Add a wpa_supplicant rc script and bring in code to handle "WPA" in an
[dragonfly/port-amd64.git] / contrib / diffutils-2.8.1 / lib / regex.c
blob6daec76fbd66fb6b85f021f32fd973c03ab9c591
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* AIX requires this to be the first thing in the file. */
22 #if defined _AIX && !defined REGEX_MALLOC
23 #pragma alloca
24 #endif
26 #undef _GNU_SOURCE
27 #define _GNU_SOURCE
29 #ifdef HAVE_CONFIG_H
30 # include <config.h>
31 #endif
33 #ifndef PARAMS
34 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
35 # define PARAMS(args) args
36 # else
37 # define PARAMS(args) ()
38 # endif /* GCC. */
39 #endif /* Not PARAMS. */
41 #ifndef INSIDE_RECURSION
43 # if defined STDC_HEADERS && !defined emacs
44 # include <stddef.h>
45 # else
46 /* We need this for `regex.h', and perhaps for the Emacs include files. */
47 # include <sys/types.h>
48 # endif
50 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
52 /* For platform which support the ISO C amendement 1 functionality we
53 support user defined character classes. */
54 # if defined _LIBC || WIDE_CHAR_SUPPORT
55 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
56 # include <wchar.h>
57 # include <wctype.h>
58 # endif
60 # ifdef _LIBC
61 /* We have to keep the namespace clean. */
62 # define regfree(preg) __regfree (preg)
63 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
64 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
65 # define regerror(errcode, preg, errbuf, errbuf_size) \
66 __regerror(errcode, preg, errbuf, errbuf_size)
67 # define re_set_registers(bu, re, nu, st, en) \
68 __re_set_registers (bu, re, nu, st, en)
69 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
70 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
71 # define re_match(bufp, string, size, pos, regs) \
72 __re_match (bufp, string, size, pos, regs)
73 # define re_search(bufp, string, size, startpos, range, regs) \
74 __re_search (bufp, string, size, startpos, range, regs)
75 # define re_compile_pattern(pattern, length, bufp) \
76 __re_compile_pattern (pattern, length, bufp)
77 # define re_set_syntax(syntax) __re_set_syntax (syntax)
78 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
79 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
80 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
82 # define btowc __btowc
83 # define iswctype __iswctype
84 # define mbrtowc __mbrtowc
85 # define wcslen __wcslen
86 # define wcscoll __wcscoll
87 # define wcrtomb __wcrtomb
89 /* We are also using some library internals. */
90 # include <locale/localeinfo.h>
91 # include <locale/elem-hash.h>
92 # include <langinfo.h>
93 # include <locale/coll-lookup.h>
94 # endif
96 /* This is for other GNU distributions with internationalized messages. */
97 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
98 # include <libintl.h>
99 # ifdef _LIBC
100 # undef gettext
101 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
102 # endif
103 # else
104 # define gettext(msgid) (msgid)
105 # endif
107 # ifndef gettext_noop
108 /* This define is so xgettext can find the internationalizable
109 strings. */
110 # define gettext_noop(String) String
111 # endif
113 /* Support for bounded pointers. */
114 # if !defined _LIBC && !defined __BOUNDED_POINTERS__
115 # define __bounded /* nothing */
116 # define __unbounded /* nothing */
117 # define __ptrvalue /* nothing */
118 # endif
120 /* The `emacs' switch turns on certain matching commands
121 that make sense only in Emacs. */
122 # ifdef emacs
124 # include "lisp.h"
125 # include "buffer.h"
126 # include "syntax.h"
128 # else /* not emacs */
130 /* If we are not linking with Emacs proper,
131 we can't use the relocating allocator
132 even if config.h says that we can. */
133 # undef REL_ALLOC
135 # if defined STDC_HEADERS || defined _LIBC
136 # include <stdlib.h>
137 # else
138 char *malloc ();
139 char *realloc ();
140 # endif
142 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
143 If nothing else has been done, use the method below. */
144 # ifdef INHIBIT_STRING_HEADER
145 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
146 # if !defined bzero && !defined bcopy
147 # undef INHIBIT_STRING_HEADER
148 # endif
149 # endif
150 # endif
152 /* This is the normal way of making sure we have a bcopy and a bzero.
153 This is used in most programs--a few other programs avoid this
154 by defining INHIBIT_STRING_HEADER. */
155 # ifndef INHIBIT_STRING_HEADER
156 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
157 # include <string.h>
158 # ifndef bzero
159 # ifndef _LIBC
160 # define bzero(s, n) (memset (s, '\0', n), (s))
161 # else
162 # define bzero(s, n) __bzero (s, n)
163 # endif
164 # endif
165 # else
166 # include <strings.h>
167 # ifndef memcmp
168 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
169 # endif
170 # ifndef memcpy
171 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
172 # endif
173 # endif
174 # endif
176 /* Define the syntax stuff for \<, \>, etc. */
178 /* This must be nonzero for the wordchar and notwordchar pattern
179 commands in re_match_2. */
180 # ifndef Sword
181 # define Sword 1
182 # endif
184 # ifdef SWITCH_ENUM_BUG
185 # define SWITCH_ENUM_CAST(x) ((int)(x))
186 # else
187 # define SWITCH_ENUM_CAST(x) (x)
188 # endif
190 # endif /* not emacs */
192 # if defined _LIBC || HAVE_LIMITS_H
193 # include <limits.h>
194 # endif
196 # ifndef MB_LEN_MAX
197 # define MB_LEN_MAX 1
198 # endif
200 /* Get the interface, including the syntax bits. */
201 # include <regex.h>
203 /* isalpha etc. are used for the character classes. */
204 # include <ctype.h>
206 /* Jim Meyering writes:
208 "... Some ctype macros are valid only for character codes that
209 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
210 using /bin/cc or gcc but without giving an ansi option). So, all
211 ctype uses should be through macros like ISPRINT... If
212 STDC_HEADERS is defined, then autoconf has verified that the ctype
213 macros don't need to be guarded with references to isascii. ...
214 Defining isascii to 1 should let any compiler worth its salt
215 eliminate the && through constant folding."
216 Solaris defines some of these symbols so we must undefine them first. */
218 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
219 # define IN_CTYPE_DOMAIN(c) 1
220 # else
221 # define IN_CTYPE_DOMAIN(c) isascii(c)
222 # endif
224 # ifdef isblank
225 # define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
226 # else
227 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
228 # endif
229 # ifdef isgraph
230 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
231 # else
232 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
233 # endif
235 # undef ISPRINT
236 # define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
237 # define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
238 # define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
239 # define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
240 # define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
241 # define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
242 # define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
243 # define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
244 # define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
245 # define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
247 # ifdef _tolower
248 # define TOLOWER(c) _tolower(c)
249 # else
250 # define TOLOWER(c) tolower(c)
251 # endif
253 # ifndef NULL
254 # define NULL (void *)0
255 # endif
257 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
258 since ours (we hope) works properly with all combinations of
259 machines, compilers, `char' and `unsigned char' argument types.
260 (Per Bothner suggested the basic approach.) */
261 # undef SIGN_EXTEND_CHAR
262 # if __STDC__
263 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
264 # else /* not __STDC__ */
265 /* As in Harbison and Steele. */
266 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
267 # endif
269 # ifndef emacs
270 /* How many characters in the character set. */
271 # define CHAR_SET_SIZE 256
273 # ifdef SYNTAX_TABLE
275 extern char *re_syntax_table;
277 # else /* not SYNTAX_TABLE */
279 static char re_syntax_table[CHAR_SET_SIZE];
281 static void init_syntax_once PARAMS ((void));
283 static void
284 init_syntax_once ()
286 register int c;
287 static int done = 0;
289 if (done)
290 return;
291 bzero (re_syntax_table, sizeof re_syntax_table);
293 for (c = 0; c < CHAR_SET_SIZE; ++c)
294 if (ISALNUM (c))
295 re_syntax_table[c] = Sword;
297 re_syntax_table['_'] = Sword;
299 done = 1;
302 # endif /* not SYNTAX_TABLE */
304 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
306 # endif /* emacs */
308 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
318 # ifdef REGEX_MALLOC
320 # define REGEX_ALLOCATE malloc
321 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322 # define REGEX_FREE free
324 # else /* not REGEX_MALLOC */
326 /* Emacs already defines alloca, sometimes. */
327 # ifndef alloca
329 /* Make alloca work the best possible way. */
330 # ifdef __GNUC__
331 # define alloca __builtin_alloca
332 # else /* not __GNUC__ */
333 # if HAVE_ALLOCA_H
334 # include <alloca.h>
335 # endif /* HAVE_ALLOCA_H */
336 # endif /* not __GNUC__ */
338 # endif /* not alloca */
340 # define REGEX_ALLOCATE alloca
342 /* Assumes a `char *destination' variable. */
343 # define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
347 /* No need to do anything to free, after alloca. */
348 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
350 # endif /* not REGEX_MALLOC */
352 /* Define how to allocate the failure stack. */
354 # if defined REL_ALLOC && defined REGEX_MALLOC
356 # define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360 # define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
363 # else /* not using relocating allocator */
365 # ifdef REGEX_MALLOC
367 # define REGEX_ALLOCATE_STACK malloc
368 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369 # define REGEX_FREE_STACK free
371 # else /* not REGEX_MALLOC */
373 # define REGEX_ALLOCATE_STACK alloca
375 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377 /* No need to explicitly free anything. */
378 # define REGEX_FREE_STACK(arg)
380 # endif /* not REGEX_MALLOC */
381 # endif /* not using relocating allocator */
384 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
386 a good thing. */
387 # define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
390 /* (Re)Allocate N items of type T using malloc, or fail. */
391 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393 # define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
397 # define BYTEWIDTH 8 /* In bits. */
399 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
401 # undef MAX
402 # undef MIN
403 # define MAX(a, b) ((a) > (b) ? (a) : (b))
404 # define MIN(a, b) ((a) < (b) ? (a) : (b))
406 typedef char boolean;
407 # define false 0
408 # define true 1
410 static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
411 reg_syntax_t syntax,
412 struct re_pattern_buffer *bufp));
414 static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
415 const char *string1, int size1,
416 const char *string2, int size2,
417 int pos,
418 struct re_registers *regs,
419 int stop));
420 static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
421 const char *string1, int size1,
422 const char *string2, int size2,
423 int startpos, int range,
424 struct re_registers *regs, int stop));
425 static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
427 #ifdef MBS_SUPPORT
428 static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
429 reg_syntax_t syntax,
430 struct re_pattern_buffer *bufp));
433 static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
434 const char *cstring1, int csize1,
435 const char *cstring2, int csize2,
436 int pos,
437 struct re_registers *regs,
438 int stop,
439 wchar_t *string1, int size1,
440 wchar_t *string2, int size2,
441 int *mbs_offset1, int *mbs_offset2));
442 static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
443 const char *string1, int size1,
444 const char *string2, int size2,
445 int startpos, int range,
446 struct re_registers *regs, int stop));
447 static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
448 #endif
450 /* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
455 typedef enum
457 no_op = 0,
459 /* Succeed right away--no more backtracking. */
460 succeed,
462 /* Followed by one byte giving n, then by n literal bytes. */
463 exactn,
465 # ifdef MBS_SUPPORT
466 /* Same as exactn, but contains binary data. */
467 exactn_bin,
468 # endif
470 /* Matches any (more or less) character. */
471 anychar,
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
484 elements follow.
485 See regex_compile function. */
486 charset,
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
490 charset_not,
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
498 of re_match_2.) */
499 start_memory,
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
508 stop_memory,
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
512 duplicate,
514 /* Fail unless at beginning of line. */
515 begline,
517 /* Fail unless at end of line. */
518 endline,
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
522 begbuf,
524 /* Analogously, for end of buffer/string. */
525 endbuf,
527 /* Followed by two byte relative address to which to jump. */
528 jump,
530 /* Same as jump, but marks the end of an alternative. */
531 jump_past_alt,
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
536 on_failure_jump,
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump,
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
545 pop_failure_jump,
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
555 maybe_pop_jump,
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
563 dummy_failure_jump,
565 /* Push a dummy failure point and continue. Used at the end of
566 alternatives. */
567 push_dummy_failure,
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
572 succeed_n,
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
577 jump_n,
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
581 bytes of number. */
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
583 set_number_at,
585 wordchar, /* Matches any word-constituent character. */
586 notwordchar, /* Matches any char that is not a word-constituent. */
588 wordbeg, /* Succeeds if at word beginning. */
589 wordend, /* Succeeds if at word end. */
591 wordbound, /* Succeeds if at a word boundary. */
592 notwordbound /* Succeeds if not at a word boundary. */
594 # ifdef emacs
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
601 syntaxspec,
603 /* Matches any character whose syntax is not that specified. */
604 notsyntaxspec
605 # endif /* emacs */
606 } re_opcode_t;
607 #endif /* not INSIDE_RECURSION */
610 #ifdef BYTE
611 # define CHAR_T char
612 # define UCHAR_T unsigned char
613 # define COMPILED_BUFFER_VAR bufp->buffer
614 # define OFFSET_ADDRESS_SIZE 2
615 # define PREFIX(name) byte_##name
616 # define ARG_PREFIX(name) name
617 # define PUT_CHAR(c) putchar (c)
618 #else
619 # ifdef WCHAR
620 # define CHAR_T wchar_t
621 # define UCHAR_T wchar_t
622 # define COMPILED_BUFFER_VAR wc_buffer
623 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625 # define PREFIX(name) wcs_##name
626 # define ARG_PREFIX(name) c##name
627 /* Should we use wide stream?? */
628 # define PUT_CHAR(c) printf ("%C", c);
629 # define TRUE 1
630 # define FALSE 0
631 # else
632 # ifdef MBS_SUPPORT
633 # define WCHAR
634 # define INSIDE_RECURSION
635 # include "regex.c"
636 # undef INSIDE_RECURSION
637 # endif
638 # define BYTE
639 # define INSIDE_RECURSION
640 # include "regex.c"
641 # undef INSIDE_RECURSION
642 # endif
643 #endif
644 #include "unlocked-io.h"
646 #ifdef INSIDE_RECURSION
647 /* Common operations on the compiled pattern. */
649 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
650 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
652 # ifdef WCHAR
653 # define STORE_NUMBER(destination, number) \
654 do { \
655 *(destination) = (UCHAR_T)(number); \
656 } while (0)
657 # else /* BYTE */
658 # define STORE_NUMBER(destination, number) \
659 do { \
660 (destination)[0] = (number) & 0377; \
661 (destination)[1] = (number) >> 8; \
662 } while (0)
663 # endif /* WCHAR */
665 /* Same as STORE_NUMBER, except increment DESTINATION to
666 the byte after where the number is stored. Therefore, DESTINATION
667 must be an lvalue. */
668 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
670 # define STORE_NUMBER_AND_INCR(destination, number) \
671 do { \
672 STORE_NUMBER (destination, number); \
673 (destination) += OFFSET_ADDRESS_SIZE; \
674 } while (0)
676 /* Put into DESTINATION a number stored in two contiguous bytes starting
677 at SOURCE. */
678 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
680 # ifdef WCHAR
681 # define EXTRACT_NUMBER(destination, source) \
682 do { \
683 (destination) = *(source); \
684 } while (0)
685 # else /* BYTE */
686 # define EXTRACT_NUMBER(destination, source) \
687 do { \
688 (destination) = *(source) & 0377; \
689 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
690 } while (0)
691 # endif
693 # ifdef DEBUG
694 static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
695 static void
696 PREFIX(extract_number) (dest, source)
697 int *dest;
698 UCHAR_T *source;
700 # ifdef WCHAR
701 *dest = *source;
702 # else /* BYTE */
703 int temp = SIGN_EXTEND_CHAR (*(source + 1));
704 *dest = *source & 0377;
705 *dest += temp << 8;
706 # endif
709 # ifndef EXTRACT_MACROS /* To debug the macros. */
710 # undef EXTRACT_NUMBER
711 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
712 # endif /* not EXTRACT_MACROS */
714 # endif /* DEBUG */
716 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
717 SOURCE must be an lvalue. */
719 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
720 do { \
721 EXTRACT_NUMBER (destination, source); \
722 (source) += OFFSET_ADDRESS_SIZE; \
723 } while (0)
725 # ifdef DEBUG
726 static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
727 UCHAR_T **source));
728 static void
729 PREFIX(extract_number_and_incr) (destination, source)
730 int *destination;
731 UCHAR_T **source;
733 PREFIX(extract_number) (destination, *source);
734 *source += OFFSET_ADDRESS_SIZE;
737 # ifndef EXTRACT_MACROS
738 # undef EXTRACT_NUMBER_AND_INCR
739 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
740 PREFIX(extract_number_and_incr) (&dest, &src)
741 # endif /* not EXTRACT_MACROS */
743 # endif /* DEBUG */
747 /* If DEBUG is defined, Regex prints many voluminous messages about what
748 it is doing (if the variable `debug' is nonzero). If linked with the
749 main program in `iregex.c', you can enter patterns and strings
750 interactively. And if linked with the main program in `main.c' and
751 the other test files, you can run the already-written tests. */
753 # ifdef DEBUG
755 # ifndef DEFINED_ONCE
757 /* We use standard I/O for debugging. */
758 # include <stdio.h>
760 /* It is useful to test things that ``must'' be true when debugging. */
761 # include <assert.h>
763 static int debug;
765 # define DEBUG_STATEMENT(e) e
766 # define DEBUG_PRINT1(x) if (debug) printf (x)
767 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
768 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
769 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
770 # endif /* not DEFINED_ONCE */
772 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
773 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
774 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
775 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
778 /* Print the fastmap in human-readable form. */
780 # ifndef DEFINED_ONCE
781 void
782 print_fastmap (fastmap)
783 char *fastmap;
785 unsigned was_a_range = 0;
786 unsigned i = 0;
788 while (i < (1 << BYTEWIDTH))
790 if (fastmap[i++])
792 was_a_range = 0;
793 putchar (i - 1);
794 while (i < (1 << BYTEWIDTH) && fastmap[i])
796 was_a_range = 1;
797 i++;
799 if (was_a_range)
801 printf ("-");
802 putchar (i - 1);
806 putchar ('\n');
808 # endif /* not DEFINED_ONCE */
811 /* Print a compiled pattern string in human-readable form, starting at
812 the START pointer into it and ending just before the pointer END. */
814 void
815 PREFIX(print_partial_compiled_pattern) (start, end)
816 UCHAR_T *start;
817 UCHAR_T *end;
819 int mcnt, mcnt2;
820 UCHAR_T *p1;
821 UCHAR_T *p = start;
822 UCHAR_T *pend = end;
824 if (start == NULL)
826 printf ("(null)\n");
827 return;
830 /* Loop over pattern commands. */
831 while (p < pend)
833 # ifdef _LIBC
834 printf ("%td:\t", p - start);
835 # else
836 printf ("%ld:\t", (long int) (p - start));
837 # endif
839 switch ((re_opcode_t) *p++)
841 case no_op:
842 printf ("/no_op");
843 break;
845 case exactn:
846 mcnt = *p++;
847 printf ("/exactn/%d", mcnt);
850 putchar ('/');
851 PUT_CHAR (*p++);
853 while (--mcnt);
854 break;
856 # ifdef MBS_SUPPORT
857 case exactn_bin:
858 mcnt = *p++;
859 printf ("/exactn_bin/%d", mcnt);
862 printf("/%lx", (long int) *p++);
864 while (--mcnt);
865 break;
866 # endif /* MBS_SUPPORT */
868 case start_memory:
869 mcnt = *p++;
870 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
871 break;
873 case stop_memory:
874 mcnt = *p++;
875 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
876 break;
878 case duplicate:
879 printf ("/duplicate/%ld", (long int) *p++);
880 break;
882 case anychar:
883 printf ("/anychar");
884 break;
886 case charset:
887 case charset_not:
889 # ifdef WCHAR
890 int i, length;
891 wchar_t *workp = p;
892 printf ("/charset [%s",
893 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
894 p += 5;
895 length = *workp++; /* the length of char_classes */
896 for (i=0 ; i<length ; i++)
897 printf("[:%lx:]", (long int) *p++);
898 length = *workp++; /* the length of collating_symbol */
899 for (i=0 ; i<length ;)
901 printf("[.");
902 while(*p != 0)
903 PUT_CHAR((i++,*p++));
904 i++,p++;
905 printf(".]");
907 length = *workp++; /* the length of equivalence_class */
908 for (i=0 ; i<length ;)
910 printf("[=");
911 while(*p != 0)
912 PUT_CHAR((i++,*p++));
913 i++,p++;
914 printf("=]");
916 length = *workp++; /* the length of char_range */
917 for (i=0 ; i<length ; i++)
919 wchar_t range_start = *p++;
920 wchar_t range_end = *p++;
921 printf("%C-%C", range_start, range_end);
923 length = *workp++; /* the length of char */
924 for (i=0 ; i<length ; i++)
925 printf("%C", *p++);
926 putchar (']');
927 # else
928 register int c, last = -100;
929 register int in_range = 0;
931 printf ("/charset [%s",
932 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
934 assert (p + *p < pend);
936 for (c = 0; c < 256; c++)
937 if (c / 8 < *p
938 && (p[1 + (c/8)] & (1 << (c % 8))))
940 /* Are we starting a range? */
941 if (last + 1 == c && ! in_range)
943 putchar ('-');
944 in_range = 1;
946 /* Have we broken a range? */
947 else if (last + 1 != c && in_range)
949 putchar (last);
950 in_range = 0;
953 if (! in_range)
954 putchar (c);
956 last = c;
959 if (in_range)
960 putchar (last);
962 putchar (']');
964 p += 1 + *p;
965 # endif /* WCHAR */
967 break;
969 case begline:
970 printf ("/begline");
971 break;
973 case endline:
974 printf ("/endline");
975 break;
977 case on_failure_jump:
978 PREFIX(extract_number_and_incr) (&mcnt, &p);
