X or PCI Express device.
1707 if (BGE_IS_5705_PLUS(sc)) {
1708 uint32_t reg;
1710 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1711 if ((reg & 0xff) == BGE_PCIE_CAPID)
1712 sc->bge_flags |= BGE_FLAG_PCIE;
1713 } else {
1715 * Check if the device is in PCI-X Mode.
1716 * (This bit is not valid on PCI Express controllers.)
1718 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1719 BGE_PCISTATE_PCI_BUSMODE) == 0)
1720 sc->bge_flags |= BGE_FLAG_PCIX;
1723 ifp = &sc->arpcom.ac_if;
1724 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1726 /* Try to reset the chip. */
1727 bge_reset(sc);
1729 if (bge_chipinit(sc)) {
1730 device_printf(dev, "chip initialization failed\n");
1731 error = ENXIO;
1732 goto fail;
1736 * Get station address from the EEPROM.
1738 mac_addr = bge_readmem_ind(sc, 0x0c14);
1739 if ((mac_addr >> 16) == 0x484b) {
1740 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1741 ether_addr[1] = (uint8_t)mac_addr;
1742 mac_addr = bge_readmem_ind(sc, 0x0c18);
1743 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1744 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1745 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1746 ether_addr[5] = (uint8_t)mac_addr;
1747 } else if (bge_read_eeprom(sc, ether_addr,
1748 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1749 device_printf(dev, "failed to read station address\n");
1750 error = ENXIO;
1751 goto fail;
1754 /* 5705/5750 limits RX return ring to 512 entries. */
1755 if (BGE_IS_5705_PLUS(sc))
1756 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1757 else
1758 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1760 error = bge_dma_alloc(sc);
1761 if (error)
1762 goto fail;
1764 /* Set default tuneable values. */
1765 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1766 sc->bge_rx_coal_ticks = 150;
1767 sc->bge_tx_coal_ticks = 150;
1768 sc->bge_rx_max_coal_bds = 10;
1769 sc->bge_tx_max_coal_bds = 10;
1771 /* Set up ifnet structure */
1772 ifp->if_softc = sc;
1773 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1774 ifp->if_ioctl = bge_ioctl;
1775 ifp->if_start = bge_start;
1776 ifp->if_watchdog = bge_watchdog;
1777 ifp->if_init = bge_init;
1778 ifp->if_mtu = ETHERMTU;
1779 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1780 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1781 ifq_set_ready(&ifp->if_snd);
1784 * 5700 B0 chips do not support checksumming correctly due
1785 * to hardware bugs.
1787 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1788 ifp->if_capabilities |= IFCAP_HWCSUM;
1789 ifp->if_hwassist = BGE_CSUM_FEATURES;
1791 ifp->if_capenable = ifp->if_capabilities;
1794 * Figure out what sort of media we have by checking the
1795 * hardware config word in the first 32k of NIC internal memory,
1796 * or fall back to examining the EEPROM if necessary.
1797 * Note: on some BCM5700 cards, this value appears to be unset.
1798 * If that's the case, we have to rely on identifying the NIC
1799 * by its PCI subsystem ID, as we do below for the SysKonnect
1800 * SK-9D41.
1802 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1803 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1804 else {
1805 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1806 sizeof(hwcfg))) {
1807 device_printf(dev, "failed to read EEPROM\n");
1808 error = ENXIO;
1809 goto fail;
1811 hwcfg = ntohl(hwcfg);
1814 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1815 sc->bge_flags |= BGE_FLAG_TBI;
1817 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1818 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1819 sc->bge_flags |= BGE_FLAG_TBI;
1821 if (sc->bge_flags & BGE_FLAG_TBI) {
1822 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1823 bge_ifmedia_upd, bge_ifmedia_sts);
1824 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1825 ifmedia_add(&sc->bge_ifmedia,
1826 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1827 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1828 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1829 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1830 } else {
1832 * Do transceiver setup.
1834 if (mii_phy_probe(dev, &sc->bge_miibus,
1835 bge_ifmedia_upd, bge_ifmedia_sts)) {
1836 device_printf(dev, "MII without any PHY!\n");
1837 error = ENXIO;
1838 goto fail;
1843 * When using the BCM5701 in PCI-X mode, data corruption has
1844 * been observed in the first few bytes of some received packets.
1845 * Aligning the packet buffer in memory eliminates the corruption.
1846 * Unfortunately, this misaligns the packet payloads. On platforms
1847 * which do not support unaligned accesses, we will realign the
1848 * payloads by copying the received packets.
1850 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1851 (sc->bge_flags & BGE_FLAG_PCIX))
1852 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1854 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1855 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1856 sc->bge_link_upd = bge_bcm5700_link_upd;
1857 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1858 } else if (sc->bge_flags & BGE_FLAG_TBI) {
1859 sc->bge_link_upd = bge_tbi_link_upd;
1860 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1861 } else {
1862 sc->bge_link_upd = bge_copper_link_upd;
1863 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1867 * Call MI attach routine.
1869 ether_ifattach(ifp, ether_addr, NULL);
1871 error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1872 bge_intr, sc, &sc->bge_intrhand,
1873 ifp->if_serializer);
1874 if (error) {
1875 ether_ifdetach(ifp);
1876 device_printf(dev, "couldn't set up irq\n");
1877 goto fail;
1879 return(0);
1880 fail:
1881 bge_detach(dev);
1882 return(error);
1885 static int
1886 bge_detach(device_t dev)
1888 struct bge_softc *sc = device_get_softc(dev);
1890 if (device_is_attached(dev)) {
1891 struct ifnet *ifp = &sc->arpcom.ac_if;
1893 lwkt_serialize_enter(ifp->if_serializer);
1894 bge_stop(sc);
1895 bge_reset(sc);
1896 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1897 lwkt_serialize_exit(ifp->if_serializer);
1899 ether_ifdetach(ifp);
1902 if (sc->bge_flags & BGE_FLAG_TBI)
1903 ifmedia_removeall(&sc->bge_ifmedia);
1904 if (sc->bge_miibus)
1905 device_delete_child(dev, sc->bge_miibus);
1906 bus_generic_detach(dev);
1908 if (sc->bge_irq != NULL)
1909 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1911 if (sc->bge_res != NULL)
1912 bus_release_resource(dev, SYS_RES_MEMORY,
1913 BGE_PCI_BAR0, sc->bge_res);
1915 bge_dma_free(sc);
1917 return 0;
1920 static void
1921 bge_reset(struct bge_softc *sc)
1923 device_t dev;
1924 uint32_t cachesize, command, pcistate, reset;
1925 void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
1926 int i, val = 0;
1928 dev = sc->bge_dev;
1930 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
1931 if (sc->bge_flags & BGE_FLAG_PCIE)
1932 write_op = bge_writemem_direct;
1933 else
1934 write_op = bge_writemem_ind;
1935 } else {
1936 write_op = bge_writereg_ind;
1939 /* Save some important PCI state. */
1940 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1941 command = pci_read_config(dev, BGE_PCI_CMD, 4);
1942 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1944 pci_write_config(dev, BGE_PCI_MISC_CTL,
1945 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1946 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1948 /* Disable fastboot on controllers that support it. */
1949 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
1950 sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1951 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1952 if (bootverbose)
1953 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
1954 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
1958 * Write the magic number to SRAM at offset 0xB50.
