Nuke unused header files
[dragonfly/port-amd64.git] / usr.bin / lex / nfa.c
blob181ca778fa564e0f9aa6662fc0509f8df9904885
1 /* nfa - NFA construction routines */
3 /*-
4 * Copyright (c) 1990 The Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Vern Paxson.
9 *
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
14 * Redistribution and use in source and binary forms are permitted provided
15 * that: (1) source distributions retain this entire copyright notice and
16 * comment, and (2) distributions including binaries display the following
17 * acknowledgement: ``This product includes software developed by the
18 * University of California, Berkeley and its contributors'' in the
19 * documentation or other materials provided with the distribution and in
20 * all advertising materials mentioning features or use of this software.
21 * Neither the name of the University nor the names of its contributors may
22 * be used to endorse or promote products derived from this software without
23 * specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29 /* $Header: /home/daffy/u0/vern/flex/RCS/nfa.c,v 2.17 95/03/04 16:11:42 vern Exp $ */
30 /* $FreeBSD: src/usr.bin/lex/nfa.c,v 1.5 1999/10/27 07:56:46 obrien Exp $ */
31 /* $DragonFly: src/usr.bin/lex/nfa.c,v 1.4 2005/08/04 17:31:22 drhodus Exp $ */
33 #include "flexdef.h"
36 /* declare functions that have forward references */
38 int dupmachine PROTO((int));
39 void mkxtion PROTO((int, int));
42 /* add_accept - add an accepting state to a machine
44 * accepting_number becomes mach's accepting number.
47 void add_accept(int mach, int accepting_number)
49 /* Hang the accepting number off an epsilon state. if it is associated
50 * with a state that has a non-epsilon out-transition, then the state
51 * will accept BEFORE it makes that transition, i.e., one character
52 * too soon.
55 if ( transchar[finalst[mach]] == SYM_EPSILON )
56 accptnum[finalst[mach]] = accepting_number;
58 else
60 int astate = mkstate( SYM_EPSILON );
61 accptnum[astate] = accepting_number;
62 (void) link_machines( mach, astate );
67 /* copysingl - make a given number of copies of a singleton machine
69 * synopsis
71 * newsng = copysingl( singl, num );
73 * newsng - a new singleton composed of num copies of singl
74 * singl - a singleton machine
75 * num - the number of copies of singl to be present in newsng
78 int copysingl(int singl, int num)
80 int copy, i;
82 copy = mkstate( SYM_EPSILON );
84 for ( i = 1; i <= num; ++i )
85 copy = link_machines( copy, dupmachine( singl ) );
87 return copy;
91 /* dumpnfa - debugging routine to write out an nfa */
93 void dumpnfa(int state1)
95 int sym, tsp1, tsp2, anum, ns;
97 fprintf( stderr,
98 _( "\n\n********** beginning dump of nfa with start state %d\n" ),
99 state1 );
101 /* We probably should loop starting at firstst[state1] and going to
102 * lastst[state1], but they're not maintained properly when we "or"
103 * all of the rules together. So we use our knowledge that the machine
104 * starts at state 1 and ends at lastnfa.
107 /* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
108 for ( ns = 1; ns <= lastnfa; ++ns )
110 fprintf( stderr, _( "state # %4d\t" ), ns );
112 sym = transchar[ns];
113 tsp1 = trans1[ns];
114 tsp2 = trans2[ns];
115 anum = accptnum[ns];
117 fprintf( stderr, "%3d: %4d, %4d", sym, tsp1, tsp2 );
119 if ( anum != NIL )
120 fprintf( stderr, " [%d]", anum );
122 fprintf( stderr, "\n" );
125 fprintf( stderr, _( "********** end of dump\n" ) );
129 /* dupmachine - make a duplicate of a given machine
131 * synopsis
133 * copy = dupmachine( mach );
135 * copy - holds duplicate of mach
136 * mach - machine to be duplicated
138 * note that the copy of mach is NOT an exact duplicate; rather, all the
139 * transition states values are adjusted so that the copy is self-contained,
140 * as the original should have been.
