2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.60 2007/09/12 12:02:09 sephe Exp $
77 #include "opt_polling.h"
78 #include "opt_pctrack.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/kinfo.h>
86 #include <sys/malloc.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/timex.h>
90 #include <sys/timepps.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/thread2.h>
99 #include <machine/cpu.h>
100 #include <machine/limits.h>
101 #include <machine/smp.h>
104 #include <sys/gmon.h>
107 #ifdef DEVICE_POLLING
108 extern void init_device_poll(void);
109 extern void init_device_poll_pcpu(int);
113 static void do_pctrack(struct intrframe
*frame
, int which
);
116 static void initclocks (void *dummy
);
117 SYSINIT(clocks
, SI_BOOT2_CLOCKS
, SI_ORDER_FIRST
, initclocks
, NULL
)
120 * Some of these don't belong here, but it's easiest to concentrate them.
121 * Note that cpu_time counts in microseconds, but most userland programs
122 * just compare relative times against the total by delta.
124 struct kinfo_cputime cputime_percpu
[MAXCPU
];
126 struct kinfo_pcheader cputime_pcheader
= { PCTRACK_SIZE
, PCTRACK_ARYSIZE
};
127 struct kinfo_pctrack cputime_pctrack
[MAXCPU
][PCTRACK_SIZE
];
132 sysctl_cputime(SYSCTL_HANDLER_ARGS
)
135 size_t size
= sizeof(struct kinfo_cputime
);
137 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
138 if ((error
= SYSCTL_OUT(req
, &cputime_percpu
[cpu
], size
)))
144 SYSCTL_PROC(_kern
, OID_AUTO
, cputime
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
145 sysctl_cputime
, "S,kinfo_cputime", "CPU time statistics");
147 SYSCTL_STRUCT(_kern
, OID_AUTO
, cputime
, CTLFLAG_RD
, &cpu_time
, kinfo_cputime
,
148 "CPU time statistics");
152 * boottime is used to calculate the 'real' uptime. Do not confuse this with
153 * microuptime(). microtime() is not drift compensated. The real uptime
154 * with compensation is nanotime() - bootime. boottime is recalculated
155 * whenever the real time is set based on the compensated elapsed time
156 * in seconds (gd->gd_time_seconds).
158 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
159 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
162 struct timespec boottime
; /* boot time (realtime) for reference only */
163 time_t time_second
; /* read-only 'passive' uptime in seconds */
166 * basetime is used to calculate the compensated real time of day. The
167 * basetime can be modified on a per-tick basis by the adjtime(),
168 * ntp_adjtime(), and sysctl-based time correction APIs.
170 * Note that frequency corrections can also be made by adjusting
173 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
174 * used on both SMP and UP systems to avoid MP races between cpu's and
175 * interrupt races on UP systems.
177 #define BASETIME_ARYSIZE 16
178 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
179 static struct timespec basetime
[BASETIME_ARYSIZE
];
180 static volatile int basetime_index
;
183 sysctl_get_basetime(SYSCTL_HANDLER_ARGS
)
190 * Because basetime data and index may be updated by another cpu,
191 * a load fence is required to ensure that the data we read has
192 * not been speculatively read relative to a possibly updated index.
194 index
= basetime_index
;
196 bt
= &basetime
[index
];
197 error
= SYSCTL_OUT(req
, bt
, sizeof(*bt
));
201 SYSCTL_STRUCT(_kern
, KERN_BOOTTIME
, boottime
, CTLFLAG_RD
,
202 &boottime
, timespec
, "System boottime");
203 SYSCTL_PROC(_kern
, OID_AUTO
, basetime
, CTLTYPE_STRUCT
|CTLFLAG_RD
, 0, 0,
204 sysctl_get_basetime
, "S,timespec", "System basetime");
206 static void hardclock(systimer_t info
, struct intrframe
*frame
);
207 static void statclock(systimer_t info
, struct intrframe
*frame
);
208 static void schedclock(systimer_t info
, struct intrframe
*frame
);
209 static void getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
);
211 int ticks
; /* system master ticks at hz */
212 int clocks_running
; /* tsleep/timeout clocks operational */
213 int64_t nsec_adj
; /* ntpd per-tick adjustment in nsec << 32 */
214 int64_t nsec_acc
; /* accumulator */
216 /* NTPD time correction fields */
217 int64_t ntp_tick_permanent
; /* per-tick adjustment in nsec << 32 */
218 int64_t ntp_tick_acc
; /* accumulator for per-tick adjustment */
219 int64_t ntp_delta
; /* one-time correction in nsec */
220 int64_t ntp_big_delta
= 1000000000;
221 int32_t ntp_tick_delta
; /* current adjustment rate */
222 int32_t ntp_default_tick_delta
; /* adjustment rate for ntp_delta */
223 time_t ntp_leap_second
; /* time of next leap second */
224 int ntp_leap_insert
; /* whether to insert or remove a second */
227 * Finish initializing clock frequencies and start all clocks running.
