More headers for pc64 platform kernel build/linking
[dragonfly/port-amd64.git] / sys / netinet / ip_input.c
blob709cbea7f9fb1ad48eebb318d580794d21be835b
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.70 2007/08/14 13:30:35 sephe Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
97 #include <machine/stdarg.h>
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 #include <net/intrq.h>
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
116 #include <sys/thread2.h>
117 #include <sys/msgport2.h>
118 #include <net/netmsg2.h>
120 #include <sys/socketvar.h>
122 #include <net/ipfw/ip_fw.h>
123 #include <net/dummynet/ip_dummynet.h>
125 #ifdef IPSEC
126 #include <netinet6/ipsec.h>
127 #include <netproto/key/key.h>
128 #endif
130 #ifdef FAST_IPSEC
131 #include <netproto/ipsec/ipsec.h>
132 #include <netproto/ipsec/key.h>
133 #endif
135 int rsvp_on = 0;
136 static int ip_rsvp_on;
137 struct socket *ip_rsvpd;
139 int ipforwarding = 0;
140 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
141 &ipforwarding, 0, "Enable IP forwarding between interfaces");
143 static int ipsendredirects = 1; /* XXX */
144 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
145 &ipsendredirects, 0, "Enable sending IP redirects");
147 int ip_defttl = IPDEFTTL;
148 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
149 &ip_defttl, 0, "Maximum TTL on IP packets");
151 static int ip_dosourceroute = 0;
152 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
153 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
155 static int ip_acceptsourceroute = 0;
156 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
157 CTLFLAG_RW, &ip_acceptsourceroute, 0,
158 "Enable accepting source routed IP packets");
160 static int ip_keepfaith = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
162 &ip_keepfaith, 0,
163 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
165 static int nipq = 0; /* total # of reass queues */
166 static int maxnipq;
167 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
168 &maxnipq, 0,
169 "Maximum number of IPv4 fragment reassembly queue entries");
171 static int maxfragsperpacket;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
173 &maxfragsperpacket, 0,
174 "Maximum number of IPv4 fragments allowed per packet");
176 static int ip_sendsourcequench = 0;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
178 &ip_sendsourcequench, 0,
179 "Enable the transmission of source quench packets");
181 int ip_do_randomid = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
183 &ip_do_randomid, 0,
184 "Assign random ip_id values");
186 * XXX - Setting ip_checkinterface mostly implements the receive side of
187 * the Strong ES model described in RFC 1122, but since the routing table
188 * and transmit implementation do not implement the Strong ES model,
189 * setting this to 1 results in an odd hybrid.
191 * XXX - ip_checkinterface currently must be disabled if you use ipnat
192 * to translate the destination address to another local interface.
194 * XXX - ip_checkinterface must be disabled if you add IP aliases
195 * to the loopback interface instead of the interface where the
196 * packets for those addresses are received.
198 static int ip_checkinterface = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
200 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
202 #ifdef DIAGNOSTIC
203 static int ipprintfs = 0;
204 #endif
206 static struct ifqueue ipintrq;
207 static int ipqmaxlen = IFQ_MAXLEN;
209 extern struct domain inetdomain;
210 extern struct protosw inetsw[];
211 u_char ip_protox[IPPROTO_MAX];
212 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
213 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
214 u_long in_ifaddrhmask; /* mask for hash table */
216 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
217 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
218 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
219 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
221 struct ip_stats ipstats_percpu[MAXCPU];
222 #ifdef SMP
223 static int
224 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
226 int cpu, error = 0;
228 for (cpu = 0; cpu < ncpus; ++cpu) {
229 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
230 sizeof(struct ip_stats))))
231 break;
232 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
233 sizeof(struct ip_stats))))
234 break;
237 return (error);
239 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
240 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
241 #else
242 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
243 &ipstat, ip_stats, "IP statistics");
244 #endif
246 /* Packet reassembly stuff */
247 #define IPREASS_NHASH_LOG2 6
248 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
249 #define IPREASS_HMASK (IPREASS_NHASH - 1)
250 #define IPREASS_HASH(x,y) \
251 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
253 static struct ipq ipq[IPREASS_NHASH];
254 const int ipintrq_present = 1;
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258 &ip_mtu, 0, "Default MTU");
259 #endif
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
269 /* Firewall hooks */
270 ip_fw_chk_t *ip_fw_chk_ptr;
271 int fw_enable = 1;
272 int fw_one_pass = 1;
274 /* Dummynet hooks */
275 ip_dn_io_t *ip_dn_io_ptr;
277 struct pfil_head inet_pfil_hook;
280 * XXX this is ugly -- the following two global variables are
281 * used to store packet state while it travels through the stack.
282 * Note that the code even makes assumptions on the size and
283 * alignment of fields inside struct ip_srcrt so e.g. adding some
284 * fields will break the code. This needs to be fixed.
286 * We need to save the IP options in case a protocol wants to respond
287 * to an incoming packet over the same route if the packet got here
288 * using IP source routing. This allows connection establishment and
289 * maintenance when the remote end is on a network that is not known
290 * to us.
292 static int ip_nhops = 0;
294 static struct ip_srcrt {
295 struct in_addr dst; /* final destination */
296 char nop; /* one NOP to align */
297 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
298 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 } ip_srcrt;
301 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
302 static struct malloc_pipe ipq_mpipe;
304 static void save_rte (u_char *, struct in_addr);
305 static int ip_dooptions (struct mbuf *m, int,
306 struct sockaddr_in *next_hop);
307 static void ip_forward (struct mbuf *m, boolean_t using_srcrt,
308 struct sockaddr_in *next_hop);
309 static void ip_freef (struct ipq *);
310 static void ip_input_handler (struct netmsg *);
311 static struct mbuf *ip_reass (struct mbuf *, struct ipq *,
312 struct ipq *, u_int32_t *);
315 * IP initialization: fill in IP protocol switch table.
316 * All protocols not implemented in kernel go to raw IP protocol handler.
318 void
319 ip_init(void)
321 struct protosw *pr;
322 int i;
323 #ifdef SMP
324 int cpu;
325 #endif
328 * Make sure we can handle a reasonable number of fragments but
329 * cap it at 4000 (XXX).
331 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
332 IFQ_MAXLEN, 4000, 0, NULL);
333 TAILQ_INIT(&in_ifaddrhead);
334 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
336 if (pr == NULL)
337 panic("ip_init");
338 for (i = 0; i < IPPROTO_MAX; i++)
339 ip_protox[i] = pr - inetsw;
340 for (pr = inetdomain.dom_protosw;
341 pr < inetdomain.dom_protoswNPROTOSW; pr++)
342 if (pr->pr_domain->dom_family == PF_INET &&
343 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
344 ip_protox[pr->pr_protocol] = pr - inetsw;
346 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
347 inet_pfil_hook.ph_af = AF_INET;
348 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
349 kprintf("%s: WARNING: unable to register pfil hook, "
350 "error %d\n", __func__, i);
353 for (i = 0; i < IPREASS_NHASH; i++)
354 ipq[i].next = ipq[i].prev = &ipq[i];
356 maxnipq = nmbclusters / 32;
357 maxfragsperpacket = 16;
359 ip_id = time_second & 0xffff;
360 ipintrq.ifq_maxlen = ipqmaxlen;
363 * Initialize IP statistics counters for each CPU.
366 #ifdef SMP
367 for (cpu = 0; cpu < ncpus; ++cpu) {
368 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
370 #else
371 bzero(&ipstat, sizeof(struct ip_stats));
372 #endif
374 netisr_register(NETISR_IP, ip_mport, ip_input_handler);
378 * XXX watch out this one. It is perhaps used as a cache for
379 * the most recently used route ? it is cleared in in_addroute()
380 * when a new route is successfully created.