142 * also note that the original MUST be contiguous, with its low and high
143 * states accessible by the arrays firstst and lastst
146 int dupmachine(int mach)
148 int i, init, state_offset;
149 int state = 0;
150 int last = lastst[mach];
152 for ( i = firstst[mach]; i <= last; ++i )
154 state = mkstate( transchar[i] );
156 if ( trans1[i] != NO_TRANSITION )
158 mkxtion( finalst[state], trans1[i] + state - i );
160 if ( transchar[i] == SYM_EPSILON &&
161 trans2[i] != NO_TRANSITION )
162 mkxtion( finalst[state],
163 trans2[i] + state - i );
166 accptnum[state] = accptnum[i];
169 if ( state == 0 )
170 flexfatal( _( "empty machine in dupmachine()" ) );
172 state_offset = state - i + 1;
174 init = mach + state_offset;
175 firstst[init] = firstst[mach] + state_offset;
176 finalst[init] = finalst[mach] + state_offset;
177 lastst[init] = lastst[mach] + state_offset;
179 return init;
183 /* finish_rule - finish up the processing for a rule
185 * An accepting number is added to the given machine. If variable_trail_rule
186 * is true then the rule has trailing context and both the head and trail
187 * are variable size. Otherwise if headcnt or trailcnt is non-zero then
188 * the machine recognizes a pattern with trailing context and headcnt is
189 * the number of characters in the matched part of the pattern, or zero
190 * if the matched part has variable length. trailcnt is the number of
191 * trailing context characters in the pattern, or zero if the trailing
192 * context has variable length.
195 void finish_rule(int mach, int variable_trail_rule, int headcnt, int trailcnt)
197 char action_text[MAXLINE];
199 add_accept( mach, num_rules );
201 /* We did this in new_rule(), but it often gets the wrong
202 * number because we do it before we start parsing the current rule.
204 rule_linenum[num_rules] = linenum;
206 /* If this is a continued action, then the line-number has already
207 * been updated, giving us the wrong number.
209 if ( continued_action )
210 --rule_linenum[num_rules];
212 sprintf( action_text, "case %d:\n", num_rules );
213 add_action( action_text );
215 if ( variable_trail_rule )
217 rule_type[num_rules] = RULE_VARIABLE;
219 if ( performance_report > 0 )
220 fprintf( stderr,
221 _( "Variable trailing context rule at line %d\n" ),
222 rule_linenum[num_rules] );
224 variable_trailing_context_rules = true;
227 else
229 rule_type[num_rules] = RULE_NORMAL;
231 if ( headcnt > 0 || trailcnt > 0 )
233 /* Do trailing context magic to not match the trailing
234 * characters.
236 char *scanner_cp = "yy_c_buf_p = yy_cp";
237 char *scanner_bp = "yy_bp";
239 add_action(
240 "*yy_cp = yy_hold_char; /* undo effects of setting up yytext */\n" );
242 if ( headcnt > 0 )
244 sprintf( action_text, "%s = %s + %d;\n",
245 scanner_cp, scanner_bp, headcnt );
246 add_action( action_text );
249 else
251 sprintf( action_text, "%s -= %d;\n",
252 scanner_cp, trailcnt );
253 add_action( action_text );
256 add_action(
257 "YY_DO_BEFORE_ACTION; /* set up yytext again */\n" );
261 /* Okay, in the action code at this point yytext and yyleng have
262 * their proper final values for this rule, so here's the point
263 * to do any user action. But don't do it for continued actions,
264 * as that'll result in multiple YY_RULE_SETUP's.
266 if ( ! continued_action )
267 add_action( "YY_RULE_SETUP\n" );
269 line_directive_out( (FILE *) 0, 1 );
273 /* link_machines - connect two machines together
275 * synopsis
277 * new = link_machines( first, last );
279 * new - a machine constructed by connecting first to last
280 * first - the machine whose successor is to be last
281 * last - the machine whose predecessor is to be first
283 * note: this routine concatenates the machine first with the machine
284 * last to produce a machine new which will pattern-match first first
285 * and then last, and will fail if either of the sub-patterns fails.
286 * FIRST is set to new by the operation. last is unmolested.