231 initclocks(void *dummy
)
233 #ifdef DEVICE_POLLING
236 /*psratio = profhz / stathz;*/
242 * Called on a per-cpu basis
245 initclocks_pcpu(void)
247 struct globaldata
*gd
= mycpu
;
250 if (gd
->gd_cpuid
== 0) {
251 gd
->gd_time_seconds
= 1;
252 gd
->gd_cpuclock_base
= sys_cputimer
->count();
255 gd
->gd_time_seconds
= globaldata_find(0)->gd_time_seconds
;
256 gd
->gd_cpuclock_base
= globaldata_find(0)->gd_cpuclock_base
;
259 #ifdef DEVICE_POLLING
260 init_device_poll_pcpu(gd
->gd_cpuid
);
264 * Use a non-queued periodic systimer to prevent multiple ticks from
265 * building up if the sysclock jumps forward (8254 gets reset). The
266 * sysclock will never jump backwards. Our time sync is based on
267 * the actual sysclock, not the ticks count.
269 systimer_init_periodic_nq(&gd
->gd_hardclock
, hardclock
, NULL
, hz
);
270 systimer_init_periodic_nq(&gd
->gd_statclock
, statclock
, NULL
, stathz
);
271 /* XXX correct the frequency for scheduler / estcpu tests */
272 systimer_init_periodic_nq(&gd
->gd_schedclock
, schedclock
,
278 * This sets the current real time of day. Timespecs are in seconds and
279 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
280 * instead we adjust basetime so basetime + gd_* results in the current
281 * time of day. This way the gd_* fields are guarenteed to represent
282 * a monotonically increasing 'uptime' value.
284 * When set_timeofday() is called from userland, the system call forces it
285 * onto cpu #0 since only cpu #0 can update basetime_index.
288 set_timeofday(struct timespec
*ts
)
290 struct timespec
*nbt
;
294 * XXX SMP / non-atomic basetime updates
297 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
300 nbt
->tv_sec
= ts
->tv_sec
- nbt
->tv_sec
;
301 nbt
->tv_nsec
= ts
->tv_nsec
- nbt
->tv_nsec
;
302 if (nbt
->tv_nsec
< 0) {
303 nbt
->tv_nsec
+= 1000000000;
308 * Note that basetime diverges from boottime as the clock drift is
309 * compensated for, so we cannot do away with boottime. When setting
310 * the absolute time of day the drift is 0 (for an instant) and we
311 * can simply assign boottime to basetime.
313 * Note that nanouptime() is based on gd_time_seconds which is drift
314 * compensated up to a point (it is guarenteed to remain monotonically
315 * increasing). gd_time_seconds is thus our best uptime guess and
316 * suitable for use in the boottime calculation. It is already taken
317 * into account in the basetime calculation above.
319 boottime
.tv_sec
= nbt
->tv_sec
;
323 * We now have a new basetime, make sure all other cpus have it,
324 * then update the index.
333 * Each cpu has its own hardclock, but we only increments ticks and softticks
336 * NOTE! systimer! the MP lock might not be held here. We can only safely
337 * manipulate objects owned by the current cpu.