979 # ifdef _LIBC
980 printf ("/on_failure_jump to %td", p + mcnt - start);
981 # else
982 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
983 # endif
984 break;
986 case on_failure_keep_string_jump:
987 PREFIX(extract_number_and_incr) (&mcnt, &p);
988 # ifdef _LIBC
989 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
990 # else
991 printf ("/on_failure_keep_string_jump to %ld",
992 (long int) (p + mcnt - start));
993 # endif
994 break;
996 case dummy_failure_jump:
997 PREFIX(extract_number_and_incr) (&mcnt, &p);
998 # ifdef _LIBC
999 printf ("/dummy_failure_jump to %td", p + mcnt - start);
1000 # else
1001 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1002 # endif
1003 break;
1005 case push_dummy_failure:
1006 printf ("/push_dummy_failure");
1007 break;
1009 case maybe_pop_jump:
1010 PREFIX(extract_number_and_incr) (&mcnt, &p);
1011 # ifdef _LIBC
1012 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1013 # else
1014 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1015 # endif
1016 break;
1018 case pop_failure_jump:
1019 PREFIX(extract_number_and_incr) (&mcnt, &p);
1020 # ifdef _LIBC
1021 printf ("/pop_failure_jump to %td", p + mcnt - start);
1022 # else
1023 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1024 # endif
1025 break;
1027 case jump_past_alt:
1028 PREFIX(extract_number_and_incr) (&mcnt, &p);
1029 # ifdef _LIBC
1030 printf ("/jump_past_alt to %td", p + mcnt - start);
1031 # else
1032 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1033 # endif
1034 break;
1036 case jump:
1037 PREFIX(extract_number_and_incr) (&mcnt, &p);
1038 # ifdef _LIBC
1039 printf ("/jump to %td", p + mcnt - start);
1040 # else
1041 printf ("/jump to %ld", (long int) (p + mcnt - start));
1042 # endif
1043 break;
1045 case succeed_n:
1046 PREFIX(extract_number_and_incr) (&mcnt, &p);
1047 p1 = p + mcnt;
1048 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1049 # ifdef _LIBC
1050 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1051 # else
1052 printf ("/succeed_n to %ld, %d times",
1053 (long int) (p1 - start), mcnt2);
1054 # endif
1055 break;
1057 case jump_n:
1058 PREFIX(extract_number_and_incr) (&mcnt, &p);
1059 p1 = p + mcnt;
1060 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1061 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1062 break;
1064 case set_number_at:
1065 PREFIX(extract_number_and_incr) (&mcnt, &p);
1066 p1 = p + mcnt;
1067 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1068 # ifdef _LIBC
1069 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1070 # else
1071 printf ("/set_number_at location %ld to %d",
1072 (long int) (p1 - start), mcnt2);
1073 # endif
1074 break;
1076 case wordbound:
1077 printf ("/wordbound");
1078 break;
1080 case notwordbound:
1081 printf ("/notwordbound");
1082 break;
1084 case wordbeg:
1085 printf ("/wordbeg");
1086 break;
1088 case wordend:
1089 printf ("/wordend");
1090 break;
1092 # ifdef emacs
1093 case before_dot:
1094 printf ("/before_dot");
1095 break;
1097 case at_dot:
1098 printf ("/at_dot");
1099 break;
1101 case after_dot:
1102 printf ("/after_dot");
1103 break;
1105 case syntaxspec:
1106 printf ("/syntaxspec");
1107 mcnt = *p++;
1108 printf ("/%d", mcnt);
1109 break;
1111 case notsyntaxspec:
1112 printf ("/notsyntaxspec");
1113 mcnt = *p++;
1114 printf ("/%d", mcnt);
1115 break;
1116 # endif /* emacs */
1118 case wordchar:
1119 printf ("/wordchar");
1120 break;
1122 case notwordchar:
1123 printf ("/notwordchar");
1124 break;
1126 case begbuf:
1127 printf ("/begbuf");
1128 break;
1130 case endbuf:
1131 printf ("/endbuf");
1132 break;
1134 default:
1135 printf ("?%ld", (long int) *(p-1));
1138 putchar ('\n');
1141 # ifdef _LIBC
1142 printf ("%td:\tend of pattern.\n", p - start);
1143 # else
1144 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1145 # endif
1149 void
1150 PREFIX(print_compiled_pattern) (bufp)
1151 struct re_pattern_buffer *bufp;
1153 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1155 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1156 + bufp->used / sizeof(UCHAR_T));
1157 printf ("%ld bytes used/%ld bytes allocated.\n",
1158 bufp->used, bufp->allocated);
1160 if (bufp->fastmap_accurate && bufp->fastmap)
1162 printf ("fastmap: ");
1163 print_fastmap (bufp->fastmap);
1166 # ifdef _LIBC
1167 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1168 # else
1169 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1170 # endif
1171 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1172 printf ("can_be_null: %d\t", bufp->can_be_null);
1173 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1174 printf ("no_sub: %d\t", bufp->no_sub);
1175 printf ("not_bol: %d\t", bufp->not_bol);
1176 printf ("not_eol: %d\t", bufp->not_eol);
1177 printf ("syntax: %lx\n", bufp->syntax);
1178 /* Perhaps we should print the translate table? */
1182 void
1183 PREFIX(print_double_string) (where, string1, size1, string2, size2)
1184 const CHAR_T *where;
1185 const CHAR_T *string1;
1186 const CHAR_T *string2;
1187 int size1;
1188 int size2;
1190 int this_char;
1192 if (where == NULL)
1193 printf ("(null)");
1194 else
1196 int cnt;
1198 if (FIRST_STRING_P (where))
1200 for (this_char = where - string1; this_char < size1; this_char++)
1201 PUT_CHAR (string1[this_char]);
1203 where = string2;
1206 cnt = 0;
1207 for (this_char = where - string2; this_char < size2; this_char++)
1209 PUT_CHAR (string2[this_char]);
1210 if (++cnt > 100)
1212 fputs ("...", stdout);
1213 break;
1219 # ifndef DEFINED_ONCE
1220 void
1221 printchar (c)
1222 int c;
1224 putc (c, stderr);
1226 # endif
1228 # else /* not DEBUG */
1230 # ifndef DEFINED_ONCE
1231 # undef assert
1232 # define assert(e)
1234 # define DEBUG_STATEMENT(e)
1235 # define DEBUG_PRINT1(x)
1236 # define DEBUG_PRINT2(x1, x2)
1237 # define DEBUG_PRINT3(x1, x2, x3)
1238 # define DEBUG_PRINT4(x1, x2, x3, x4)
1239 # endif /* not DEFINED_ONCE */
1240 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1241 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1243 # endif /* not DEBUG */
1247 # ifdef WCHAR
1248 /* This convert a multibyte string to a wide character string.
1249 And write their correspondances to offset_buffer(see below)
1250 and write whether each wchar_t is binary data to is_binary.
1251 This assume invalid multibyte sequences as binary data.
1252 We assume offset_buffer and is_binary is already allocated
1253 enough space. */
1255 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1256 size_t len, int *offset_buffer,
1257 char *is_binary);
1258 static size_t
1259 convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1260 CHAR_T *dest;
1261 const unsigned char* src;
1262 size_t len; /* the length of multibyte string. */
1264 /* It hold correspondances between src(char string) and
1265 dest(wchar_t string) for optimization.
1266 e.g. src = "xxxyzz"
1267 dest = {'X', 'Y', 'Z'}
1268 (each "xxx", "y" and "zz" represent one multibyte character
1269 corresponding to 'X', 'Y' and 'Z'.)
1270 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1271 = {0, 3, 4, 6}
1273 int *offset_buffer;
1274 char *is_binary;
1276 wchar_t *pdest = dest;
1277 const unsigned char *psrc = src;
1278 size_t wc_count = 0;
1280 mbstate_t mbs;
1281 int i, consumed;
1282 size_t mb_remain = len;
1283 size_t mb_count = 0;
1285 /* Initialize the conversion state. */
1286 memset (&mbs, 0, sizeof (mbstate_t));
1288 offset_buffer[0] = 0;
1289 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1290 psrc += consumed)
1292 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1294 if (consumed <= 0)
1295 /* failed to convert. maybe src contains binary data.
1296 So we consume 1 byte manualy. */
1298 *pdest = *psrc;
1299 consumed = 1;
1300 is_binary[wc_count] = TRUE;
1302 else
1303 is_binary[wc_count] = FALSE;
1304 /* In sjis encoding, we use yen sign as escape character in
1305 place of reverse solidus. So we convert 0x5c(yen sign in
1306 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1307 solidus in UCS2). */
1308 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1309 *pdest = (wchar_t) *psrc;
1311 offset_buffer[wc_count + 1] = mb_count += consumed;
1314 /* Fill remain of the buffer with sentinel. */
1315 for (i = wc_count + 1 ; i <= len ; i++)
1316 offset_buffer[i] = mb_count + 1;
1318 return wc_count;
1321 # endif /* WCHAR */
1323 #else /* not INSIDE_RECURSION */
1325 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1326 also be assigned to arbitrarily: each pattern buffer stores its own
1327 syntax, so it can be changed between regex compilations. */
1328 /* This has no initializer because initialized variables in Emacs
1329 become read-only after dumping. */
1330 reg_syntax_t re_syntax_options;
1333 /* Specify the precise syntax of regexps for compilation. This provides
1334 for compatibility for various utilities which historically have
1335 different, incompatible syntaxes.
1337 The argument SYNTAX is a bit mask comprised of the various bits
1338 defined in regex.h. We return the old syntax. */
1340 reg_syntax_t
1341 re_set_syntax (syntax)
1342 reg_syntax_t syntax;
1344 reg_syntax_t ret = re_syntax_options;
1346 re_syntax_options = syntax;
1347 # ifdef DEBUG
1348 if (syntax & RE_DEBUG)
1349 debug = 1;
1350 else if (debug) /* was on but now is not */
1351 debug = 0;
1352 # endif /* DEBUG */
1353 return ret;
1355 # ifdef _LIBC
1356 weak_alias (__re_set_syntax, re_set_syntax)
1357 # endif
1359 /* This table gives an error message for each of the error codes listed
1360 in regex.h. Obviously the order here has to be same as there.
1361 POSIX doesn't require that we do anything for REG_NOERROR,
1362 but why not be nice? */
1364 static const char re_error_msgid[] =
1366 # define REG_NOERROR_IDX 0
1367 gettext_noop ("Success") /* REG_NOERROR */
1368 "\0"
1369 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1370 gettext_noop ("No match") /* REG_NOMATCH */
1371 "\0"
1372 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1373 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1374 "\0"
1375 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1376 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1377 "\0"
1378 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1379 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1380 "\0"
1381 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1382 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1383 "\0"
1384 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1385 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1386 "\0"
1387 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1388 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1389 "\0"
1390 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1391 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1392 "\0"
1393 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1394 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1395 "\0"
1396 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1397 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1398 "\0"
1399 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1400 gettext_noop ("Invalid range end") /* REG_ERANGE */
1401 "\0"
1402 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1403 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1404 "\0"
1405 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1406 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1407 "\0"
1408 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1409 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1410 "\0"
1411 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1412 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1413 "\0"
1414 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1415 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1418 static const size_t re_error_msgid_idx[] =
1420 REG_NOERROR_IDX,
1421 REG_NOMATCH_IDX,
1422 REG_BADPAT_IDX,
1423 REG_ECOLLATE_IDX,
1424 REG_ECTYPE_IDX,
1425 REG_EESCAPE_IDX,
1426 REG_ESUBREG_IDX,
1427 REG_EBRACK_IDX,
1428 REG_EPAREN_IDX,
1429 REG_EBRACE_IDX,
1430 REG_BADBR_IDX,
1431 REG_ERANGE_IDX,
1432 REG_ESPACE_IDX,
1433 REG_BADRPT_IDX,
1434 REG_EEND_IDX,
1435 REG_ESIZE_IDX,
1436 REG_ERPAREN_IDX
1439 #endif /* INSIDE_RECURSION */
1441 #ifndef DEFINED_ONCE
1442 /* Avoiding alloca during matching, to placate r_alloc. */
1444 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1445 searching and matching functions should not call alloca. On some
1446 systems, alloca is implemented in terms of malloc, and if we're
1447 using the relocating allocator routines, then malloc could cause a
1448 relocation, which might (if the strings being searched are in the
1449 ralloc heap) shift the data out from underneath the regexp
1450 routines.
1452 Here's another reason to avoid allocation: Emacs
1453 processes input from X in a signal handler; processing X input may
1454 call malloc; if input arrives while a matching routine is calling
1455 malloc, then we're scrod. But Emacs can't just block input while
1456 calling matching routines; then we don't notice interrupts when
1457 they come in. So, Emacs blocks input around all regexp calls
1458 except the matching calls, which it leaves unprotected, in the
1459 faith that they will not malloc. */
1461 /* Normally, this is fine. */
1462 # define MATCH_MAY_ALLOCATE
1464 /* When using GNU C, we are not REALLY using the C alloca, no matter
1465 what config.h may say. So don't take precautions for it. */
1466 # ifdef __GNUC__
1467 # undef C_ALLOCA
1468 # endif
1470 /* The match routines may not allocate if (1) they would do it with malloc
1471 and (2) it's not safe for them to use malloc.
1472 Note that if REL_ALLOC is defined, matching would not use malloc for the
1473 failure stack, but we would still use it for the register vectors;
1474 so REL_ALLOC should not affect this. */
1475 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1476 # undef MATCH_MAY_ALLOCATE
1477 # endif
1478 #endif /* not DEFINED_ONCE */
1480 #ifdef INSIDE_RECURSION
1481 /* Failure stack declarations and macros; both re_compile_fastmap and
1482 re_match_2 use a failure stack. These have to be macros because of
1483 REGEX_ALLOCATE_STACK. */
1486 /* Number of failure points for which to initially allocate space
1487 when matching. If this number is exceeded, we allocate more
1488 space, so it is not a hard limit. */
1489 # ifndef INIT_FAILURE_ALLOC
1490 # define INIT_FAILURE_ALLOC 5
1491 # endif
1493 /* Roughly the maximum number of failure points on the stack. Would be
1494 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1495 This is a variable only so users of regex can assign to it; we never
1496 change it ourselves. */
1498 # ifdef INT_IS_16BIT
1500 # ifndef DEFINED_ONCE
1501 # if defined MATCH_MAY_ALLOCATE
1502 /* 4400 was enough to cause a crash on Alpha OSF/1,
1503 whose default stack limit is 2mb. */
1504 long int re_max_failures = 4000;
1505 # else
1506 long int re_max_failures = 2000;
1507 # endif
1508 # endif
1510 union PREFIX(fail_stack_elt)
1512 UCHAR_T *pointer;
1513 long int integer;
1516 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1518 typedef struct
1520 PREFIX(fail_stack_elt_t) *stack;
1521 unsigned long int size;
1522 unsigned long int avail; /* Offset of next open position. */
1523 } PREFIX(fail_stack_type);
1525 # else /* not INT_IS_16BIT */
1527 # ifndef DEFINED_ONCE
1528 # if defined MATCH_MAY_ALLOCATE
1529 /* 4400 was enough to cause a crash on Alpha OSF/1,
1530 whose default stack limit is 2mb. */
1531 int re_max_failures = 4000;
1532 # else
1533 int re_max_failures = 2000;
1534 # endif
1535 # endif
1537 union PREFIX(fail_stack_elt)
1539 UCHAR_T *pointer;
1540 int integer;
1543 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1545 typedef struct
1547 PREFIX(fail_stack_elt_t) *stack;
1548 unsigned size;
1549 unsigned avail; /* Offset of next open position. */
1550 } PREFIX(fail_stack_type);
1552 # endif /* INT_IS_16BIT */
1554 # ifndef DEFINED_ONCE
1555 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1556 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1557 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1558 # endif
1561 /* Define macros to initialize and free the failure stack.
1562 Do `return -2' if the alloc fails. */
1564 # ifdef MATCH_MAY_ALLOCATE
1565 # define INIT_FAIL_STACK() \
1566 do { \
1567 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1568 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1570 if (fail_stack.stack == NULL) \
1571 return -2; \
1573 fail_stack.size = INIT_FAILURE_ALLOC; \
1574 fail_stack.avail = 0; \
1575 } while (0)
1577 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1578 # else
1579 # define INIT_FAIL_STACK() \
1580 do { \
1581 fail_stack.avail = 0; \
1582 } while (0)
1584 # define RESET_FAIL_STACK()
1585 # endif
1588 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1590 Return 1 if succeeds, and 0 if either ran out of memory
1591 allocating space for it or it was already too large.
1593 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1595 # define DOUBLE_FAIL_STACK(fail_stack) \
1596 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1597 ? 0 \
1598 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1599 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1600 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1601 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1603 (fail_stack).stack == NULL \
1604 ? 0 \
1605 : ((fail_stack).size <<= 1, \
1606 1)))
1609 /* Push pointer POINTER on FAIL_STACK.
1610 Return 1 if was able to do so and 0 if ran out of memory allocating
1611 space to do so. */
1612 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1613 ((FAIL_STACK_FULL () \
1614 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1615 ? 0 \
1616 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1619 /* Push a pointer value onto the failure stack.
1620 Assumes the variable `fail_stack'. Probably should only
1621 be called from within `PUSH_FAILURE_POINT'. */
1622 # define PUSH_FAILURE_POINTER(item) \
1623 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1625 /* This pushes an integer-valued item onto the failure stack.
1626 Assumes the variable `fail_stack'. Probably should only
1627 be called from within `PUSH_FAILURE_POINT'. */
1628 # define PUSH_FAILURE_INT(item) \
1629 fail_stack.stack[fail_stack.avail++].integer = (item)
1631 /* Push a fail_stack_elt_t value onto the failure stack.
1632 Assumes the variable `fail_stack'. Probably should only
1633 be called from within `PUSH_FAILURE_POINT'. */
1634 # define PUSH_FAILURE_ELT(item) \
1635 fail_stack.stack[fail_stack.avail++] = (item)
1637 /* These three POP... operations complement the three PUSH... operations.
1638 All assume that `fail_stack' is nonempty. */
1639 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1640 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1641 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1643 /* Used to omit pushing failure point id's when we're not debugging. */
1644 # ifdef DEBUG
1645 # define DEBUG_PUSH PUSH_FAILURE_INT
1646 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1647 # else
1648 # define DEBUG_PUSH(item)
1649 # define DEBUG_POP(item_addr)
1650 # endif
1653 /* Push the information about the state we will need
1654 if we ever fail back to it.
1656 Requires variables fail_stack, regstart, regend, reg_info, and
1657 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1658 be declared.
1660 Does `return FAILURE_CODE' if runs out of memory. */
1662 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1663 do { \
1664 char *destination; \
1665 /* Must be int, so when we don't save any registers, the arithmetic \
1666 of 0 + -1 isn't done as unsigned. */ \
1667 /* Can't be int, since there is not a shred of a guarantee that int \
1668 is wide enough to hold a value of something to which pointer can \
1669 be assigned */ \
1670 active_reg_t this_reg; \
1672 DEBUG_STATEMENT (failure_id++); \
1673 DEBUG_STATEMENT (nfailure_points_pushed++); \
1674 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1675 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1676 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1678 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1679 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1681 /* Ensure we have enough space allocated for what we will push. */ \
1682 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1684 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1685 return failure_code; \
1687 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1688 (fail_stack).size); \
1689 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1692 /* Push the info, starting with the registers. */ \
1693 DEBUG_PRINT1 ("\n"); \
1695 if (1) \
1696 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1697 this_reg++) \
1699 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1700 DEBUG_STATEMENT (num_regs_pushed++); \
1702 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1703 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1705 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1706 PUSH_FAILURE_POINTER (regend[this_reg]); \
1708 DEBUG_PRINT2 (" info: %p\n ", \
1709 reg_info[this_reg].word.pointer); \
1710 DEBUG_PRINT2 (" match_null=%d", \
1711 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1712 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1713 DEBUG_PRINT2 (" matched_something=%d", \
1714 MATCHED_SOMETHING (reg_info[this_reg])); \
1715 DEBUG_PRINT2 (" ever_matched=%d", \
1716 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1717 DEBUG_PRINT1 ("\n"); \
1718 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1721 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1722 PUSH_FAILURE_INT (lowest_active_reg); \
1724 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1725 PUSH_FAILURE_INT (highest_active_reg); \
1727 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1728 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1729 PUSH_FAILURE_POINTER (pattern_place); \
1731 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1732 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1733 size2); \
1734 DEBUG_PRINT1 ("'\n"); \
1735 PUSH_FAILURE_POINTER (string_place); \
1737 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1738 DEBUG_PUSH (failure_id); \
1739 } while (0)
1741 # ifndef DEFINED_ONCE
1742 /* This is the number of items that are pushed and popped on the stack
1743 for each register. */
1744 # define NUM_REG_ITEMS 3
1746 /* Individual items aside from the registers. */
1747 # ifdef DEBUG
1748 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1749 # else
1750 # define NUM_NONREG_ITEMS 4
1751 # endif
1753 /* We push at most this many items on the stack. */
1754 /* We used to use (num_regs - 1), which is the number of registers
1755 this regexp will save; but that was changed to 5
1756 to avoid stack overflow for a regexp with lots of parens. */
1757 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1759 /* We actually push this many items. */
1760 # define NUM_FAILURE_ITEMS \
1761 (((0 \
1762 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1763 * NUM_REG_ITEMS) \
1764 + NUM_NONREG_ITEMS)
1766 /* How many items can still be added to the stack without overflowing it. */
1767 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1768 # endif /* not DEFINED_ONCE */
1771 /* Pops what PUSH_FAIL_STACK pushes.
