amd64 port: mainly on the pmap headers, identify_cpu and initcpu
[dragonfly/port-amd64.git] / sys / kern / kern_clock.c
blob6f6481592662d3fadc43b93c63f58bd8c4def831
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.60 2007/09/12 12:02:09 sephe Exp $
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_pctrack.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/kinfo.h>
85 #include <sys/proc.h>
86 #include <sys/malloc.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/timex.h>
90 #include <sys/timepps.h>
91 #include <vm/vm.h>
92 #include <sys/lock.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/thread2.h>
99 #include <machine/cpu.h>
100 #include <machine/limits.h>
101 #include <machine/smp.h>
103 #ifdef GPROF
104 #include <sys/gmon.h>
105 #endif
107 #ifdef DEVICE_POLLING
108 extern void init_device_poll(void);
109 extern void init_device_poll_pcpu(int);
110 #endif
112 #ifdef DEBUG_PCTRACK
113 static void do_pctrack(struct intrframe *frame, int which);
114 #endif
116 static void initclocks (void *dummy);
117 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
120 * Some of these don't belong here, but it's easiest to concentrate them.
121 * Note that cpu_time counts in microseconds, but most userland programs
122 * just compare relative times against the total by delta.
124 struct kinfo_cputime cputime_percpu[MAXCPU];
125 #ifdef DEBUG_PCTRACK
126 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
127 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
128 #endif
130 #ifdef SMP
131 static int
132 sysctl_cputime(SYSCTL_HANDLER_ARGS)
134 int cpu, error = 0;
135 size_t size = sizeof(struct kinfo_cputime);
137 for (cpu = 0; cpu < ncpus; ++cpu) {
138 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
139 break;
142 return (error);
144 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
145 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
146 #else
147 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
148 "CPU time statistics");
149 #endif
152 * boottime is used to calculate the 'real' uptime. Do not confuse this with
153 * microuptime(). microtime() is not drift compensated. The real uptime
154 * with compensation is nanotime() - bootime. boottime is recalculated
155 * whenever the real time is set based on the compensated elapsed time
156 * in seconds (gd->gd_time_seconds).
158 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
159 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
160 * the real time.
162 struct timespec boottime; /* boot time (realtime) for reference only */
163 time_t time_second; /* read-only 'passive' uptime in seconds */
166 * basetime is used to calculate the compensated real time of day. The
167 * basetime can be modified on a per-tick basis by the adjtime(),
168 * ntp_adjtime(), and sysctl-based time correction APIs.
170 * Note that frequency corrections can also be made by adjusting
171 * gd_cpuclock_base.
173 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
174 * used on both SMP and UP systems to avoid MP races between cpu's and
175 * interrupt races on UP systems.
177 #define BASETIME_ARYSIZE 16
178 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
179 static struct timespec basetime[BASETIME_ARYSIZE];
180 static volatile int basetime_index;
182 static int
183 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
185 struct timespec *bt;
186 int error;
187 int index;
190 * Because basetime data and index may be updated by another cpu,
191 * a load fence is required to ensure that the data we read has
192 * not been speculatively read relative to a possibly updated index.
194 index = basetime_index;
195 cpu_lfence();
196 bt = &basetime[index];
197 error = SYSCTL_OUT(req, bt, sizeof(*bt));
198 return (error);
201 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
202 &boottime, timespec, "System boottime");
203 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
204 sysctl_get_basetime, "S,timespec", "System basetime");
206 static void hardclock(systimer_t info, struct intrframe *frame);
207 static void statclock(systimer_t info, struct intrframe *frame);
208 static void schedclock(systimer_t info, struct intrframe *frame);
209 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
211 int ticks; /* system master ticks at hz */
212 int clocks_running; /* tsleep/timeout clocks operational */
213 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
214 int64_t nsec_acc; /* accumulator */
216 /* NTPD time correction fields */
217 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
218 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
219 int64_t ntp_delta; /* one-time correction in nsec */
220 int64_t ntp_big_delta = 1000000000;
221 int32_t ntp_tick_delta; /* current adjustment rate */
222 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
223 time_t ntp_leap_second; /* time of next leap second */
224 int ntp_leap_insert; /* whether to insert or remove a second */
227 * Finish initializing clock frequencies and start all clocks running.