1959 * When firmware finishes its initialization it will
1960 * write ~BGE_MAGIC_NUMBER to the same location.
1962 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1964 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1966 /* XXX: Broadcom Linux driver. */
1967 if (sc->bge_flags & BGE_FLAG_PCIE) {
1968 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
1969 CSR_WRITE_4(sc, 0x7e2c, 0x20);
1970 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1971 /* Prevent PCIE link training during global reset */
1972 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1973 reset |= (1<<29);
1978 * Set GPHY Power Down Override to leave GPHY
1979 * powered up in D0 uninitialized.
1981 if (BGE_IS_5705_PLUS(sc))
1982 reset |= 0x04000000;
1984 /* Issue global reset */
1985 write_op(sc, BGE_MISC_CFG, reset);
1987 DELAY(1000);
1989 /* XXX: Broadcom Linux driver. */
1990 if (sc->bge_flags & BGE_FLAG_PCIE) {
1991 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1992 uint32_t v;
1994 DELAY(500000); /* wait for link training to complete */
1995 v = pci_read_config(dev, 0xc4, 4);
1996 pci_write_config(dev, 0xc4, v | (1<<15), 4);
1999 * Set PCIE max payload size to 128 bytes and
2000 * clear error status.
2002 pci_write_config(dev, 0xd8, 0xf5000, 4);
2005 /* Reset some of the PCI state that got zapped by reset */
2006 pci_write_config(dev, BGE_PCI_MISC_CTL,
2007 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2008 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2009 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2010 pci_write_config(dev, BGE_PCI_CMD, command, 4);
2011 write_op(sc, BGE_MISC_CFG, (65 << 1));
2013 /* Enable memory arbiter. */
2014 if (BGE_IS_5714_FAMILY(sc)) {
2015 uint32_t val;
2017 val = CSR_READ_4(sc, BGE_MARB_MODE);
2018 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2019 } else {
2020 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2024 * Poll until we see the 1's complement of the magic number.
2025 * This indicates that the firmware initialization
2026 * is complete.
2028 for (i = 0; i < BGE_TIMEOUT; i++) {
2029 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2030 if (val == ~BGE_MAGIC_NUMBER)
2031 break;
2032 DELAY(10);
2035 if (i == BGE_TIMEOUT) {
2036 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2037 "found 0x%08x\n", val);
2038 return;
2042 * XXX Wait for the value of the PCISTATE register to
2043 * return to its original pre-reset state. This is a
2044 * fairly good indicator of reset completion. If we don't
2045 * wait for the reset to fully complete, trying to read
2046 * from the device's non-PCI registers may yield garbage
2047 * results.
2049 for (i = 0; i < BGE_TIMEOUT; i++) {
2050 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2051 break;
2052 DELAY(10);
2055 if (sc->bge_flags & BGE_FLAG_PCIE) {
2056 reset = bge_readmem_ind(sc, 0x7c00);
2057 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2060 /* Fix up byte swapping */
2061 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2062 BGE_MODECTL_BYTESWAP_DATA);
2064 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2067 * The 5704 in TBI mode apparently needs some special
2068 * adjustment to insure the SERDES drive level is set
2069 * to 1.2V.
2071 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2072 (sc->bge_flags & BGE_FLAG_TBI)) {
2073 uint32_t serdescfg;
2075 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2076 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2077 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2080 /* XXX: Broadcom Linux driver. */
2081 if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2082 sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2083 uint32_t v;
2085 v = CSR_READ_4(sc, 0x7c00);
2086 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2089 DELAY(10000);
2093 * Frame reception handling. This is called if there's a frame
2094 * on the receive return list.
2096 * Note: we have to be able to handle two possibilities here:
2097 * 1) the frame is from the jumbo recieve ring
2098 * 2) the frame is from the standard receive ring
2101 static void
2102 bge_rxeof(struct bge_softc *sc)
2104 struct ifnet *ifp;
2105 int stdcnt = 0, jumbocnt = 0;
2107 if (sc->bge_rx_saved_considx ==
2108 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2109 return;
2111 ifp = &sc->arpcom.ac_if;
2113 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2114 sc->bge_cdata.bge_rx_return_ring_map,
2115 BUS_DMASYNC_POSTREAD);
2116 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2117 sc->bge_cdata.bge_rx_std_ring_map,
2118 BUS_DMASYNC_POSTREAD);
2119 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2120 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2121 sc->bge_cdata.bge_rx_jumbo_ring_map,
2122 BUS_DMASYNC_POSTREAD);
2125 while (sc->bge_rx_saved_considx !=
2126 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2127 struct bge_rx_bd *cur_rx;
2128 uint32_t rxidx;
2129 struct mbuf *m = NULL;
2130 uint16_t vlan_tag = 0;
2131 int have_tag = 0;
2133 cur_rx =
2134 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2136 rxidx = cur_rx->bge_idx;
2137 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2139 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2140 have_tag = 1;
2141 vlan_tag = cur_rx->bge_vlan_tag;
2144 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2145 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2146 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2147 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2148 jumbocnt++;
2149 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2150 ifp->if_ierrors++;
2151 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2152 continue;
2154 if (bge_newbuf_jumbo(sc,
2155 sc->bge_jumbo, NULL) == ENOBUFS) {
2156 ifp->if_ierrors++;
2157 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2158 continue;
2160 } else {
2161 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2162 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2163 sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2164 BUS_DMASYNC_POSTREAD);
2165 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2166 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2167 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2168 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2169 stdcnt++;
2170 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2171 ifp->if_ierrors++;
2172 bge_newbuf_std(sc, sc->bge_std, m);
2173 continue;
2175 if (bge_newbuf_std(sc, sc->bge_std,
2176 NULL) == ENOBUFS) {
2177 ifp->if_ierrors++;
2178 bge_newbuf_std(sc, sc->bge_std, m);
2179 continue;
2183 ifp->if_ipackets++;
2184 #ifndef __i386__
2186 * The i386 allows unaligned accesses, but for other
2187 * platforms we must make sure the payload is aligned.