1773 We restore into the parameters, all of which should be lvalues:
1774 STR -- the saved data position.
1775 PAT -- the saved pattern position.
1776 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1777 REGSTART, REGEND -- arrays of string positions.
1778 REG_INFO -- array of information about each subexpression.
1780 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1781 `pend', `string1', `size1', `string2', and `size2'. */
1782 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1784 DEBUG_STATEMENT (unsigned failure_id;) \
1785 active_reg_t this_reg; \
1786 const UCHAR_T *string_temp; \
1788 assert (!FAIL_STACK_EMPTY ()); \
1790 /* Remove failure points and point to how many regs pushed. */ \
1791 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1792 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1793 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1795 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1797 DEBUG_POP (&failure_id); \
1798 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1800 /* If the saved string location is NULL, it came from an \
1801 on_failure_keep_string_jump opcode, and we want to throw away the \
1802 saved NULL, thus retaining our current position in the string. */ \
1803 string_temp = POP_FAILURE_POINTER (); \
1804 if (string_temp != NULL) \
1805 str = (const CHAR_T *) string_temp; \
1807 DEBUG_PRINT2 (" Popping string %p: `", str); \
1808 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1809 DEBUG_PRINT1 ("'\n"); \
1811 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1812 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1813 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1815 /* Restore register info. */ \
1816 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1817 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1819 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1820 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1822 if (1) \
1823 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1825 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1827 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1828 DEBUG_PRINT2 (" info: %p\n", \
1829 reg_info[this_reg].word.pointer); \
1831 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1832 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1834 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1835 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1837 else \
1839 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1841 reg_info[this_reg].word.integer = 0; \
1842 regend[this_reg] = 0; \
1843 regstart[this_reg] = 0; \
1845 highest_active_reg = high_reg; \
1848 set_regs_matched_done = 0; \
1849 DEBUG_STATEMENT (nfailure_points_popped++); \
1850 } /* POP_FAILURE_POINT */
1852 /* Structure for per-register (a.k.a. per-group) information.
1853 Other register information, such as the
1854 starting and ending positions (which are addresses), and the list of
1855 inner groups (which is a bits list) are maintained in separate
1856 variables.
1858 We are making a (strictly speaking) nonportable assumption here: that
1859 the compiler will pack our bit fields into something that fits into
1860 the type of `word', i.e., is something that fits into one item on the
1861 failure stack. */
1864 /* Declarations and macros for re_match_2. */
1866 typedef union
1868 PREFIX(fail_stack_elt_t) word;
1869 struct
1871 /* This field is one if this group can match the empty string,
1872 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1873 # define MATCH_NULL_UNSET_VALUE 3
1874 unsigned match_null_string_p : 2;
1875 unsigned is_active : 1;
1876 unsigned matched_something : 1;
1877 unsigned ever_matched_something : 1;
1878 } bits;
1879 } PREFIX(register_info_type);
1881 # ifndef DEFINED_ONCE
1882 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1883 # define IS_ACTIVE(R) ((R).bits.is_active)
1884 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1885 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1888 /* Call this when have matched a real character; it sets `matched' flags
1889 for the subexpressions which we are currently inside. Also records
1890 that those subexprs have matched. */
1891 # define SET_REGS_MATCHED() \
1892 do \
1894 if (!set_regs_matched_done) \
1896 active_reg_t r; \
1897 set_regs_matched_done = 1; \
1898 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1900 MATCHED_SOMETHING (reg_info[r]) \
1901 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1902 = 1; \
1906 while (0)
1907 # endif /* not DEFINED_ONCE */
1909 /* Registers are set to a sentinel when they haven't yet matched. */
1910 static CHAR_T PREFIX(reg_unset_dummy);
1911 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1912 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1914 /* Subroutine declarations and macros for regex_compile. */
1915 static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1916 static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1917 int arg1, int arg2));
1918 static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1919 int arg, UCHAR_T *end));
1920 static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1921 int arg1, int arg2, UCHAR_T *end));
1922 static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1923 const CHAR_T *p,
1924 reg_syntax_t syntax));
1925 static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1926 const CHAR_T *pend,
1927 reg_syntax_t syntax));
1928 # ifdef WCHAR
1929 static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1930 const CHAR_T **p_ptr,
1931 const CHAR_T *pend,
1932 char *translate,
1933 reg_syntax_t syntax,
1934 UCHAR_T *b,
1935 CHAR_T *char_set));
1936 static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1937 # else /* BYTE */
1938 static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1939 const char **p_ptr,
1940 const char *pend,
1941 char *translate,
1942 reg_syntax_t syntax,
1943 unsigned char *b));
1944 # endif /* WCHAR */
1946 /* Fetch the next character in the uncompiled pattern---translating it
1947 if necessary. Also cast from a signed character in the constant
1948 string passed to us by the user to an unsigned char that we can use
1949 as an array index (in, e.g., `translate'). */
1950 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1951 because it is impossible to allocate 4GB array for some encodings
1952 which have 4 byte character_set like UCS4. */
1953 # ifndef PATFETCH
1954 # ifdef WCHAR
1955 # define PATFETCH(c) \
1956 do {if (p == pend) return REG_EEND; \
1957 c = (UCHAR_T) *p++; \
1958 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1959 } while (0)
1960 # else /* BYTE */
1961 # define PATFETCH(c) \
1962 do {if (p == pend) return REG_EEND; \
1963 c = (unsigned char) *p++; \
1964 if (translate) c = (unsigned char) translate[c]; \
1965 } while (0)
1966 # endif /* WCHAR */
1967 # endif
1969 /* Fetch the next character in the uncompiled pattern, with no
1970 translation. */
1971 # define PATFETCH_RAW(c) \
1972 do {if (p == pend) return REG_EEND; \
1973 c = (UCHAR_T) *p++; \
1974 } while (0)
1976 /* Go backwards one character in the pattern. */
1977 # define PATUNFETCH p--
1980 /* If `translate' is non-null, return translate[D], else just D. We
1981 cast the subscript to translate because some data is declared as
1982 `char *', to avoid warnings when a string constant is passed. But
1983 when we use a character as a subscript we must make it unsigned. */
1984 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1985 because it is impossible to allocate 4GB array for some encodings
1986 which have 4 byte character_set like UCS4. */
1988 # ifndef TRANSLATE
1989 # ifdef WCHAR
1990 # define TRANSLATE(d) \
1991 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1992 ? (char) translate[(unsigned char) (d)] : (d))
1993 # else /* BYTE */
1994 # define TRANSLATE(d) \
1995 (translate ? (char) translate[(unsigned char) (d)] : (d))
1996 # endif /* WCHAR */
1997 # endif
2000 /* Macros for outputting the compiled pattern into `buffer'. */
2002 /* If the buffer isn't allocated when it comes in, use this. */
2003 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2005 /* Make sure we have at least N more bytes of space in buffer. */
2006 # ifdef WCHAR
2007 # define GET_BUFFER_SPACE(n) \
2008 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2009 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2010 EXTEND_BUFFER ()
2011 # else /* BYTE */
2012 # define GET_BUFFER_SPACE(n) \
2013 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2014 EXTEND_BUFFER ()
2015 # endif /* WCHAR */
2017 /* Make sure we have one more byte of buffer space and then add C to it. */
2018 # define BUF_PUSH(c) \
2019 do { \
2020 GET_BUFFER_SPACE (1); \
2021 *b++ = (UCHAR_T) (c); \
2022 } while (0)
2025 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2026 # define BUF_PUSH_2(c1, c2) \
2027 do { \
2028 GET_BUFFER_SPACE (2); \
2029 *b++ = (UCHAR_T) (c1); \
2030 *b++ = (UCHAR_T) (c2); \
2031 } while (0)
2034 /* As with BUF_PUSH_2, except for three bytes. */
2035 # define BUF_PUSH_3(c1, c2, c3) \
2036 do { \
2037 GET_BUFFER_SPACE (3); \
2038 *b++ = (UCHAR_T) (c1); \
2039 *b++ = (UCHAR_T) (c2); \
2040 *b++ = (UCHAR_T) (c3); \
2041 } while (0)
2043 /* Store a jump with opcode OP at LOC to location TO. We store a
2044 relative address offset by the three bytes the jump itself occupies. */
2045 # define STORE_JUMP(op, loc, to) \
2046 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2048 /* Likewise, for a two-argument jump. */
2049 # define STORE_JUMP2(op, loc, to, arg) \
2050 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2052 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2053 # define INSERT_JUMP(op, loc, to) \
2054 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2056 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2057 # define INSERT_JUMP2(op, loc, to, arg) \
2058 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2059 arg, b)
2061 /* This is not an arbitrary limit: the arguments which represent offsets
2062 into the pattern are two bytes long. So if 2^16 bytes turns out to
2063 be too small, many things would have to change. */
2064 /* Any other compiler which, like MSC, has allocation limit below 2^16
2065 bytes will have to use approach similar to what was done below for
2066 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2067 reallocating to 0 bytes. Such thing is not going to work too well.
2068 You have been warned!! */
2069 # ifndef DEFINED_ONCE
2070 # if defined _MSC_VER && !defined WIN32
2071 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2072 The REALLOC define eliminates a flurry of conversion warnings,
2073 but is not required. */
2074 # define MAX_BUF_SIZE 65500L
2075 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2076 # else
2077 # define MAX_BUF_SIZE (1L << 16)
2078 # define REALLOC(p,s) realloc ((p), (s))
2079 # endif
2081 /* Extend the buffer by twice its current size via realloc and
2082 reset the pointers that pointed into the old block to point to the
2083 correct places in the new one. If extending the buffer results in it
2084 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2085 # if __BOUNDED_POINTERS__
2086 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2087 # define MOVE_BUFFER_POINTER(P) \
2088 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2089 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2090 else \
2092 SET_HIGH_BOUND (b); \
2093 SET_HIGH_BOUND (begalt); \
2094 if (fixup_alt_jump) \
2095 SET_HIGH_BOUND (fixup_alt_jump); \
2096 if (laststart) \
2097 SET_HIGH_BOUND (laststart); \
2098 if (pending_exact) \
2099 SET_HIGH_BOUND (pending_exact); \
2101 # else
2102 # define MOVE_BUFFER_POINTER(P) (P) += incr
2103 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2104 # endif
2105 # endif /* not DEFINED_ONCE */
2107 # ifdef WCHAR
2108 # define EXTEND_BUFFER() \
2109 do { \
2110 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2111 int wchar_count; \
2112 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2113 return REG_ESIZE; \
2114 bufp->allocated <<= 1; \
2115 if (bufp->allocated > MAX_BUF_SIZE) \
2116 bufp->allocated = MAX_BUF_SIZE; \
2117 /* How many characters the new buffer can have? */ \
2118 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2119 if (wchar_count == 0) wchar_count = 1; \
2120 /* Truncate the buffer to CHAR_T align. */ \
2121 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2122 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2123 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2124 if (COMPILED_BUFFER_VAR == NULL) \
2125 return REG_ESPACE; \
2126 /* If the buffer moved, move all the pointers into it. */ \
2127 if (old_buffer != COMPILED_BUFFER_VAR) \
2129 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2130 MOVE_BUFFER_POINTER (b); \
2131 MOVE_BUFFER_POINTER (begalt); \
2132 if (fixup_alt_jump) \
2133 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2134 if (laststart) \
2135 MOVE_BUFFER_POINTER (laststart); \
2136 if (pending_exact) \
2137 MOVE_BUFFER_POINTER (pending_exact); \
2139 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2140 } while (0)
2141 # else /* BYTE */
2142 # define EXTEND_BUFFER() \
2143 do { \
2144 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2145 if (bufp->allocated == MAX_BUF_SIZE) \
2146 return REG_ESIZE; \
2147 bufp->allocated <<= 1; \
2148 if (bufp->allocated > MAX_BUF_SIZE) \
2149 bufp->allocated = MAX_BUF_SIZE; \
2150 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2151 bufp->allocated); \
2152 if (COMPILED_BUFFER_VAR == NULL) \
2153 return REG_ESPACE; \
2154 /* If the buffer moved, move all the pointers into it. */ \
2155 if (old_buffer != COMPILED_BUFFER_VAR) \
2157 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2158 MOVE_BUFFER_POINTER (b); \
2159 MOVE_BUFFER_POINTER (begalt); \
2160 if (fixup_alt_jump) \
2161 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2162 if (laststart) \
2163 MOVE_BUFFER_POINTER (laststart); \
2164 if (pending_exact) \
2165 MOVE_BUFFER_POINTER (pending_exact); \
2167 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2168 } while (0)
2169 # endif /* WCHAR */
2171 # ifndef DEFINED_ONCE
2172 /* Since we have one byte reserved for the register number argument to
2173 {start,stop}_memory, the maximum number of groups we can report
2174 things about is what fits in that byte. */
2175 # define MAX_REGNUM 255
2177 /* But patterns can have more than `MAX_REGNUM' registers. We just
2178 ignore the excess. */
2179 typedef unsigned regnum_t;
2182 /* Macros for the compile stack. */
2184 /* Since offsets can go either forwards or backwards, this type needs to
2185 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2186 /* int may be not enough when sizeof(int) == 2. */
2187 typedef long pattern_offset_t;
2189 typedef struct
2191 pattern_offset_t begalt_offset;
2192 pattern_offset_t fixup_alt_jump;
2193 pattern_offset_t inner_group_offset;
2194 pattern_offset_t laststart_offset;
2195 regnum_t regnum;
2196 } compile_stack_elt_t;
2199 typedef struct
2201 compile_stack_elt_t *stack;
2202 unsigned size;
2203 unsigned avail; /* Offset of next open position. */
2204 } compile_stack_type;
2207 # define INIT_COMPILE_STACK_SIZE 32
2209 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2210 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2212 /* The next available element. */
2213 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2215 # endif /* not DEFINED_ONCE */
2217 /* Set the bit for character C in a list. */
2218 # ifndef DEFINED_ONCE
2219 # define SET_LIST_BIT(c) \
2220 (b[((unsigned char) (c)) / BYTEWIDTH] \
2221 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2222 # endif /* DEFINED_ONCE */
2224 /* Get the next unsigned number in the uncompiled pattern. */
2225 # define GET_UNSIGNED_NUMBER(num) \
2227 while (p != pend) \
2229 PATFETCH (c); \
2230 if (c < '0' || c > '9') \
2231 break; \
2232 if (num <= RE_DUP_MAX) \
2234 if (num < 0) \
2235 num = 0; \
2236 num = num * 10 + c - '0'; \
2241 # ifndef DEFINED_ONCE
2242 # if defined _LIBC || WIDE_CHAR_SUPPORT
2243 /* The GNU C library provides support for user-defined character classes
2244 and the functions from ISO C amendement 1. */
2245 # ifdef CHARCLASS_NAME_MAX
2246 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2247 # else
2248 /* This shouldn't happen but some implementation might still have this
2249 problem. Use a reasonable default value. */
2250 # define CHAR_CLASS_MAX_LENGTH 256
2251 # endif
2253 # ifdef _LIBC
2254 # define IS_CHAR_CLASS(string) __wctype (string)
2255 # else
2256 # define IS_CHAR_CLASS(string) wctype (string)
2257 # endif
2258 # else
2259 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2261 # define IS_CHAR_CLASS(string) \
2262 (STREQ (string, "alpha") || STREQ (string, "upper") \
2263 || STREQ (string, "lower") || STREQ (string, "digit") \
2264 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2265 || STREQ (string, "space") || STREQ (string, "print") \
2266 || STREQ (string, "punct") || STREQ (string, "graph") \
2267 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2268 # endif
2269 # endif /* DEFINED_ONCE */
2271 # ifndef MATCH_MAY_ALLOCATE
2273 /* If we cannot allocate large objects within re_match_2_internal,
2274 we make the fail stack and register vectors global.
2275 The fail stack, we grow to the maximum size when a regexp
2276 is compiled.
2277 The register vectors, we adjust in size each time we
2278 compile a regexp, according to the number of registers it needs. */
2280 static PREFIX(fail_stack_type) fail_stack;
2282 /* Size with which the following vectors are currently allocated.
2283 That is so we can make them bigger as needed,
2284 but never make them smaller. */
2285 # ifdef DEFINED_ONCE
2286 static int regs_allocated_size;
2288 static const char ** regstart, ** regend;
2289 static const char ** old_regstart, ** old_regend;
2290 static const char **best_regstart, **best_regend;
2291 static const char **reg_dummy;
2292 # endif /* DEFINED_ONCE */
2294 static PREFIX(register_info_type) *PREFIX(reg_info);
2295 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2297 /* Make the register vectors big enough for NUM_REGS registers,
2298 but don't make them smaller. */
2300 static void
2301 PREFIX(regex_grow_registers) (num_regs)
2302 int num_regs;
2304 if (num_regs > regs_allocated_size)
2306 RETALLOC_IF (regstart, num_regs, const char *);
2307 RETALLOC_IF (regend, num_regs, const char *);
2308 RETALLOC_IF (old_regstart, num_regs, const char *);
2309 RETALLOC_IF (old_regend, num_regs, const char *);
2310 RETALLOC_IF (best_regstart, num_regs, const char *);
2311 RETALLOC_IF (best_regend, num_regs, const char *);
2312 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2313 RETALLOC_IF (reg_dummy, num_regs, const char *);
2314 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2316 regs_allocated_size = num_regs;
2320 # endif /* not MATCH_MAY_ALLOCATE */
2322 # ifndef DEFINED_ONCE
2323 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2324 compile_stack,
2325 regnum_t regnum));
2326 # endif /* not DEFINED_ONCE */
2328 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2329 Returns one of error codes defined in `regex.h', or zero for success.
2331 Assumes the `allocated' (and perhaps `buffer') and `translate'
2332 fields are set in BUFP on entry.
2334 If it succeeds, results are put in BUFP (if it returns an error, the
2335 contents of BUFP are undefined):
2336 `buffer' is the compiled pattern;
2337 `syntax' is set to SYNTAX;
2338 `used' is set to the length of the compiled pattern;
2339 `fastmap_accurate' is zero;
2340 `re_nsub' is the number of subexpressions in PATTERN;
2341 `not_bol' and `not_eol' are zero;
2343 The `fastmap' and `newline_anchor' fields are neither
2344 examined nor set. */
2346 /* Return, freeing storage we allocated. */
2347 # ifdef WCHAR
2348 # define FREE_STACK_RETURN(value) \
2349 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2350 # else
2351 # define FREE_STACK_RETURN(value) \
2352 return (free (compile_stack.stack), value)
2353 # endif /* WCHAR */
2355 static reg_errcode_t
2356 PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2357 const char *ARG_PREFIX(pattern);
2358 size_t ARG_PREFIX(size);
2359 reg_syntax_t syntax;
2360 struct re_pattern_buffer *bufp;
2362 /* We fetch characters from PATTERN here. Even though PATTERN is
2363 `char *' (i.e., signed), we declare these variables as unsigned, so
2364 they can be reliably used as array indices. */
2365 register UCHAR_T c, c1;
2367 #ifdef WCHAR
2368 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2369 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2370 size_t size;
2371 /* offset buffer for optimization. See convert_mbs_to_wc. */
2372 int *mbs_offset = NULL;
2373 /* It hold whether each wchar_t is binary data or not. */
2374 char *is_binary = NULL;
2375 /* A flag whether exactn is handling binary data or not. */
2376 char is_exactn_bin = FALSE;
2377 #endif /* WCHAR */
2379 /* A random temporary spot in PATTERN. */
2380 const CHAR_T *p1;
2382 /* Points to the end of the buffer, where we should append. */
2383 register UCHAR_T *b;
2385 /* Keeps track of unclosed groups. */
2386 compile_stack_type compile_stack;
2388 /* Points to the current (ending) position in the pattern. */
2389 #ifdef WCHAR
2390 const CHAR_T *p;
2391 const CHAR_T *pend;
2392 #else /* BYTE */
2393 const CHAR_T *p = pattern;
2394 const CHAR_T *pend = pattern + size;
2395 #endif /* WCHAR */
2397 /* How to translate the characters in the pattern. */
2398 RE_TRANSLATE_TYPE translate = bufp->translate;
2400 /* Address of the count-byte of the most recently inserted `exactn'
2401 command. This makes it possible to tell if a new exact-match
2402 character can be added to that command or if the character requires
2403 a new `exactn' command. */
2404 UCHAR_T *pending_exact = 0;
2406 /* Address of start of the most recently finished expression.