229 /* ARGSUSED*/
230 static void
231 initclocks(void *dummy)
233 #ifdef DEVICE_POLLING
234 init_device_poll();
235 #endif
236 /*psratio = profhz / stathz;*/
237 initclocks_pcpu();
238 clocks_running = 1;
242 * Called on a per-cpu basis
244 void
245 initclocks_pcpu(void)
247 struct globaldata *gd = mycpu;
249 crit_enter();
250 if (gd->gd_cpuid == 0) {
251 gd->gd_time_seconds = 1;
252 gd->gd_cpuclock_base = sys_cputimer->count();
253 } else {
254 /* XXX */
255 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
256 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
259 #ifdef DEVICE_POLLING
260 init_device_poll_pcpu(gd->gd_cpuid);
261 #endif
264 * Use a non-queued periodic systimer to prevent multiple ticks from
265 * building up if the sysclock jumps forward (8254 gets reset). The
266 * sysclock will never jump backwards. Our time sync is based on
267 * the actual sysclock, not the ticks count.
269 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
270 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
271 /* XXX correct the frequency for scheduler / estcpu tests */
272 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
273 NULL, ESTCPUFREQ);
274 crit_exit();
278 * This sets the current real time of day. Timespecs are in seconds and
279 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
280 * instead we adjust basetime so basetime + gd_* results in the current
281 * time of day. This way the gd_* fields are guarenteed to represent
282 * a monotonically increasing 'uptime' value.
284 * When set_timeofday() is called from userland, the system call forces it
285 * onto cpu #0 since only cpu #0 can update basetime_index.
287 void
288 set_timeofday(struct timespec *ts)
290 struct timespec *nbt;
291 int ni;
294 * XXX SMP / non-atomic basetime updates
296 crit_enter();
297 ni = (basetime_index + 1) & BASETIME_ARYMASK;
298 nbt = &basetime[ni];
299 nanouptime(nbt);
300 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
301 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
302 if (nbt->tv_nsec < 0) {
303 nbt->tv_nsec += 1000000000;
304 --nbt->tv_sec;
308 * Note that basetime diverges from boottime as the clock drift is
309 * compensated for, so we cannot do away with boottime. When setting
310 * the absolute time of day the drift is 0 (for an instant) and we
311 * can simply assign boottime to basetime.
313 * Note that nanouptime() is based on gd_time_seconds which is drift
314 * compensated up to a point (it is guarenteed to remain monotonically
315 * increasing). gd_time_seconds is thus our best uptime guess and
316 * suitable for use in the boottime calculation. It is already taken
317 * into account in the basetime calculation above.
319 boottime.tv_sec = nbt->tv_sec;
320 ntp_delta = 0;
323 * We now have a new basetime, make sure all other cpus have it,
324 * then update the index.
326 cpu_sfence();
327 basetime_index = ni;
329 crit_exit();
333 * Each cpu has its own hardclock, but we only increments ticks and softticks
334 * on cpu #0.
336 * NOTE! systimer! the MP lock might not be held here. We can only safely
337 * manipulate objects owned by the current cpu.
339 static void
340 hardclock(systimer_t info, struct intrframe *frame)
342 sysclock_t cputicks;
343 struct proc *p;
344 struct globaldata *gd = mycpu;
347 * Realtime updates are per-cpu. Note that timer corrections as
348 * returned by microtime() and friends make an additional adjustment
349 * using a system-wise 'basetime', but the running time is always
350 * taken from the per-cpu globaldata area. Since the same clock
351 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
352 * stay in synch.
354 * Note that we never allow info->time (aka gd->gd_hardclock.time)
355 * to reverse index gd_cpuclock_base, but that it is possible for
356 * it to temporarily get behind in the seconds if something in the
357 * system locks interrupts for a long period of time. Since periodic
358 * timers count events, though everything should resynch again
359 * immediately.
361 cputicks = info->time - gd->gd_cpuclock_base;
362 if (cputicks >= sys_cputimer->freq) {
363 ++gd->gd_time_seconds;
364 gd->gd_cpuclock_base += sys_cputimer->freq;
368 * The system-wide ticks counter and NTP related timedelta/tickdelta
369 * adjustments only occur on cpu #0. NTP adjustments are accomplished
370 * by updating basetime.