382 struct route ipforward_rt[MAXCPU];
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
387 struct sockaddr_in *nexthop)
390 * Switch out to protocol's input routine.
392 if (nexthop && ip->ip_p == IPPROTO_TCP) {
393 /* TCP needs IPFORWARD info if available */
394 struct m_hdr tag;
396 tag.mh_type = MT_TAG;
397 tag.mh_flags = PACKET_TAG_IPFORWARD;
398 tag.mh_data = (caddr_t)nexthop;
399 tag.mh_next = m;
401 (*inetsw[ip_protox[ip->ip_p]].pr_input)
402 ((struct mbuf *)&tag, hlen, ip->ip_p);
403 } else {
404 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
408 struct netmsg_transport_packet {
409 struct netmsg nm_netmsg;
410 struct mbuf *nm_mbuf;
411 int nm_hlen;
412 boolean_t nm_hasnexthop;
413 struct sockaddr_in nm_nexthop;
416 static void
417 transport_processing_handler(netmsg_t netmsg)
419 struct netmsg_transport_packet *msg = (void *)netmsg;
420 struct sockaddr_in *nexthop;
421 struct ip *ip;
423 ip = mtod(msg->nm_mbuf, struct ip *);
424 nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
425 transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
426 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
429 static void
430 ip_input_handler(struct netmsg *msg0)
432 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
434 ip_input(m);
435 /* msg0 was embedded in the mbuf, do not reply! */
439 * IP input routine. Checksum and byte swap header. If fragmented
440 * try to reassemble. Process options. Pass to next level.
442 void
443 ip_input(struct mbuf *m)
445 struct ip *ip;
446 struct ipq *fp;
447 struct in_ifaddr *ia = NULL;
448 struct ifaddr *ifa;
449 int i, hlen, checkif;
450 u_short sum;
451 struct in_addr pkt_dst;
452 u_int32_t divert_info = 0; /* packet divert/tee info */
453 struct ip_fw_args args;
454 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
455 boolean_t needredispatch = FALSE;
456 struct in_addr odst; /* original dst address(NAT) */
457 #if defined(FAST_IPSEC) || defined(IPDIVERT)
458 struct m_tag *mtag;
459 #endif
460 #ifdef FAST_IPSEC
461 struct tdb_ident *tdbi;
462 struct secpolicy *sp;
463 int error;
464 #endif
466 args.eh = NULL;
467 args.oif = NULL;
468 args.rule = NULL;
469 args.next_hop = NULL;
471 /* Grab info from MT_TAG mbufs prepended to the chain. */
472 while (m != NULL && m->m_type == MT_TAG) {
473 switch(m->_m_tag_id) {
474 case PACKET_TAG_DUMMYNET:
475 args.rule = ((struct dn_pkt *)m)->rule;
476 break;
477 case PACKET_TAG_IPFORWARD:
478 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
479 break;
480 default:
481 kprintf("ip_input: unrecognised MT_TAG tag %d\n",
482 m->_m_tag_id);
483 break;
485 m = m->m_next;
487 KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
489 if (args.rule != NULL) { /* dummynet already filtered us */
490 ip = mtod(m, struct ip *);
491 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
492 goto iphack;
495 ipstat.ips_total++;
497 /* length checks already done in ip_demux() */
498 KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
500 ip = mtod(m, struct ip *);
502 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
503 ipstat.ips_badvers++;
504 goto bad;
507 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
508 /* length checks already done in ip_demux() */
509 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
510 KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
512 /* 127/8 must not appear on wire - RFC1122 */
513 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
514 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
515 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
516 ipstat.ips_badaddr++;
517 goto bad;
521 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
522 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
523 } else {
524 if (hlen == sizeof(struct ip)) {
525 sum = in_cksum_hdr(ip);
526 } else {
527 sum = in_cksum(m, hlen);
530 if (sum != 0) {
531 ipstat.ips_badsum++;
532 goto bad;
535 #ifdef ALTQ
536 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
537 /* packet is dropped by traffic conditioner */
538 return;
540 #endif
542 * Convert fields to host representation.
544 ip->ip_len = ntohs(ip->ip_len);
545 if (ip->ip_len < hlen) {
546 ipstat.ips_badlen++;
547 goto bad;
549 ip->ip_off = ntohs(ip->ip_off);
552 * Check that the amount of data in the buffers
553 * is as at least much as the IP header would have us expect.
554 * Trim mbufs if longer than we expect.
555 * Drop packet if shorter than we expect.
557 if (m->m_pkthdr.len < ip->ip_len) {
558 ipstat.ips_tooshort++;
559 goto bad;
561 if (m->m_pkthdr.len > ip->ip_len) {
562 if (m->m_len == m->m_pkthdr.len) {
563 m->m_len = ip->ip_len;
564 m->m_pkthdr.len = ip->ip_len;
565 } else
566 m_adj(m, ip->ip_len - m->m_pkthdr.len);
568 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
570 * Bypass packet filtering for packets from a tunnel (gif).
572 if (ipsec_gethist(m, NULL))
573 goto pass;
574 #endif
577 * IpHack's section.
578 * Right now when no processing on packet has done
579 * and it is still fresh out of network we do our black
580 * deals with it.
581 * - Firewall: deny/allow/divert
582 * - Xlate: translate packet's addr/port (NAT).
583 * - Pipe: pass pkt through dummynet.
584 * - Wrap: fake packet's addr/port <unimpl.>
585 * - Encapsulate: put it in another IP and send out. <unimp.>
588 iphack:
591 * Run through list of hooks for input packets.
593 * NB: Beware of the destination address changing (e.g.
594 * by NAT rewriting). When this happens, tell
595 * ip_forward to do the right thing.
597 if (pfil_has_hooks(&inet_pfil_hook)) {
598 odst = ip->ip_dst;
599 if (pfil_run_hooks(&inet_pfil_hook, &m,
600 m->m_pkthdr.rcvif, PFIL_IN)) {
601 return;
603 if (m == NULL) /* consumed by filter */
604 return;
605 ip = mtod(m, struct ip *);
606 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
609 if (fw_enable && IPFW_LOADED) {
611 * If we've been forwarded from the output side, then
612 * skip the firewall a second time
614 if (args.next_hop != NULL)
615 goto ours;
617 args.m = m;
618 i = ip_fw_chk_ptr(&args);
619 m = args.m;
621 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
622 if (m != NULL)
623 m_freem(m);
624 return;
626 ip = mtod(m, struct ip *); /* just in case m changed */
627 if (i == 0 && args.next_hop == NULL) /* common case */
628 goto pass;
629 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
630 /* Send packet to the appropriate pipe */
631 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
632 return;
634 #ifdef IPDIVERT
635 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
636 /* Divert or tee packet */
637 divert_info = i;
638 goto ours;
640 #endif
641 if (i == 0 && args.next_hop != NULL)
642 goto pass;
644 * if we get here, the packet must be dropped
646 m_freem(m);
647 return;
649 pass:
652 * Process options and, if not destined for us,
653 * ship it on. ip_dooptions returns 1 when an
654 * error was detected (causing an icmp message
655 * to be sent and the original packet to be freed).
657 ip_nhops = 0; /* for source routed packets */
658 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
659 return;
661 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
662 * matter if it is destined to another node, or whether it is
663 * a multicast one, RSVP wants it! and prevents it from being forwarded
664 * anywhere else. Also checks if the rsvp daemon is running before
665 * grabbing the packet.
667 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
668 goto ours;
671 * Check our list of addresses, to see if the packet is for us.