2407 This tells, e.g., postfix * where to find the start of its
2408 operand. Reset at the beginning of groups and alternatives. */
2409 UCHAR_T *laststart = 0;
2411 /* Address of beginning of regexp, or inside of last group. */
2412 UCHAR_T *begalt;
2414 /* Address of the place where a forward jump should go to the end of
2415 the containing expression. Each alternative of an `or' -- except the
2416 last -- ends with a forward jump of this sort. */
2417 UCHAR_T *fixup_alt_jump = 0;
2419 /* Counts open-groups as they are encountered. Remembered for the
2420 matching close-group on the compile stack, so the same register
2421 number is put in the stop_memory as the start_memory. */
2422 regnum_t regnum = 0;
2424 #ifdef WCHAR
2425 /* Initialize the wchar_t PATTERN and offset_buffer. */
2426 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2427 mbs_offset = TALLOC(csize + 1, int);
2428 is_binary = TALLOC(csize + 1, char);
2429 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2431 free(pattern);
2432 free(mbs_offset);
2433 free(is_binary);
2434 return REG_ESPACE;
2436 pattern[csize] = L'\0'; /* sentinel */
2437 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2438 pend = p + size;
2439 if (size < 0)
2441 free(pattern);
2442 free(mbs_offset);
2443 free(is_binary);
2444 return REG_BADPAT;
2446 #endif
2448 #ifdef DEBUG
2449 DEBUG_PRINT1 ("\nCompiling pattern: ");
2450 if (debug)
2452 unsigned debug_count;
2454 for (debug_count = 0; debug_count < size; debug_count++)
2455 PUT_CHAR (pattern[debug_count]);
2456 putchar ('\n');
2458 #endif /* DEBUG */
2460 /* Initialize the compile stack. */
2461 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2462 if (compile_stack.stack == NULL)
2464 #ifdef WCHAR
2465 free(pattern);
2466 free(mbs_offset);
2467 free(is_binary);
2468 #endif
2469 return REG_ESPACE;
2472 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2473 compile_stack.avail = 0;
2475 /* Initialize the pattern buffer. */
2476 bufp->syntax = syntax;
2477 bufp->fastmap_accurate = 0;
2478 bufp->not_bol = bufp->not_eol = 0;
2480 /* Set `used' to zero, so that if we return an error, the pattern
2481 printer (for debugging) will think there's no pattern. We reset it
2482 at the end. */
2483 bufp->used = 0;
2485 /* Always count groups, whether or not bufp->no_sub is set. */
2486 bufp->re_nsub = 0;
2488 #if !defined emacs && !defined SYNTAX_TABLE
2489 /* Initialize the syntax table. */
2490 init_syntax_once ();
2491 #endif
2493 if (bufp->allocated == 0)
2495 if (bufp->buffer)
2496 { /* If zero allocated, but buffer is non-null, try to realloc
2497 enough space. This loses if buffer's address is bogus, but
2498 that is the user's responsibility. */
2499 #ifdef WCHAR
2500 /* Free bufp->buffer and allocate an array for wchar_t pattern
2501 buffer. */
2502 free(bufp->buffer);
2503 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2504 UCHAR_T);
2505 #else
2506 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2507 #endif /* WCHAR */
2509 else
2510 { /* Caller did not allocate a buffer. Do it for them. */
2511 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2512 UCHAR_T);
2515 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2516 #ifdef WCHAR
2517 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2518 #endif /* WCHAR */
2519 bufp->allocated = INIT_BUF_SIZE;
2521 #ifdef WCHAR
2522 else
2523 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2524 #endif
2526 begalt = b = COMPILED_BUFFER_VAR;
2528 /* Loop through the uncompiled pattern until we're at the end. */
2529 while (p != pend)
2531 PATFETCH (c);
2533 switch (c)
2535 case '^':
2537 if ( /* If at start of pattern, it's an operator. */
2538 p == pattern + 1
2539 /* If context independent, it's an operator. */
2540 || syntax & RE_CONTEXT_INDEP_ANCHORS
2541 /* Otherwise, depends on what's come before. */
2542 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2543 BUF_PUSH (begline);
2544 else
2545 goto normal_char;
2547 break;
2550 case '$':
2552 if ( /* If at end of pattern, it's an operator. */
2553 p == pend
2554 /* If context independent, it's an operator. */
2555 || syntax & RE_CONTEXT_INDEP_ANCHORS
2556 /* Otherwise, depends on what's next. */
2557 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2558 BUF_PUSH (endline);
2559 else
2560 goto normal_char;
2562 break;
2565 case '+':
2566 case '?':
2567 if ((syntax & RE_BK_PLUS_QM)
2568 || (syntax & RE_LIMITED_OPS))
2569 goto normal_char;
2570 handle_plus:
2571 case '*':
2572 /* If there is no previous pattern... */
2573 if (!laststart)
2575 if (syntax & RE_CONTEXT_INVALID_OPS)
2576 FREE_STACK_RETURN (REG_BADRPT);
2577 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2578 goto normal_char;
2582 /* Are we optimizing this jump? */
2583 boolean keep_string_p = false;
2585 /* 1 means zero (many) matches is allowed. */
2586 char zero_times_ok = 0, many_times_ok = 0;
2588 /* If there is a sequence of repetition chars, collapse it
2589 down to just one (the right one). We can't combine
2590 interval operators with these because of, e.g., `a{2}*',
2591 which should only match an even number of `a's. */
2593 for (;;)
2595 zero_times_ok |= c != '+';
2596 many_times_ok |= c != '?';
2598 if (p == pend)
2599 break;
2601 PATFETCH (c);
2603 if (c == '*'
2604 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2607 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2609 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2611 PATFETCH (c1);
2612 if (!(c1 == '+' || c1 == '?'))
2614 PATUNFETCH;
2615 PATUNFETCH;
2616 break;
2619 c = c1;
2621 else
2623 PATUNFETCH;
2624 break;
2627 /* If we get here, we found another repeat character. */
2630 /* Star, etc. applied to an empty pattern is equivalent
2631 to an empty pattern. */
2632 if (!laststart)
2633 break;
2635 /* Now we know whether or not zero matches is allowed
2636 and also whether or not two or more matches is allowed. */
2637 if (many_times_ok)
2638 { /* More than one repetition is allowed, so put in at the
2639 end a backward relative jump from `b' to before the next
2640 jump we're going to put in below (which jumps from
2641 laststart to after this jump).
2643 But if we are at the `*' in the exact sequence `.*\n',
2644 insert an unconditional jump backwards to the .,
2645 instead of the beginning of the loop. This way we only
2646 push a failure point once, instead of every time
2647 through the loop. */
2648 assert (p - 1 > pattern);
2650 /* Allocate the space for the jump. */
2651 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2653 /* We know we are not at the first character of the pattern,
2654 because laststart was nonzero. And we've already
2655 incremented `p', by the way, to be the character after
2656 the `*'. Do we have to do something analogous here
2657 for null bytes, because of RE_DOT_NOT_NULL? */
2658 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2659 && zero_times_ok
2660 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2661 && !(syntax & RE_DOT_NEWLINE))
2662 { /* We have .*\n. */
2663 STORE_JUMP (jump, b, laststart);
2664 keep_string_p = true;
2666 else
2667 /* Anything else. */
2668 STORE_JUMP (maybe_pop_jump, b, laststart -
2669 (1 + OFFSET_ADDRESS_SIZE));
2671 /* We've added more stuff to the buffer. */
2672 b += 1 + OFFSET_ADDRESS_SIZE;
2675 /* On failure, jump from laststart to b + 3, which will be the
2676 end of the buffer after this jump is inserted. */
2677 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2678 'b + 3'. */
2679 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2680 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2681 : on_failure_jump,
2682 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2683 pending_exact = 0;
2684 b += 1 + OFFSET_ADDRESS_SIZE;
2686 if (!zero_times_ok)
2688 /* At least one repetition is required, so insert a
2689 `dummy_failure_jump' before the initial
2690 `on_failure_jump' instruction of the loop. This
2691 effects a skip over that instruction the first time
2692 we hit that loop. */
2693 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2694 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2695 2 + 2 * OFFSET_ADDRESS_SIZE);
2696 b += 1 + OFFSET_ADDRESS_SIZE;
2699 break;
2702 case '.':
2703 laststart = b;
2704 BUF_PUSH (anychar);
2705 break;
2708 case '[':
2710 boolean had_char_class = false;
2711 #ifdef WCHAR
2712 CHAR_T range_start = 0xffffffff;
2713 #else
2714 unsigned int range_start = 0xffffffff;
2715 #endif
2716 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2718 #ifdef WCHAR
2719 /* We assume a charset(_not) structure as a wchar_t array.
2720 charset[0] = (re_opcode_t) charset(_not)
2721 charset[1] = l (= length of char_classes)
2722 charset[2] = m (= length of collating_symbols)
2723 charset[3] = n (= length of equivalence_classes)
2724 charset[4] = o (= length of char_ranges)
2725 charset[5] = p (= length of chars)
2727 charset[6] = char_class (wctype_t)
2728 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2730 charset[l+5] = char_class (wctype_t)
2732 charset[l+6] = collating_symbol (wchar_t)
2734 charset[l+m+5] = collating_symbol (wchar_t)
2735 ifdef _LIBC we use the index if
2736 _NL_COLLATE_SYMB_EXTRAMB instead of
2737 wchar_t string.
2739 charset[l+m+6] = equivalence_classes (wchar_t)
2741 charset[l+m+n+5] = equivalence_classes (wchar_t)
2742 ifdef _LIBC we use the index in
2743 _NL_COLLATE_WEIGHT instead of
2744 wchar_t string.
2746 charset[l+m+n+6] = range_start
2747 charset[l+m+n+7] = range_end
2749 charset[l+m+n+2o+4] = range_start
2750 charset[l+m+n+2o+5] = range_end
2751 ifdef _LIBC we use the value looked up
2752 in _NL_COLLATE_COLLSEQ instead of
2753 wchar_t character.
2755 charset[l+m+n+2o+6] = char
2757 charset[l+m+n+2o+p+5] = char
2761 /* We need at least 6 spaces: the opcode, the length of
2762 char_classes, the length of collating_symbols, the length of
2763 equivalence_classes, the length of char_ranges, the length of
2764 chars. */
2765 GET_BUFFER_SPACE (6);
2767 /* Save b as laststart. And We use laststart as the pointer
2768 to the first element of the charset here.
2769 In other words, laststart[i] indicates charset[i]. */
2770 laststart = b;
2772 /* We test `*p == '^' twice, instead of using an if
2773 statement, so we only need one BUF_PUSH. */
2774 BUF_PUSH (*p == '^' ? charset_not : charset);
2775 if (*p == '^')
2776 p++;
2778 /* Push the length of char_classes, the length of
2779 collating_symbols, the length of equivalence_classes, the
2780 length of char_ranges and the length of chars. */
2781 BUF_PUSH_3 (0, 0, 0);
2782 BUF_PUSH_2 (0, 0);
2784 /* Remember the first position in the bracket expression. */
2785 p1 = p;
2787 /* charset_not matches newline according to a syntax bit. */
2788 if ((re_opcode_t) b[-6] == charset_not
2789 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2791 BUF_PUSH('\n');
2792 laststart[5]++; /* Update the length of characters */
2795 /* Read in characters and ranges, setting map bits. */
2796 for (;;)
2798 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2800 PATFETCH (c);
2802 /* \ might escape characters inside [...] and [^...]. */
2803 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2805 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2807 PATFETCH (c1);
2808 BUF_PUSH(c1);
2809 laststart[5]++; /* Update the length of chars */
2810 range_start = c1;
2811 continue;
2814 /* Could be the end of the bracket expression. If it's
2815 not (i.e., when the bracket expression is `[]' so
2816 far), the ']' character bit gets set way below. */
2817 if (c == ']' && p != p1 + 1)
2818 break;
2820 /* Look ahead to see if it's a range when the last thing
2821 was a character class. */
2822 if (had_char_class && c == '-' && *p != ']')
2823 FREE_STACK_RETURN (REG_ERANGE);
2825 /* Look ahead to see if it's a range when the last thing
2826 was a character: if this is a hyphen not at the
2827 beginning or the end of a list, then it's the range
2828 operator. */
2829 if (c == '-'
2830 && !(p - 2 >= pattern && p[-2] == '[')
2831 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2832 && *p != ']')
2834 reg_errcode_t ret;
2835 /* Allocate the space for range_start and range_end. */
2836 GET_BUFFER_SPACE (2);
2837 /* Update the pointer to indicate end of buffer. */
2838 b += 2;
2839 ret = wcs_compile_range (range_start, &p, pend, translate,
2840 syntax, b, laststart);
2841 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2842 range_start = 0xffffffff;
2844 else if (p[0] == '-' && p[1] != ']')
2845 { /* This handles ranges made up of characters only. */
2846 reg_errcode_t ret;
2848 /* Move past the `-'. */
2849 PATFETCH (c1);
2850 /* Allocate the space for range_start and range_end. */
2851 GET_BUFFER_SPACE (2);
2852 /* Update the pointer to indicate end of buffer. */
2853 b += 2;
2854 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2855 laststart);
2856 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2857 range_start = 0xffffffff;
2860 /* See if we're at the beginning of a possible character
2861 class. */
2862 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2863 { /* Leave room for the null. */
2864 char str[CHAR_CLASS_MAX_LENGTH + 1];
2866 PATFETCH (c);
2867 c1 = 0;
2869 /* If pattern is `[[:'. */
2870 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2872 for (;;)
2874 PATFETCH (c);
2875 if ((c == ':' && *p == ']') || p == pend)
2876 break;
2877 if (c1 < CHAR_CLASS_MAX_LENGTH)
2878 str[c1++] = c;
2879 else
2880 /* This is in any case an invalid class name. */
2881 str[0] = '\0';
2883 str[c1] = '\0';
2885 /* If isn't a word bracketed by `[:' and `:]':
2886 undo the ending character, the letters, and leave
2887 the leading `:' and `[' (but store them as character). */
2888 if (c == ':' && *p == ']')
2890 wctype_t wt;
2891 uintptr_t alignedp;
2893 /* Query the character class as wctype_t. */
2894 wt = IS_CHAR_CLASS (str);
2895 if (wt == 0)
2896 FREE_STACK_RETURN (REG_ECTYPE);
2898 /* Throw away the ] at the end of the character
2899 class. */
2900 PATFETCH (c);
2902 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2904 /* Allocate the space for character class. */
2905 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2906 /* Update the pointer to indicate end of buffer. */
2907 b += CHAR_CLASS_SIZE;
2908 /* Move data which follow character classes
2909 not to violate the data. */
2910 insert_space(CHAR_CLASS_SIZE,
2911 laststart + 6 + laststart[1],
2912 b - 1);
2913 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2914 + __alignof__(wctype_t) - 1)
2915 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2916 /* Store the character class. */
2917 *((wctype_t*)alignedp) = wt;
2918 /* Update length of char_classes */
2919 laststart[1] += CHAR_CLASS_SIZE;
2921 had_char_class = true;
2923 else
2925 c1++;
2926 while (c1--)
2927 PATUNFETCH;
2928 BUF_PUSH ('[');
2929 BUF_PUSH (':');
2930 laststart[5] += 2; /* Update the length of characters */
2931 range_start = ':';
2932 had_char_class = false;
2935 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2936 || *p == '.'))
2938 CHAR_T str[128]; /* Should be large enough. */
2939 CHAR_T delim = *p; /* '=' or '.' */
2940 # ifdef _LIBC
2941 uint32_t nrules =
2942 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2943 # endif
2944 PATFETCH (c);
2945 c1 = 0;
2947 /* If pattern is `[[=' or '[[.'. */
2948 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2950 for (;;)
2952 PATFETCH (c);
2953 if ((c == delim && *p == ']') || p == pend)
2954 break;
2955 if (c1 < sizeof (str) - 1)
2956 str[c1++] = c;
2957 else
2958 /* This is in any case an invalid class name. */
2959 str[0] = '\0';
2961 str[c1] = '\0';
2963 if (c == delim && *p == ']' && str[0] != '\0')
2965 unsigned int i, offset;
2966 /* If we have no collation data we use the default
2967 collation in which each character is in a class
2968 by itself. It also means that ASCII is the
2969 character set and therefore we cannot have character
2970 with more than one byte in the multibyte
2971 representation. */
2973 /* If not defined _LIBC, we push the name and
2974 `\0' for the sake of matching performance. */
2975 int datasize = c1 + 1;
2977 # ifdef _LIBC
2978 int32_t idx = 0;
2979 if (nrules == 0)
2980 # endif
2982 if (c1 != 1)
2983 FREE_STACK_RETURN (REG_ECOLLATE);
2985 # ifdef _LIBC
2986 else
2988 const int32_t *table;
2989 const int32_t *weights;
2990 const int32_t *extra;
2991 const int32_t *indirect;
2992 wint_t *cp;
2994 /* This #include defines a local function! */
2995 # include <locale/weightwc.h>
2997 if(delim == '=')
2999 /* We push the index for equivalence class. */
3000 cp = (wint_t*)str;
3002 table = (const int32_t *)
3003 _NL_CURRENT (LC_COLLATE,
3004 _NL_COLLATE_TABLEWC);
3005 weights = (const int32_t *)
3006 _NL_CURRENT (LC_COLLATE,
3007 _NL_COLLATE_WEIGHTWC);
3008 extra = (const int32_t *)
3009 _NL_CURRENT (LC_COLLATE,
3010 _NL_COLLATE_EXTRAWC);
3011 indirect = (const int32_t *)
3012 _NL_CURRENT (LC_COLLATE,
3013 _NL_COLLATE_INDIRECTWC);
3015 idx = findidx ((const wint_t**)&cp);
3016 if (idx == 0 || cp < (wint_t*) str + c1)
3017 /* This is no valid character. */
3018 FREE_STACK_RETURN (REG_ECOLLATE);
3020 str[0] = (wchar_t)idx;
3022 else /* delim == '.' */
3024 /* We push collation sequence value
3025 for collating symbol. */
3026 int32_t table_size;
3027 const int32_t *symb_table;
3028 const unsigned char *extra;
3029 int32_t idx;
3030 int32_t elem;
3031 int32_t second;
3032 int32_t hash;
3033 char char_str[c1];
3035 /* We have to convert the name to a single-byte
3036 string. This is possible since the names
3037 consist of ASCII characters and the internal
3038 representation is UCS4. */
3039 for (i = 0; i < c1; ++i)
3040 char_str[i] = str[i];
3042 table_size =
3043 _NL_CURRENT_WORD (LC_COLLATE,
3044 _NL_COLLATE_SYMB_HASH_SIZEMB);
3045 symb_table = (const int32_t *)
3046 _NL_CURRENT (LC_COLLATE,
3047 _NL_COLLATE_SYMB_TABLEMB);
3048 extra = (const unsigned char *)
3049 _NL_CURRENT (LC_COLLATE,
3050 _NL_COLLATE_SYMB_EXTRAMB);
3052 /* Locate the character in the hashing table. */
3053 hash = elem_hash (char_str, c1);
3055 idx = 0;
3056 elem = hash % table_size;
3057 second = hash % (table_size - 2);
3058 while (symb_table[2 * elem] != 0)
3060 /* First compare the hashing value. */
3061 if (symb_table[2 * elem] == hash
3062 && c1 == extra[symb_table[2 * elem + 1]]
3063 && memcmp (char_str,
3064 &extra[symb_table[2 * elem + 1]
3065 + 1], c1) == 0)
3067 /* Yep, this is the entry. */
3068 idx = symb_table[2 * elem + 1];
3069 idx += 1 + extra[idx];
3070 break;
3073 /* Next entry. */
3074 elem += second;
3077 if (symb_table[2 * elem] != 0)
3079 /* Compute the index of the byte sequence
3080 in the table. */
3081 idx += 1 + extra[idx];
3082 /* Adjust for the alignment. */
3083 idx = (idx + 3) & ~3;
3085 str[0] = (wchar_t) idx + 4;
3087 else if (symb_table[2 * elem] == 0 && c1 == 1)
3089 /* No valid character. Match it as a
3090 single byte character. */
3091 had_char_class = false;
3092 BUF_PUSH(str[0]);
3093 /* Update the length of characters */
3094 laststart[5]++;
3095 range_start = str[0];
3097 /* Throw away the ] at the end of the
3098 collating symbol. */
3099 PATFETCH (c);
3100 /* exit from the switch block. */
3101 continue;
3103 else
3104 FREE_STACK_RETURN (REG_ECOLLATE);
3106 datasize = 1;
3108 # endif
3109 /* Throw away the ] at the end of the equivalence
3110 class (or collating symbol). */
3111 PATFETCH (c);
3113 /* Allocate the space for the equivalence class
3114 (or collating symbol) (and '\0' if needed). */
3115 GET_BUFFER_SPACE(datasize);
3116 /* Update the pointer to indicate end of buffer. */
3117 b += datasize;
3119 if (delim == '=')
3120 { /* equivalence class */
3121 /* Calculate the offset of char_ranges,
3122 which is next to equivalence_classes. */
3123 offset = laststart[1] + laststart[2]
3124 + laststart[3] +6;
3125 /* Insert space. */
3126 insert_space(datasize, laststart + offset, b - 1);
3128 /* Write the equivalence_class and \0. */
3129 for (i = 0 ; i < datasize ; i++)
3130 laststart[offset + i] = str[i];
3132 /* Update the length of equivalence_classes. */
3133 laststart[3] += datasize;
3134 had_char_class = true;
3136 else /* delim == '.' */
3137 { /* collating symbol */
3138 /* Calculate the offset of the equivalence_classes,
3139 which is next to collating_symbols. */
3140 offset = laststart[1] + laststart[2] + 6;
3141 /* Insert space and write the collationg_symbol
3142 and \0. */
3143 insert_space(datasize, laststart + offset, b-1);
3144 for (i = 0 ; i < datasize ; i++)
3145 laststart[offset + i] = str[i];
3147 /* In re_match_2_internal if range_start < -1, we
3148 assume -range_start is the offset of the
3149 collating symbol which is specified as
3150 the character of the range start. So we assign
3151 -(laststart[1] + laststart[2] + 6) to
3152 range_start. */
3153 range_start = -(laststart[1] + laststart[2] + 6);
3154 /* Update the length of collating_symbol. */
3155 laststart[2] += datasize;
3156 had_char_class = false;
3159 else
3161 c1++;
3162 while (c1--)
3163 PATUNFETCH;
3164 BUF_PUSH ('[');
3165 BUF_PUSH (delim);
3166 laststart[5] += 2; /* Update the length of characters */
3167 range_start = delim;
3168 had_char_class = false;
3171 else
3173 had_char_class = false;
3174 BUF_PUSH(c);
3175 laststart[5]++; /* Update the length of characters */
3176 range_start = c;
3180 #else /* BYTE */
3181 /* Ensure that we have enough space to push a charset: the
3182 opcode, the length count, and the bitset; 34 bytes in all. */
3183 GET_BUFFER_SPACE (34);
3185 laststart = b;