340 hardclock(systimer_t info
, struct intrframe
*frame
)
344 struct globaldata
*gd
= mycpu
;
347 * Realtime updates are per-cpu. Note that timer corrections as
348 * returned by microtime() and friends make an additional adjustment
349 * using a system-wise 'basetime', but the running time is always
350 * taken from the per-cpu globaldata area. Since the same clock
351 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
354 * Note that we never allow info->time (aka gd->gd_hardclock.time)
355 * to reverse index gd_cpuclock_base, but that it is possible for
356 * it to temporarily get behind in the seconds if something in the
357 * system locks interrupts for a long period of time. Since periodic
358 * timers count events, though everything should resynch again
361 cputicks
= info
->time
- gd
->gd_cpuclock_base
;
362 if (cputicks
>= sys_cputimer
->freq
) {
363 ++gd
->gd_time_seconds
;
364 gd
->gd_cpuclock_base
+= sys_cputimer
->freq
;
368 * The system-wide ticks counter and NTP related timedelta/tickdelta
369 * adjustments only occur on cpu #0. NTP adjustments are accomplished
370 * by updating basetime.
372 if (gd
->gd_cpuid
== 0) {
373 struct timespec
*nbt
;
381 if (tco
->tc_poll_pps
)
382 tco
->tc_poll_pps(tco
);
386 * Calculate the new basetime index. We are in a critical section
387 * on cpu #0 and can safely play with basetime_index. Start
388 * with the current basetime and then make adjustments.
390 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
392 *nbt
= basetime
[basetime_index
];
395 * Apply adjtime corrections. (adjtime() API)
397 * adjtime() only runs on cpu #0 so our critical section is
398 * sufficient to access these variables.
400 if (ntp_delta
!= 0) {
401 nbt
->tv_nsec
+= ntp_tick_delta
;
402 ntp_delta
-= ntp_tick_delta
;
403 if ((ntp_delta
> 0 && ntp_delta
< ntp_tick_delta
) ||
404 (ntp_delta
< 0 && ntp_delta
> ntp_tick_delta
)) {
405 ntp_tick_delta
= ntp_delta
;
410 * Apply permanent frequency corrections. (sysctl API)
412 if (ntp_tick_permanent
!= 0) {
413 ntp_tick_acc
+= ntp_tick_permanent
;
414 if (ntp_tick_acc
>= (1LL << 32)) {
415 nbt
->tv_nsec
+= ntp_tick_acc
>> 32;
416 ntp_tick_acc
-= (ntp_tick_acc
>> 32) << 32;
417 } else if (ntp_tick_acc
<= -(1LL << 32)) {
418 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
419 nbt
->tv_nsec
-= (-ntp_tick_acc
) >> 32;
420 ntp_tick_acc
+= ((-ntp_tick_acc
) >> 32) << 32;
424 if (nbt
->tv_nsec
>= 1000000000) {
426 nbt
->tv_nsec
-= 1000000000;
427 } else if (nbt
->tv_nsec
< 0) {
429 nbt
->tv_nsec
+= 1000000000;
433 * Another per-tick compensation. (for ntp_adjtime() API)
436 nsec_acc
+= nsec_adj
;
437 if (nsec_acc
>= 0x100000000LL
) {
438 nbt
->tv_nsec
+= nsec_acc
>> 32;
439 nsec_acc
= (nsec_acc
& 0xFFFFFFFFLL
);
440 } else if (nsec_acc
<= -0x100000000LL
) {
441 nbt
->tv_nsec
-= -nsec_acc
>> 32;
442 nsec_acc
= -(-nsec_acc
& 0xFFFFFFFFLL
);
444 if (nbt
->tv_nsec
>= 1000000000) {
445 nbt
->tv_nsec
-= 1000000000;
447 } else if (nbt
->tv_nsec
< 0) {
448 nbt
->tv_nsec
+= 1000000000;
453 /************************************************************
454 * LEAP SECOND CORRECTION *
455 ************************************************************
457 * Taking into account all the corrections made above, figure
458 * out the new real time. If the seconds field has changed
459 * then apply any pending leap-second corrections.
461 getnanotime_nbt(nbt
, &nts
);
463 if (time_second
!= nts
.tv_sec
) {
465 * Apply leap second (sysctl API). Adjust nts for changes
466 * so we do not have to call getnanotime_nbt again.