372 if (gd->gd_cpuid == 0) {
373 struct timespec *nbt;
374 struct timespec nts;
375 int leap;
376 int ni;
378 ++ticks;
380 #if 0
381 if (tco->tc_poll_pps)
382 tco->tc_poll_pps(tco);
383 #endif
386 * Calculate the new basetime index. We are in a critical section
387 * on cpu #0 and can safely play with basetime_index. Start
388 * with the current basetime and then make adjustments.
390 ni = (basetime_index + 1) & BASETIME_ARYMASK;
391 nbt = &basetime[ni];
392 *nbt = basetime[basetime_index];
395 * Apply adjtime corrections. (adjtime() API)
397 * adjtime() only runs on cpu #0 so our critical section is
398 * sufficient to access these variables.
400 if (ntp_delta != 0) {
401 nbt->tv_nsec += ntp_tick_delta;
402 ntp_delta -= ntp_tick_delta;
403 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
404 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
405 ntp_tick_delta = ntp_delta;
410 * Apply permanent frequency corrections. (sysctl API)
412 if (ntp_tick_permanent != 0) {
413 ntp_tick_acc += ntp_tick_permanent;
414 if (ntp_tick_acc >= (1LL << 32)) {
415 nbt->tv_nsec += ntp_tick_acc >> 32;
416 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
417 } else if (ntp_tick_acc <= -(1LL << 32)) {
418 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
419 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
420 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
424 if (nbt->tv_nsec >= 1000000000) {
425 nbt->tv_sec++;
426 nbt->tv_nsec -= 1000000000;
427 } else if (nbt->tv_nsec < 0) {
428 nbt->tv_sec--;
429 nbt->tv_nsec += 1000000000;
433 * Another per-tick compensation. (for ntp_adjtime() API)
435 if (nsec_adj != 0) {
436 nsec_acc += nsec_adj;
437 if (nsec_acc >= 0x100000000LL) {
438 nbt->tv_nsec += nsec_acc >> 32;
439 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
440 } else if (nsec_acc <= -0x100000000LL) {
441 nbt->tv_nsec -= -nsec_acc >> 32;
442 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
444 if (nbt->tv_nsec >= 1000000000) {
445 nbt->tv_nsec -= 1000000000;
446 ++nbt->tv_sec;
447 } else if (nbt->tv_nsec < 0) {
448 nbt->tv_nsec += 1000000000;
449 --nbt->tv_sec;
453 /************************************************************
454 * LEAP SECOND CORRECTION *
455 ************************************************************
457 * Taking into account all the corrections made above, figure
458 * out the new real time. If the seconds field has changed
459 * then apply any pending leap-second corrections.
461 getnanotime_nbt(nbt, &nts);
463 if (time_second != nts.tv_sec) {
465 * Apply leap second (sysctl API). Adjust nts for changes
466 * so we do not have to call getnanotime_nbt again.
468 if (ntp_leap_second) {
469 if (ntp_leap_second == nts.tv_sec) {
470 if (ntp_leap_insert) {
471 nbt->tv_sec++;
472 nts.tv_sec++;
473 } else {
474 nbt->tv_sec--;
475 nts.tv_sec--;
477 ntp_leap_second--;
482 * Apply leap second (ntp_adjtime() API), calculate a new
483 * nsec_adj field. ntp_update_second() returns nsec_adj
484 * as a per-second value but we need it as a per-tick value.
486 leap = ntp_update_second(time_second, &nsec_adj);
487 nsec_adj /= hz;
488 nbt->tv_sec += leap;
489 nts.tv_sec += leap;
492 * Update the time_second 'approximate time' global.
494 time_second = nts.tv_sec;
498 * Finally, our new basetime is ready to go live!
500 cpu_sfence();
501 basetime_index = ni;
504 * Figure out how badly the system is starved for memory
506 vm_fault_ratecheck();
510 * softticks are handled for all cpus
512 hardclock_softtick(gd);
515 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
516 * is mpsafe on curproc, so XXX get the mplock.
518 if ((p = curproc) != NULL && try_mplock()) {
519 if (frame && CLKF_USERMODE(frame) &&
520 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
521 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
522 ksignal(p, SIGVTALRM);
523 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
524 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
525 ksignal(p, SIGPROF);
526 rel_mplock();
528 setdelayed();
532 * The statistics clock typically runs at a 125Hz rate, and is intended
533 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
535 * NOTE! systimer! the MP lock might not be held here. We can only safely
536 * manipulate objects owned by the current cpu.