2189 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2190 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2191 cur_rx->bge_len);
2192 m->m_data += ETHER_ALIGN;
2194 #endif
2195 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2196 m->m_pkthdr.rcvif = ifp;
2198 if (ifp->if_capenable & IFCAP_RXCSUM) {
2199 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2200 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2201 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2202 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2204 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2205 m->m_pkthdr.len >= BGE_MIN_FRAME) {
2206 m->m_pkthdr.csum_data =
2207 cur_rx->bge_tcp_udp_csum;
2208 m->m_pkthdr.csum_flags |=
2209 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2214 * If we received a packet with a vlan tag, pass it
2215 * to vlan_input() instead of ether_input().
2217 if (have_tag) {
2218 VLAN_INPUT_TAG(m, vlan_tag);
2219 have_tag = vlan_tag = 0;
2220 } else {
2221 ifp->if_input(ifp, m);
2225 if (stdcnt > 0) {
2226 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2227 sc->bge_cdata.bge_rx_std_ring_map,
2228 BUS_DMASYNC_PREWRITE);
2231 if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2232 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2233 sc->bge_cdata.bge_rx_jumbo_ring_map,
2234 BUS_DMASYNC_PREWRITE);
2237 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2238 if (stdcnt)
2239 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2240 if (jumbocnt)
2241 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2244 static void
2245 bge_txeof(struct bge_softc *sc)
2247 struct bge_tx_bd *cur_tx = NULL;
2248 struct ifnet *ifp;
2250 if (sc->bge_tx_saved_considx ==
2251 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2252 return;
2254 ifp = &sc->arpcom.ac_if;
2256 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2257 sc->bge_cdata.bge_tx_ring_map,
2258 BUS_DMASYNC_POSTREAD);
2261 * Go through our tx ring and free mbufs for those
2262 * frames that have been sent.
2264 while (sc->bge_tx_saved_considx !=
2265 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2266 uint32_t idx = 0;
2268 idx = sc->bge_tx_saved_considx;
2269 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2270 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2271 ifp->if_opackets++;
2272 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2273 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2274 sc->bge_cdata.bge_tx_dmamap[idx],
2275 BUS_DMASYNC_POSTWRITE);
2276 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2277 sc->bge_cdata.bge_tx_dmamap[idx]);
2278 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2279 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2281 sc->bge_txcnt--;
2282 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2285 if (cur_tx != NULL &&
2286 (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2287 (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2288 ifp->if_flags &= ~IFF_OACTIVE;
2290 if (sc->bge_txcnt == 0)
2291 ifp->if_timer = 0;
2293 if (!ifq_is_empty(&ifp->if_snd))
2294 ifp->if_start(ifp);
2297 static void
2298 bge_intr(void *xsc)
2300 struct bge_softc *sc = xsc;
2301 struct ifnet *ifp = &sc->arpcom.ac_if;
2302 uint32_t status;
2305 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
2306 * disable interrupts by writing nonzero like we used to, since with
2307 * our current organization this just gives complications and
2308 * pessimizations for re-enabling interrupts. We used to have races
2309 * instead of the necessary complications. Disabling interrupts
2310 * would just reduce the chance of a status update while we are
2311 * running (by switching to the interrupt-mode coalescence
2312 * parameters), but this chance is already very low so it is more
2313 * efficient to get another interrupt than prevent it.
2315 * We do the ack first to ensure another interrupt if there is a
2316 * status update after the ack. We don't check for the status
2317 * changing later because it is more efficient to get another
2318 * interrupt than prevent it, not quite as above (not checking is
2319 * a smaller optimization than not toggling the interrupt enable,
2320 * since checking doesn't involve PCI accesses and toggling require
2321 * the status check). So toggling would probably be a pessimization
2322 * even with MSI. It would only be needed for using a task queue.
2324 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2326 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2327 sc->bge_cdata.bge_status_map,
2328 BUS_DMASYNC_POSTREAD);
2331 * Process link state changes.
2333 status = CSR_READ_4(sc, BGE_MAC_STS);
2334 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2335 sc->bge_link_evt = 0;
2336 sc->bge_link_upd(sc, status);
2339 if (ifp->if_flags & IFF_RUNNING) {
2340 /* Check RX return ring producer/consumer */
2341 bge_rxeof(sc);
2343 /* Check TX ring producer/consumer */
2344 bge_txeof(sc);
2348 static void
2349 bge_tick(void *xsc)
2351 struct bge_softc *sc = xsc;
2352 struct ifnet *ifp = &sc->arpcom.ac_if;
2354 lwkt_serialize_enter(ifp->if_serializer);
2356 if (BGE_IS_5705_PLUS(sc))
2357 bge_stats_update_regs(sc);
2358 else
2359 bge_stats_update(sc);
2361 if (sc->bge_flags & BGE_FLAG_TBI) {
2363 * Since in TBI mode auto-polling can't be used we should poll
2364 * link status manually. Here we register pending link event
2365 * and trigger interrupt.