468 if (ntp_leap_second
) {
469 if (ntp_leap_second
== nts
.tv_sec
) {
470 if (ntp_leap_insert
) {
482 * Apply leap second (ntp_adjtime() API), calculate a new
483 * nsec_adj field. ntp_update_second() returns nsec_adj
484 * as a per-second value but we need it as a per-tick value.
486 leap
= ntp_update_second(time_second
, &nsec_adj
);
492 * Update the time_second 'approximate time' global.
494 time_second
= nts
.tv_sec
;
498 * Finally, our new basetime is ready to go live!
504 * Figure out how badly the system is starved for memory
506 vm_fault_ratecheck();
510 * softticks are handled for all cpus
512 hardclock_softtick(gd
);
515 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
516 * is mpsafe on curproc, so XXX get the mplock.
518 if ((p
= curproc
) != NULL
&& try_mplock()) {
519 if (frame
&& CLKF_USERMODE(frame
) &&
520 timevalisset(&p
->p_timer
[ITIMER_VIRTUAL
].it_value
) &&
521 itimerdecr(&p
->p_timer
[ITIMER_VIRTUAL
], tick
) == 0)
522 ksignal(p
, SIGVTALRM
);
523 if (timevalisset(&p
->p_timer
[ITIMER_PROF
].it_value
) &&
524 itimerdecr(&p
->p_timer
[ITIMER_PROF
], tick
) == 0)
532 * The statistics clock typically runs at a 125Hz rate, and is intended
533 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
535 * NOTE! systimer! the MP lock might not be held here. We can only safely
536 * manipulate objects owned by the current cpu.
538 * The stats clock is responsible for grabbing a profiling sample.
539 * Most of the statistics are only used by user-level statistics programs.
540 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
543 * Like the other clocks, the stat clock is called from what is effectively
544 * a fast interrupt, so the context should be the thread/process that got
548 statclock(systimer_t info
, struct intrframe
*frame
)
561 * How big was our timeslice relative to the last time?
563 microuptime(&tv
); /* mpsafe */
564 stv
= &mycpu
->gd_stattv
;
565 if (stv
->tv_sec
== 0) {
568 bump
= tv
.tv_usec
- stv
->tv_usec
+
569 (tv
.tv_sec
- stv
->tv_sec
) * 1000000;
580 if (frame
&& CLKF_USERMODE(frame
)) {
582 * Came from userland, handle user time and deal with
585 if (p
&& (p
->p_flag
& P_PROFIL
))
586 addupc_intr(p
, CLKF_PC(frame
), 1);
587 td
->td_uticks
+= bump
;
590 * Charge the time as appropriate
592 if (p
&& p
->p_nice
> NZERO
)
593 cpu_time
.cp_nice
+= bump
;
595 cpu_time
.cp_user
+= bump
;
599 * Kernel statistics are just like addupc_intr, only easier.
602 if (g
->state
== GMON_PROF_ON
&& frame
) {
603 i
= CLKF_PC(frame
) - g
->lowpc
;
604 if (i
< g
->textsize
) {
605 i
/= HISTFRACTION
* sizeof(*g
->kcount
);
611 * Came from kernel mode, so we were:
612 * - handling an interrupt,
613 * - doing syscall or trap work on behalf of the current
615 * - spinning in the idle loop.
616 * Whichever it is, charge the time as appropriate.
617 * Note that we charge interrupts to the current process,
618 * regardless of whether they are ``for'' that process,
619 * so that we know how much of its real time was spent
620 * in ``non-process'' (i.e., interrupt) work.
622 * XXX assume system if frame is NULL. A NULL frame
623 * can occur if ipi processing is done from a crit_exit().
625 if (frame
&& CLKF_INTR(frame
))
626 td
->td_iticks
+= bump
;
628 td
->td_sticks
+= bump
;
630 if (frame
&& CLKF_INTR(frame
)) {
632 do_pctrack(frame
, PCTRACK_INT
);
634 cpu_time
.cp_intr
+= bump
;
636 if (td
== &mycpu
->gd_idlethread
) {
637 cpu_time
.cp_idle
+= bump
;
641 do_pctrack(frame
, PCTRACK_SYS
);
643 cpu_time
.cp_sys
+= bump
;
651 * Sample the PC when in the kernel or in an interrupt. User code can
652 * retrieve the information and generate a histogram or other output.