538 * The stats clock is responsible for grabbing a profiling sample.
539 * Most of the statistics are only used by user-level statistics programs.
540 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
541 * p->p_estcpu.
543 * Like the other clocks, the stat clock is called from what is effectively
544 * a fast interrupt, so the context should be the thread/process that got
545 * interrupted.
547 static void
548 statclock(systimer_t info, struct intrframe *frame)
550 #ifdef GPROF
551 struct gmonparam *g;
552 int i;
553 #endif
554 thread_t td;
555 struct proc *p;
556 int bump;
557 struct timeval tv;
558 struct timeval *stv;
561 * How big was our timeslice relative to the last time?
563 microuptime(&tv); /* mpsafe */
564 stv = &mycpu->gd_stattv;
565 if (stv->tv_sec == 0) {
566 bump = 1;
567 } else {
568 bump = tv.tv_usec - stv->tv_usec +
569 (tv.tv_sec - stv->tv_sec) * 1000000;
570 if (bump < 0)
571 bump = 0;
572 if (bump > 1000000)
573 bump = 1000000;
575 *stv = tv;
577 td = curthread;
578 p = td->td_proc;
580 if (frame && CLKF_USERMODE(frame)) {
582 * Came from userland, handle user time and deal with
583 * possible process.
585 if (p && (p->p_flag & P_PROFIL))
586 addupc_intr(p, CLKF_PC(frame), 1);
587 td->td_uticks += bump;
590 * Charge the time as appropriate
592 if (p && p->p_nice > NZERO)
593 cpu_time.cp_nice += bump;
594 else
595 cpu_time.cp_user += bump;
596 } else {
597 #ifdef GPROF
599 * Kernel statistics are just like addupc_intr, only easier.
601 g = &_gmonparam;
602 if (g->state == GMON_PROF_ON && frame) {
603 i = CLKF_PC(frame) - g->lowpc;
604 if (i < g->textsize) {
605 i /= HISTFRACTION * sizeof(*g->kcount);
606 g->kcount[i]++;
609 #endif
611 * Came from kernel mode, so we were:
612 * - handling an interrupt,
613 * - doing syscall or trap work on behalf of the current
614 * user process, or
615 * - spinning in the idle loop.
616 * Whichever it is, charge the time as appropriate.
617 * Note that we charge interrupts to the current process,
618 * regardless of whether they are ``for'' that process,
619 * so that we know how much of its real time was spent
620 * in ``non-process'' (i.e., interrupt) work.
622 * XXX assume system if frame is NULL. A NULL frame
623 * can occur if ipi processing is done from a crit_exit().
625 if (frame && CLKF_INTR(frame))
626 td->td_iticks += bump;
627 else
628 td->td_sticks += bump;
630 if (frame && CLKF_INTR(frame)) {
631 #ifdef DEBUG_PCTRACK
632 do_pctrack(frame, PCTRACK_INT);
633 #endif
634 cpu_time.cp_intr += bump;
635 } else {
636 if (td == &mycpu->gd_idlethread) {
637 cpu_time.cp_idle += bump;
638 } else {
639 #ifdef DEBUG_PCTRACK
640 if (frame)
641 do_pctrack(frame, PCTRACK_SYS);
642 #endif
643 cpu_time.cp_sys += bump;
649 #ifdef DEBUG_PCTRACK
651 * Sample the PC when in the kernel or in an interrupt. User code can
652 * retrieve the information and generate a histogram or other output.
655 static void
656 do_pctrack(struct intrframe *frame, int which)
658 struct kinfo_pctrack *pctrack;
660 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
661 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
662 (void *)CLKF_PC(frame);
663 ++pctrack->pc_index;
666 static int
667 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
669 struct kinfo_pcheader head;
670 int error;
671 int cpu;
672 int ntrack;
674 head.pc_ntrack = PCTRACK_SIZE;
675 head.pc_arysize = PCTRACK_ARYSIZE;
677 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
678 return (error);
680 for (cpu = 0; cpu < ncpus; ++cpu) {
681 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
682 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
683 sizeof(struct kinfo_pctrack));
684 if (error)
685 break;
687 if (error)
688 break;
690 return (error);
692 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
693 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
695 #endif
698 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
699 * the MP lock might not be held. We can safely manipulate parts of curproc
700 * but that's about it.