289 int link_machines(int first, int last)
291 if ( first == NIL )
292 return last;
294 else if ( last == NIL )
295 return first;
297 else
299 mkxtion( finalst[first], last );
300 finalst[first] = finalst[last];
301 lastst[first] = MAX( lastst[first], lastst[last] );
302 firstst[first] = MIN( firstst[first], firstst[last] );
304 return first;
309 /* mark_beginning_as_normal - mark each "beginning" state in a machine
310 * as being a "normal" (i.e., not trailing context-
311 * associated) states
313 * The "beginning" states are the epsilon closure of the first state
316 void mark_beginning_as_normal(int mach)
318 switch ( state_type[mach] )
320 case STATE_NORMAL:
321 /* Oh, we've already visited here. */
322 return;
324 case STATE_TRAILING_CONTEXT:
325 state_type[mach] = STATE_NORMAL;
327 if ( transchar[mach] == SYM_EPSILON )
329 if ( trans1[mach] != NO_TRANSITION )
330 mark_beginning_as_normal(
331 trans1[mach] );
333 if ( trans2[mach] != NO_TRANSITION )
334 mark_beginning_as_normal(
335 trans2[mach] );
337 break;
339 default:
340 flexerror(
341 _( "bad state type in mark_beginning_as_normal()" ) );
342 break;
347 /* mkbranch - make a machine that branches to two machines
349 * synopsis
351 * branch = mkbranch( first, second );
353 * branch - a machine which matches either first's pattern or second's
354 * first, second - machines whose patterns are to be or'ed (the | operator)
356 * Note that first and second are NEITHER destroyed by the operation. Also,
357 * the resulting machine CANNOT be used with any other "mk" operation except
358 * more mkbranch's. Compare with mkor()
361 int mkbranch(int first, int second)
363 int eps;
365 if ( first == NO_TRANSITION )
366 return second;
368 else if ( second == NO_TRANSITION )
369 return first;
371 eps = mkstate( SYM_EPSILON );
373 mkxtion( eps, first );
374 mkxtion( eps, second );
376 return eps;
380 /* mkclos - convert a machine into a closure
382 * synopsis
383 * new = mkclos( state );
385 * new - a new state which matches the closure of "state"
388 int mkclos(int state)
390 return mkopt( mkposcl( state ) );
394 /* mkopt - make a machine optional
396 * synopsis
398 * new = mkopt( mach );
400 * new - a machine which optionally matches whatever mach matched
401 * mach - the machine to make optional
403 * notes:
404 * 1. mach must be the last machine created
405 * 2. mach is destroyed by the call
408 int mkopt(int mach)
410 int eps;
412 if ( ! SUPER_FREE_EPSILON(finalst[mach]) )
414 eps = mkstate( SYM_EPSILON );
415 mach = link_machines( mach, eps );
418 /* Can't skimp on the following if FREE_EPSILON(mach) is true because
419 * some state interior to "mach" might point back to the beginning
420 * for a closure.
422 eps = mkstate( SYM_EPSILON );
423 mach = link_machines( eps, mach );
425 mkxtion( mach, finalst[mach] );
427 return mach;
431 /* mkor - make a machine that matches either one of two machines
433 * synopsis
435 * new = mkor( first, second );
437 * new - a machine which matches either first's pattern or second's
438 * first, second - machines whose patterns are to be or'ed (the | operator)
440 * note that first and second are both destroyed by the operation
441 * the code is rather convoluted because an attempt is made to minimize
442 * the number of epsilon states needed
445 int mkor(int first, int second)
447 int eps, orend;
449 if ( first == NIL )
450 return second;
452 else if ( second == NIL )
453 return first;
455 else
457 /* See comment in mkopt() about why we can't use the first
458 * state of "first" or "second" if they satisfy "FREE_EPSILON".
460 eps = mkstate( SYM_EPSILON );
462 first = link_machines( eps, first );
464 mkxtion( first, second );
466 if ( SUPER_FREE_EPSILON(finalst[first]) &&
467 accptnum[finalst[first]] == NIL )
469 orend = finalst[first];
470 mkxtion( finalst[second], orend );
473 else if ( SUPER_FREE_EPSILON(finalst[second]) &&
474 accptnum[finalst[second]] == NIL )
476 orend = finalst[second];
477 mkxtion( finalst[first], orend );
480 else
482 eps = mkstate( SYM_EPSILON );
484 first = link_machines( first, eps );
485 orend = finalst[first];
487 mkxtion( finalst[second], orend );
491 finalst[first] = orend;
492 return first;
496 /* mkposcl - convert a machine into a positive closure
498 * synopsis
499 * new = mkposcl( state );
501 * new - a machine matching the positive closure of "state"
504 int mkposcl(int state)
506 int eps;
508 if ( SUPER_FREE_EPSILON(finalst[state]) )
510 mkxtion( finalst[state], state );
511 return state;
514 else
516 eps = mkstate( SYM_EPSILON );
517 mkxtion( eps, state );