656 do_pctrack(struct intrframe
*frame
, int which
)
658 struct kinfo_pctrack
*pctrack
;
660 pctrack
= &cputime_pctrack
[mycpu
->gd_cpuid
][which
];
661 pctrack
->pc_array
[pctrack
->pc_index
& PCTRACK_ARYMASK
] =
662 (void *)CLKF_PC(frame
);
667 sysctl_pctrack(SYSCTL_HANDLER_ARGS
)
669 struct kinfo_pcheader head
;
674 head
.pc_ntrack
= PCTRACK_SIZE
;
675 head
.pc_arysize
= PCTRACK_ARYSIZE
;
677 if ((error
= SYSCTL_OUT(req
, &head
, sizeof(head
))) != 0)
680 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
681 for (ntrack
= 0; ntrack
< PCTRACK_SIZE
; ++ntrack
) {
682 error
= SYSCTL_OUT(req
, &cputime_pctrack
[cpu
][ntrack
],
683 sizeof(struct kinfo_pctrack
));
692 SYSCTL_PROC(_kern
, OID_AUTO
, pctrack
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
693 sysctl_pctrack
, "S,kinfo_pcheader", "CPU PC tracking");
698 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
699 * the MP lock might not be held. We can safely manipulate parts of curproc
700 * but that's about it.
702 * Each cpu has its own scheduler clock.
705 schedclock(systimer_t info
, struct intrframe
*frame
)
712 if ((lp
= lwkt_preempted_proc()) != NULL
) {
714 * Account for cpu time used and hit the scheduler. Note
715 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
719 lp
->lwp_proc
->p_usched
->schedulerclock(lp
, info
->periodic
,
722 if ((lp
= curthread
->td_lwp
) != NULL
) {
724 * Update resource usage integrals and maximums.
726 if ((ru
= &lp
->lwp_proc
->p_ru
) &&
727 (vm
= lp
->lwp_proc
->p_vmspace
) != NULL
) {
728 ru
->ru_ixrss
+= pgtok(vm
->vm_tsize
);
729 ru
->ru_idrss
+= pgtok(vm
->vm_dsize
);
730 ru
->ru_isrss
+= pgtok(vm
->vm_ssize
);
731 rss
= pgtok(vmspace_resident_count(vm
));
732 if (ru
->ru_maxrss
< rss
)
739 * Compute number of ticks for the specified amount of time. The
740 * return value is intended to be used in a clock interrupt timed
741 * operation and guarenteed to meet or exceed the requested time.
742 * If the representation overflows, return INT_MAX. The minimum return
743 * value is 1 ticks and the function will average the calculation up.
744 * If any value greater then 0 microseconds is supplied, a value
745 * of at least 2 will be returned to ensure that a near-term clock
746 * interrupt does not cause the timeout to occur (degenerately) early.
748 * Note that limit checks must take into account microseconds, which is
749 * done simply by using the smaller signed long maximum instead of
750 * the unsigned long maximum.
752 * If ints have 32 bits, then the maximum value for any timeout in
753 * 10ms ticks is 248 days.
756 tvtohz_high(struct timeval
*tv
)
773 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
777 } else if (sec
<= INT_MAX
/ hz
) {
778 ticks
= (int)(sec
* hz
+
779 ((u_long
)usec
+ (tick
- 1)) / tick
) + 1;
787 * Compute number of ticks for the specified amount of time, erroring on
788 * the side of it being too low to ensure that sleeping the returned number
789 * of ticks will not result in a late return.
791 * The supplied timeval may not be negative and should be normalized. A
792 * return value of 0 is possible if the timeval converts to less then
795 * If ints have 32 bits, then the maximum value for any timeout in
796 * 10ms ticks is 248 days.
799 tvtohz_low(struct timeval
*tv
)
805 if (sec
<= INT_MAX
/ hz
)
806 ticks
= (int)(sec
* hz
+ (u_long
)tv
->tv_usec
/ tick
);
814 * Start profiling on a process.