702 * Each cpu has its own scheduler clock.
704 static void
705 schedclock(systimer_t info, struct intrframe *frame)
707 struct lwp *lp;
708 struct rusage *ru;
709 struct vmspace *vm;
710 long rss;
712 if ((lp = lwkt_preempted_proc()) != NULL) {
714 * Account for cpu time used and hit the scheduler. Note
715 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
716 * HERE.
718 ++lp->lwp_cpticks;
719 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
720 info->time);
722 if ((lp = curthread->td_lwp) != NULL) {
724 * Update resource usage integrals and maximums.
726 if ((ru = &lp->lwp_proc->p_ru) &&
727 (vm = lp->lwp_proc->p_vmspace) != NULL) {
728 ru->ru_ixrss += pgtok(vm->vm_tsize);
729 ru->ru_idrss += pgtok(vm->vm_dsize);
730 ru->ru_isrss += pgtok(vm->vm_ssize);
731 rss = pgtok(vmspace_resident_count(vm));
732 if (ru->ru_maxrss < rss)
733 ru->ru_maxrss = rss;
739 * Compute number of ticks for the specified amount of time. The
740 * return value is intended to be used in a clock interrupt timed
741 * operation and guarenteed to meet or exceed the requested time.
742 * If the representation overflows, return INT_MAX. The minimum return
743 * value is 1 ticks and the function will average the calculation up.
744 * If any value greater then 0 microseconds is supplied, a value
745 * of at least 2 will be returned to ensure that a near-term clock
746 * interrupt does not cause the timeout to occur (degenerately) early.
748 * Note that limit checks must take into account microseconds, which is
749 * done simply by using the smaller signed long maximum instead of
750 * the unsigned long maximum.
752 * If ints have 32 bits, then the maximum value for any timeout in
753 * 10ms ticks is 248 days.
756 tvtohz_high(struct timeval *tv)
758 int ticks;
759 long sec, usec;
761 sec = tv->tv_sec;
762 usec = tv->tv_usec;
763 if (usec < 0) {
764 sec--;
765 usec += 1000000;
767 if (sec < 0) {
768 #ifdef DIAGNOSTIC
769 if (usec > 0) {
770 sec++;
771 usec -= 1000000;
773 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
774 sec, usec);
775 #endif
776 ticks = 1;
777 } else if (sec <= INT_MAX / hz) {
778 ticks = (int)(sec * hz +
779 ((u_long)usec + (tick - 1)) / tick) + 1;
780 } else {
781 ticks = INT_MAX;
783 return (ticks);
787 * Compute number of ticks for the specified amount of time, erroring on
788 * the side of it being too low to ensure that sleeping the returned number
789 * of ticks will not result in a late return.
791 * The supplied timeval may not be negative and should be normalized. A
792 * return value of 0 is possible if the timeval converts to less then
793 * 1 tick.
795 * If ints have 32 bits, then the maximum value for any timeout in
796 * 10ms ticks is 248 days.
799 tvtohz_low(struct timeval *tv)
801 int ticks;
802 long sec;
804 sec = tv->tv_sec;
805 if (sec <= INT_MAX / hz)
806 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
807 else
808 ticks = INT_MAX;
809 return (ticks);
814 * Start profiling on a process.
816 * Kernel profiling passes proc0 which never exits and hence
817 * keeps the profile clock running constantly.
819 void
820 startprofclock(struct proc *p)
822 if ((p->p_flag & P_PROFIL) == 0) {
823 p->p_flag |= P_PROFIL;
824 #if 0 /* XXX */
825 if (++profprocs == 1 && stathz != 0) {
826 crit_enter();
827 psdiv = psratio;
828 setstatclockrate(profhz);
829 crit_exit();
831 #endif
836 * Stop profiling on a process.
838 void
839 stopprofclock(struct proc *p)
841 if (p->p_flag & P_PROFIL) {
842 p->p_flag &= ~P_PROFIL;
843 #if 0 /* XXX */
844 if (--profprocs == 0 && stathz != 0) {
845 crit_enter();
846 psdiv = 1;
847 setstatclockrate(stathz);
848 crit_exit();
850 #endif
855 * Return information about system clocks.