2367 sc->bge_link_evt++;
2368 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2369 } else if (!sc->bge_link) {
2370 mii_tick(device_get_softc(sc->bge_miibus));
2373 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2375 lwkt_serialize_exit(ifp->if_serializer);
2378 static void
2379 bge_stats_update_regs(struct bge_softc *sc)
2381 struct ifnet *ifp = &sc->arpcom.ac_if;
2382 struct bge_mac_stats_regs stats;
2383 uint32_t *s;
2384 int i;
2386 s = (uint32_t *)&stats;
2387 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2388 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2389 s++;
2392 ifp->if_collisions +=
2393 (stats.dot3StatsSingleCollisionFrames +
2394 stats.dot3StatsMultipleCollisionFrames +
2395 stats.dot3StatsExcessiveCollisions +
2396 stats.dot3StatsLateCollisions) -
2397 ifp->if_collisions;
2400 static void
2401 bge_stats_update(struct bge_softc *sc)
2403 struct ifnet *ifp = &sc->arpcom.ac_if;
2404 bus_size_t stats;
2406 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2408 #define READ_STAT(sc, stats, stat) \
2409 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2411 ifp->if_collisions +=
2412 (READ_STAT(sc, stats,
2413 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2414 READ_STAT(sc, stats,
2415 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2416 READ_STAT(sc, stats,
2417 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2418 READ_STAT(sc, stats,
2419 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2420 ifp->if_collisions;
2422 #undef READ_STAT
2424 #ifdef notdef
2425 ifp->if_collisions +=
2426 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2427 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2428 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2429 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2430 ifp->if_collisions;
2431 #endif
2435 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2436 * pointers to descriptors.
2438 static int
2439 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2441 struct bge_tx_bd *d = NULL;
2442 uint16_t csum_flags = 0;
2443 struct ifvlan *ifv = NULL;
2444 struct bge_dmamap_arg ctx;
2445 bus_dma_segment_t segs[BGE_NSEG_NEW];
2446 bus_dmamap_t map;
2447 int error, maxsegs, idx, i;
2449 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2450 m_head->m_pkthdr.rcvif != NULL &&
2451 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2452 ifv = m_head->m_pkthdr.rcvif->if_softc;
2454 if (m_head->m_pkthdr.csum_flags) {
2455 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2456 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2457 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2458 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2459 if (m_head->m_flags & M_LASTFRAG)
2460 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2461 else if (m_head->m_flags & M_FRAG)
2462 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2465 idx = *txidx;
2466 map = sc->bge_cdata.bge_tx_dmamap[idx];
2468 maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2469 KASSERT(maxsegs >= BGE_NSEG_SPARE,
2470 ("not enough segments %d\n", maxsegs));
2472 if (maxsegs > BGE_NSEG_NEW)
2473 maxsegs = BGE_NSEG_NEW;
2476 * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2477 * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2478 * but when such padded frames employ the bge IP/TCP checksum
2479 * offload, the hardware checksum assist gives incorrect results
2480 * (possibly from incorporating its own padding into the UDP/TCP
2481 * checksum; who knows). If we pad such runts with zeros, the
2482 * onboard checksum comes out correct. We do this by pretending
2483 * the mbuf chain has too many fragments so the coalescing code
2484 * below can assemble the packet into a single buffer that's
2485 * padded out to the mininum frame size.
2487 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2488 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2489 error = E2BIG;
2490 } else {
2491 ctx.bge_segs = segs;
2492 ctx.bge_maxsegs = maxsegs;
2493 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2494 m_head, bge_dma_map_mbuf, &ctx,
2495 BUS_DMA_NOWAIT);
2497 if (error == E2BIG || ctx.bge_maxsegs == 0) {
2498 struct mbuf *m_new;
2500 m_new = m_defrag(m_head, MB_DONTWAIT);
2501 if (m_new == NULL) {
2502 if_printf(&sc->arpcom.ac_if,
2503 "could not defrag TX mbuf\n");
2504 error = ENOBUFS;
2505 goto back;
2506 } else {
2507 m_head = m_new;
2511 * Manually pad short frames, and zero the pad space
2512 * to avoid leaking data.
2514 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2515 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2516 int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2518 bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2519 pad_len);
2520 m_head->m_pkthdr.len += pad_len;
2521 m_head->m_len = m_head->m_pkthdr.len;
2524 ctx.bge_segs = segs;
2525 ctx.bge_maxsegs = maxsegs;
2526 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2527 m_head, bge_dma_map_mbuf, &ctx,
2528 BUS_DMA_NOWAIT);
2529 if (error || ctx.bge_maxsegs == 0) {
2530 if_printf(&sc->arpcom.ac_if,
2531 "could not defrag TX mbuf\n");
2532 if (error == 0)
2533 error = E2BIG;
2534 goto back;
2536 } else if (error) {
2537 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2538 goto back;
2541 bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2543 for (i = 0; ; i++) {
2544 d = &sc->bge_ldata.bge_tx_ring[idx];
2546 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2547 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2548 d->bge_len = segs[i].ds_len;
2549 d->bge_flags = csum_flags;
2551 if (i == ctx.bge_maxsegs - 1)
2552 break;
2553 BGE_INC(idx, BGE_TX_RING_CNT);
2555 /* Mark the last segment as end of packet... */
2556 d->bge_flags |= BGE_TXBDFLAG_END;
2558 /* Set vlan tag to the first segment of the packet. */
2559 d = &sc->bge_ldata.bge_tx_ring[*txidx];
2560 if (ifv != NULL) {
2561 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2562 d->bge_vlan_tag = ifv->ifv_tag;
2563 } else {
2564 d->bge_vlan_tag = 0;
2568 * Insure that the map for this transmission is placed at
2569 * the array index of the last descriptor in this chain.
2571 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2572 sc->bge_cdata.bge_tx_dmamap[idx] = map;
2573 sc->bge_cdata.bge_tx_chain[idx] = m_head;
2574 sc->bge_txcnt += ctx.bge_maxsegs;
2576 BGE_INC(idx, BGE_TX_RING_CNT);
2577 *txidx = idx;
2578 back:
2579 if (error)
2580 m_freem(m_head);
2581 return error;
2585 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2586 * to the mbuf data regions directly in the transmit descriptors.
2588 static void
2589 bge_start(struct ifnet *ifp)
2591 struct bge_softc *sc = ifp->if_softc;
2592 struct mbuf *m_head = NULL;
2593 uint32_t prodidx;
2594 int need_trans;
2596 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING ||
2597 !sc->bge_link)
2598 return;
2600 prodidx = sc->bge_tx_prodidx;
2602 need_trans = 0;
2603 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2604 m_head = ifq_poll(&ifp->if_snd);
2605 if (m_head == NULL)
2606 break;
2609 * XXX
2610 * The code inside the if() block is never reached since we
2611 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2612 * requests to checksum TCP/UDP in a fragmented packet.
2614 * XXX
2615 * safety overkill. If this is a fragmented packet chain
2616 * with delayed TCP/UDP checksums, then only encapsulate
2617 * it if we have enough descriptors to handle the entire
2618 * chain at once.