816 * Kernel profiling passes proc0 which never exits and hence
817 * keeps the profile clock running constantly.
820 startprofclock(struct proc
*p
)
822 if ((p
->p_flag
& P_PROFIL
) == 0) {
823 p
->p_flag
|= P_PROFIL
;
825 if (++profprocs
== 1 && stathz
!= 0) {
828 setstatclockrate(profhz
);
836 * Stop profiling on a process.
839 stopprofclock(struct proc
*p
)
841 if (p
->p_flag
& P_PROFIL
) {
842 p
->p_flag
&= ~P_PROFIL
;
844 if (--profprocs
== 0 && stathz
!= 0) {
847 setstatclockrate(stathz
);
855 * Return information about system clocks.
858 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS
)
860 struct kinfo_clockinfo clkinfo
;
862 * Construct clockinfo structure.
865 clkinfo
.ci_tick
= tick
;
866 clkinfo
.ci_tickadj
= ntp_default_tick_delta
/ 1000;
867 clkinfo
.ci_profhz
= profhz
;
868 clkinfo
.ci_stathz
= stathz
? stathz
: hz
;
869 return (sysctl_handle_opaque(oidp
, &clkinfo
, sizeof clkinfo
, req
));
872 SYSCTL_PROC(_kern
, KERN_CLOCKRATE
, clockrate
, CTLTYPE_STRUCT
|CTLFLAG_RD
,
873 0, 0, sysctl_kern_clockrate
, "S,clockinfo","");
876 * We have eight functions for looking at the clock, four for
877 * microseconds and four for nanoseconds. For each there is fast
878 * but less precise version "get{nano|micro}[up]time" which will
879 * return a time which is up to 1/HZ previous to the call, whereas
880 * the raw version "{nano|micro}[up]time" will return a timestamp
881 * which is as precise as possible. The "up" variants return the
882 * time relative to system boot, these are well suited for time
883 * interval measurements.
885 * Each cpu independantly maintains the current time of day, so all
886 * we need to do to protect ourselves from changes is to do a loop
887 * check on the seconds field changing out from under us.
889 * The system timer maintains a 32 bit count and due to various issues
890 * it is possible for the calculated delta to occassionally exceed
891 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
892 * multiplication can easily overflow, so we deal with the case. For
893 * uniformity we deal with the case in the usec case too.
896 getmicrouptime(struct timeval
*tvp
)
898 struct globaldata
*gd
= mycpu
;
902 tvp
->tv_sec
= gd
->gd_time_seconds
;
903 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
904 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
906 if (delta
>= sys_cputimer
->freq
) {
907 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
908 delta
%= sys_cputimer
->freq
;
910 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
911 if (tvp
->tv_usec
>= 1000000) {
912 tvp
->tv_usec
-= 1000000;
918 getnanouptime(struct timespec
*tsp
)
920 struct globaldata
*gd
= mycpu
;
924 tsp
->tv_sec
= gd
->gd_time_seconds
;
925 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
926 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
928 if (delta
>= sys_cputimer
->freq
) {
929 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
930 delta
%= sys_cputimer
->freq
;
932 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
936 microuptime(struct timeval
*tvp
)
938 struct globaldata
*gd
= mycpu
;
942 tvp
->tv_sec
= gd
->gd_time_seconds
;
943 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
944 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
946 if (delta
>= sys_cputimer
->freq
) {
947 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
948 delta
%= sys_cputimer
->freq
;
950 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
954 nanouptime(struct timespec
*tsp
)
956 struct globaldata
*gd
= mycpu
;
960 tsp
->tv_sec
= gd
->gd_time_seconds
;
961 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