857 static int
858 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
860 struct kinfo_clockinfo clkinfo;
862 * Construct clockinfo structure.
864 clkinfo.ci_hz = hz;
865 clkinfo.ci_tick = tick;
866 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
867 clkinfo.ci_profhz = profhz;
868 clkinfo.ci_stathz = stathz ? stathz : hz;
869 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
872 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
873 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
876 * We have eight functions for looking at the clock, four for
877 * microseconds and four for nanoseconds. For each there is fast
878 * but less precise version "get{nano|micro}[up]time" which will
879 * return a time which is up to 1/HZ previous to the call, whereas
880 * the raw version "{nano|micro}[up]time" will return a timestamp
881 * which is as precise as possible. The "up" variants return the
882 * time relative to system boot, these are well suited for time
883 * interval measurements.
885 * Each cpu independantly maintains the current time of day, so all
886 * we need to do to protect ourselves from changes is to do a loop
887 * check on the seconds field changing out from under us.
889 * The system timer maintains a 32 bit count and due to various issues
890 * it is possible for the calculated delta to occassionally exceed
891 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
892 * multiplication can easily overflow, so we deal with the case. For
893 * uniformity we deal with the case in the usec case too.
895 void
896 getmicrouptime(struct timeval *tvp)
898 struct globaldata *gd = mycpu;
899 sysclock_t delta;
901 do {
902 tvp->tv_sec = gd->gd_time_seconds;
903 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
904 } while (tvp->tv_sec != gd->gd_time_seconds);
906 if (delta >= sys_cputimer->freq) {
907 tvp->tv_sec += delta / sys_cputimer->freq;
908 delta %= sys_cputimer->freq;
910 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
911 if (tvp->tv_usec >= 1000000) {
912 tvp->tv_usec -= 1000000;
913 ++tvp->tv_sec;
917 void
918 getnanouptime(struct timespec *tsp)
920 struct globaldata *gd = mycpu;
921 sysclock_t delta;
923 do {
924 tsp->tv_sec = gd->gd_time_seconds;
925 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
926 } while (tsp->tv_sec != gd->gd_time_seconds);
928 if (delta >= sys_cputimer->freq) {
929 tsp->tv_sec += delta / sys_cputimer->freq;
930 delta %= sys_cputimer->freq;
932 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
935 void
936 microuptime(struct timeval *tvp)
938 struct globaldata *gd = mycpu;
939 sysclock_t delta;
941 do {
942 tvp->tv_sec = gd->gd_time_seconds;
943 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
944 } while (tvp->tv_sec != gd->gd_time_seconds);
946 if (delta >= sys_cputimer->freq) {
947 tvp->tv_sec += delta / sys_cputimer->freq;
948 delta %= sys_cputimer->freq;
950 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
953 void
954 nanouptime(struct timespec *tsp)
956 struct globaldata *gd = mycpu;
957 sysclock_t delta;
959 do {
960 tsp->tv_sec = gd->gd_time_seconds;
961 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
962 } while (tsp->tv_sec != gd->gd_time_seconds);
964 if (delta >= sys_cputimer->freq) {
965 tsp->tv_sec += delta / sys_cputimer->freq;
966 delta %= sys_cputimer->freq;
968 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
972 * realtime routines
975 void