672 * If we don't have any addresses, assume any unicast packet
673 * we receive might be for us (and let the upper layers deal
674 * with it).
676 if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
677 goto ours;
680 * Cache the destination address of the packet; this may be
681 * changed by use of 'ipfw fwd'.
683 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
686 * Enable a consistency check between the destination address
687 * and the arrival interface for a unicast packet (the RFC 1122
688 * strong ES model) if IP forwarding is disabled and the packet
689 * is not locally generated and the packet is not subject to
690 * 'ipfw fwd'.
692 * XXX - Checking also should be disabled if the destination
693 * address is ipnat'ed to a different interface.
695 * XXX - Checking is incompatible with IP aliases added
696 * to the loopback interface instead of the interface where
697 * the packets are received.
699 checkif = ip_checkinterface &&
700 !ipforwarding &&
701 m->m_pkthdr.rcvif != NULL &&
702 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
703 (args.next_hop == NULL);
706 * Check for exact addresses in the hash bucket.
708 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
710 * If the address matches, verify that the packet
711 * arrived via the correct interface if checking is
712 * enabled.
714 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
715 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
716 goto ours;
719 * Check for broadcast addresses.
721 * Only accept broadcast packets that arrive via the matching
722 * interface. Reception of forwarded directed broadcasts would
723 * be handled via ip_forward() and ether_output() with the loopback
724 * into the stack for SIMPLEX interfaces handled by ether_output().
726 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
727 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
728 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
729 continue;
730 if (ifa->ifa_addr->sa_family != AF_INET)
731 continue;
732 ia = ifatoia(ifa);
733 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
734 pkt_dst.s_addr)
735 goto ours;
736 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
737 goto ours;
738 #ifdef BOOTP_COMPAT
739 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
740 goto ours;
741 #endif
744 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
745 struct in_multi *inm;
747 if (ip_mrouter != NULL) {
749 * If we are acting as a multicast router, all
750 * incoming multicast packets are passed to the
751 * kernel-level multicast forwarding function.
752 * The packet is returned (relatively) intact; if
753 * ip_mforward() returns a non-zero value, the packet
754 * must be discarded, else it may be accepted below.
756 if (ip_mforward != NULL &&
757 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
758 ipstat.ips_cantforward++;
759 m_freem(m);
760 return;
764 * The process-level routing daemon needs to receive
765 * all multicast IGMP packets, whether or not this
766 * host belongs to their destination groups.
768 if (ip->ip_p == IPPROTO_IGMP)
769 goto ours;
770 ipstat.ips_forward++;
773 * See if we belong to the destination multicast group on the
774 * arrival interface.
776 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
777 if (inm == NULL) {
778 ipstat.ips_notmember++;
779 m_freem(m);
780 return;
782 goto ours;
784 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
785 goto ours;
786 if (ip->ip_dst.s_addr == INADDR_ANY)
787 goto ours;
790 * FAITH(Firewall Aided Internet Translator)
792 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
793 if (ip_keepfaith) {
794 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
795 goto ours;
797 m_freem(m);
798 return;
802 * Not for us; forward if possible and desirable.
804 if (!ipforwarding) {
805 ipstat.ips_cantforward++;
806 m_freem(m);
807 } else {
808 #ifdef IPSEC
810 * Enforce inbound IPsec SPD.
812 if (ipsec4_in_reject(m, NULL)) {
813 ipsecstat.in_polvio++;
814 goto bad;
816 #endif
817 #ifdef FAST_IPSEC
818 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
819 crit_enter();
820 if (mtag != NULL) {
821 tdbi = (struct tdb_ident *)m_tag_data(mtag);
822 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
823 } else {
824 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
825 IP_FORWARDING, &error);
827 if (sp == NULL) { /* NB: can happen if error */
828 crit_exit();
829 /*XXX error stat???*/
830 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
831 goto bad;
835 * Check security policy against packet attributes.
837 error = ipsec_in_reject(sp, m);
838 KEY_FREESP(&sp);
839 crit_exit();
840 if (error) {
841 ipstat.ips_cantforward++;
842 goto bad;
844 #endif
845 ip_forward(m, using_srcrt, args.next_hop);
847 return;
849 ours:
852 * IPSTEALTH: Process non-routing options only
853 * if the packet is destined for us.
855 if (ipstealth &&
856 hlen > sizeof(struct ip) &&
857 ip_dooptions(m, 1, args.next_hop))
858 return;
860 /* Count the packet in the ip address stats */
861 if (ia != NULL) {
862 ia->ia_ifa.if_ipackets++;
863 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
867 * If offset or IP_MF are set, must reassemble.
868 * Otherwise, nothing need be done.
869 * (We could look in the reassembly queue to see
870 * if the packet was previously fragmented,
871 * but it's not worth the time; just let them time out.)
873 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
875 /* If maxnipq is 0, never accept fragments. */
876 if (maxnipq == 0) {
877 ipstat.ips_fragments++;
878 ipstat.ips_fragdropped++;
879 goto bad;
882 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
884 * Look for queue of fragments
885 * of this datagram.
887 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
888 if (ip->ip_id == fp->ipq_id &&
889 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
890 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
891 ip->ip_p == fp->ipq_p)
892 goto found;
894 fp = NULL;
897 * Enforce upper bound on number of fragmented packets
898 * for which we attempt reassembly;
899 * If maxnipq is -1, accept all fragments without limitation.
901 if ((nipq > maxnipq) && (maxnipq > 0)) {
903 * drop something from the tail of the current queue
904 * before proceeding further
906 if (ipq[sum].prev == &ipq[sum]) { /* gak */
907 for (i = 0; i < IPREASS_NHASH; i++) {
908 if (ipq[i].prev != &ipq[i]) {
909 ipstat.ips_fragtimeout +=
910 ipq[i].prev->ipq_nfrags;
911 ip_freef(ipq[i].prev);
912 break;
915 } else {
916 ipstat.ips_fragtimeout +=
917 ipq[sum].prev->ipq_nfrags;
918 ip_freef(ipq[sum].prev);
921 found:
923 * Adjust ip_len to not reflect header,
924 * convert offset of this to bytes.
926 ip->ip_len -= hlen;
927 if (ip->ip_off & IP_MF) {
929 * Make sure that fragments have a data length
930 * that's a non-zero multiple of 8 bytes.
932 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
933 ipstat.ips_toosmall++; /* XXX */
934 goto bad;
936 m->m_flags |= M_FRAG;
937 } else
938 m->m_flags &= ~M_FRAG;
939 ip->ip_off <<= 3;
942 * Attempt reassembly; if it succeeds, proceed.
943 * ip_reass() will return a different mbuf, and update
944 * the divert info in divert_info.
946 ipstat.ips_fragments++;
947 m->m_pkthdr.header = ip;
948 m = ip_reass(m, fp, &ipq[sum], &divert_info);
949 if (m == NULL)
950 return;
951 ipstat.ips_reassembled++;
952 needredispatch = TRUE;
953 ip = mtod(m, struct ip *);
954 /* Get the header length of the reassembled packet */
955 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
956 #ifdef IPDIVERT
957 /* Restore original checksum before diverting packet */
958 if (divert_info != 0) {
959 ip->ip_len += hlen;
960 ip->ip_len = htons(ip->ip_len);
961 ip->ip_off = htons(ip->ip_off);
962 ip->ip_sum = 0;
963 if (hlen == sizeof(struct ip))
964 ip->ip_sum = in_cksum_hdr(ip);
965 else
966 ip->ip_sum = in_cksum(m, hlen);
967 ip->ip_off = ntohs(ip->ip_off);
968 ip->ip_len = ntohs(ip->ip_len);
969 ip->ip_len -= hlen;
971 #endif
972 } else {
973 ip->ip_len -= hlen;
976 #ifdef IPDIVERT
978 * Divert or tee packet to the divert protocol if required.