2619 * (paranoia -- may not actually be needed)
2621 if (m_head->m_flags & M_FIRSTFRAG &&
2622 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2623 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2624 m_head->m_pkthdr.csum_data + 16) {
2625 ifp->if_flags |= IFF_OACTIVE;
2626 break;
2631 * Sanity check: avoid coming within BGE_NSEG_RSVD
2632 * descriptors of the end of the ring. Also make
2633 * sure there are BGE_NSEG_SPARE descriptors for
2634 * jumbo buffers' defragmentation.
2636 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2637 (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2638 ifp->if_flags |= IFF_OACTIVE;
2639 break;
2643 * Dequeue the packet before encapsulation, since
2644 * bge_encap() may free the packet if error happens.
2646 ifq_dequeue(&ifp->if_snd, m_head);
2649 * Pack the data into the transmit ring. If we
2650 * don't have room, set the OACTIVE flag and wait
2651 * for the NIC to drain the ring.
2653 if (bge_encap(sc, m_head, &prodidx)) {
2654 ifp->if_flags |= IFF_OACTIVE;
2655 break;
2657 need_trans = 1;
2659 BPF_MTAP(ifp, m_head);
2662 if (!need_trans)
2663 return;
2665 /* Transmit */
2666 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2667 /* 5700 b2 errata */
2668 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2669 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2671 sc->bge_tx_prodidx = prodidx;
2674 * Set a timeout in case the chip goes out to lunch.
2676 ifp->if_timer = 5;
2679 static void
2680 bge_init(void *xsc)
2682 struct bge_softc *sc = xsc;
2683 struct ifnet *ifp = &sc->arpcom.ac_if;
2684 uint16_t *m;
2686 ASSERT_SERIALIZED(ifp->if_serializer);
2688 if (ifp->if_flags & IFF_RUNNING)
2689 return;
2691 /* Cancel pending I/O and flush buffers. */
2692 bge_stop(sc);
2693 bge_reset(sc);
2694 bge_chipinit(sc);
2697 * Init the various state machines, ring
2698 * control blocks and firmware.
2700 if (bge_blockinit(sc)) {
2701 if_printf(ifp, "initialization failure\n");
2702 return;
2705 /* Specify MTU. */
2706 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2707 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2709 /* Load our MAC address. */
2710 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2711 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2712 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2714 /* Enable or disable promiscuous mode as needed. */
2715 bge_setpromisc(sc);
2717 /* Program multicast filter. */
2718 bge_setmulti(sc);
2720 /* Init RX ring. */
2721 bge_init_rx_ring_std(sc);
2724 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2725 * memory to insure that the chip has in fact read the first
2726 * entry of the ring.
2728 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2729 uint32_t v, i;
2730 for (i = 0; i < 10; i++) {
2731 DELAY(20);
2732 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2733 if (v == (MCLBYTES - ETHER_ALIGN))
2734 break;
2736 if (i == 10)
2737 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2740 /* Init jumbo RX ring. */
2741 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2742 bge_init_rx_ring_jumbo(sc);
2744 /* Init our RX return ring index */
2745 sc->bge_rx_saved_considx = 0;
2747 /* Init TX ring. */
2748 bge_init_tx_ring(sc);
2750 /* Turn on transmitter */
2751 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2753 /* Turn on receiver */
2754 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2756 /* Tell firmware we're alive. */
2757 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2759 /* Enable host interrupts. */
2760 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2761 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2762 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2764 bge_ifmedia_upd(ifp);
2766 ifp->if_flags |= IFF_RUNNING;
2767 ifp->if_flags &= ~IFF_OACTIVE;
2769 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2773 * Set media options.
2775 static int
2776 bge_ifmedia_upd(struct ifnet *ifp)
2778 struct bge_softc *sc = ifp->if_softc;
2780 /* If this is a 1000baseX NIC, enable the TBI port. */
2781 if (sc->bge_flags & BGE_FLAG_TBI) {
2782 struct ifmedia *ifm = &sc->bge_ifmedia;
2784 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2785 return(EINVAL);
2787 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2788 case IFM_AUTO:
2790 * The BCM5704 ASIC appears to have a special
2791 * mechanism for programming the autoneg
2792 * advertisement registers in TBI mode.
2794 if (!bge_fake_autoneg &&
2795 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2796 uint32_t sgdig;
2798 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2799 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2800 sgdig |= BGE_SGDIGCFG_AUTO |
2801 BGE_SGDIGCFG_PAUSE_CAP |
2802 BGE_SGDIGCFG_ASYM_PAUSE;
2803 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2804 sgdig | BGE_SGDIGCFG_SEND);
2805 DELAY(5);
2806 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2808 break;
2809 case IFM_1000_SX:
2810 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2811 BGE_CLRBIT(sc, BGE_MAC_MODE,
2812 BGE_MACMODE_HALF_DUPLEX);
2813 } else {
2814 BGE_SETBIT(sc, BGE_MAC_MODE,
2815 BGE_MACMODE_HALF_DUPLEX);
2817 break;
2818 default:
2819 return(EINVAL);
2821 } else {
2822 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2824 sc->bge_link_evt++;
2825 sc->bge_link = 0;
2826 if (mii->mii_instance) {
2827 struct mii_softc *miisc;
2829 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2830 mii_phy_reset(miisc);
2832 mii_mediachg(mii);
2834 return(0);
2838 * Report current media status.