976 getmicrotime(struct timeval *tvp)
978 struct globaldata *gd = mycpu;
979 struct timespec *bt;
980 sysclock_t delta;
982 do {
983 tvp->tv_sec = gd->gd_time_seconds;
984 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
985 } while (tvp->tv_sec != gd->gd_time_seconds);
987 if (delta >= sys_cputimer->freq) {
988 tvp->tv_sec += delta / sys_cputimer->freq;
989 delta %= sys_cputimer->freq;
991 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
993 bt = &basetime[basetime_index];
994 tvp->tv_sec += bt->tv_sec;
995 tvp->tv_usec += bt->tv_nsec / 1000;
996 while (tvp->tv_usec >= 1000000) {
997 tvp->tv_usec -= 1000000;
998 ++tvp->tv_sec;
1002 void
1003 getnanotime(struct timespec *tsp)
1005 struct globaldata *gd = mycpu;
1006 struct timespec *bt;
1007 sysclock_t delta;
1009 do {
1010 tsp->tv_sec = gd->gd_time_seconds;
1011 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1012 } while (tsp->tv_sec != gd->gd_time_seconds);
1014 if (delta >= sys_cputimer->freq) {
1015 tsp->tv_sec += delta / sys_cputimer->freq;
1016 delta %= sys_cputimer->freq;
1018 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1020 bt = &basetime[basetime_index];
1021 tsp->tv_sec += bt->tv_sec;
1022 tsp->tv_nsec += bt->tv_nsec;
1023 while (tsp->tv_nsec >= 1000000000) {
1024 tsp->tv_nsec -= 1000000000;
1025 ++tsp->tv_sec;
1029 static void
1030 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1032 struct globaldata *gd = mycpu;
1033 sysclock_t delta;
1035 do {
1036 tsp->tv_sec = gd->gd_time_seconds;
1037 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1038 } while (tsp->tv_sec != gd->gd_time_seconds);
1040 if (delta >= sys_cputimer->freq) {
1041 tsp->tv_sec += delta / sys_cputimer->freq;
1042 delta %= sys_cputimer->freq;
1044 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1046 tsp->tv_sec += nbt->tv_sec;
1047 tsp->tv_nsec += nbt->tv_nsec;
1048 while (tsp->tv_nsec >= 1000000000) {
1049 tsp->tv_nsec -= 1000000000;
1050 ++tsp->tv_sec;
1055 void
1056 microtime(struct timeval *tvp)
1058 struct globaldata *gd = mycpu;
1059 struct timespec *bt;
1060 sysclock_t delta;
1062 do {
1063 tvp->tv_sec = gd->gd_time_seconds;
1064 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1065 } while (tvp->tv_sec != gd->gd_time_seconds);
1067 if (delta >= sys_cputimer->freq) {
1068 tvp->tv_sec += delta / sys_cputimer->freq;
1069 delta %= sys_cputimer->freq;
1071 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1073 bt = &basetime[basetime_index];
1074 tvp->tv_sec += bt->tv_sec;
1075 tvp->tv_usec += bt->tv_nsec / 1000;
1076 while (tvp->tv_usec >= 1000000) {
1077 tvp->tv_usec -= 1000000;
1078 ++tvp->tv_sec;
1082 void
1083 nanotime(struct timespec *tsp)
1085 struct globaldata *gd = mycpu;
1086 struct timespec *bt;
1087 sysclock_t delta;
1089 do {
1090 tsp->tv_sec = gd->gd_time_seconds;
1091 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1092 } while (tsp->tv_sec != gd->gd_time_seconds);
1094 if (delta >= sys_cputimer->freq) {
1095 tsp->tv_sec += delta / sys_cputimer->freq;
1096 delta %= sys_cputimer->freq;
1098 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1100 bt = &basetime[basetime_index];
1101 tsp->tv_sec += bt->tv_sec;
1102 tsp->tv_nsec += bt->tv_nsec;
1103 while (tsp->tv_nsec >= 1000000000) {
1104 tsp->tv_nsec -= 1000000000;
1105 ++tsp->tv_sec;
1110 * note: this is not exactly synchronized with real time. To do that we
1111 * would have to do what microtime does and check for a nanoseconds overflow.