980 if (divert_info != 0) {
981 struct mbuf *clone = NULL;
983 /* Clone packet if we're doing a 'tee' */
984 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
985 clone = m_dup(m, MB_DONTWAIT);
987 /* Restore packet header fields to original values */
988 ip->ip_len += hlen;
989 ip->ip_len = htons(ip->ip_len);
990 ip->ip_off = htons(ip->ip_off);
992 /* Deliver packet to divert input routine */
993 divert_packet(m, 1, divert_info & 0xffff);
994 ipstat.ips_delivered++;
996 /* If 'tee', continue with original packet */
997 if (clone == NULL)
998 return;
999 m = clone;
1000 ip = mtod(m, struct ip *);
1001 ip->ip_len += hlen;
1003 * Jump backwards to complete processing of the
1004 * packet. But first clear divert_info to avoid
1005 * entering this block again.
1006 * We do not need to clear args.divert_rule
1007 * or args.next_hop as they will not be used.
1009 * XXX Better safe than sorry, remove the DIVERT tag.
1011 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1012 if (mtag != NULL)
1013 m_tag_delete(m, mtag);
1015 divert_info = 0;
1016 goto pass;
1018 #endif
1020 #ifdef IPSEC
1022 * enforce IPsec policy checking if we are seeing last header.
1023 * note that we do not visit this with protocols with pcb layer
1024 * code - like udp/tcp/raw ip.
1026 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1027 ipsec4_in_reject(m, NULL)) {
1028 ipsecstat.in_polvio++;
1029 goto bad;
1031 #endif
1032 #if FAST_IPSEC
1034 * enforce IPsec policy checking if we are seeing last header.
1035 * note that we do not visit this with protocols with pcb layer
1036 * code - like udp/tcp/raw ip.
1038 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1040 * Check if the packet has already had IPsec processing
1041 * done. If so, then just pass it along. This tag gets
1042 * set during AH, ESP, etc. input handling, before the
1043 * packet is returned to the ip input queue for delivery.
1045 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1046 crit_enter();
1047 if (mtag != NULL) {
1048 tdbi = (struct tdb_ident *)m_tag_data(mtag);
1049 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1050 } else {
1051 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1052 IP_FORWARDING, &error);
1054 if (sp != NULL) {
1056 * Check security policy against packet attributes.
1058 error = ipsec_in_reject(sp, m);
1059 KEY_FREESP(&sp);
1060 } else {
1061 /* XXX error stat??? */
1062 error = EINVAL;
1063 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1064 goto bad;
1066 crit_exit();
1067 if (error)
1068 goto bad;
1070 #endif /* FAST_IPSEC */
1072 ipstat.ips_delivered++;
1073 if (needredispatch) {
1074 struct netmsg_transport_packet *msg;
1075 lwkt_port_t port;
1077 ip->ip_off = htons(ip->ip_off);
1078 ip->ip_len = htons(ip->ip_len);
1079 port = ip_mport(&m);
1080 if (port == NULL)
1081 return;
1083 msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1084 M_INTWAIT | M_NULLOK);
1085 if (msg == NULL)
1086 goto bad;
1088 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1089 transport_processing_handler);
1090 msg->nm_hlen = hlen;
1091 msg->nm_hasnexthop = (args.next_hop != NULL);
1092 if (msg->nm_hasnexthop)
1093 msg->nm_nexthop = *args.next_hop; /* structure copy */
1095 msg->nm_mbuf = m;
1096 ip = mtod(m, struct ip *);
1097 ip->ip_len = ntohs(ip->ip_len);
1098 ip->ip_off = ntohs(ip->ip_off);
1099 lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1100 } else {
1101 transport_processing_oncpu(m, hlen, ip, args.next_hop);
1103 return;
1105 bad:
1106 m_freem(m);
1110 * Take incoming datagram fragment and try to reassemble it into
1111 * whole datagram. If a chain for reassembly of this datagram already
1112 * exists, then it is given as fp; otherwise have to make a chain.
1114 * When IPDIVERT enabled, keep additional state with each packet that
1115 * tells us if we need to divert or tee the packet we're building.
1116 * In particular, *divinfo includes the port and TEE flag.
1119 static struct mbuf *
1120 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1121 u_int32_t *divinfo)
1123 struct ip *ip = mtod(m, struct ip *);
1124 struct mbuf *p = NULL, *q, *nq;
1125 struct mbuf *n;
1126 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1127 int i, next;
1128 #ifdef IPDIVERT
1129 struct m_tag *mtag;
1130 #endif
1133 * If the hardware has not done csum over this fragment
1134 * then csum_data is not valid at all.
1136 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1137 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1138 m->m_pkthdr.csum_data = 0;
1139 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1143 * Presence of header sizes in mbufs
1144 * would confuse code below.
1146 m->m_data += hlen;
1147 m->m_len -= hlen;
1150 * If first fragment to arrive, create a reassembly queue.
1152 if (fp == NULL) {
1153 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1154 goto dropfrag;
1155 insque(fp, where);
1156 nipq++;
1157 fp->ipq_nfrags = 1;
1158 fp->ipq_ttl = IPFRAGTTL;
1159 fp->ipq_p = ip->ip_p;
1160 fp->ipq_id = ip->ip_id;
1161 fp->ipq_src = ip->ip_src;
1162 fp->ipq_dst = ip->ip_dst;
1163 fp->ipq_frags = m;
1164 m->m_nextpkt = NULL;
1165 #ifdef IPDIVERT
1166 fp->ipq_div_info = 0;
1167 #endif
1168 goto inserted;
1169 } else {
1170 fp->ipq_nfrags++;
1173 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1176 * Find a segment which begins after this one does.
1178 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1179 if (GETIP(q)->ip_off > ip->ip_off)
1180 break;
1183 * If there is a preceding segment, it may provide some of
1184 * our data already. If so, drop the data from the incoming
1185 * segment. If it provides all of our data, drop us, otherwise
1186 * stick new segment in the proper place.
1188 * If some of the data is dropped from the the preceding
1189 * segment, then it's checksum is invalidated.
1191 if (p) {
1192 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1193 if (i > 0) {
1194 if (i >= ip->ip_len)
1195 goto dropfrag;
1196 m_adj(m, i);
1197 m->m_pkthdr.csum_flags = 0;
1198 ip->ip_off += i;
1199 ip->ip_len -= i;
1201 m->m_nextpkt = p->m_nextpkt;
1202 p->m_nextpkt = m;
1203 } else {
1204 m->m_nextpkt = fp->ipq_frags;
1205 fp->ipq_frags = m;
1209 * While we overlap succeeding segments trim them or,
1210 * if they are completely covered, dequeue them.
1212 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1213 q = nq) {
1214 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1215 if (i < GETIP(q)->ip_len) {
1216 GETIP(q)->ip_len -= i;
1217 GETIP(q)->ip_off += i;
1218 m_adj(q, i);
1219 q->m_pkthdr.csum_flags = 0;
1220 break;
1222 nq = q->m_nextpkt;
1223 m->m_nextpkt = nq;
1224 ipstat.ips_fragdropped++;
1225 fp->ipq_nfrags--;
1226 q->m_nextpkt = NULL;
1227 m_freem(q);
1230 inserted:
1232 #ifdef IPDIVERT
1234 * Transfer firewall instructions to the fragment structure.