518 return link_machines( state, eps );
523 /* mkrep - make a replicated machine
525 * synopsis
526 * new = mkrep( mach, lb, ub );
528 * new - a machine that matches whatever "mach" matched from "lb"
529 * number of times to "ub" number of times
531 * note
532 * if "ub" is INFINITY then "new" matches "lb" or more occurrences of "mach"
535 int mkrep(int mach, int lb, int ub)
537 int base_mach, tail, copy, i;
539 base_mach = copysingl( mach, lb - 1 );
541 if ( ub == INFINITY )
543 copy = dupmachine( mach );
544 mach = link_machines( mach,
545 link_machines( base_mach, mkclos( copy ) ) );
548 else
550 tail = mkstate( SYM_EPSILON );
552 for ( i = lb; i < ub; ++i )
554 copy = dupmachine( mach );
555 tail = mkopt( link_machines( copy, tail ) );
558 mach = link_machines( mach, link_machines( base_mach, tail ) );
561 return mach;
565 /* mkstate - create a state with a transition on a given symbol
567 * synopsis
569 * state = mkstate( sym );
571 * state - a new state matching sym
572 * sym - the symbol the new state is to have an out-transition on
574 * note that this routine makes new states in ascending order through the
575 * state array (and increments LASTNFA accordingly). The routine DUPMACHINE
576 * relies on machines being made in ascending order and that they are
577 * CONTIGUOUS. Change it and you will have to rewrite DUPMACHINE (kludge
578 * that it admittedly is)
581 int mkstate(int sym)
583 if ( ++lastnfa >= current_mns )
585 if ( (current_mns += MNS_INCREMENT) >= MAXIMUM_MNS )
586 lerrif(
587 _( "input rules are too complicated (>= %d NFA states)" ),
588 current_mns );
590 ++num_reallocs;
592 firstst = reallocate_integer_array( firstst, current_mns );
593 lastst = reallocate_integer_array( lastst, current_mns );
594 finalst = reallocate_integer_array( finalst, current_mns );
595 transchar = reallocate_integer_array( transchar, current_mns );
596 trans1 = reallocate_integer_array( trans1, current_mns );
597 trans2 = reallocate_integer_array( trans2, current_mns );
598 accptnum = reallocate_integer_array( accptnum, current_mns );
599 assoc_rule =
600 reallocate_integer_array( assoc_rule, current_mns );
601 state_type =
602 reallocate_integer_array( state_type, current_mns );
605 firstst[lastnfa] = lastnfa;
606 finalst[lastnfa] = lastnfa;
607 lastst[lastnfa] = lastnfa;
608 transchar[lastnfa] = sym;
609 trans1[lastnfa] = NO_TRANSITION;
610 trans2[lastnfa] = NO_TRANSITION;
611 accptnum[lastnfa] = NIL;
612 assoc_rule[lastnfa] = num_rules;
613 state_type[lastnfa] = current_state_type;
615 /* Fix up equivalence classes base on this transition. Note that any
616 * character which has its own transition gets its own equivalence
617 * class. Thus only characters which are only in character classes
618 * have a chance at being in the same equivalence class. E.g. "a|b"
619 * puts 'a' and 'b' into two different equivalence classes. "[ab]"
620 * puts them in the same equivalence class (barring other differences
621 * elsewhere in the input).
624 if ( sym < 0 )
626 /* We don't have to update the equivalence classes since
627 * that was already done when the ccl was created for the
628 * first time.
632 else if ( sym == SYM_EPSILON )
633 ++numeps;
635 else
637 check_char( sym );
639 if ( useecs )
640 /* Map NUL's to csize. */
641 mkechar( sym ? sym : csize, nextecm, ecgroup );
644 return lastnfa;
648 /* mkxtion - make a transition from one state to another
650 * synopsis
652 * mkxtion( statefrom, stateto );
654 * statefrom - the state from which the transition is to be made
655 * stateto - the state to which the transition is to be made
658 void mkxtion(int statefrom, int stateto)
660 if ( trans1[statefrom] == NO_TRANSITION )
661 trans1[statefrom] = stateto;
663 else if ( (transchar[statefrom] != SYM_EPSILON) ||
664 (trans2[statefrom] != NO_TRANSITION) )
665 flexfatal( _( "found too many transitions in mkxtion()" ) );
667 else
668 { /* second out-transition for an epsilon state */
669 ++eps2;
670 trans2[statefrom] = stateto;
674 /* new_rule - initialize for a new rule */
676 void new_rule(void)
678 if ( ++num_rules >= current_max_rules )
680 ++num_reallocs;
681 current_max_rules += MAX_RULES_INCREMENT;
682 rule_type = reallocate_integer_array( rule_type,
683 current_max_rules );
684 rule_linenum = reallocate_integer_array( rule_linenum,
685 current_max_rules );
686 rule_useful = reallocate_integer_array( rule_useful,
687 current_max_rules );
690 if ( num_rules > MAX_RULE )
691 lerrif( _( "too many rules (> %d)!" ), MAX_RULE );
693 rule_linenum[num_rules] = linenum;
694 rule_useful[num_rules] = false;