962 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
964 if (delta
>= sys_cputimer
->freq
) {
965 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
966 delta
%= sys_cputimer
->freq
;
968 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
976 getmicrotime(struct timeval
*tvp
)
978 struct globaldata
*gd
= mycpu
;
983 tvp
->tv_sec
= gd
->gd_time_seconds
;
984 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
985 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
987 if (delta
>= sys_cputimer
->freq
) {
988 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
989 delta
%= sys_cputimer
->freq
;
991 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
993 bt
= &basetime
[basetime_index
];
994 tvp
->tv_sec
+= bt
->tv_sec
;
995 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
996 while (tvp
->tv_usec
>= 1000000) {
997 tvp
->tv_usec
-= 1000000;
1003 getnanotime(struct timespec
*tsp
)
1005 struct globaldata
*gd
= mycpu
;
1006 struct timespec
*bt
;
1010 tsp
->tv_sec
= gd
->gd_time_seconds
;
1011 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
1012 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1014 if (delta
>= sys_cputimer
->freq
) {
1015 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1016 delta
%= sys_cputimer
->freq
;
1018 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1020 bt
= &basetime
[basetime_index
];
1021 tsp
->tv_sec
+= bt
->tv_sec
;
1022 tsp
->tv_nsec
+= bt
->tv_nsec
;
1023 while (tsp
->tv_nsec
>= 1000000000) {
1024 tsp
->tv_nsec
-= 1000000000;
1030 getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
)
1032 struct globaldata
*gd
= mycpu
;
1036 tsp
->tv_sec
= gd
->gd_time_seconds
;
1037 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
1038 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1040 if (delta
>= sys_cputimer
->freq
) {
1041 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1042 delta
%= sys_cputimer
->freq
;
1044 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1046 tsp
->tv_sec
+= nbt
->tv_sec
;
1047 tsp
->tv_nsec
+= nbt
->tv_nsec
;
1048 while (tsp
->tv_nsec
>= 1000000000) {
1049 tsp
->tv_nsec
-= 1000000000;
1056 microtime(struct timeval
*tvp
)
1058 struct globaldata
*gd
= mycpu
;
1059 struct timespec
*bt
;
1063 tvp
->tv_sec
= gd
->gd_time_seconds
;
1064 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1065 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
1067 if (delta
>= sys_cputimer
->freq
) {
1068 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1069 delta
%= sys_cputimer
->freq
;
1071 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
1073 bt
= &basetime
[basetime_index
];
1074 tvp
->tv_sec
+= bt
->tv_sec
;
1075 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
1076 while (tvp
->tv_usec
>= 1000000) {
1077 tvp
->tv_usec
-= 1000000;
1083 nanotime(struct timespec
*tsp
)
1085 struct globaldata
*gd
= mycpu
;
1086 struct timespec
*bt
;
1090 tsp
->tv_sec
= gd
->gd_time_seconds
;
1091 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1092 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1094 if (delta
>= sys_cputimer
->freq
) {
1095 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1096 delta
%= sys_cputimer
->freq
;
1098 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1100 bt
= &basetime
[basetime_index
];
1101 tsp
->tv_sec
+= bt
->tv_sec
;
1102 tsp
->tv_nsec
+= bt
->tv_nsec
;
1103 while (tsp
->tv_nsec
>= 1000000000) {
1104 tsp
->tv_nsec
-= 1000000000;
1110 * note: this is not exactly synchronized with real time. To do that we
1111 * would have to do what microtime does and check for a nanoseconds overflow.