1235 * Only trust info in the fragment at offset 0.
1237 if (ip->ip_off == 0) {
1238 fp->ipq_div_info = *divinfo;
1239 } else {
1240 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1241 if (mtag != NULL)
1242 m_tag_delete(m, mtag);
1244 *divinfo = 0;
1245 #endif
1248 * Check for complete reassembly and perform frag per packet
1249 * limiting.
1251 * Frag limiting is performed here so that the nth frag has
1252 * a chance to complete the packet before we drop the packet.
1253 * As a result, n+1 frags are actually allowed per packet, but
1254 * only n will ever be stored. (n = maxfragsperpacket.)
1257 next = 0;
1258 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1259 if (GETIP(q)->ip_off != next) {
1260 if (fp->ipq_nfrags > maxfragsperpacket) {
1261 ipstat.ips_fragdropped += fp->ipq_nfrags;
1262 ip_freef(fp);
1264 return (NULL);
1266 next += GETIP(q)->ip_len;
1268 /* Make sure the last packet didn't have the IP_MF flag */
1269 if (p->m_flags & M_FRAG) {
1270 if (fp->ipq_nfrags > maxfragsperpacket) {
1271 ipstat.ips_fragdropped += fp->ipq_nfrags;
1272 ip_freef(fp);
1274 return (NULL);
1278 * Reassembly is complete. Make sure the packet is a sane size.
1280 q = fp->ipq_frags;
1281 ip = GETIP(q);
1282 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1283 ipstat.ips_toolong++;
1284 ipstat.ips_fragdropped += fp->ipq_nfrags;
1285 ip_freef(fp);
1286 return (NULL);
1290 * Concatenate fragments.
1292 m = q;
1293 n = m->m_next;
1294 m->m_next = NULL;
1295 m_cat(m, n);
1296 nq = q->m_nextpkt;
1297 q->m_nextpkt = NULL;
1298 for (q = nq; q != NULL; q = nq) {
1299 nq = q->m_nextpkt;
1300 q->m_nextpkt = NULL;
1301 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1302 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1303 m_cat(m, q);
1307 * Clean up the 1's complement checksum. Carry over 16 bits must
1308 * be added back. This assumes no more then 65535 packet fragments
1309 * were reassembled. A second carry can also occur (but not a third).
1311 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1312 (m->m_pkthdr.csum_data >> 16);
1313 if (m->m_pkthdr.csum_data > 0xFFFF)
1314 m->m_pkthdr.csum_data -= 0xFFFF;
1317 #ifdef IPDIVERT
1319 * Extract firewall instructions from the fragment structure.
1321 *divinfo = fp->ipq_div_info;
1322 #endif
1325 * Create header for new ip packet by
1326 * modifying header of first packet;
1327 * dequeue and discard fragment reassembly header.
1328 * Make header visible.
1330 ip->ip_len = next;
1331 ip->ip_src = fp->ipq_src;
1332 ip->ip_dst = fp->ipq_dst;
1333 remque(fp);
1334 nipq--;
1335 mpipe_free(&ipq_mpipe, fp);
1336 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1337 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1338 /* some debugging cruft by sklower, below, will go away soon */
1339 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1340 int plen = 0;
1342 for (n = m; n; n = n->m_next)
1343 plen += n->m_len;
1344 m->m_pkthdr.len = plen;
1346 return (m);
1348 dropfrag:
1349 #ifdef IPDIVERT
1350 *divinfo = 0;
1351 #endif
1352 ipstat.ips_fragdropped++;
1353 if (fp != NULL)
1354 fp->ipq_nfrags--;
1355 m_freem(m);
1356 return (NULL);
1358 #undef GETIP
1362 * Free a fragment reassembly header and all
1363 * associated datagrams.
1365 static void
1366 ip_freef(struct ipq *fp)
1368 struct mbuf *q;
1370 while (fp->ipq_frags) {
1371 q = fp->ipq_frags;
1372 fp->ipq_frags = q->m_nextpkt;
1373 q->m_nextpkt = NULL;
1374 m_freem(q);
1376 remque(fp);
1377 mpipe_free(&ipq_mpipe, fp);
1378 nipq--;
1382 * IP timer processing;
1383 * if a timer expires on a reassembly
1384 * queue, discard it.
1386 void
1387 ip_slowtimo(void)
1389 struct ipq *fp;
1390 int i;
1392 crit_enter();
1393 for (i = 0; i < IPREASS_NHASH; i++) {
1394 fp = ipq[i].next;
1395 if (fp == NULL)
1396 continue;
1397 while (fp != &ipq[i]) {
1398 --fp->ipq_ttl;
1399 fp = fp->next;
1400 if (fp->prev->ipq_ttl == 0) {
1401 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1402 ip_freef(fp->prev);
1407 * If we are over the maximum number of fragments
1408 * (due to the limit being lowered), drain off
1409 * enough to get down to the new limit.
1411 if (maxnipq >= 0 && nipq > maxnipq) {
1412 for (i = 0; i < IPREASS_NHASH; i++) {
1413 while (nipq > maxnipq &&
1414 (ipq[i].next != &ipq[i])) {
1415 ipstat.ips_fragdropped +=
1416 ipq[i].next->ipq_nfrags;
1417 ip_freef(ipq[i].next);
1421 ipflow_slowtimo();
1422 crit_exit();
1426 * Drain off all datagram fragments.
1428 void
1429 ip_drain(void)
1431 int i;
1433 for (i = 0; i < IPREASS_NHASH; i++) {
1434 while (ipq[i].next != &ipq[i]) {
1435 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1436 ip_freef(ipq[i].next);
1439 in_rtqdrain();
1443 * Do option processing on a datagram,
1444 * possibly discarding it if bad options are encountered,
1445 * or forwarding it if source-routed.
1446 * The pass argument is used when operating in the IPSTEALTH
1447 * mode to tell what options to process:
1448 * [LS]SRR (pass 0) or the others (pass 1).
1449 * The reason for as many as two passes is that when doing IPSTEALTH,
1450 * non-routing options should be processed only if the packet is for us.
1451 * Returns 1 if packet has been forwarded/freed,
1452 * 0 if the packet should be processed further.
1454 static int
1455 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1457 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1458 struct ip *ip = mtod(m, struct ip *);
1459 u_char *cp;
1460 struct in_ifaddr *ia;
1461 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1462 boolean_t forward = FALSE;
1463 struct in_addr *sin, dst;
1464 n_time ntime;
1466 dst = ip->ip_dst;
1467 cp = (u_char *)(ip + 1);
1468 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1469 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1470 opt = cp[IPOPT_OPTVAL];
1471 if (opt == IPOPT_EOL)
1472 break;
1473 if (opt == IPOPT_NOP)
1474 optlen = 1;
1475 else {
1476 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1477 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1478 goto bad;
1480 optlen = cp[IPOPT_OLEN];
1481 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1482 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1483 goto bad;
1486 switch (opt) {
1488 default:
1489 break;
1492 * Source routing with record.
1493 * Find interface with current destination address.
1494 * If none on this machine then drop if strictly routed,
1495 * or do nothing if loosely routed.
1496 * Record interface address and bring up next address
1497 * component. If strictly routed make sure next
1498 * address is on directly accessible net.
1500 case IPOPT_LSRR:
1501 case IPOPT_SSRR:
1502 if (ipstealth && pass > 0)
1503 break;
1504 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1505 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1506 goto bad;
1508 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1509 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1510 goto bad;
1512 ipaddr.sin_addr = ip->ip_dst;
1513 ia = (struct in_ifaddr *)
1514 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1515 if (ia == NULL) {
1516 if (opt == IPOPT_SSRR) {
1517 type = ICMP_UNREACH;
1518 code = ICMP_UNREACH_SRCFAIL;
1519 goto bad;
1521 if (!ip_dosourceroute)
1522 goto nosourcerouting;
1524 * Loose routing, and not at next destination
1525 * yet; nothing to do except forward.