2840 static void
2841 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2843 struct bge_softc *sc = ifp->if_softc;
2845 if (sc->bge_flags & BGE_FLAG_TBI) {
2846 ifmr->ifm_status = IFM_AVALID;
2847 ifmr->ifm_active = IFM_ETHER;
2848 if (CSR_READ_4(sc, BGE_MAC_STS) &
2849 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2850 ifmr->ifm_status |= IFM_ACTIVE;
2851 } else {
2852 ifmr->ifm_active |= IFM_NONE;
2853 return;
2856 ifmr->ifm_active |= IFM_1000_SX;
2857 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2858 ifmr->ifm_active |= IFM_HDX;
2859 else
2860 ifmr->ifm_active |= IFM_FDX;
2861 } else {
2862 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2864 mii_pollstat(mii);
2865 ifmr->ifm_active = mii->mii_media_active;
2866 ifmr->ifm_status = mii->mii_media_status;
2870 static int
2871 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2873 struct bge_softc *sc = ifp->if_softc;
2874 struct ifreq *ifr = (struct ifreq *) data;
2875 int mask, error = 0;
2876 struct mii_data *mii;
2878 ASSERT_SERIALIZED(ifp->if_serializer);
2880 switch(command) {
2881 case SIOCSIFMTU:
2882 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
2883 (BGE_IS_JUMBO_CAPABLE(sc) &&
2884 ifr->ifr_mtu > BGE_JUMBO_MTU)) {
2885 error = EINVAL;
2886 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2887 ifp->if_mtu = ifr->ifr_mtu;
2888 ifp->if_flags &= ~IFF_RUNNING;
2889 bge_init(sc);
2891 break;
2892 case SIOCSIFFLAGS:
2893 if (ifp->if_flags & IFF_UP) {
2894 if (ifp->if_flags & IFF_RUNNING) {
2895 int flags = ifp->if_flags & sc->bge_if_flags;
2898 * If only the state of the PROMISC flag
2899 * changed, then just use the 'set promisc
2900 * mode' command instead of reinitializing
2901 * the entire NIC. Doing a full re-init
2902 * means reloading the firmware and waiting
2903 * for it to start up, which may take a
2904 * second or two. Similarly for ALLMULTI.
2906 if (flags & IFF_PROMISC)
2907 bge_setpromisc(sc);
2908 if (flags & IFF_ALLMULTI)
2909 bge_setmulti(sc);
2910 } else {
2911 bge_init(sc);
2913 } else {
2914 if (ifp->if_flags & IFF_RUNNING)
2915 bge_stop(sc);
2917 sc->bge_if_flags = ifp->if_flags;
2918 error = 0;
2919 break;
2920 case SIOCADDMULTI:
2921 case SIOCDELMULTI:
2922 if (ifp->if_flags & IFF_RUNNING) {
2923 bge_setmulti(sc);
2924 error = 0;
2926 break;
2927 case SIOCSIFMEDIA:
2928 case SIOCGIFMEDIA:
2929 if (sc->bge_flags & BGE_FLAG_TBI) {
2930 error = ifmedia_ioctl(ifp, ifr,
2931 &sc->bge_ifmedia, command);
2932 } else {
2933 mii = device_get_softc(sc->bge_miibus);
2934 error = ifmedia_ioctl(ifp, ifr,
2935 &mii->mii_media, command);
2937 break;
2938 case SIOCSIFCAP:
2939 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2940 if (mask & IFCAP_HWCSUM) {
2941 ifp->if_capenable ^= IFCAP_HWCSUM;
2942 if (IFCAP_HWCSUM & ifp->if_capenable)
2943 ifp->if_hwassist = BGE_CSUM_FEATURES;
2944 else
2945 ifp->if_hwassist = 0;
2947 error = 0;
2948 break;
2949 default:
2950 error = ether_ioctl(ifp, command, data);
2951 break;
2953 return(error);
2956 static void
2957 bge_watchdog(struct ifnet *ifp)
2959 struct bge_softc *sc = ifp->if_softc;
2961 if_printf(ifp, "watchdog timeout -- resetting\n");
2963 ifp->if_flags &= ~IFF_RUNNING;
2964 bge_init(sc);
2966 ifp->if_oerrors++;
2968 if (!ifq_is_empty(&ifp->if_snd))
2969 ifp->if_start(ifp);
2973 * Stop the adapter and free any mbufs allocated to the
2974 * RX and TX lists.
2976 static void
2977 bge_stop(struct bge_softc *sc)
2979 struct ifnet *ifp = &sc->arpcom.ac_if;
2980 struct ifmedia_entry *ifm;
2981 struct mii_data *mii = NULL;
2982 int mtmp, itmp;
2984 ASSERT_SERIALIZED(ifp->if_serializer);
2986 if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
2987 mii = device_get_softc(sc->bge_miibus);
2989 callout_stop(&sc->bge_stat_timer);
2992 * Disable all of the receiver blocks
2994 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2995 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2996 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2997 if (!BGE_IS_5705_PLUS(sc))
2998 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2999 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3000 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3001 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3004 * Disable all of the transmit blocks
3006 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3007 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3008 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3009 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3010 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3011 if (!BGE_IS_5705_PLUS(sc))
3012 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3013 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3016 * Shut down all of the memory managers and related
3017 * state machines.
3019 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3020 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3021 if (!BGE_IS_5705_PLUS(sc))
3022 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3023 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3024 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3025 if (!BGE_IS_5705_PLUS(sc)) {
3026 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3027 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3030 /* Disable host interrupts. */
3031 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3032 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3035 * Tell firmware we're shutting down.
3037 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3039 /* Free the RX lists. */
3040 bge_free_rx_ring_std(sc);
3042 /* Free jumbo RX list. */
3043 if (BGE_IS_JUMBO_CAPABLE(sc))
3044 bge_free_rx_ring_jumbo(sc);
3046 /* Free TX buffers. */
3047 bge_free_tx_ring(sc);
3050 * Isolate/power down the PHY, but leave the media selection
3051 * unchanged so that things will be put back to normal when
3052 * we bring the interface back up.
3054 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3055 itmp = ifp->if_flags;
3056 ifp->if_flags |= IFF_UP;
3057 ifm = mii->mii_media.ifm_cur;
3058 mtmp = ifm->ifm_media;
3059 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3060 mii_mediachg(mii);
3061 ifm->ifm_media = mtmp;
3062 ifp->if_flags = itmp;
3065 sc->bge_link = 0;
3067 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3069 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3070 ifp->if_timer = 0;
3074 * Stop all chip I/O so that the kernel's probe routines don't
3075 * get confused by errant DMAs when rebooting.