3187 /* We test `*p == '^' twice, instead of using an if
3188 statement, so we only need one BUF_PUSH. */
3189 BUF_PUSH (*p == '^' ? charset_not : charset);
3190 if (*p == '^')
3191 p++;
3193 /* Remember the first position in the bracket expression. */
3194 p1 = p;
3196 /* Push the number of bytes in the bitmap. */
3197 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3199 /* Clear the whole map. */
3200 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3202 /* charset_not matches newline according to a syntax bit. */
3203 if ((re_opcode_t) b[-2] == charset_not
3204 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3205 SET_LIST_BIT ('\n');
3207 /* Read in characters and ranges, setting map bits. */
3208 for (;;)
3210 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3212 PATFETCH (c);
3214 /* \ might escape characters inside [...] and [^...]. */
3215 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3217 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3219 PATFETCH (c1);
3220 SET_LIST_BIT (c1);
3221 range_start = c1;
3222 continue;
3225 /* Could be the end of the bracket expression. If it's
3226 not (i.e., when the bracket expression is `[]' so
3227 far), the ']' character bit gets set way below. */
3228 if (c == ']' && p != p1 + 1)
3229 break;
3231 /* Look ahead to see if it's a range when the last thing
3232 was a character class. */
3233 if (had_char_class && c == '-' && *p != ']')
3234 FREE_STACK_RETURN (REG_ERANGE);
3236 /* Look ahead to see if it's a range when the last thing
3237 was a character: if this is a hyphen not at the
3238 beginning or the end of a list, then it's the range
3239 operator. */
3240 if (c == '-'
3241 && !(p - 2 >= pattern && p[-2] == '[')
3242 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3243 && *p != ']')
3245 reg_errcode_t ret
3246 = byte_compile_range (range_start, &p, pend, translate,
3247 syntax, b);
3248 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3249 range_start = 0xffffffff;
3252 else if (p[0] == '-' && p[1] != ']')
3253 { /* This handles ranges made up of characters only. */
3254 reg_errcode_t ret;
3256 /* Move past the `-'. */
3257 PATFETCH (c1);
3259 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3260 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3261 range_start = 0xffffffff;
3264 /* See if we're at the beginning of a possible character
3265 class. */
3267 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3268 { /* Leave room for the null. */
3269 char str[CHAR_CLASS_MAX_LENGTH + 1];
3271 PATFETCH (c);
3272 c1 = 0;
3274 /* If pattern is `[[:'. */
3275 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3277 for (;;)
3279 PATFETCH (c);
3280 if ((c == ':' && *p == ']') || p == pend)
3281 break;
3282 if (c1 < CHAR_CLASS_MAX_LENGTH)
3283 str[c1++] = c;
3284 else
3285 /* This is in any case an invalid class name. */
3286 str[0] = '\0';
3288 str[c1] = '\0';
3290 /* If isn't a word bracketed by `[:' and `:]':
3291 undo the ending character, the letters, and leave
3292 the leading `:' and `[' (but set bits for them). */
3293 if (c == ':' && *p == ']')
3295 # if defined _LIBC || WIDE_CHAR_SUPPORT
3296 boolean is_lower = STREQ (str, "lower");
3297 boolean is_upper = STREQ (str, "upper");
3298 wctype_t wt;
3299 int ch;
3301 wt = IS_CHAR_CLASS (str);
3302 if (wt == 0)
3303 FREE_STACK_RETURN (REG_ECTYPE);
3305 /* Throw away the ] at the end of the character
3306 class. */
3307 PATFETCH (c);
3309 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3311 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3313 if (iswctype (btowc (ch), wt))
3314 SET_LIST_BIT (ch);
3316 if (translate && (is_upper || is_lower)
3317 && (ISUPPER (ch) || ISLOWER (ch)))
3318 SET_LIST_BIT (ch);
3321 had_char_class = true;
3322 # else
3323 int ch;
3324 boolean is_alnum = STREQ (str, "alnum");
3325 boolean is_alpha = STREQ (str, "alpha");
3326 boolean is_blank = STREQ (str, "blank");
3327 boolean is_cntrl = STREQ (str, "cntrl");
3328 boolean is_digit = STREQ (str, "digit");
3329 boolean is_graph = STREQ (str, "graph");
3330 boolean is_lower = STREQ (str, "lower");
3331 boolean is_print = STREQ (str, "print");
3332 boolean is_punct = STREQ (str, "punct");
3333 boolean is_space = STREQ (str, "space");
3334 boolean is_upper = STREQ (str, "upper");
3335 boolean is_xdigit = STREQ (str, "xdigit");
3337 if (!IS_CHAR_CLASS (str))
3338 FREE_STACK_RETURN (REG_ECTYPE);
3340 /* Throw away the ] at the end of the character
3341 class. */
3342 PATFETCH (c);
3344 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3346 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3348 /* This was split into 3 if's to
3349 avoid an arbitrary limit in some compiler. */
3350 if ( (is_alnum && ISALNUM (ch))
3351 || (is_alpha && ISALPHA (ch))
3352 || (is_blank && ISBLANK (ch))
3353 || (is_cntrl && ISCNTRL (ch)))
3354 SET_LIST_BIT (ch);
3355 if ( (is_digit && ISDIGIT (ch))
3356 || (is_graph && ISGRAPH (ch))
3357 || (is_lower && ISLOWER (ch))
3358 || (is_print && ISPRINT (ch)))
3359 SET_LIST_BIT (ch);
3360 if ( (is_punct && ISPUNCT (ch))
3361 || (is_space && ISSPACE (ch))
3362 || (is_upper && ISUPPER (ch))
3363 || (is_xdigit && ISXDIGIT (ch)))
3364 SET_LIST_BIT (ch);
3365 if ( translate && (is_upper || is_lower)
3366 && (ISUPPER (ch) || ISLOWER (ch)))
3367 SET_LIST_BIT (ch);
3369 had_char_class = true;
3370 # endif /* libc || wctype.h */
3372 else
3374 c1++;
3375 while (c1--)
3376 PATUNFETCH;
3377 SET_LIST_BIT ('[');
3378 SET_LIST_BIT (':');
3379 range_start = ':';
3380 had_char_class = false;
3383 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3385 unsigned char str[MB_LEN_MAX + 1];
3386 # ifdef _LIBC
3387 uint32_t nrules =
3388 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3389 # endif
3391 PATFETCH (c);
3392 c1 = 0;
3394 /* If pattern is `[[='. */
3395 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3397 for (;;)
3399 PATFETCH (c);
3400 if ((c == '=' && *p == ']') || p == pend)
3401 break;
3402 if (c1 < MB_LEN_MAX)
3403 str[c1++] = c;
3404 else
3405 /* This is in any case an invalid class name. */
3406 str[0] = '\0';
3408 str[c1] = '\0';
3410 if (c == '=' && *p == ']' && str[0] != '\0')
3412 /* If we have no collation data we use the default
3413 collation in which each character is in a class
3414 by itself. It also means that ASCII is the
3415 character set and therefore we cannot have character
3416 with more than one byte in the multibyte
3417 representation. */
3418 # ifdef _LIBC
3419 if (nrules == 0)
3420 # endif
3422 if (c1 != 1)
3423 FREE_STACK_RETURN (REG_ECOLLATE);
3425 /* Throw away the ] at the end of the equivalence
3426 class. */
3427 PATFETCH (c);
3429 /* Set the bit for the character. */
3430 SET_LIST_BIT (str[0]);
3432 # ifdef _LIBC
3433 else
3435 /* Try to match the byte sequence in `str' against
3436 those known to the collate implementation.
3437 First find out whether the bytes in `str' are
3438 actually from exactly one character. */
3439 const int32_t *table;
3440 const unsigned char *weights;
3441 const unsigned char *extra;
3442 const int32_t *indirect;
3443 int32_t idx;
3444 const unsigned char *cp = str;
3445 int ch;
3447 /* This #include defines a local function! */
3448 # include <locale/weight.h>
3450 table = (const int32_t *)
3451 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3452 weights = (const unsigned char *)
3453 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3454 extra = (const unsigned char *)
3455 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3456 indirect = (const int32_t *)
3457 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3459 idx = findidx (&cp);
3460 if (idx == 0 || cp < str + c1)
3461 /* This is no valid character. */
3462 FREE_STACK_RETURN (REG_ECOLLATE);
3464 /* Throw away the ] at the end of the equivalence
3465 class. */
3466 PATFETCH (c);
3468 /* Now we have to go throught the whole table
3469 and find all characters which have the same
3470 first level weight.
3472 XXX Note that this is not entirely correct.
3473 we would have to match multibyte sequences
3474 but this is not possible with the current
3475 implementation. */
3476 for (ch = 1; ch < 256; ++ch)
3477 /* XXX This test would have to be changed if we
3478 would allow matching multibyte sequences. */
3479 if (table[ch] > 0)
3481 int32_t idx2 = table[ch];
3482 size_t len = weights[idx2];
3484 /* Test whether the lenghts match. */
3485 if (weights[idx] == len)
3487 /* They do. New compare the bytes of
3488 the weight. */
3489 size_t cnt = 0;
3491 while (cnt < len
3492 && (weights[idx + 1 + cnt]
3493 == weights[idx2 + 1 + cnt]))
3494 ++cnt;
3496 if (cnt == len)
3497 /* They match. Mark the character as
3498 acceptable. */
3499 SET_LIST_BIT (ch);
3503 # endif
3504 had_char_class = true;
3506 else
3508 c1++;
3509 while (c1--)
3510 PATUNFETCH;
3511 SET_LIST_BIT ('[');
3512 SET_LIST_BIT ('=');
3513 range_start = '=';
3514 had_char_class = false;
3517 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3519 unsigned char str[128]; /* Should be large enough. */
3520 # ifdef _LIBC
3521 uint32_t nrules =
3522 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3523 # endif
3525 PATFETCH (c);
3526 c1 = 0;
3528 /* If pattern is `[[.'. */
3529 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3531 for (;;)
3533 PATFETCH (c);
3534 if ((c == '.' && *p == ']') || p == pend)
3535 break;
3536 if (c1 < sizeof (str))
3537 str[c1++] = c;
3538 else
3539 /* This is in any case an invalid class name. */
3540 str[0] = '\0';
3542 str[c1] = '\0';
3544 if (c == '.' && *p == ']' && str[0] != '\0')
3546 /* If we have no collation data we use the default
3547 collation in which each character is the name
3548 for its own class which contains only the one
3549 character. It also means that ASCII is the
3550 character set and therefore we cannot have character
3551 with more than one byte in the multibyte
3552 representation. */
3553 # ifdef _LIBC
3554 if (nrules == 0)
3555 # endif
3557 if (c1 != 1)
3558 FREE_STACK_RETURN (REG_ECOLLATE);
3560 /* Throw away the ] at the end of the equivalence
3561 class. */
3562 PATFETCH (c);
3564 /* Set the bit for the character. */
3565 SET_LIST_BIT (str[0]);
3566 range_start = ((const unsigned char *) str)[0];
3568 # ifdef _LIBC
3569 else
3571 /* Try to match the byte sequence in `str' against
3572 those known to the collate implementation.
3573 First find out whether the bytes in `str' are
3574 actually from exactly one character. */
3575 int32_t table_size;
3576 const int32_t *symb_table;
3577 const unsigned char *extra;
3578 int32_t idx;
3579 int32_t elem;
3580 int32_t second;
3581 int32_t hash;
3583 table_size =
3584 _NL_CURRENT_WORD (LC_COLLATE,
3585 _NL_COLLATE_SYMB_HASH_SIZEMB);
3586 symb_table = (const int32_t *)
3587 _NL_CURRENT (LC_COLLATE,
3588 _NL_COLLATE_SYMB_TABLEMB);
3589 extra = (const unsigned char *)
3590 _NL_CURRENT (LC_COLLATE,
3591 _NL_COLLATE_SYMB_EXTRAMB);
3593 /* Locate the character in the hashing table. */
3594 hash = elem_hash (str, c1);
3596 idx = 0;
3597 elem = hash % table_size;
3598 second = hash % (table_size - 2);
3599 while (symb_table[2 * elem] != 0)
3601 /* First compare the hashing value. */
3602 if (symb_table[2 * elem] == hash
3603 && c1 == extra[symb_table[2 * elem + 1]]
3604 && memcmp (str,
3605 &extra[symb_table[2 * elem + 1]
3606 + 1],
3607 c1) == 0)
3609 /* Yep, this is the entry. */
3610 idx = symb_table[2 * elem + 1];
3611 idx += 1 + extra[idx];
3612 break;
3615 /* Next entry. */
3616 elem += second;
3619 if (symb_table[2 * elem] == 0)
3620 /* This is no valid character. */
3621 FREE_STACK_RETURN (REG_ECOLLATE);
3623 /* Throw away the ] at the end of the equivalence
3624 class. */
3625 PATFETCH (c);
3627 /* Now add the multibyte character(s) we found
3628 to the accept list.
3630 XXX Note that this is not entirely correct.
3631 we would have to match multibyte sequences
3632 but this is not possible with the current
3633 implementation. Also, we have to match
3634 collating symbols, which expand to more than
3635 one file, as a whole and not allow the
3636 individual bytes. */
3637 c1 = extra[idx++];
3638 if (c1 == 1)
3639 range_start = extra[idx];
3640 while (c1-- > 0)
3642 SET_LIST_BIT (extra[idx]);
3643 ++idx;
3646 # endif
3647 had_char_class = false;
3649 else
3651 c1++;
3652 while (c1--)
3653 PATUNFETCH;
3654 SET_LIST_BIT ('[');
3655 SET_LIST_BIT ('.');
3656 range_start = '.';
3657 had_char_class = false;
3660 else
3662 had_char_class = false;
3663 SET_LIST_BIT (c);
3664 range_start = c;
3668 /* Discard any (non)matching list bytes that are all 0 at the
3669 end of the map. Decrease the map-length byte too. */
3670 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3671 b[-1]--;
3672 b += b[-1];
3673 #endif /* WCHAR */
3675 break;
3678 case '(':
3679 if (syntax & RE_NO_BK_PARENS)
3680 goto handle_open;
3681 else
3682 goto normal_char;
3685 case ')':
3686 if (syntax & RE_NO_BK_PARENS)
3687 goto handle_close;
3688 else
3689 goto normal_char;
3692 case '\n':
3693 if (syntax & RE_NEWLINE_ALT)
3694 goto handle_alt;
3695 else
3696 goto normal_char;
3699 case '|':
3700 if (syntax & RE_NO_BK_VBAR)
3701 goto handle_alt;
3702 else
3703 goto normal_char;
3706 case '{':
3707 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3708 goto handle_interval;
3709 else
3710 goto normal_char;
3713 case '\\':
3714 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3716 /* Do not translate the character after the \, so that we can
3717 distinguish, e.g., \B from \b, even if we normally would
3718 translate, e.g., B to b. */
3719 PATFETCH_RAW (c);
3721 switch (c)
3723 case '(':
3724 if (syntax & RE_NO_BK_PARENS)
3725 goto normal_backslash;
3727 handle_open:
3728 bufp->re_nsub++;
3729 regnum++;
3731 if (COMPILE_STACK_FULL)
3733 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3734 compile_stack_elt_t);
3735 if (compile_stack.stack == NULL) return REG_ESPACE;
3737 compile_stack.size <<= 1;
3740 /* These are the values to restore when we hit end of this
3741 group. They are all relative offsets, so that if the
3742 whole pattern moves because of realloc, they will still
3743 be valid. */
3744 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3745 COMPILE_STACK_TOP.fixup_alt_jump
3746 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3747 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3748 COMPILE_STACK_TOP.regnum = regnum;
3750 /* We will eventually replace the 0 with the number of
3751 groups inner to this one. But do not push a
3752 start_memory for groups beyond the last one we can
3753 represent in the compiled pattern. */
3754 if (regnum <= MAX_REGNUM)
3756 COMPILE_STACK_TOP.inner_group_offset = b
3757 - COMPILED_BUFFER_VAR + 2;
3758 BUF_PUSH_3 (start_memory, regnum, 0);
3761 compile_stack.avail++;
3763 fixup_alt_jump = 0;
3764 laststart = 0;
3765 begalt = b;
3766 /* If we've reached MAX_REGNUM groups, then this open
3767 won't actually generate any code, so we'll have to
3768 clear pending_exact explicitly. */
3769 pending_exact = 0;
3770 break;
3773 case ')':
3774 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3776 if (COMPILE_STACK_EMPTY)
3778 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3779 goto normal_backslash;
3780 else
3781 FREE_STACK_RETURN (REG_ERPAREN);
3784 handle_close:
3785 if (fixup_alt_jump)
3786 { /* Push a dummy failure point at the end of the
3787 alternative for a possible future
3788 `pop_failure_jump' to pop. See comments at
3789 `push_dummy_failure' in `re_match_2'. */
3790 BUF_PUSH (push_dummy_failure);
3792 /* We allocated space for this jump when we assigned
3793 to `fixup_alt_jump', in the `handle_alt' case below. */
3794 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3797 /* See similar code for backslashed left paren above. */
3798 if (COMPILE_STACK_EMPTY)
3800 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3801 goto normal_char;
3802 else
3803 FREE_STACK_RETURN (REG_ERPAREN);
3806 /* Since we just checked for an empty stack above, this
3807 ``can't happen''. */
3808 assert (compile_stack.avail != 0);
3810 /* We don't just want to restore into `regnum', because
3811 later groups should continue to be numbered higher,
3812 as in `(ab)c(de)' -- the second group is #2. */
3813 regnum_t this_group_regnum;
3815 compile_stack.avail--;
3816 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3817 fixup_alt_jump
3818 = COMPILE_STACK_TOP.fixup_alt_jump
3819 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3820 : 0;
3821 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3822 this_group_regnum = COMPILE_STACK_TOP.regnum;
3823 /* If we've reached MAX_REGNUM groups, then this open
3824 won't actually generate any code, so we'll have to
3825 clear pending_exact explicitly. */
3826 pending_exact = 0;
3828 /* We're at the end of the group, so now we know how many
3829 groups were inside this one. */
3830 if (this_group_regnum <= MAX_REGNUM)
3832 UCHAR_T *inner_group_loc
3833 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3835 *inner_group_loc = regnum - this_group_regnum;
3836 BUF_PUSH_3 (stop_memory, this_group_regnum,
3837 regnum - this_group_regnum);
3840 break;
3843 case '|': /* `\|'. */
3844 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3845 goto normal_backslash;
3846 handle_alt:
3847 if (syntax & RE_LIMITED_OPS)
3848 goto normal_char;
3850 /* Insert before the previous alternative a jump which
3851 jumps to this alternative if the former fails. */
3852 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3853 INSERT_JUMP (on_failure_jump, begalt,
3854 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3855 pending_exact = 0;
3856 b += 1 + OFFSET_ADDRESS_SIZE;
3858 /* The alternative before this one has a jump after it
3859 which gets executed if it gets matched. Adjust that
3860 jump so it will jump to this alternative's analogous
3861 jump (put in below, which in turn will jump to the next
3862 (if any) alternative's such jump, etc.). The last such
3863 jump jumps to the correct final destination. A picture:
3864 _____ _____
3865 | | | |
3866 | v | v
3867 a | b | c
3869 If we are at `b', then fixup_alt_jump right now points to a
3870 three-byte space after `a'. We'll put in the jump, set
3871 fixup_alt_jump to right after `b', and leave behind three
3872 bytes which we'll fill in when we get to after `c'. */
3874 if (fixup_alt_jump)
3875 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3877 /* Mark and leave space for a jump after this alternative,
3878 to be filled in later either by next alternative or
3879 when know we're at the end of a series of alternatives. */
3880 fixup_alt_jump = b;
3881 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3882 b += 1 + OFFSET_ADDRESS_SIZE;
3884 laststart = 0;
3885 begalt = b;
3886 break;
3889 case '{':
3890 /* If \{ is a literal. */
3891 if (!(syntax & RE_INTERVALS)
3892 /* If we're at `\{' and it's not the open-interval
3893 operator. */
3894 || (syntax & RE_NO_BK_BRACES))
3895 goto normal_backslash;
3897 handle_interval:
3899 /* If got here, then the syntax allows intervals. */
3901 /* At least (most) this many matches must be made. */
3902 int lower_bound = -1, upper_bound = -1;
3904 /* Place in the uncompiled pattern (i.e., just after
3905 the '{') to go back to if the interval is invalid. */
3906 const CHAR_T *beg_interval = p;
3908 if (p == pend)
3909 goto invalid_interval;
3911 GET_UNSIGNED_NUMBER (lower_bound);
3913 if (c == ',')
3915 GET_UNSIGNED_NUMBER (upper_bound);
3916 if (upper_bound < 0)
3917 upper_bound = RE_DUP_MAX;
3919 else
3920 /* Interval such as `{1}' => match exactly once. */
3921 upper_bound = lower_bound;
3923 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3924 goto invalid_interval;
3926 if (!(syntax & RE_NO_BK_BRACES))
3928 if (c != '\\' || p == pend)
3929 goto invalid_interval;
3930 PATFETCH (c);
3933 if (c != '}')
3934 goto invalid_interval;
3936 /* If it's invalid to have no preceding re. */
3937 if (!laststart)
3939 if (syntax & RE_CONTEXT_INVALID_OPS
3940 && !(syntax & RE_INVALID_INTERVAL_ORD))
3941 FREE_STACK_RETURN (REG_BADRPT);
3942 else if (syntax & RE_CONTEXT_INDEP_OPS)
3943 laststart = b;
3944 else
3945 goto unfetch_interval;
3948 /* We just parsed a valid interval. */
3950 if (RE_DUP_MAX < upper_bound)
3951 FREE_STACK_RETURN (REG_BADBR);
3953 /* If the upper bound is zero, don't want to succeed at
3954 all; jump from `laststart' to `b + 3', which will be
3955 the end of the buffer after we insert the jump. */
3956 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3957 instead of 'b + 3'. */
3958 if (upper_bound == 0)
3960 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3961 INSERT_JUMP (jump, laststart, b + 1
3962 + OFFSET_ADDRESS_SIZE);
3963 b += 1 + OFFSET_ADDRESS_SIZE;
3966 /* Otherwise, we have a nontrivial interval. When
3967 we're all done, the pattern will look like:
3968 set_number_at <jump count> <upper bound>
3969 set_number_at <succeed_n count> <lower bound>
3970 succeed_n <after jump addr> <succeed_n count>
3971 <body of loop>
3972 jump_n <succeed_n addr> <jump count>
3973 (The upper bound and `jump_n' are omitted if
3974 `upper_bound' is 1, though.) */
3975 else
3976 { /* If the upper bound is > 1, we need to insert
3977 more at the end of the loop. */
3978 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3979 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3981 GET_BUFFER_SPACE (nbytes);
3983 /* Initialize lower bound of the `succeed_n', even
3984 though it will be set during matching by its
3985 attendant `set_number_at' (inserted next),
3986 because `re_compile_fastmap' needs to know.