1527 break;
1529 off--; /* 0 origin */
1530 if (off > optlen - (int)sizeof(struct in_addr)) {
1532 * End of source route. Should be for us.
1534 if (!ip_acceptsourceroute)
1535 goto nosourcerouting;
1536 save_rte(cp, ip->ip_src);
1537 break;
1539 if (ipstealth)
1540 goto dropit;
1541 if (!ip_dosourceroute) {
1542 if (ipforwarding) {
1543 char buf[sizeof "aaa.bbb.ccc.ddd"];
1546 * Acting as a router, so generate ICMP
1548 nosourcerouting:
1549 strcpy(buf, inet_ntoa(ip->ip_dst));
1550 log(LOG_WARNING,
1551 "attempted source route from %s to %s\n",
1552 inet_ntoa(ip->ip_src), buf);
1553 type = ICMP_UNREACH;
1554 code = ICMP_UNREACH_SRCFAIL;
1555 goto bad;
1556 } else {
1558 * Not acting as a router,
1559 * so silently drop.
1561 dropit:
1562 ipstat.ips_cantforward++;
1563 m_freem(m);
1564 return (1);
1569 * locate outgoing interface
1571 memcpy(&ipaddr.sin_addr, cp + off,
1572 sizeof ipaddr.sin_addr);
1574 if (opt == IPOPT_SSRR) {
1575 #define INA struct in_ifaddr *
1576 #define SA struct sockaddr *
1577 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1578 == NULL)
1579 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1580 } else
1581 ia = ip_rtaddr(ipaddr.sin_addr,
1582 &ipforward_rt[mycpuid]);
1583 if (ia == NULL) {
1584 type = ICMP_UNREACH;
1585 code = ICMP_UNREACH_SRCFAIL;
1586 goto bad;
1588 ip->ip_dst = ipaddr.sin_addr;
1589 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1590 sizeof(struct in_addr));
1591 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1593 * Let ip_intr's mcast routing check handle mcast pkts
1595 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1596 break;
1598 case IPOPT_RR:
1599 if (ipstealth && pass == 0)
1600 break;
1601 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1602 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1603 goto bad;
1605 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1606 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1607 goto bad;
1610 * If no space remains, ignore.
1612 off--; /* 0 origin */
1613 if (off > optlen - (int)sizeof(struct in_addr))
1614 break;
1615 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1616 sizeof ipaddr.sin_addr);
1618 * locate outgoing interface; if we're the destination,
1619 * use the incoming interface (should be same).
1621 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1622 (ia = ip_rtaddr(ipaddr.sin_addr,
1623 &ipforward_rt[mycpuid]))
1624 == NULL) {
1625 type = ICMP_UNREACH;
1626 code = ICMP_UNREACH_HOST;
1627 goto bad;
1629 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1630 sizeof(struct in_addr));
1631 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1632 break;
1634 case IPOPT_TS:
1635 if (ipstealth && pass == 0)
1636 break;
1637 code = cp - (u_char *)ip;
1638 if (optlen < 4 || optlen > 40) {
1639 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1640 goto bad;
1642 if ((off = cp[IPOPT_OFFSET]) < 5) {
1643 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1644 goto bad;
1646 if (off > optlen - (int)sizeof(int32_t)) {
1647 cp[IPOPT_OFFSET + 1] += (1 << 4);
1648 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1649 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1650 goto bad;
1652 break;
1654 off--; /* 0 origin */
1655 sin = (struct in_addr *)(cp + off);
1656 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1658 case IPOPT_TS_TSONLY:
1659 break;
1661 case IPOPT_TS_TSANDADDR:
1662 if (off + sizeof(n_time) +
1663 sizeof(struct in_addr) > optlen) {
1664 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1665 goto bad;
1667 ipaddr.sin_addr = dst;
1668 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1669 m->m_pkthdr.rcvif);
1670 if (ia == NULL)
1671 continue;
1672 memcpy(sin, &IA_SIN(ia)->sin_addr,
1673 sizeof(struct in_addr));
1674 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1675 off += sizeof(struct in_addr);
1676 break;
1678 case IPOPT_TS_PRESPEC:
1679 if (off + sizeof(n_time) +
1680 sizeof(struct in_addr) > optlen) {
1681 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1682 goto bad;
1684 memcpy(&ipaddr.sin_addr, sin,
1685 sizeof(struct in_addr));
1686 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1687 continue;
1688 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1689 off += sizeof(struct in_addr);
1690 break;
1692 default:
1693 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1694 goto bad;
1696 ntime = iptime();
1697 memcpy(cp + off, &ntime, sizeof(n_time));
1698 cp[IPOPT_OFFSET] += sizeof(n_time);
1701 if (forward && ipforwarding) {
1702 ip_forward(m, TRUE, next_hop);
1703 return (1);
1705 return (0);
1706 bad:
1707 icmp_error(m, type, code, 0, 0);
1708 ipstat.ips_badoptions++;
1709 return (1);
1713 * Given address of next destination (final or next hop),
1714 * return internet address info of interface to be used to get there.
1716 struct in_ifaddr *
1717 ip_rtaddr(struct in_addr dst, struct route *ro)
1719 struct sockaddr_in *sin;
1721 sin = (struct sockaddr_in *)&ro->ro_dst;
1723 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1724 if (ro->ro_rt != NULL) {
1725 RTFREE(ro->ro_rt);
1726 ro->ro_rt = NULL;
1728 sin->sin_family = AF_INET;
1729 sin->sin_len = sizeof *sin;
1730 sin->sin_addr = dst;
1731 rtalloc_ign(ro, RTF_PRCLONING);
1734 if (ro->ro_rt == NULL)
1735 return (NULL);
1737 return (ifatoia(ro->ro_rt->rt_ifa));
1741 * Save incoming source route for use in replies,
1742 * to be picked up later by ip_srcroute if the receiver is interested.
1744 void
1745 save_rte(u_char *option, struct in_addr dst)
1747 unsigned olen;
1749 olen = option[IPOPT_OLEN];
1750 #ifdef DIAGNOSTIC
1751 if (ipprintfs)
1752 kprintf("save_rte: olen %d\n", olen);
1753 #endif
1754 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1755 return;
1756 bcopy(option, ip_srcrt.srcopt, olen);
1757 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1758 ip_srcrt.dst = dst;
1762 * Retrieve incoming source route for use in replies,
1763 * in the same form used by setsockopt.
1764 * The first hop is placed before the options, will be removed later.
1766 struct mbuf *
1767 ip_srcroute(void)
1769 struct in_addr *p, *q;
1770 struct mbuf *m;
1772 if (ip_nhops == 0)
1773 return (NULL);
1774 m = m_get(MB_DONTWAIT, MT_HEADER);
1775 if (m == NULL)
1776 return (NULL);
1778 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1780 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1781 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1782 OPTSIZ;
1783 #ifdef DIAGNOSTIC
1784 if (ipprintfs)
1785 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1786 #endif
1789 * First save first hop for return route
1791 p = &ip_srcrt.route[ip_nhops - 1];
1792 *(mtod(m, struct in_addr *)) = *p--;
1793 #ifdef DIAGNOSTIC
1794 if (ipprintfs)
1795 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1796 #endif
1799 * Copy option fields and padding (nop) to mbuf.