3077 static void
3078 bge_shutdown(device_t dev)
3080 struct bge_softc *sc = device_get_softc(dev);
3081 struct ifnet *ifp = &sc->arpcom.ac_if;
3083 lwkt_serialize_enter(ifp->if_serializer);
3084 bge_stop(sc);
3085 bge_reset(sc);
3086 lwkt_serialize_exit(ifp->if_serializer);
3089 static int
3090 bge_suspend(device_t dev)
3092 struct bge_softc *sc = device_get_softc(dev);
3093 struct ifnet *ifp = &sc->arpcom.ac_if;
3095 lwkt_serialize_enter(ifp->if_serializer);
3096 bge_stop(sc);
3097 lwkt_serialize_exit(ifp->if_serializer);
3099 return 0;
3102 static int
3103 bge_resume(device_t dev)
3105 struct bge_softc *sc = device_get_softc(dev);
3106 struct ifnet *ifp = &sc->arpcom.ac_if;
3108 lwkt_serialize_enter(ifp->if_serializer);
3110 if (ifp->if_flags & IFF_UP) {
3111 bge_init(sc);
3113 if (!ifq_is_empty(&ifp->if_snd))
3114 ifp->if_start(ifp);
3117 lwkt_serialize_exit(ifp->if_serializer);
3119 return 0;
3122 static void
3123 bge_setpromisc(struct bge_softc *sc)
3125 struct ifnet *ifp = &sc->arpcom.ac_if;
3127 if (ifp->if_flags & IFF_PROMISC)
3128 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3129 else
3130 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3133 static void
3134 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3136 struct bge_dmamap_arg *ctx = arg;
3138 if (error)
3139 return;
3141 KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3142 ("only one segment is allowed\n"));
3144 ctx->bge_segs[0] = *segs;
3147 static void
3148 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3149 bus_size_t mapsz __unused, int error)
3151 struct bge_dmamap_arg *ctx = arg;
3152 int i;
3154 if (error)
3155 return;
3157 if (nsegs > ctx->bge_maxsegs) {
3158 ctx->bge_maxsegs = 0;
3159 return;
3162 ctx->bge_maxsegs = nsegs;
3163 for (i = 0; i < nsegs; ++i)
3164 ctx->bge_segs[i] = segs[i];
3167 static void
3168 bge_dma_free(struct bge_softc *sc)
3170 int i;
3172 /* Destroy RX/TX mbuf DMA stuffs. */
3173 if (sc->bge_cdata.bge_mtag != NULL) {
3174 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3175 if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3176 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3177 sc->bge_cdata.bge_rx_std_dmamap[i]);
3181 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3182 if (sc->bge_cdata.bge_tx_dmamap[i]) {
3183 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3184 sc->bge_cdata.bge_tx_dmamap[i]);
3187 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3190 /* Destroy standard RX ring */
3191 bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3192 sc->bge_cdata.bge_rx_std_ring_map,
3193 sc->bge_ldata.bge_rx_std_ring);
3195 if (BGE_IS_JUMBO_CAPABLE(sc))
3196 bge_free_jumbo_mem(sc);
3198 /* Destroy RX return ring */
3199 bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3200 sc->bge_cdata.bge_rx_return_ring_map,
3201 sc->bge_ldata.bge_rx_return_ring);
3203 /* Destroy TX ring */
3204 bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3205 sc->bge_cdata.bge_tx_ring_map,
3206 sc->bge_ldata.bge_tx_ring);
3208 /* Destroy status block */
3209 bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3210 sc->bge_cdata.bge_status_map,
3211 sc->bge_ldata.bge_status_block);
3213 /* Destroy statistics block */
3214 bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3215 sc->bge_cdata.bge_stats_map,
3216 sc->bge_ldata.bge_stats);
3218 /* Destroy the parent tag */
3219 if (sc->bge_cdata.bge_parent_tag != NULL)
3220 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3223 static int
3224 bge_dma_alloc(struct bge_softc *sc)
3226 struct ifnet *ifp = &sc->arpcom.ac_if;
3227 int nseg, i, error;
3230 * Allocate the parent bus DMA tag appropriate for PCI.
3232 error = bus_dma_tag_create(NULL, 1, 0,
3233 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3234 NULL, NULL,
3235 MAXBSIZE, BGE_NSEG_NEW,
3236 BUS_SPACE_MAXSIZE_32BIT,
3237 0, &sc->bge_cdata.bge_parent_tag);
3238 if (error) {
3239 if_printf(ifp, "could not allocate parent dma tag\n");
3240 return error;
3244 * Create DMA tag for mbufs.
3246 nseg = BGE_NSEG_NEW;
3247 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3248 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3249 NULL, NULL,
3250 MCLBYTES * nseg, nseg, MCLBYTES,
3251 BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3252 if (error) {
3253 if_printf(ifp, "could not allocate mbuf dma tag\n");
3254 return error;
3258 * Create DMA maps for TX/RX mbufs.
3260 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3261 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3262 &sc->bge_cdata.bge_rx_std_dmamap[i]);
3263 if (error) {
3264 int j;
3266 for (j = 0; j < i; ++j) {
3267 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3268 sc->bge_cdata.bge_rx_std_dmamap[j]);
3270 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3271 sc->bge_cdata.bge_mtag = NULL;
3273 if_printf(ifp, "could not create DMA map for RX\n");
3274 return error;
3278 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3279 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3280 &sc->bge_cdata.bge_tx_dmamap[i]);
3281 if (error) {
3282 int j;
3284 for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3285 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3286 sc->bge_cdata.bge_rx_std_dmamap[j]);
3288 for (j = 0; j < i; ++j) {
3289 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3290 sc->bge_cdata.bge_tx_dmamap[j]);
3292 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3293 sc->bge_cdata.bge_mtag = NULL;
3295 if_printf(ifp, "could not create DMA map for TX\n");
3296 return error;
3301 * Create DMA stuffs for standard RX ring.
3303 error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3304 &sc->bge_cdata.bge_rx_std_ring_tag,
3305 &sc->bge_cdata.bge_rx_std_ring_map,
3306 (void **)&sc->bge_ldata.bge_rx_std_ring,
3307 &sc->bge_ldata.bge_rx_std_ring_paddr);
3308 if (error) {
3309 if_printf(ifp, "could not create std RX ring\n");
3310 return error;
3314 * Create jumbo buffer pool.
3316 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3317 error = bge_alloc_jumbo_mem(sc);
3318 if (error) {
3319 if_printf(ifp, "could not create jumbo buffer pool\n");
3320 return error;
3325 * Create DMA stuffs for RX return ring.
3327 error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3328 &sc->bge_cdata.bge_rx_return_ring_tag,
3329 &sc->bge_cdata.bge_rx_return_ring_map,
3330 (void **)&sc->bge_ldata.bge_rx_return_ring,
3331 &sc->bge_ldata.bge_rx_return_ring_paddr);
3332 if (error) {
3333 if_printf(ifp, "could not create RX ret ring\n");
3334 return error;
3338 * Create DMA stuffs for TX ring.