3987 Jump to the `jump_n' we might insert below. */
3988 INSERT_JUMP2 (succeed_n, laststart,
3989 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3990 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3991 , lower_bound);
3992 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3994 /* Code to initialize the lower bound. Insert
3995 before the `succeed_n'. The `5' is the last two
3996 bytes of this `set_number_at', plus 3 bytes of
3997 the following `succeed_n'. */
3998 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3999 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4000 of the following `succeed_n'. */
4001 PREFIX(insert_op2) (set_number_at, laststart, 1
4002 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
4003 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4005 if (upper_bound > 1)
4006 { /* More than one repetition is allowed, so
4007 append a backward jump to the `succeed_n'
4008 that starts this interval.
4010 When we've reached this during matching,
4011 we'll have matched the interval once, so
4012 jump back only `upper_bound - 1' times. */
4013 STORE_JUMP2 (jump_n, b, laststart
4014 + 2 * OFFSET_ADDRESS_SIZE + 1,
4015 upper_bound - 1);
4016 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4018 /* The location we want to set is the second
4019 parameter of the `jump_n'; that is `b-2' as
4020 an absolute address. `laststart' will be
4021 the `set_number_at' we're about to insert;
4022 `laststart+3' the number to set, the source
4023 for the relative address. But we are
4024 inserting into the middle of the pattern --
4025 so everything is getting moved up by 5.
4026 Conclusion: (b - 2) - (laststart + 3) + 5,
4027 i.e., b - laststart.
4029 We insert this at the beginning of the loop
4030 so that if we fail during matching, we'll
4031 reinitialize the bounds. */
4032 PREFIX(insert_op2) (set_number_at, laststart,
4033 b - laststart,
4034 upper_bound - 1, b);
4035 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4038 pending_exact = 0;
4039 break;
4041 invalid_interval:
4042 if (!(syntax & RE_INVALID_INTERVAL_ORD))
4043 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4044 unfetch_interval:
4045 /* Match the characters as literals. */
4046 p = beg_interval;
4047 c = '{';
4048 if (syntax & RE_NO_BK_BRACES)
4049 goto normal_char;
4050 else
4051 goto normal_backslash;
4054 #ifdef emacs
4055 /* There is no way to specify the before_dot and after_dot
4056 operators. rms says this is ok. --karl */
4057 case '=':
4058 BUF_PUSH (at_dot);
4059 break;
4061 case 's':
4062 laststart = b;
4063 PATFETCH (c);
4064 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4065 break;
4067 case 'S':
4068 laststart = b;
4069 PATFETCH (c);
4070 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4071 break;
4072 #endif /* emacs */
4075 case 'w':
4076 if (syntax & RE_NO_GNU_OPS)
4077 goto normal_char;
4078 laststart = b;
4079 BUF_PUSH (wordchar);
4080 break;
4083 case 'W':
4084 if (syntax & RE_NO_GNU_OPS)
4085 goto normal_char;
4086 laststart = b;
4087 BUF_PUSH (notwordchar);
4088 break;
4091 case '<':
4092 if (syntax & RE_NO_GNU_OPS)
4093 goto normal_char;
4094 BUF_PUSH (wordbeg);
4095 break;
4097 case '>':
4098 if (syntax & RE_NO_GNU_OPS)
4099 goto normal_char;
4100 BUF_PUSH (wordend);
4101 break;
4103 case 'b':
4104 if (syntax & RE_NO_GNU_OPS)
4105 goto normal_char;
4106 BUF_PUSH (wordbound);
4107 break;
4109 case 'B':
4110 if (syntax & RE_NO_GNU_OPS)
4111 goto normal_char;
4112 BUF_PUSH (notwordbound);
4113 break;
4115 case '`':
4116 if (syntax & RE_NO_GNU_OPS)
4117 goto normal_char;
4118 BUF_PUSH (begbuf);
4119 break;
4121 case '\'':
4122 if (syntax & RE_NO_GNU_OPS)
4123 goto normal_char;
4124 BUF_PUSH (endbuf);
4125 break;
4127 case '1': case '2': case '3': case '4': case '5':
4128 case '6': case '7': case '8': case '9':
4129 if (syntax & RE_NO_BK_REFS)
4130 goto normal_char;
4132 c1 = c - '0';
4134 if (c1 > regnum)
4135 FREE_STACK_RETURN (REG_ESUBREG);
4137 /* Can't back reference to a subexpression if inside of it. */
4138 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4139 goto normal_char;
4141 laststart = b;
4142 BUF_PUSH_2 (duplicate, c1);
4143 break;
4146 case '+':
4147 case '?':
4148 if (syntax & RE_BK_PLUS_QM)
4149 goto handle_plus;
4150 else
4151 goto normal_backslash;
4153 default:
4154 normal_backslash:
4155 /* You might think it would be useful for \ to mean
4156 not to translate; but if we don't translate it
4157 it will never match anything. */
4158 c = TRANSLATE (c);
4159 goto normal_char;
4161 break;
4164 default:
4165 /* Expects the character in `c'. */
4166 normal_char:
4167 /* If no exactn currently being built. */
4168 if (!pending_exact
4169 #ifdef WCHAR
4170 /* If last exactn handle binary(or character) and
4171 new exactn handle character(or binary). */
4172 || is_exactn_bin != is_binary[p - 1 - pattern]
4173 #endif /* WCHAR */
4175 /* If last exactn not at current position. */
4176 || pending_exact + *pending_exact + 1 != b
4178 /* We have only one byte following the exactn for the count. */
4179 || *pending_exact == (1 << BYTEWIDTH) - 1
4181 /* If followed by a repetition operator. */
4182 || *p == '*' || *p == '^'
4183 || ((syntax & RE_BK_PLUS_QM)
4184 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4185 : (*p == '+' || *p == '?'))
4186 || ((syntax & RE_INTERVALS)
4187 && ((syntax & RE_NO_BK_BRACES)
4188 ? *p == '{'
4189 : (p[0] == '\\' && p[1] == '{'))))
4191 /* Start building a new exactn. */
4193 laststart = b;
4195 #ifdef WCHAR
4196 /* Is this exactn binary data or character? */
4197 is_exactn_bin = is_binary[p - 1 - pattern];
4198 if (is_exactn_bin)
4199 BUF_PUSH_2 (exactn_bin, 0);
4200 else
4201 BUF_PUSH_2 (exactn, 0);
4202 #else
4203 BUF_PUSH_2 (exactn, 0);
4204 #endif /* WCHAR */
4205 pending_exact = b - 1;
4208 BUF_PUSH (c);
4209 (*pending_exact)++;
4210 break;
4211 } /* switch (c) */
4212 } /* while p != pend */
4215 /* Through the pattern now. */
4217 if (fixup_alt_jump)
4218 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4220 if (!COMPILE_STACK_EMPTY)
4221 FREE_STACK_RETURN (REG_EPAREN);
4223 /* If we don't want backtracking, force success
4224 the first time we reach the end of the compiled pattern. */
4225 if (syntax & RE_NO_POSIX_BACKTRACKING)
4226 BUF_PUSH (succeed);
4228 #ifdef WCHAR
4229 free (pattern);
4230 free (mbs_offset);
4231 free (is_binary);
4232 #endif
4233 free (compile_stack.stack);
4235 /* We have succeeded; set the length of the buffer. */
4236 #ifdef WCHAR
4237 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4238 #else
4239 bufp->used = b - bufp->buffer;
4240 #endif
4242 #ifdef DEBUG
4243 if (debug)
4245 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4246 PREFIX(print_compiled_pattern) (bufp);
4248 #endif /* DEBUG */
4250 #ifndef MATCH_MAY_ALLOCATE
4251 /* Initialize the failure stack to the largest possible stack. This
4252 isn't necessary unless we're trying to avoid calling alloca in
4253 the search and match routines. */
4255 int num_regs = bufp->re_nsub + 1;
4257 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4258 is strictly greater than re_max_failures, the largest possible stack
4259 is 2 * re_max_failures failure points. */
4260 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4262 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4264 # ifdef emacs
4265 if (! fail_stack.stack)
4266 fail_stack.stack
4267 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4268 * sizeof (PREFIX(fail_stack_elt_t)));
4269 else
4270 fail_stack.stack
4271 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4272 (fail_stack.size
4273 * sizeof (PREFIX(fail_stack_elt_t))));
4274 # else /* not emacs */
4275 if (! fail_stack.stack)
4276 fail_stack.stack
4277 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4278 * sizeof (PREFIX(fail_stack_elt_t)));
4279 else
4280 fail_stack.stack
4281 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4282 (fail_stack.size
4283 * sizeof (PREFIX(fail_stack_elt_t))));
4284 # endif /* not emacs */
4287 PREFIX(regex_grow_registers) (num_regs);
4289 #endif /* not MATCH_MAY_ALLOCATE */
4291 return REG_NOERROR;
4292 } /* regex_compile */
4294 /* Subroutines for `regex_compile'. */
4296 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4297 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4299 static void
4300 PREFIX(store_op1) (op, loc, arg)
4301 re_opcode_t op;
4302 UCHAR_T *loc;
4303 int arg;
4305 *loc = (UCHAR_T) op;
4306 STORE_NUMBER (loc + 1, arg);
4310 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4311 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4313 static void
4314 PREFIX(store_op2) (op, loc, arg1, arg2)
4315 re_opcode_t op;
4316 UCHAR_T *loc;
4317 int arg1, arg2;
4319 *loc = (UCHAR_T) op;
4320 STORE_NUMBER (loc + 1, arg1);
4321 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4325 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4326 for OP followed by two-byte integer parameter ARG. */
4327 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4329 static void
4330 PREFIX(insert_op1) (op, loc, arg, end)
4331 re_opcode_t op;
4332 UCHAR_T *loc;
4333 int arg;
4334 UCHAR_T *end;
4336 register UCHAR_T *pfrom = end;
4337 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4339 while (pfrom != loc)
4340 *--pto = *--pfrom;
4342 PREFIX(store_op1) (op, loc, arg);
4346 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4347 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4349 static void
4350 PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4351 re_opcode_t op;
4352 UCHAR_T *loc;
4353 int arg1, arg2;
4354 UCHAR_T *end;
4356 register UCHAR_T *pfrom = end;
4357 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4359 while (pfrom != loc)
4360 *--pto = *--pfrom;
4362 PREFIX(store_op2) (op, loc, arg1, arg2);
4366 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4367 after an alternative or a begin-subexpression. We assume there is at
4368 least one character before the ^. */
4370 static boolean
4371 PREFIX(at_begline_loc_p) (pattern, p, syntax)
4372 const CHAR_T *pattern, *p;
4373 reg_syntax_t syntax;
4375 const CHAR_T *prev = p - 2;
4376 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4378 return
4379 /* After a subexpression? */
4380 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4381 /* After an alternative? */
4382 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4386 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4387 at least one character after the $, i.e., `P < PEND'. */
4389 static boolean
4390 PREFIX(at_endline_loc_p) (p, pend, syntax)
4391 const CHAR_T *p, *pend;
4392 reg_syntax_t syntax;
4394 const CHAR_T *next = p;
4395 boolean next_backslash = *next == '\\';
4396 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4398 return
4399 /* Before a subexpression? */
4400 (syntax & RE_NO_BK_PARENS ? *next == ')'
4401 : next_backslash && next_next && *next_next == ')')
4402 /* Before an alternative? */
4403 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4404 : next_backslash && next_next && *next_next == '|');
4407 #else /* not INSIDE_RECURSION */
4409 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4410 false if it's not. */
4412 static boolean
4413 group_in_compile_stack (compile_stack, regnum)
4414 compile_stack_type compile_stack;
4415 regnum_t regnum;
4417 int this_element;
4419 for (this_element = compile_stack.avail - 1;
4420 this_element >= 0;
4421 this_element--)
4422 if (compile_stack.stack[this_element].regnum == regnum)
4423 return true;
4425 return false;
4427 #endif /* not INSIDE_RECURSION */
4429 #ifdef INSIDE_RECURSION
4431 #ifdef WCHAR
4432 /* This insert space, which size is "num", into the pattern at "loc".
4433 "end" must point the end of the allocated buffer. */
4434 static void
4435 insert_space (num, loc, end)
4436 int num;
4437 CHAR_T *loc;
4438 CHAR_T *end;
4440 register CHAR_T *pto = end;
4441 register CHAR_T *pfrom = end - num;
4443 while (pfrom >= loc)
4444 *pto-- = *pfrom--;
4446 #endif /* WCHAR */
4448 #ifdef WCHAR
4449 static reg_errcode_t
4450 wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4451 char_set)
4452 CHAR_T range_start_char;
4453 const CHAR_T **p_ptr, *pend;
4454 CHAR_T *char_set, *b;
4455 RE_TRANSLATE_TYPE translate;
4456 reg_syntax_t syntax;
4458 const CHAR_T *p = *p_ptr;
4459 CHAR_T range_start, range_end;
4460 reg_errcode_t ret;
4461 # ifdef _LIBC
4462 uint32_t nrules;
4463 uint32_t start_val, end_val;
4464 # endif
4465 if (p == pend)
4466 return REG_ERANGE;
4468 # ifdef _LIBC
4469 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4470 if (nrules != 0)
4472 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4473 _NL_COLLATE_COLLSEQWC);
4474 const unsigned char *extra = (const unsigned char *)
4475 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4477 if (range_start_char < -1)
4479 /* range_start is a collating symbol. */
4480 int32_t *wextra;
4481 /* Retreive the index and get collation sequence value. */
4482 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4483 start_val = wextra[1 + *wextra];
4485 else
4486 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4488 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4490 /* Report an error if the range is empty and the syntax prohibits
4491 this. */
4492 ret = ((syntax & RE_NO_EMPTY_RANGES)
4493 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4495 /* Insert space to the end of the char_ranges. */
4496 insert_space(2, b - char_set[5] - 2, b - 1);
4497 *(b - char_set[5] - 2) = (wchar_t)start_val;
4498 *(b - char_set[5] - 1) = (wchar_t)end_val;
4499 char_set[4]++; /* ranges_index */
4501 else
4502 # endif
4504 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4505 range_start_char;
4506 range_end = TRANSLATE (p[0]);
4507 /* Report an error if the range is empty and the syntax prohibits
4508 this. */
4509 ret = ((syntax & RE_NO_EMPTY_RANGES)
4510 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4512 /* Insert space to the end of the char_ranges. */
4513 insert_space(2, b - char_set[5] - 2, b - 1);
4514 *(b - char_set[5] - 2) = range_start;
4515 *(b - char_set[5] - 1) = range_end;
4516 char_set[4]++; /* ranges_index */
4518 /* Have to increment the pointer into the pattern string, so the
4519 caller isn't still at the ending character. */
4520 (*p_ptr)++;
4522 return ret;
4524 #else /* BYTE */
4525 /* Read the ending character of a range (in a bracket expression) from the
4526 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4527 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4528 Then we set the translation of all bits between the starting and
4529 ending characters (inclusive) in the compiled pattern B.
4531 Return an error code.
4533 We use these short variable names so we can use the same macros as
4534 `regex_compile' itself. */
4536 static reg_errcode_t
4537 byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4538 unsigned int range_start_char;
4539 const char **p_ptr, *pend;
4540 RE_TRANSLATE_TYPE translate;
4541 reg_syntax_t syntax;
4542 unsigned char *b;
4544 unsigned this_char;
4545 const char *p = *p_ptr;
4546 reg_errcode_t ret;
4547 # if _LIBC
4548 const unsigned char *collseq;
4549 unsigned int start_colseq;
4550 unsigned int end_colseq;
4551 # else
4552 unsigned end_char;
4553 # endif
4555 if (p == pend)
4556 return REG_ERANGE;
4558 /* Have to increment the pointer into the pattern string, so the
4559 caller isn't still at the ending character. */
4560 (*p_ptr)++;
4562 /* Report an error if the range is empty and the syntax prohibits this. */
4563 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4565 # if _LIBC
4566 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4567 _NL_COLLATE_COLLSEQMB);
4569 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4570 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4571 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4573 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4575 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4577 SET_LIST_BIT (TRANSLATE (this_char));
4578 ret = REG_NOERROR;
4581 # else
4582 /* Here we see why `this_char' has to be larger than an `unsigned
4583 char' -- we would otherwise go into an infinite loop, since all
4584 characters <= 0xff. */
4585 range_start_char = TRANSLATE (range_start_char);
4586 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4587 and some compilers cast it to int implicitly, so following for_loop
4588 may fall to (almost) infinite loop.
4589 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4590 To avoid this, we cast p[0] to unsigned int and truncate it. */
4591 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4593 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4595 SET_LIST_BIT (TRANSLATE (this_char));
4596 ret = REG_NOERROR;
4598 # endif
4600 return ret;
4602 #endif /* WCHAR */
4604 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4605 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4606 characters can start a string that matches the pattern. This fastmap
4607 is used by re_search to skip quickly over impossible starting points.
4609 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4610 area as BUFP->fastmap.
4612 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4613 the pattern buffer.
4615 Returns 0 if we succeed, -2 if an internal error. */
4617 #ifdef WCHAR
4618 /* local function for re_compile_fastmap.