1113 time_t
1114 get_approximate_time_t(void)
1116 struct globaldata *gd = mycpu;
1117 struct timespec *bt;
1119 bt = &basetime[basetime_index];
1120 return(gd->gd_time_seconds + bt->tv_sec);
1124 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1126 pps_params_t *app;
1127 struct pps_fetch_args *fapi;
1128 #ifdef PPS_SYNC
1129 struct pps_kcbind_args *kapi;
1130 #endif
1132 switch (cmd) {
1133 case PPS_IOC_CREATE:
1134 return (0);
1135 case PPS_IOC_DESTROY:
1136 return (0);
1137 case PPS_IOC_SETPARAMS:
1138 app = (pps_params_t *)data;
1139 if (app->mode & ~pps->ppscap)
1140 return (EINVAL);
1141 pps->ppsparam = *app;
1142 return (0);
1143 case PPS_IOC_GETPARAMS:
1144 app = (pps_params_t *)data;
1145 *app = pps->ppsparam;
1146 app->api_version = PPS_API_VERS_1;
1147 return (0);
1148 case PPS_IOC_GETCAP:
1149 *(int*)data = pps->ppscap;
1150 return (0);
1151 case PPS_IOC_FETCH:
1152 fapi = (struct pps_fetch_args *)data;
1153 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1154 return (EINVAL);
1155 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1156 return (EOPNOTSUPP);
1157 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1158 fapi->pps_info_buf = pps->ppsinfo;
1159 return (0);
1160 case PPS_IOC_KCBIND:
1161 #ifdef PPS_SYNC
1162 kapi = (struct pps_kcbind_args *)data;
1163 /* XXX Only root should be able to do this */
1164 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1165 return (EINVAL);
1166 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1167 return (EINVAL);
1168 if (kapi->edge & ~pps->ppscap)
1169 return (EINVAL);
1170 pps->kcmode = kapi->edge;
1171 return (0);
1172 #else
1173 return (EOPNOTSUPP);
1174 #endif
1175 default:
1176 return (ENOTTY);
1180 void
1181 pps_init(struct pps_state *pps)
1183 pps->ppscap |= PPS_TSFMT_TSPEC;
1184 if (pps->ppscap & PPS_CAPTUREASSERT)
1185 pps->ppscap |= PPS_OFFSETASSERT;
1186 if (pps->ppscap & PPS_CAPTURECLEAR)
1187 pps->ppscap |= PPS_OFFSETCLEAR;
1190 void
1191 pps_event(struct pps_state *pps, sysclock_t count, int event)
1193 struct globaldata *gd;
1194 struct timespec *tsp;
1195 struct timespec *osp;
1196 struct timespec *bt;
1197 struct timespec ts;
1198 sysclock_t *pcount;
1199 #ifdef PPS_SYNC
1200 sysclock_t tcount;
1201 #endif
1202 sysclock_t delta;
1203 pps_seq_t *pseq;
1204 int foff;
1205 int fhard;
1207 gd = mycpu;
1209 /* Things would be easier with arrays... */
1210 if (event == PPS_CAPTUREASSERT) {
1211 tsp = &pps->ppsinfo.assert_timestamp;
1212 osp = &pps->ppsparam.assert_offset;
1213 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1214 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1215 pcount = &pps->ppscount[0];
1216 pseq = &pps->ppsinfo.assert_sequence;
1217 } else {
1218 tsp = &pps->ppsinfo.clear_timestamp;
1219 osp = &pps->ppsparam.clear_offset;
1220 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1221 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1222 pcount = &pps->ppscount[1];
1223 pseq = &pps->ppsinfo.clear_sequence;
1226 /* Nothing really happened */
1227 if (*pcount == count)
1228 return;
1230 *pcount = count;
1232 do {
1233 ts.tv_sec = gd->gd_time_seconds;
1234 delta = count - gd->gd_cpuclock_base;
1235 } while (ts.tv_sec != gd->gd_time_seconds);
1237 if (delta >= sys_cputimer->freq) {
1238 ts.tv_sec += delta / sys_cputimer->freq;
1239 delta %= sys_cputimer->freq;
1241 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1242 bt = &basetime[basetime_index];
1243 ts.tv_sec += bt->tv_sec;
1244 ts.tv_nsec += bt->tv_nsec;
1245 while (ts.tv_nsec >= 1000000000) {
1246 ts.tv_nsec -= 1000000000;
1247 ++ts.tv_sec;
1250 (*pseq)++;
1251 *tsp = ts;
1253 if (foff) {
1254 timespecadd(tsp, osp);
1255 if (tsp->tv_nsec < 0) {
1256 tsp->tv_nsec += 1000000000;
1257 tsp->tv_sec -= 1;
1260 #ifdef PPS_SYNC
1261 if (fhard) {
1262 /* magic, at its best... */
1263 tcount = count - pps->ppscount[2];
1264 pps->ppscount[2] = count;
1265 if (tcount >= sys_cputimer->freq) {
1266 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1267 sys_cputimer->freq64_nsec *
1268 (tcount % sys_cputimer->freq)) >> 32;
1269 } else {
1270 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1272 hardpps(tsp, delta);
1274 #endif