3340 error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3341 &sc->bge_cdata.bge_tx_ring_tag,
3342 &sc->bge_cdata.bge_tx_ring_map,
3343 (void **)&sc->bge_ldata.bge_tx_ring,
3344 &sc->bge_ldata.bge_tx_ring_paddr);
3345 if (error) {
3346 if_printf(ifp, "could not create TX ring\n");
3347 return error;
3351 * Create DMA stuffs for status block.
3353 error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3354 &sc->bge_cdata.bge_status_tag,
3355 &sc->bge_cdata.bge_status_map,
3356 (void **)&sc->bge_ldata.bge_status_block,
3357 &sc->bge_ldata.bge_status_block_paddr);
3358 if (error) {
3359 if_printf(ifp, "could not create status block\n");
3360 return error;
3364 * Create DMA stuffs for statistics block.
3366 error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3367 &sc->bge_cdata.bge_stats_tag,
3368 &sc->bge_cdata.bge_stats_map,
3369 (void **)&sc->bge_ldata.bge_stats,
3370 &sc->bge_ldata.bge_stats_paddr);
3371 if (error) {
3372 if_printf(ifp, "could not create stats block\n");
3373 return error;
3375 return 0;
3378 static int
3379 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3380 bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3382 struct ifnet *ifp = &sc->arpcom.ac_if;
3383 struct bge_dmamap_arg ctx;
3384 bus_dma_segment_t seg;
3385 int error;
3388 * Create DMA tag
3390 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3391 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3392 NULL, NULL, size, 1, size, 0, tag);
3393 if (error) {
3394 if_printf(ifp, "could not allocate dma tag\n");
3395 return error;
3399 * Allocate DMA'able memory
3401 error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3402 map);
3403 if (error) {
3404 if_printf(ifp, "could not allocate dma memory\n");
3405 bus_dma_tag_destroy(*tag);
3406 *tag = NULL;
3407 return error;
3411 * Load the DMA'able memory
3413 ctx.bge_maxsegs = 1;
3414 ctx.bge_segs = &seg;
3415 error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3416 BUS_DMA_WAITOK);
3417 if (error) {
3418 if_printf(ifp, "could not load dma memory\n");
3419 bus_dmamem_free(*tag, *addr, *map);
3420 bus_dma_tag_destroy(*tag);
3421 *tag = NULL;
3422 return error;
3424 *paddr = ctx.bge_segs[0].ds_addr;
3426 return 0;
3429 static void
3430 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3432 if (tag != NULL) {
3433 bus_dmamap_unload(tag, map);
3434 bus_dmamem_free(tag, addr, map);
3435 bus_dma_tag_destroy(tag);
3440 * Grrr. The link status word in the status block does
3441 * not work correctly on the BCM5700 rev AX and BX chips,
3442 * according to all available information. Hence, we have
3443 * to enable MII interrupts in order to properly obtain
3444 * async link changes. Unfortunately, this also means that
3445 * we have to read the MAC status register to detect link
3446 * changes, thereby adding an additional register access to
3447 * the interrupt handler.
3449 * XXX: perhaps link state detection procedure used for
3450 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3452 static void
3453 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3455 struct ifnet *ifp = &sc->arpcom.ac_if;
3456 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3458 mii_pollstat(mii);
3460 if (!sc->bge_link &&
3461 (mii->mii_media_status & IFM_ACTIVE) &&
3462 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3463 sc->bge_link++;
3464 if (bootverbose)
3465 if_printf(ifp, "link UP\n");
3466 } else if (sc->bge_link &&
3467 (!(mii->mii_media_status & IFM_ACTIVE) ||
3468 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3469 sc->bge_link = 0;
3470 if (bootverbose)
3471 if_printf(ifp, "link DOWN\n");
3474 /* Clear the interrupt. */
3475 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3476 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3477 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3480 static void
3481 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3483 struct ifnet *ifp = &sc->arpcom.ac_if;
3485 #define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3488 * Sometimes PCS encoding errors are detected in
3489 * TBI mode (on fiber NICs), and for some reason
3490 * the chip will signal them as link changes.
3491 * If we get a link change event, but the 'PCS
3492 * encoding error' bit in the MAC status register
3493 * is set, don't bother doing a link check.
3494 * This avoids spurious "gigabit link up" messages
3495 * that sometimes appear on fiber NICs during
3496 * periods of heavy traffic.
3498 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3499 if (!sc->bge_link) {
3500 sc->bge_link++;
3501 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3502 BGE_CLRBIT(sc, BGE_MAC_MODE,
3503 BGE_MACMODE_TBI_SEND_CFGS);
3505 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3507 if (bootverbose)
3508 if_printf(ifp, "link UP\n");
3510 ifp->if_link_state = LINK_STATE_UP;
3511 if_link_state_change(ifp);
3513 } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3514 if (sc->bge_link) {
3515 sc->bge_link = 0;
3517 if (bootverbose)
3518 if_printf(ifp, "link DOWN\n");
3520 ifp->if_link_state = LINK_STATE_DOWN;
3521 if_link_state_change(ifp);
3525 #undef PCS_ENCODE_ERR
3527 /* Clear the attention. */
3528 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3529 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3530 BGE_MACSTAT_LINK_CHANGED);
3533 static void
3534 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3537 * Check that the AUTOPOLL bit is set before
3538 * processing the event as a real link change.
3539 * Turning AUTOPOLL on and off in the MII read/write
3540 * functions will often trigger a link status
3541 * interrupt for no reason.
3543 if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3544 struct ifnet *ifp = &sc->arpcom.ac_if;
3545 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3547 mii_pollstat(mii);
3549 if (!sc->bge_link &&
3550 (mii->mii_media_status & IFM_ACTIVE) &&
3551 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3552 sc->bge_link++;
3553 if (bootverbose)
3554 if_printf(ifp, "link UP\n");
3555 } else if (sc->bge_link &&
3556 (!(mii->mii_media_status & IFM_ACTIVE) ||
3557 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3558 sc->bge_link = 0;
3559 if (bootverbose)
3560 if_printf(ifp, "link DOWN\n");
3564 /* Clear the attention. */
3565 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3566 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3567 BGE_MACSTAT_LINK_CHANGED);