4619 truncate wchar_t character to char. */
4620 static unsigned char truncate_wchar (CHAR_T c);
4622 static unsigned char
4623 truncate_wchar (c)
4624 CHAR_T c;
4626 unsigned char buf[MB_CUR_MAX];
4627 mbstate_t state;
4628 int retval;
4629 memset (&state, '\0', sizeof (state));
4630 retval = wcrtomb (buf, c, &state);
4631 return retval > 0 ? buf[0] : (unsigned char) c;
4633 #endif /* WCHAR */
4635 static int
4636 PREFIX(re_compile_fastmap) (bufp)
4637 struct re_pattern_buffer *bufp;
4639 int j, k;
4640 #ifdef MATCH_MAY_ALLOCATE
4641 PREFIX(fail_stack_type) fail_stack;
4642 #endif
4643 #ifndef REGEX_MALLOC
4644 char *destination;
4645 #endif
4647 register char *fastmap = bufp->fastmap;
4649 #ifdef WCHAR
4650 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4651 pattern to (char*) in regex_compile. */
4652 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4653 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4654 #else /* BYTE */
4655 UCHAR_T *pattern = bufp->buffer;
4656 register UCHAR_T *pend = pattern + bufp->used;
4657 #endif /* WCHAR */
4658 UCHAR_T *p = pattern;
4660 #ifdef REL_ALLOC
4661 /* This holds the pointer to the failure stack, when
4662 it is allocated relocatably. */
4663 fail_stack_elt_t *failure_stack_ptr;
4664 #endif
4666 /* Assume that each path through the pattern can be null until
4667 proven otherwise. We set this false at the bottom of switch
4668 statement, to which we get only if a particular path doesn't
4669 match the empty string. */
4670 boolean path_can_be_null = true;
4672 /* We aren't doing a `succeed_n' to begin with. */
4673 boolean succeed_n_p = false;
4675 assert (fastmap != NULL && p != NULL);
4677 INIT_FAIL_STACK ();
4678 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4679 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4680 bufp->can_be_null = 0;
4682 while (1)
4684 if (p == pend || *p == succeed)
4686 /* We have reached the (effective) end of pattern. */
4687 if (!FAIL_STACK_EMPTY ())
4689 bufp->can_be_null |= path_can_be_null;
4691 /* Reset for next path. */
4692 path_can_be_null = true;
4694 p = fail_stack.stack[--fail_stack.avail].pointer;
4696 continue;
4698 else
4699 break;
4702 /* We should never be about to go beyond the end of the pattern. */
4703 assert (p < pend);
4705 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4708 /* I guess the idea here is to simply not bother with a fastmap
4709 if a backreference is used, since it's too hard to figure out
4710 the fastmap for the corresponding group. Setting
4711 `can_be_null' stops `re_search_2' from using the fastmap, so
4712 that is all we do. */
4713 case duplicate:
4714 bufp->can_be_null = 1;
4715 goto done;
4718 /* Following are the cases which match a character. These end
4719 with `break'. */
4721 #ifdef WCHAR
4722 case exactn:
4723 fastmap[truncate_wchar(p[1])] = 1;
4724 break;
4725 #else /* BYTE */
4726 case exactn:
4727 fastmap[p[1]] = 1;
4728 break;
4729 #endif /* WCHAR */
4730 #ifdef MBS_SUPPORT
4731 case exactn_bin:
4732 fastmap[p[1]] = 1;
4733 break;
4734 #endif
4736 #ifdef WCHAR
4737 /* It is hard to distinguish fastmap from (multi byte) characters
4738 which depends on current locale. */
4739 case charset:
4740 case charset_not:
4741 case wordchar:
4742 case notwordchar:
4743 bufp->can_be_null = 1;
4744 goto done;
4745 #else /* BYTE */
4746 case charset:
4747 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4748 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4749 fastmap[j] = 1;
4750 break;
4753 case charset_not:
4754 /* Chars beyond end of map must be allowed. */
4755 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4756 fastmap[j] = 1;
4758 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4759 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4760 fastmap[j] = 1;
4761 break;
4764 case wordchar:
4765 for (j = 0; j < (1 << BYTEWIDTH); j++)
4766 if (SYNTAX (j) == Sword)
4767 fastmap[j] = 1;
4768 break;
4771 case notwordchar:
4772 for (j = 0; j < (1 << BYTEWIDTH); j++)
4773 if (SYNTAX (j) != Sword)
4774 fastmap[j] = 1;
4775 break;
4776 #endif /* WCHAR */
4778 case anychar:
4780 int fastmap_newline = fastmap['\n'];
4782 /* `.' matches anything ... */
4783 for (j = 0; j < (1 << BYTEWIDTH); j++)
4784 fastmap[j] = 1;
4786 /* ... except perhaps newline. */
4787 if (!(bufp->syntax & RE_DOT_NEWLINE))
4788 fastmap['\n'] = fastmap_newline;
4790 /* Return if we have already set `can_be_null'; if we have,
4791 then the fastmap is irrelevant. Something's wrong here. */
4792 else if (bufp->can_be_null)
4793 goto done;
4795 /* Otherwise, have to check alternative paths. */
4796 break;
4799 #ifdef emacs
4800 case syntaxspec:
4801 k = *p++;
4802 for (j = 0; j < (1 << BYTEWIDTH); j++)
4803 if (SYNTAX (j) == (enum syntaxcode) k)
4804 fastmap[j] = 1;
4805 break;
4808 case notsyntaxspec:
4809 k = *p++;
4810 for (j = 0; j < (1 << BYTEWIDTH); j++)
4811 if (SYNTAX (j) != (enum syntaxcode) k)
4812 fastmap[j] = 1;
4813 break;
4816 /* All cases after this match the empty string. These end with
4817 `continue'. */
4820 case before_dot:
4821 case at_dot:
4822 case after_dot:
4823 continue;
4824 #endif /* emacs */
4827 case no_op:
4828 case begline:
4829 case endline:
4830 case begbuf:
4831 case endbuf:
4832 case wordbound:
4833 case notwordbound:
4834 case wordbeg:
4835 case wordend:
4836 case push_dummy_failure:
4837 continue;
4840 case jump_n:
4841 case pop_failure_jump:
4842 case maybe_pop_jump:
4843 case jump:
4844 case jump_past_alt:
4845 case dummy_failure_jump:
4846 EXTRACT_NUMBER_AND_INCR (j, p);
4847 p += j;
4848 if (j > 0)
4849 continue;
4851 /* Jump backward implies we just went through the body of a
4852 loop and matched nothing. Opcode jumped to should be
4853 `on_failure_jump' or `succeed_n'. Just treat it like an
4854 ordinary jump. For a * loop, it has pushed its failure
4855 point already; if so, discard that as redundant. */
4856 if ((re_opcode_t) *p != on_failure_jump
4857 && (re_opcode_t) *p != succeed_n)
4858 continue;
4860 p++;
4861 EXTRACT_NUMBER_AND_INCR (j, p);
4862 p += j;
4864 /* If what's on the stack is where we are now, pop it. */
4865 if (!FAIL_STACK_EMPTY ()
4866 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4867 fail_stack.avail--;
4869 continue;
4872 case on_failure_jump:
4873 case on_failure_keep_string_jump:
4874 handle_on_failure_jump:
4875 EXTRACT_NUMBER_AND_INCR (j, p);
4877 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4878 end of the pattern. We don't want to push such a point,
4879 since when we restore it above, entering the switch will
4880 increment `p' past the end of the pattern. We don't need
4881 to push such a point since we obviously won't find any more
4882 fastmap entries beyond `pend'. Such a pattern can match
4883 the null string, though. */
4884 if (p + j < pend)
4886 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4888 RESET_FAIL_STACK ();
4889 return -2;
4892 else
4893 bufp->can_be_null = 1;
4895 if (succeed_n_p)
4897 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4898 succeed_n_p = false;
4901 continue;
4904 case succeed_n:
4905 /* Get to the number of times to succeed. */
4906 p += OFFSET_ADDRESS_SIZE;
4908 /* Increment p past the n for when k != 0. */
4909 EXTRACT_NUMBER_AND_INCR (k, p);
4910 if (k == 0)
4912 p -= 2 * OFFSET_ADDRESS_SIZE;
4913 succeed_n_p = true; /* Spaghetti code alert. */
4914 goto handle_on_failure_jump;
4916 continue;
4919 case set_number_at:
4920 p += 2 * OFFSET_ADDRESS_SIZE;
4921 continue;
4924 case start_memory:
4925 case stop_memory:
4926 p += 2;
4927 continue;
4930 default:
4931 abort (); /* We have listed all the cases. */
4932 } /* switch *p++ */
4934 /* Getting here means we have found the possible starting
4935 characters for one path of the pattern -- and that the empty
4936 string does not match. We need not follow this path further.
4937 Instead, look at the next alternative (remembered on the
4938 stack), or quit if no more. The test at the top of the loop
4939 does these things. */
4940 path_can_be_null = false;
4941 p = pend;
4942 } /* while p */
4944 /* Set `can_be_null' for the last path (also the first path, if the
4945 pattern is empty). */
4946 bufp->can_be_null |= path_can_be_null;
4948 done:
4949 RESET_FAIL_STACK ();
4950 return 0;
4953 #else /* not INSIDE_RECURSION */
4956 re_compile_fastmap (bufp)
4957 struct re_pattern_buffer *bufp;
4959 # ifdef MBS_SUPPORT
4960 if (MB_CUR_MAX != 1)
4961 return wcs_re_compile_fastmap(bufp);
4962 else
4963 # endif
4964 return byte_re_compile_fastmap(bufp);
4965 } /* re_compile_fastmap */
4966 #ifdef _LIBC
4967 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4968 #endif
4971 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4972 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4973 this memory for recording register information. STARTS and ENDS
4974 must be allocated using the malloc library routine, and must each
4975 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4977 If NUM_REGS == 0, then subsequent matches should allocate their own
4978 register data.
4980 Unless this function is called, the first search or match using
4981 PATTERN_BUFFER will allocate its own register data, without
4982 freeing the old data. */
4984 void
4985 re_set_registers (bufp, regs, num_regs, starts, ends)
4986 struct re_pattern_buffer *bufp;
4987 struct re_registers *regs;
4988 unsigned num_regs;
4989 regoff_t *starts, *ends;
4991 if (num_regs)
4993 bufp->regs_allocated = REGS_REALLOCATE;
4994 regs->num_regs = num_regs;
4995 regs->start = starts;
4996 regs->end = ends;
4998 else
5000 bufp->regs_allocated = REGS_UNALLOCATED;
5001 regs->num_regs = 0;
5002 regs->start = regs->end = (regoff_t *) 0;
5005 #ifdef _LIBC
5006 weak_alias (__re_set_registers, re_set_registers)
5007 #endif
5009 /* Searching routines. */
5011 /* Like re_search_2, below, but only one string is specified, and
5012 doesn't let you say where to stop matching. */
5015 re_search (bufp, string, size, startpos, range, regs)
5016 struct re_pattern_buffer *bufp;
5017 const char *string;
5018 int size, startpos, range;
5019 struct re_registers *regs;
5021 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
5022 regs, size);
5024 #ifdef _LIBC
5025 weak_alias (__re_search, re_search)
5026 #endif
5029 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5030 virtual concatenation of STRING1 and STRING2, starting first at index
5031 STARTPOS, then at STARTPOS + 1, and so on.
5033 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5035 RANGE is how far to scan while trying to match. RANGE = 0 means try
5036 only at STARTPOS; in general, the last start tried is STARTPOS +
5037 RANGE.
5039 In REGS, return the indices of the virtual concatenation of STRING1
5040 and STRING2 that matched the entire BUFP->buffer and its contained
5041 subexpressions.
5043 Do not consider matching one past the index STOP in the virtual
5044 concatenation of STRING1 and STRING2.
5046 We return either the position in the strings at which the match was
5047 found, -1 if no match, or -2 if error (such as failure
5048 stack overflow). */
5051 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5052 struct re_pattern_buffer *bufp;
5053 const char *string1, *string2;
5054 int size1, size2;
5055 int startpos;
5056 int range;
5057 struct re_registers *regs;
5058 int stop;
5060 # ifdef MBS_SUPPORT
5061 if (MB_CUR_MAX != 1)
5062 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5063 range, regs, stop);
5064 else
5065 # endif
5066 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5067 range, regs, stop);
5068 } /* re_search_2 */
5069 #ifdef _LIBC
5070 weak_alias (__re_search_2, re_search_2)
5071 #endif
5073 #endif /* not INSIDE_RECURSION */
5075 #ifdef INSIDE_RECURSION
5077 #ifdef MATCH_MAY_ALLOCATE
5078 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5079 #else
5080 # define FREE_VAR(var) if (var) free (var); var = NULL
5081 #endif
5083 #ifdef WCHAR
5084 # define MAX_ALLOCA_SIZE 2000
5086 # define FREE_WCS_BUFFERS() \
5087 do { \
5088 if (size1 > MAX_ALLOCA_SIZE) \
5090 free (wcs_string1); \
5091 free (mbs_offset1); \
5093 else \
5095 FREE_VAR (wcs_string1); \
5096 FREE_VAR (mbs_offset1); \
5098 if (size2 > MAX_ALLOCA_SIZE) \
5100 free (wcs_string2); \
5101 free (mbs_offset2); \
5103 else \
5105 FREE_VAR (wcs_string2); \
5106 FREE_VAR (mbs_offset2); \
5108 } while (0)
5110 #endif
5113 static int
5114 PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5115 regs, stop)
5116 struct re_pattern_buffer *bufp;
5117 const char *string1, *string2;
5118 int size1, size2;
5119 int startpos;
5120 int range;
5121 struct re_registers *regs;
5122 int stop;
5124 int val;
5125 register char *fastmap = bufp->fastmap;
5126 register RE_TRANSLATE_TYPE translate = bufp->translate;
5127 int total_size = size1 + size2;
5128 int endpos = startpos + range;
5129 #ifdef WCHAR
5130 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5131 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5132 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5133 int wcs_size1 = 0, wcs_size2 = 0;
5134 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5135 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5136 /* They hold whether each wchar_t is binary data or not. */
5137 char *is_binary = NULL;
5138 #endif /* WCHAR */
5140 /* Check for out-of-range STARTPOS. */
5141 if (startpos < 0 || startpos > total_size)
5142 return -1;
5144 /* Fix up RANGE if it might eventually take us outside
5145 the virtual concatenation of STRING1 and STRING2.
5146 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5147 if (endpos < 0)
5148 range = 0 - startpos;
5149 else if (endpos > total_size)
5150 range = total_size - startpos;
5152 /* If the search isn't to be a backwards one, don't waste time in a
5153 search for a pattern that must be anchored. */
5154 if (bufp->used > 0 && range > 0
5155 && ((re_opcode_t) bufp->buffer[0] == begbuf
5156 /* `begline' is like `begbuf' if it cannot match at newlines. */
5157 || ((re_opcode_t) bufp->buffer[0] == begline
5158 && !bufp->newline_anchor)))
5160 if (startpos > 0)
5161 return -1;
5162 else
5163 range = 1;
5166 #ifdef emacs
5167 /* In a forward search for something that starts with \=.
5168 don't keep searching past point. */
5169 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5171 range = PT - startpos;
5172 if (range <= 0)
5173 return -1;
5175 #endif /* emacs */
5177 /* Update the fastmap now if not correct already. */
5178 if (fastmap && !bufp->fastmap_accurate)
5179 if (re_compile_fastmap (bufp) == -2)
5180 return -2;
5182 #ifdef WCHAR
5183 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5184 fill them with converted string. */
5185 if (size1 != 0)
5187 if (size1 > MAX_ALLOCA_SIZE)
5189 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5190 mbs_offset1 = TALLOC (size1 + 1, int);
5191 is_binary = TALLOC (size1 + 1, char);
5193 else
5195 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5196 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5197 is_binary = REGEX_TALLOC (size1 + 1, char);
5199 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5201 if (size1 > MAX_ALLOCA_SIZE)
5203 free (wcs_string1);
5204 free (mbs_offset1);
5205 free (is_binary);
5207 else
5209 FREE_VAR (wcs_string1);
5210 FREE_VAR (mbs_offset1);
5211 FREE_VAR (is_binary);
5213 return -2;
5215 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5216 mbs_offset1, is_binary);
5217 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5218 if (size1 > MAX_ALLOCA_SIZE)
5219 free (is_binary);
5220 else
5221 FREE_VAR (is_binary);
5223 if (size2 != 0)
5225 if (size2 > MAX_ALLOCA_SIZE)
5227 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5228 mbs_offset2 = TALLOC (size2 + 1, int);
5229 is_binary = TALLOC (size2 + 1, char);
5231 else
5233 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5234 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5235 is_binary = REGEX_TALLOC (size2 + 1, char);
5237 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5239 FREE_WCS_BUFFERS ();
5240 if (size2 > MAX_ALLOCA_SIZE)
5241 free (is_binary);
5242 else
5243 FREE_VAR (is_binary);
5244 return -2;
5246 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5247 mbs_offset2, is_binary);
5248 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5249 if (size2 > MAX_ALLOCA_SIZE)
5250 free (is_binary);
5251 else
5252 FREE_VAR (is_binary);
5254 #endif /* WCHAR */
5257 /* Loop through the string, looking for a place to start matching. */
5258 for (;;)
5260 /* If a fastmap is supplied, skip quickly over characters that
5261 cannot be the start of a match. If the pattern can match the
5262 null string, however, we don't need to skip characters; we want
5263 the first null string. */
5264 if (fastmap && startpos < total_size && !bufp->can_be_null)
5266 if (range > 0) /* Searching forwards. */
5268 register const char *d;
5269 register int lim = 0;
5270 int irange = range;
5272 if (startpos < size1 && startpos + range >= size1)
5273 lim = range - (size1 - startpos);
5275 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5277 /* Written out as an if-else to avoid testing `translate'
5278 inside the loop. */
5279 if (translate)
5280 while (range > lim
5281 && !fastmap[(unsigned char)
5282 translate[(unsigned char) *d++]])
5283 range--;
5284 else
5285 while (range > lim && !fastmap[(unsigned char) *d++])
5286 range--;
5288 startpos += irange - range;
5290 else /* Searching backwards. */
5292 register CHAR_T c = (size1 == 0 || startpos >= size1
5293 ? string2[startpos - size1]
5294 : string1[startpos]);
5296 if (!fastmap[(unsigned char) TRANSLATE (c)])
5297 goto advance;
5301 /* If can't match the null string, and that's all we have left, fail. */
5302 if (range >= 0 && startpos == total_size && fastmap
5303 && !bufp->can_be_null)
5305 #ifdef WCHAR
5306 FREE_WCS_BUFFERS ();
5307 #endif
5308 return -1;
5311 #ifdef WCHAR
5312 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5313 size2, startpos, regs, stop,
5314 wcs_string1, wcs_size1,
5315 wcs_string2, wcs_size2,
5316 mbs_offset1, mbs_offset2);
5317 #else /* BYTE */
5318 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5319 size2, startpos, regs, stop);
5320 #endif /* BYTE */
5322 #ifndef REGEX_MALLOC
5323 # ifdef C_ALLOCA
5324 alloca (0);
5325 # endif
5326 #endif
5328 if (val >= 0)
5330 #ifdef WCHAR
5331 FREE_WCS_BUFFERS ();
5332 #endif
5333 return startpos;
5336 if (val == -2)
5338 #ifdef WCHAR
5339 FREE_WCS_BUFFERS ();
5340 #endif
5341 return -2;
5344 advance:
5345 if (!range)
5346 break;
5347 else if (range > 0)
5349 range--;
5350 startpos++;
5352 else
5354 range++;
5355 startpos--;
5358 #ifdef WCHAR
5359 FREE_WCS_BUFFERS ();
5360 #endif
5361 return -1;
5364 #ifdef WCHAR
5365 /* This converts PTR, a pointer into one of the search wchar_t strings
5366 `string1' and `string2' into an multibyte string offset from the
5367 beginning of that string. We use mbs_offset to optimize.
5368 See convert_mbs_to_wcs. */
5369 # define POINTER_TO_OFFSET(ptr) \
5370 (FIRST_STRING_P (ptr) \
5371 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5372 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5373 + csize1)))
5374 #else /* BYTE */
5375 /* This converts PTR, a pointer into one of the search strings `string1'
5376 and `string2' into an offset from the beginning of that string. */
5377 # define POINTER_TO_OFFSET(ptr) \
5378 (FIRST_STRING_P (ptr) \
5379 ? ((regoff_t) ((ptr) - string1)) \
5380 : ((regoff_t) ((ptr) - string2 + size1)))
5381 #endif /* WCHAR */
5383 /* Macros for dealing with the split strings in re_match_2. */
5385 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5387 /* Call before fetching a character with *d. This switches over to
5388 string2 if necessary. */
5389 #define PREFETCH() \
5390 while (d == dend) \
5392 /* End of string2 => fail. */ \
5393 if (dend == end_match_2) \
5394 goto fail; \
5395 /* End of string1 => advance to string2. */ \
5396 d = string2; \
5397 dend = end_match_2; \
5400 /* Test if at very beginning or at very end of the virtual concatenation
5401 of `string1' and `string2'. If only one string, it's `string2'. */
5402 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5403 #define AT_STRINGS_END(d) ((d) == end2)
5406 /* Test if D points to a character which is word-constituent. We have
5407 two special cases to check for: if past the end of string1, look at
5408 the first character in string2; and if before the beginning of
5409 string2, look at the last character in string1. */
5410 #ifdef WCHAR
5411 /* Use internationalized API instead of SYNTAX. */
5412 # define WORDCHAR_P(d) \
5413 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5414 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5415 || ((d) == end1 ? *string2 \
5416 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5417 #else /* BYTE */
5418 # define WORDCHAR_P(d) \
5419 (SYNTAX ((d) == end1 ? *string2 \
5420 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5421 == Sword)
5422 #endif /* WCHAR */
5424 /* Disabled due to a compiler bug -- see comment at case wordbound */
5425 #if 0
5426 /* Test if the character before D and the one at D differ with respect
5427 to being word-constituent. */
5428 #define AT_WORD_BOUNDARY(d) \
5429 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5430 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5431 #endif
5433 /* Free everything we malloc. */
5434 #ifdef MATCH_MAY_ALLOCATE
5435 # ifdef WCHAR
5436 # define FREE_VARIABLES() \
5437 do { \
5438 REGEX_FREE_STACK (fail_stack.stack); \
5439 FREE_VAR (regstart); \
5440 FREE_VAR (regend); \
5441 FREE_VAR (old_regstart); \
5442 FREE_VAR (old_regend); \
5443 FREE_VAR (best_regstart); \
5444 FREE_VAR (best_regend); \
5445 FREE_VAR (reg_info); \
5446 FREE_VAR (reg_dummy); \
5447 FREE_VAR (reg_info_dummy); \
5448 if (!cant_free_wcs_buf) \
5450 FREE_VAR (string1); \
5451 FREE_VAR (string2); \
5452 FREE_VAR (mbs_offset1); \
5453 FREE_VAR (mbs_offset2); \
5455 } while (0)
5456 # else /* BYTE */
5457 # define FREE_VARIABLES() \
5458 do { \
5459 REGEX_FREE_STACK (fail_stack.stack); \
5460 FREE_VAR (regstart); \
5461 FREE_VAR (regend); \
5462 FREE_VAR (old_regstart); \
5463 FREE_VAR (old_regend); \
5464 FREE_VAR (best_regstart); \
5465 FREE_VAR (best_regend); \
5466 FREE_VAR (reg_info); \
5467 FREE_VAR (reg_dummy); \
5468 FREE_VAR (reg_info_dummy); \
5469 } while (0)
5470 # endif /* WCHAR */
5471 #else
5472 # ifdef WCHAR
5473 # define FREE_VARIABLES() \
5474 do { \
5475 if (!cant_free_wcs_buf) \
5477 FREE_VAR (string1); \
5478 FREE_VAR (string2); \
5479 FREE_VAR (mbs_offset1); \
5480 FREE_VAR (mbs_offset2); \
5482 } while (0)
5483 # else /* BYTE */
5484 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5485 # endif /* WCHAR */
5486 #endif /* not MATCH_MAY_ALLOCATE */
5488 /* These values must meet several constraints. They must not be valid
5489 register values; since we have a limit of 255 registers (because
5490 we use only one byte in the pattern for the register number), we can
5491 use numbers larger than 255. They must differ by 1, because of
5492 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5493 be larger than the value for the highest register, so we do not try
5494 to actually save any registers when none are active. */
5495 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5496 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5498 #else /* not INSIDE_RECURSION */
5499 /* Matching routines. */
5501 #ifndef emacs /* Emacs never uses this. */
5502 /* re_match is like re_match_2 except it takes only a single string. */
5505 re_match (bufp, string, size, pos, regs)
5506 struct re_pattern_buffer *bufp;
5507 const char *string;
5508 int size, pos;
5509 struct re_registers *regs;
5511 int result;
5512 # ifdef MBS_SUPPORT
5513 if (MB_CUR_MAX != 1)
5514 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5515 pos, regs, size,
5516 NULL, 0, NULL, 0, NULL, NULL);
5517 else
5518 # endif
5519 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5520 pos, regs, size);
5521 # ifndef REGEX_MALLOC
5522 # ifdef C_ALLOCA
5523 alloca (0);
5524 # endif
5525 # endif
5526 return result;
5528 # ifdef _LIBC
5529 weak_alias (__re_match, re_match)
5530 # endif
5531 #endif /* not emacs */
5533 #endif /* not INSIDE_RECURSION */
5535 #ifdef INSIDE_RECURSION
5536 static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5537 UCHAR_T *end,
5538 PREFIX(register_info_type) *reg_info));
5539 static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5540 UCHAR_T *end,
5541 PREFIX(register_info_type) *reg_info));
5542 static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5543 UCHAR_T *end,
5544 PREFIX(register_info_type) *reg_info));
5545 static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5546 int len, char *translate));
5547 #else /* not INSIDE_RECURSION */
5549 /* re_match_2 matches the compiled pattern in BUFP against the
5550 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5551 and SIZE2, respectively). We start matching at POS, and stop
5552 matching at STOP.