1114 get_approximate_time_t(void)
1116 struct globaldata
*gd
= mycpu
;
1117 struct timespec
*bt
;
1119 bt
= &basetime
[basetime_index
];
1120 return(gd
->gd_time_seconds
+ bt
->tv_sec
);
1124 pps_ioctl(u_long cmd
, caddr_t data
, struct pps_state
*pps
)
1127 struct pps_fetch_args
*fapi
;
1129 struct pps_kcbind_args
*kapi
;
1133 case PPS_IOC_CREATE
:
1135 case PPS_IOC_DESTROY
:
1137 case PPS_IOC_SETPARAMS
:
1138 app
= (pps_params_t
*)data
;
1139 if (app
->mode
& ~pps
->ppscap
)
1141 pps
->ppsparam
= *app
;
1143 case PPS_IOC_GETPARAMS
:
1144 app
= (pps_params_t
*)data
;
1145 *app
= pps
->ppsparam
;
1146 app
->api_version
= PPS_API_VERS_1
;
1148 case PPS_IOC_GETCAP
:
1149 *(int*)data
= pps
->ppscap
;
1152 fapi
= (struct pps_fetch_args
*)data
;
1153 if (fapi
->tsformat
&& fapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1155 if (fapi
->timeout
.tv_sec
|| fapi
->timeout
.tv_nsec
)
1156 return (EOPNOTSUPP
);
1157 pps
->ppsinfo
.current_mode
= pps
->ppsparam
.mode
;
1158 fapi
->pps_info_buf
= pps
->ppsinfo
;
1160 case PPS_IOC_KCBIND
:
1162 kapi
= (struct pps_kcbind_args
*)data
;
1163 /* XXX Only root should be able to do this */
1164 if (kapi
->tsformat
&& kapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1166 if (kapi
->kernel_consumer
!= PPS_KC_HARDPPS
)
1168 if (kapi
->edge
& ~pps
->ppscap
)
1170 pps
->kcmode
= kapi
->edge
;
1173 return (EOPNOTSUPP
);
1181 pps_init(struct pps_state
*pps
)
1183 pps
->ppscap
|= PPS_TSFMT_TSPEC
;
1184 if (pps
->ppscap
& PPS_CAPTUREASSERT
)
1185 pps
->ppscap
|= PPS_OFFSETASSERT
;
1186 if (pps
->ppscap
& PPS_CAPTURECLEAR
)
1187 pps
->ppscap
|= PPS_OFFSETCLEAR
;
1191 pps_event(struct pps_state
*pps
, sysclock_t count
, int event
)
1193 struct globaldata
*gd
;
1194 struct timespec
*tsp
;
1195 struct timespec
*osp
;
1196 struct timespec
*bt
;
1209 /* Things would be easier with arrays... */
1210 if (event
== PPS_CAPTUREASSERT
) {
1211 tsp
= &pps
->ppsinfo
.assert_timestamp
;
1212 osp
= &pps
->ppsparam
.assert_offset
;
1213 foff
= pps
->ppsparam
.mode
& PPS_OFFSETASSERT
;
1214 fhard
= pps
->kcmode
& PPS_CAPTUREASSERT
;
1215 pcount
= &pps
->ppscount
[0];
1216 pseq
= &pps
->ppsinfo
.assert_sequence
;
1218 tsp
= &pps
->ppsinfo
.clear_timestamp
;
1219 osp
= &pps
->ppsparam
.clear_offset
;
1220 foff
= pps
->ppsparam
.mode
& PPS_OFFSETCLEAR
;
1221 fhard
= pps
->kcmode
& PPS_CAPTURECLEAR
;
1222 pcount
= &pps
->ppscount
[1];
1223 pseq
= &pps
->ppsinfo
.clear_sequence
;
1226 /* Nothing really happened */
1227 if (*pcount
== count
)
1233 ts
.tv_sec
= gd
->gd_time_seconds
;
1234 delta
= count
- gd
->gd_cpuclock_base
;
1235 } while (ts
.tv_sec
!= gd
->gd_time_seconds
);
1237 if (delta
>= sys_cputimer
->freq
) {
1238 ts
.tv_sec
+= delta
/ sys_cputimer
->freq
;
1239 delta
%= sys_cputimer
->freq
;
1241 ts
.tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1242 bt
= &basetime
[basetime_index
];
1243 ts
.tv_sec
+= bt
->tv_sec
;
1244 ts
.tv_nsec
+= bt
->tv_nsec
;
1245 while (ts
.tv_nsec
>= 1000000000) {
1246 ts
.tv_nsec
-= 1000000000;
1254 timespecadd(tsp
, osp
);
1255 if (tsp
->tv_nsec
< 0) {
1256 tsp
->tv_nsec
+= 1000000000;
1262 /* magic, at its best... */
1263 tcount
= count
- pps
->ppscount
[2];
1264 pps
->ppscount
[2] = count
;
1265 if (tcount
>= sys_cputimer
->freq
) {
1266 delta
= (1000000000 * (tcount
/ sys_cputimer
->freq
) +
1267 sys_cputimer
->freq64_nsec
*
1268 (tcount
% sys_cputimer
->freq
)) >> 32;
1270 delta
= (sys_cputimer
->freq64_nsec
* tcount
) >> 32;
1272 hardpps(tsp
, delta
);