1801 ip_srcrt.nop = IPOPT_NOP;
1802 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1803 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1804 OPTSIZ);
1805 q = (struct in_addr *)(mtod(m, caddr_t) +
1806 sizeof(struct in_addr) + OPTSIZ);
1807 #undef OPTSIZ
1809 * Record return path as an IP source route,
1810 * reversing the path (pointers are now aligned).
1812 while (p >= ip_srcrt.route) {
1813 #ifdef DIAGNOSTIC
1814 if (ipprintfs)
1815 kprintf(" %x", ntohl(q->s_addr));
1816 #endif
1817 *q++ = *p--;
1820 * Last hop goes to final destination.
1822 *q = ip_srcrt.dst;
1823 #ifdef DIAGNOSTIC
1824 if (ipprintfs)
1825 kprintf(" %x\n", ntohl(q->s_addr));
1826 #endif
1827 return (m);
1831 * Strip out IP options.
1833 void
1834 ip_stripoptions(struct mbuf *m)
1836 int datalen;
1837 struct ip *ip = mtod(m, struct ip *);
1838 caddr_t opts;
1839 int optlen;
1841 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1842 opts = (caddr_t)(ip + 1);
1843 datalen = m->m_len - (sizeof(struct ip) + optlen);
1844 bcopy(opts + optlen, opts, datalen);
1845 m->m_len -= optlen;
1846 if (m->m_flags & M_PKTHDR)
1847 m->m_pkthdr.len -= optlen;
1848 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1851 u_char inetctlerrmap[PRC_NCMDS] = {
1852 0, 0, 0, 0,
1853 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1854 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1855 EMSGSIZE, EHOSTUNREACH, 0, 0,
1856 0, 0, 0, 0,
1857 ENOPROTOOPT, ECONNREFUSED
1861 * Forward a packet. If some error occurs return the sender
1862 * an icmp packet. Note we can't always generate a meaningful
1863 * icmp message because icmp doesn't have a large enough repertoire
1864 * of codes and types.
1866 * If not forwarding, just drop the packet. This could be confusing
1867 * if ipforwarding was zero but some routing protocol was advancing
1868 * us as a gateway to somewhere. However, we must let the routing
1869 * protocol deal with that.
1871 * The using_srcrt parameter indicates whether the packet is being forwarded
1872 * via a source route.
1874 static void
1875 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1877 struct ip *ip = mtod(m, struct ip *);
1878 struct sockaddr_in *ipforward_rtaddr;
1879 struct rtentry *rt;
1880 int error, type = 0, code = 0, destmtu = 0;
1881 struct mbuf *mcopy;
1882 n_long dest;
1883 struct in_addr pkt_dst;
1884 struct m_hdr tag;
1885 struct route *cache_rt = &ipforward_rt[mycpuid];
1887 dest = INADDR_ANY;
1889 * Cache the destination address of the packet; this may be
1890 * changed by use of 'ipfw fwd'.
1892 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1894 #ifdef DIAGNOSTIC
1895 if (ipprintfs)
1896 kprintf("forward: src %x dst %x ttl %x\n",
1897 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1898 #endif
1900 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1901 ipstat.ips_cantforward++;
1902 m_freem(m);
1903 return;
1905 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1906 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1907 return;
1910 ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1911 if (cache_rt->ro_rt == NULL ||
1912 ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1913 if (cache_rt->ro_rt != NULL) {
1914 RTFREE(cache_rt->ro_rt);
1915 cache_rt->ro_rt = NULL;
1917 ipforward_rtaddr->sin_family = AF_INET;
1918 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1919 ipforward_rtaddr->sin_addr = pkt_dst;
1920 rtalloc_ign(cache_rt, RTF_PRCLONING);
1921 if (cache_rt->ro_rt == NULL) {
1922 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1923 return;
1926 rt = cache_rt->ro_rt;
1929 * Save the IP header and at most 8 bytes of the payload,
1930 * in case we need to generate an ICMP message to the src.
1932 * XXX this can be optimized a lot by saving the data in a local
1933 * buffer on the stack (72 bytes at most), and only allocating the
1934 * mbuf if really necessary. The vast majority of the packets
1935 * are forwarded without having to send an ICMP back (either
1936 * because unnecessary, or because rate limited), so we are
1937 * really we are wasting a lot of work here.
1939 * We don't use m_copy() because it might return a reference
1940 * to a shared cluster. Both this function and ip_output()
1941 * assume exclusive access to the IP header in `m', so any
1942 * data in a cluster may change before we reach icmp_error().
1944 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1945 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1947 * It's probably ok if the pkthdr dup fails (because
1948 * the deep copy of the tag chain failed), but for now
1949 * be conservative and just discard the copy since
1950 * code below may some day want the tags.
1952 m_free(mcopy);
1953 mcopy = NULL;
1955 if (mcopy != NULL) {
1956 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1957 (int)ip->ip_len);
1958 mcopy->m_pkthdr.len = mcopy->m_len;
1959 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1962 if (!ipstealth)
1963 ip->ip_ttl -= IPTTLDEC;
1966 * If forwarding packet using same interface that it came in on,
1967 * perhaps should send a redirect to sender to shortcut a hop.
1968 * Only send redirect if source is sending directly to us,
1969 * and if packet was not source routed (or has any options).
1970 * Also, don't send redirect if forwarding using a default route
1971 * or a route modified by a redirect.
1973 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1974 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1975 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1976 ipsendredirects && !using_srcrt && next_hop == NULL) {
1977 u_long src = ntohl(ip->ip_src.s_addr);
1978 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1980 if (rt_ifa != NULL &&
1981 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1982 if (rt->rt_flags & RTF_GATEWAY)
1983 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1984 else
1985 dest = pkt_dst.s_addr;
1987 * Router requirements says to only send
1988 * host redirects.
1990 type = ICMP_REDIRECT;
1991 code = ICMP_REDIRECT_HOST;
1992 #ifdef DIAGNOSTIC
1993 if (ipprintfs)
1994 kprintf("redirect (%d) to %x\n", code, dest);
1995 #endif
1999 if (next_hop != NULL) {
2000 /* Pass IPFORWARD info if available */
2001 tag.mh_type = MT_TAG;
2002 tag.mh_flags = PACKET_TAG_IPFORWARD;
2003 tag.mh_data = (caddr_t)next_hop;
2004 tag.mh_next = m;
2005 m = (struct mbuf *)&tag;
2008 error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
2009 NULL);
2010 if (error == 0) {
2011 ipstat.ips_forward++;
2012 if (type == 0) {
2013 if (mcopy) {
2014 ipflow_create(cache_rt, mcopy);
2015 m_freem(mcopy);
2017 return; /* most common case */
2018 } else {
2019 ipstat.ips_redirectsent++;
2021 } else {
2022 ipstat.ips_cantforward++;
2025 if (mcopy == NULL)
2026 return;
2029 * Send ICMP message.
2032 switch (error) {
2034 case 0: /* forwarded, but need redirect */
2035 /* type, code set above */
2036 break;
2038 case ENETUNREACH: /* shouldn't happen, checked above */
2039 case EHOSTUNREACH:
2040 case ENETDOWN:
2041 case EHOSTDOWN:
2042 default:
2043 type = ICMP_UNREACH;
2044 code = ICMP_UNREACH_HOST;
2045 break;
2047 case EMSGSIZE:
2048 type = ICMP_UNREACH;
2049 code = ICMP_UNREACH_NEEDFRAG;
2050 #ifdef IPSEC
2052 * If the packet is routed over IPsec tunnel, tell the
2053 * originator the tunnel MTU.
2054 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2055 * XXX quickhack!!!
2057 if (cache_rt->ro_rt != NULL) {
2058 struct secpolicy *sp = NULL;
2059 int ipsecerror;
2060 int ipsechdr;
2061 struct route *ro;
2063 sp = ipsec4_getpolicybyaddr(mcopy,
2064 IPSEC_DIR_OUTBOUND,
2065 IP_FORWARDING,
2066 &ipsecerror);
2068 if (sp == NULL)
2069 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2070 else {
2071 /* count IPsec header size */
2072 ipsechdr = ipsec4_hdrsiz(mcopy,
2073 IPSEC_DIR_OUTBOUND,
2074 NULL);
2077 * find the correct route for outer IPv4
2078 * header, compute tunnel MTU.
2081 if (sp->req != NULL && sp->req->sav != NULL &&
2082 sp->req->sav->sah != NULL) {
2083 ro = &sp->req->sav->sah->sa_route;
2084 if (ro->ro_rt != NULL &&
2085 ro->ro_rt->rt_ifp != NULL) {
2086 destmtu =
2087 ro->ro_rt->rt_ifp->if_mtu;
2088 destmtu -= ipsechdr;
2092 key_freesp(sp);
2095 #elif FAST_IPSEC
2097 * If the packet is routed over IPsec tunnel, tell the
2098 * originator the tunnel MTU.
2099 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2100 * XXX quickhack!!!
2102 if (cache_rt->ro_rt != NULL) {
2103 struct secpolicy *sp = NULL;
2104 int ipsecerror;
2105 int ipsechdr;
2106 struct route *ro;
2108 sp = ipsec_getpolicybyaddr(mcopy,
2109 IPSEC_DIR_OUTBOUND,
2110 IP_FORWARDING,
2111 &ipsecerror);
2113 if (sp == NULL)
2114 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2115 else {
2116 /* count IPsec header size */
2117 ipsechdr = ipsec4_hdrsiz(mcopy,
2118 IPSEC_DIR_OUTBOUND,
2119 NULL);
2122 * find the correct route for outer IPv4
2123 * header, compute tunnel MTU.
2126 if (sp->req != NULL &&
2127 sp->req->sav != NULL &&
2128 sp->req->sav->sah != NULL) {
2129 ro = &sp->req->sav->sah->sa_route;
2130 if (ro->ro_rt != NULL &&
2131 ro->ro_rt->rt_ifp != NULL) {
2132 destmtu =
2133 ro->ro_rt->rt_ifp->if_mtu;
2134 destmtu -= ipsechdr;
2138 KEY_FREESP(&sp);
2141 #else /* !IPSEC && !FAST_IPSEC */
2142 if (cache_rt->ro_rt != NULL)
2143 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2144 #endif /*IPSEC*/
2145 ipstat.ips_cantfrag++;
2146 break;
2148 case ENOBUFS:
2150 * A router should not generate ICMP_SOURCEQUENCH as
2151 * required in RFC1812 Requirements for IP Version 4 Routers.
2152 * Source quench could be a big problem under DoS attacks,
2153 * or if the underlying interface is rate-limited.
2154 * Those who need source quench packets may re-enable them
2155 * via the net.inet.ip.sendsourcequench sysctl.
2157 if (!ip_sendsourcequench) {
2158 m_freem(mcopy);
2159 return;
2160 } else {
2161 type = ICMP_SOURCEQUENCH;
2162 code = 0;
2164 break;
2166 case EACCES: /* ipfw denied packet */
2167 m_freem(mcopy);
2168 return;
2170 icmp_error(mcopy, type, code, dest, destmtu);
2173 void
2174 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2175 struct mbuf *m)
2177 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2178 struct timeval tv;
2180 microtime(&tv);
2181 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2182 SCM_TIMESTAMP, SOL_SOCKET);
2183 if (*mp)
2184 mp = &(*mp)->m_next;
2186 if (inp->inp_flags & INP_RECVDSTADDR) {
2187 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2188 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2189 if (*mp)
2190 mp = &(*mp)->m_next;
2192 if (inp->inp_flags & INP_RECVTTL) {
2193 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2194 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2195 if (*mp)
2196 mp = &(*mp)->m_next;
2198 #ifdef notyet
2199 /* XXX
2200 * Moving these out of udp_input() made them even more broken
2201 * than they already were.
2203 /* options were tossed already */
2204 if (inp->inp_flags & INP_RECVOPTS) {
2205 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2206 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2207 if (*mp)
2208 mp = &(*mp)->m_next;
2210 /* ip_srcroute doesn't do what we want here, need to fix */
2211 if (inp->inp_flags & INP_RECVRETOPTS) {
2212 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2213 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2214 if (*mp)
2215 mp = &(*mp)->m_next;
2217 #endif
2218 if (inp->inp_flags & INP_RECVIF) {
2219 struct ifnet *ifp;
2220 struct sdlbuf {
2221 struct sockaddr_dl sdl;
2222 u_char pad[32];
2223 } sdlbuf;
2224 struct sockaddr_dl *sdp;
2225 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2227 if (((ifp = m->m_pkthdr.rcvif)) &&
2228 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2229 sdp = IF_LLSOCKADDR(ifp);
2231 * Change our mind and don't try copy.
2233 if ((sdp->sdl_family != AF_LINK) ||
2234 (sdp->sdl_len > sizeof(sdlbuf))) {
2235 goto makedummy;
2237 bcopy(sdp, sdl2, sdp->sdl_len);
2238 } else {
2239 makedummy:
2240 sdl2->sdl_len =
2241 offsetof(struct sockaddr_dl, sdl_data[0]);
2242 sdl2->sdl_family = AF_LINK;
2243 sdl2->sdl_index = 0;
2244 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2246 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2247 IP_RECVIF, IPPROTO_IP);
2248 if (*mp)
2249 mp = &(*mp)->m_next;
2254 * XXX these routines are called from the upper part of the kernel.
2256 * They could also be moved to ip_mroute.c, since all the RSVP
2257 * handling is done there already.
2260 ip_rsvp_init(struct socket *so)
2262 if (so->so_type != SOCK_RAW ||
2263 so->so_proto->pr_protocol != IPPROTO_RSVP)
2264 return EOPNOTSUPP;
2266 if (ip_rsvpd != NULL)
2267 return EADDRINUSE;
2269 ip_rsvpd = so;
2271 * This may seem silly, but we need to be sure we don't over-increment
2272 * the RSVP counter, in case something slips up.
2274 if (!ip_rsvp_on) {
2275 ip_rsvp_on = 1;
2276 rsvp_on++;
2279 return 0;
2283 ip_rsvp_done(void)
2285 ip_rsvpd = NULL;
2287 * This may seem silly, but we need to be sure we don't over-decrement
2288 * the RSVP counter, in case something slips up.
2290 if (ip_rsvp_on) {
2291 ip_rsvp_on = 0;
2292 rsvp_on--;
2294 return 0;
2297 void
2298 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2300 int off, proto;
2301 __va_list ap;
2303 __va_start(ap, m);
2304 off = __va_arg(ap, int);
2305 proto = __va_arg(ap, int);
2306 __va_end(ap);
2308 if (rsvp_input_p) { /* call the real one if loaded */
2309 rsvp_input_p(m, off, proto);
2310 return;
2313 /* Can still get packets with rsvp_on = 0 if there is a local member
2314 * of the group to which the RSVP packet is addressed. But in this
2315 * case we want to throw the packet away.
2318 if (!rsvp_on) {
2319 m_freem(m);
2320 return;
2323 if (ip_rsvpd != NULL) {
2324 rip_input(m, off, proto);
2325 return;
2327 /* Drop the packet */
2328 m_freem(m);