5554 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5555 store offsets for the substring each group matched in REGS. See the
5556 documentation for exactly how many groups we fill.
5558 We return -1 if no match, -2 if an internal error (such as the
5559 failure stack overflowing). Otherwise, we return the length of the
5560 matched substring. */
5563 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5564 struct re_pattern_buffer *bufp;
5565 const char *string1, *string2;
5566 int size1, size2;
5567 int pos;
5568 struct re_registers *regs;
5569 int stop;
5571 int result;
5572 # ifdef MBS_SUPPORT
5573 if (MB_CUR_MAX != 1)
5574 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5575 pos, regs, stop,
5576 NULL, 0, NULL, 0, NULL, NULL);
5577 else
5578 # endif
5579 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5580 pos, regs, stop);
5582 #ifndef REGEX_MALLOC
5583 # ifdef C_ALLOCA
5584 alloca (0);
5585 # endif
5586 #endif
5587 return result;
5589 #ifdef _LIBC
5590 weak_alias (__re_match_2, re_match_2)
5591 #endif
5593 #endif /* not INSIDE_RECURSION */
5595 #ifdef INSIDE_RECURSION
5597 #ifdef WCHAR
5598 static int count_mbs_length PARAMS ((int *, int));
5600 /* This check the substring (from 0, to length) of the multibyte string,
5601 to which offset_buffer correspond. And count how many wchar_t_characters
5602 the substring occupy. We use offset_buffer to optimization.
5603 See convert_mbs_to_wcs. */
5605 static int
5606 count_mbs_length(offset_buffer, length)
5607 int *offset_buffer;
5608 int length;
5610 int upper, lower;
5612 /* Check whether the size is valid. */
5613 if (length < 0)
5614 return -1;
5616 if (offset_buffer == NULL)
5617 return 0;
5619 /* If there are no multibyte character, offset_buffer[i] == i.
5620 Optmize for this case. */
5621 if (offset_buffer[length] == length)
5622 return length;
5624 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5625 upper = length;
5626 lower = 0;
5628 while (true)
5630 int middle = (lower + upper) / 2;
5631 if (middle == lower || middle == upper)
5632 break;
5633 if (offset_buffer[middle] > length)
5634 upper = middle;
5635 else if (offset_buffer[middle] < length)
5636 lower = middle;
5637 else
5638 return middle;
5641 return -1;
5643 #endif /* WCHAR */
5645 /* This is a separate function so that we can force an alloca cleanup
5646 afterwards. */
5647 #ifdef WCHAR
5648 static int
5649 wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5650 regs, stop, string1, size1, string2, size2,
5651 mbs_offset1, mbs_offset2)
5652 struct re_pattern_buffer *bufp;
5653 const char *cstring1, *cstring2;
5654 int csize1, csize2;
5655 int pos;
5656 struct re_registers *regs;
5657 int stop;
5658 /* string1 == string2 == NULL means string1/2, size1/2 and
5659 mbs_offset1/2 need seting up in this function. */
5660 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5661 wchar_t *string1, *string2;
5662 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5663 int size1, size2;
5664 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5665 int *mbs_offset1, *mbs_offset2;
5666 #else /* BYTE */
5667 static int
5668 byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5669 regs, stop)
5670 struct re_pattern_buffer *bufp;
5671 const char *string1, *string2;
5672 int size1, size2;
5673 int pos;
5674 struct re_registers *regs;
5675 int stop;
5676 #endif /* BYTE */
5678 /* General temporaries. */
5679 int mcnt;
5680 UCHAR_T *p1;
5681 #ifdef WCHAR
5682 /* They hold whether each wchar_t is binary data or not. */
5683 char *is_binary = NULL;
5684 /* If true, we can't free string1/2, mbs_offset1/2. */
5685 int cant_free_wcs_buf = 1;
5686 #endif /* WCHAR */
5688 /* Just past the end of the corresponding string. */
5689 const CHAR_T *end1, *end2;
5691 /* Pointers into string1 and string2, just past the last characters in
5692 each to consider matching. */
5693 const CHAR_T *end_match_1, *end_match_2;
5695 /* Where we are in the data, and the end of the current string. */
5696 const CHAR_T *d, *dend;
5698 /* Where we are in the pattern, and the end of the pattern. */
5699 #ifdef WCHAR
5700 UCHAR_T *pattern, *p;
5701 register UCHAR_T *pend;
5702 #else /* BYTE */
5703 UCHAR_T *p = bufp->buffer;
5704 register UCHAR_T *pend = p + bufp->used;
5705 #endif /* WCHAR */
5707 /* Mark the opcode just after a start_memory, so we can test for an
5708 empty subpattern when we get to the stop_memory. */
5709 UCHAR_T *just_past_start_mem = 0;
5711 /* We use this to map every character in the string. */
5712 RE_TRANSLATE_TYPE translate = bufp->translate;
5714 /* Failure point stack. Each place that can handle a failure further
5715 down the line pushes a failure point on this stack. It consists of
5716 restart, regend, and reg_info for all registers corresponding to
5717 the subexpressions we're currently inside, plus the number of such
5718 registers, and, finally, two char *'s. The first char * is where
5719 to resume scanning the pattern; the second one is where to resume
5720 scanning the strings. If the latter is zero, the failure point is
5721 a ``dummy''; if a failure happens and the failure point is a dummy,
5722 it gets discarded and the next next one is tried. */
5723 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5724 PREFIX(fail_stack_type) fail_stack;
5725 #endif
5726 #ifdef DEBUG
5727 static unsigned failure_id;
5728 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5729 #endif
5731 #ifdef REL_ALLOC
5732 /* This holds the pointer to the failure stack, when
5733 it is allocated relocatably. */
5734 fail_stack_elt_t *failure_stack_ptr;
5735 #endif
5737 /* We fill all the registers internally, independent of what we
5738 return, for use in backreferences. The number here includes
5739 an element for register zero. */
5740 size_t num_regs = bufp->re_nsub + 1;
5742 /* The currently active registers. */
5743 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5744 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5746 /* Information on the contents of registers. These are pointers into
5747 the input strings; they record just what was matched (on this
5748 attempt) by a subexpression part of the pattern, that is, the
5749 regnum-th regstart pointer points to where in the pattern we began
5750 matching and the regnum-th regend points to right after where we
5751 stopped matching the regnum-th subexpression. (The zeroth register
5752 keeps track of what the whole pattern matches.) */
5753 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5754 const CHAR_T **regstart, **regend;
5755 #endif
5757 /* If a group that's operated upon by a repetition operator fails to
5758 match anything, then the register for its start will need to be
5759 restored because it will have been set to wherever in the string we
5760 are when we last see its open-group operator. Similarly for a
5761 register's end. */
5762 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5763 const CHAR_T **old_regstart, **old_regend;
5764 #endif
5766 /* The is_active field of reg_info helps us keep track of which (possibly
5767 nested) subexpressions we are currently in. The matched_something
5768 field of reg_info[reg_num] helps us tell whether or not we have
5769 matched any of the pattern so far this time through the reg_num-th
5770 subexpression. These two fields get reset each time through any
5771 loop their register is in. */
5772 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5773 PREFIX(register_info_type) *reg_info;
5774 #endif
5776 /* The following record the register info as found in the above
5777 variables when we find a match better than any we've seen before.
5778 This happens as we backtrack through the failure points, which in
5779 turn happens only if we have not yet matched the entire string. */
5780 unsigned best_regs_set = false;
5781 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5782 const CHAR_T **best_regstart, **best_regend;
5783 #endif
5785 /* Logically, this is `best_regend[0]'. But we don't want to have to
5786 allocate space for that if we're not allocating space for anything
5787 else (see below). Also, we never need info about register 0 for
5788 any of the other register vectors, and it seems rather a kludge to
5789 treat `best_regend' differently than the rest. So we keep track of
5790 the end of the best match so far in a separate variable. We
5791 initialize this to NULL so that when we backtrack the first time
5792 and need to test it, it's not garbage. */
5793 const CHAR_T *match_end = NULL;
5795 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5796 int set_regs_matched_done = 0;
5798 /* Used when we pop values we don't care about. */
5799 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5800 const CHAR_T **reg_dummy;
5801 PREFIX(register_info_type) *reg_info_dummy;
5802 #endif
5804 #ifdef DEBUG
5805 /* Counts the total number of registers pushed. */
5806 unsigned num_regs_pushed = 0;
5807 #endif
5809 /* Definitions for state transitions. More efficiently for gcc. */
5810 #ifdef __GNUC__
5811 # if defined HAVE_SUBTRACT_LOCAL_LABELS && defined SHARED
5812 # define NEXT \
5813 do \
5815 int offset; \
5816 const void *__unbounded ptr; \
5817 offset = (p == pend \
5818 ? 0 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5819 ptr = &&end_of_pattern + offset; \
5820 goto *ptr; \
5822 while (0)
5823 # define REF(x) \
5824 &&label_##x - &&end_of_pattern
5825 # define JUMP_TABLE_TYPE const int
5826 # else
5827 # define NEXT \
5828 do \
5830 const void *__unbounded ptr; \
5831 ptr = (p == pend ? &&end_of_pattern \
5832 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5833 goto *ptr; \
5835 while (0)
5836 # define REF(x) \
5837 &&label_##x
5838 # define JUMP_TABLE_TYPE const void *const
5839 # endif
5840 # define CASE(x) label_##x
5841 static JUMP_TABLE_TYPE jmptable[] =
5843 REF (no_op),
5844 REF (succeed),
5845 REF (exactn),
5846 # ifdef MBS_SUPPORT
5847 REF (exactn_bin),
5848 # endif
5849 REF (anychar),
5850 REF (charset),
5851 REF (charset_not),
5852 REF (start_memory),
5853 REF (stop_memory),
5854 REF (duplicate),
5855 REF (begline),
5856 REF (endline),
5857 REF (begbuf),
5858 REF (endbuf),
5859 REF (jump),
5860 REF (jump_past_alt),
5861 REF (on_failure_jump),
5862 REF (on_failure_keep_string_jump),
5863 REF (pop_failure_jump),
5864 REF (maybe_pop_jump),
5865 REF (dummy_failure_jump),
5866 REF (push_dummy_failure),
5867 REF (succeed_n),
5868 REF (jump_n),
5869 REF (set_number_at),
5870 REF (wordchar),
5871 REF (notwordchar),
5872 REF (wordbeg),
5873 REF (wordend),
5874 REF (wordbound),
5875 REF (notwordbound)
5876 # ifdef emacs
5877 ,REF (before_dot),
5878 REF (at_dot),
5879 REF (after_dot),
5880 REF (syntaxspec),
5881 REF (notsyntaxspec)
5882 # endif
5884 #else
5885 # define NEXT \
5886 break
5887 # define CASE(x) \
5888 case x
5889 #endif
5891 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5893 INIT_FAIL_STACK ();
5895 #ifdef MATCH_MAY_ALLOCATE
5896 /* Do not bother to initialize all the register variables if there are
5897 no groups in the pattern, as it takes a fair amount of time. If
5898 there are groups, we include space for register 0 (the whole
5899 pattern), even though we never use it, since it simplifies the
5900 array indexing. We should fix this. */
5901 if (bufp->re_nsub)
5903 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5904 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5905 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5906 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5907 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5908 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5909 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5910 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5911 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5913 if (!(regstart && regend && old_regstart && old_regend && reg_info
5914 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5916 FREE_VARIABLES ();
5917 return -2;
5920 else
5922 /* We must initialize all our variables to NULL, so that
5923 `FREE_VARIABLES' doesn't try to free them. */
5924 regstart = regend = old_regstart = old_regend = best_regstart
5925 = best_regend = reg_dummy = NULL;
5926 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5928 #endif /* MATCH_MAY_ALLOCATE */
5930 /* The starting position is bogus. */
5931 #ifdef WCHAR
5932 if (pos < 0 || pos > csize1 + csize2)
5933 #else /* BYTE */
5934 if (pos < 0 || pos > size1 + size2)
5935 #endif
5937 FREE_VARIABLES ();
5938 return -1;
5941 #ifdef WCHAR
5942 /* Allocate wchar_t array for string1 and string2 and
5943 fill them with converted string. */
5944 if (string1 == NULL && string2 == NULL)
5946 /* We need seting up buffers here. */
5948 /* We must free wcs buffers in this function. */
5949 cant_free_wcs_buf = 0;
5951 if (csize1 != 0)
5953 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5954 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5955 is_binary = REGEX_TALLOC (csize1 + 1, char);
5956 if (!string1 || !mbs_offset1 || !is_binary)
5958 FREE_VAR (string1);
5959 FREE_VAR (mbs_offset1);
5960 FREE_VAR (is_binary);
5961 return -2;
5964 if (csize2 != 0)
5966 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5967 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5968 is_binary = REGEX_TALLOC (csize2 + 1, char);
5969 if (!string2 || !mbs_offset2 || !is_binary)
5971 FREE_VAR (string1);
5972 FREE_VAR (mbs_offset1);
5973 FREE_VAR (string2);
5974 FREE_VAR (mbs_offset2);
5975 FREE_VAR (is_binary);
5976 return -2;
5978 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5979 mbs_offset2, is_binary);
5980 string2[size2] = L'\0'; /* for a sentinel */
5981 FREE_VAR (is_binary);
5985 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5986 pattern to (char*) in regex_compile. */
5987 p = pattern = (CHAR_T*)bufp->buffer;
5988 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5990 #endif /* WCHAR */
5992 /* Initialize subexpression text positions to -1 to mark ones that no
5993 start_memory/stop_memory has been seen for. Also initialize the
5994 register information struct. */
5995 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5997 regstart[mcnt] = regend[mcnt]
5998 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
6000 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
6001 IS_ACTIVE (reg_info[mcnt]) = 0;
6002 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
6003 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
6006 /* We move `string1' into `string2' if the latter's empty -- but not if
6007 `string1' is null. */
6008 if (size2 == 0 && string1 != NULL)
6010 string2 = string1;
6011 size2 = size1;
6012 string1 = 0;
6013 size1 = 0;
6014 #ifdef WCHAR
6015 mbs_offset2 = mbs_offset1;
6016 csize2 = csize1;
6017 mbs_offset1 = NULL;
6018 csize1 = 0;
6019 #endif
6021 end1 = string1 + size1;
6022 end2 = string2 + size2;
6024 /* Compute where to stop matching, within the two strings. */
6025 #ifdef WCHAR
6026 if (stop <= csize1)
6028 mcnt = count_mbs_length(mbs_offset1, stop);
6029 end_match_1 = string1 + mcnt;
6030 end_match_2 = string2;
6032 else
6034 if (stop > csize1 + csize2)
6035 stop = csize1 + csize2;
6036 end_match_1 = end1;
6037 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
6038 end_match_2 = string2 + mcnt;
6040 if (mcnt < 0)
6041 { /* count_mbs_length return error. */
6042 FREE_VARIABLES ();
6043 return -1;
6045 #else
6046 if (stop <= size1)
6048 end_match_1 = string1 + stop;
6049 end_match_2 = string2;
6051 else
6053 end_match_1 = end1;
6054 end_match_2 = string2 + stop - size1;
6056 #endif /* WCHAR */
6058 /* `p' scans through the pattern as `d' scans through the data.
6059 `dend' is the end of the input string that `d' points within. `d'
6060 is advanced into the following input string whenever necessary, but
6061 this happens before fetching; therefore, at the beginning of the
6062 loop, `d' can be pointing at the end of a string, but it cannot
6063 equal `string2'. */
6064 #ifdef WCHAR
6065 if (size1 > 0 && pos <= csize1)
6067 mcnt = count_mbs_length(mbs_offset1, pos);
6068 d = string1 + mcnt;
6069 dend = end_match_1;
6071 else
6073 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
6074 d = string2 + mcnt;
6075 dend = end_match_2;
6078 if (mcnt < 0)
6079 { /* count_mbs_length return error. */
6080 FREE_VARIABLES ();
6081 return -1;
6083 #else
6084 if (size1 > 0 && pos <= size1)
6086 d = string1 + pos;
6087 dend = end_match_1;
6089 else
6091 d = string2 + pos - size1;
6092 dend = end_match_2;
6094 #endif /* WCHAR */
6096 DEBUG_PRINT1 ("The compiled pattern is:\n");
6097 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
6098 DEBUG_PRINT1 ("The string to match is: `");
6099 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
6100 DEBUG_PRINT1 ("'\n");
6102 /* This loops over pattern commands. It exits by returning from the
6103 function if the match is complete, or it drops through if the match
6104 fails at this starting point in the input data. */
6105 for (;;)
6107 #ifdef _LIBC
6108 DEBUG_PRINT2 ("\n%p: ", p);
6109 #else
6110 DEBUG_PRINT2 ("\n0x%x: ", p);
6111 #endif
6113 #ifdef __GNUC__
6114 NEXT;
6115 #else
6116 if (p == pend)
6117 #endif
6119 #ifdef __GNUC__
6120 end_of_pattern:
6121 #endif
6122 /* End of pattern means we might have succeeded. */
6123 DEBUG_PRINT1 ("end of pattern ... ");
6125 /* If we haven't matched the entire string, and we want the
6126 longest match, try backtracking. */
6127 if (d != end_match_2)
6129 /* 1 if this match ends in the same string (string1 or string2)
6130 as the best previous match. */
6131 boolean same_str_p = (FIRST_STRING_P (match_end)
6132 == MATCHING_IN_FIRST_STRING);
6133 /* 1 if this match is the best seen so far. */
6134 boolean best_match_p;
6136 /* AIX compiler got confused when this was combined
6137 with the previous declaration. */
6138 if (same_str_p)
6139 best_match_p = d > match_end;
6140 else
6141 best_match_p = !MATCHING_IN_FIRST_STRING;
6143 DEBUG_PRINT1 ("backtracking.\n");
6145 if (!FAIL_STACK_EMPTY ())
6146 { /* More failure points to try. */
6148 /* If exceeds best match so far, save it. */
6149 if (!best_regs_set || best_match_p)
6151 best_regs_set = true;
6152 match_end = d;
6154 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6156 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6158 best_regstart[mcnt] = regstart[mcnt];
6159 best_regend[mcnt] = regend[mcnt];
6162 goto fail;
6165 /* If no failure points, don't restore garbage. And if
6166 last match is real best match, don't restore second
6167 best one. */
6168 else if (best_regs_set && !best_match_p)
6170 restore_best_regs:
6171 /* Restore best match. It may happen that `dend ==
6172 end_match_1' while the restored d is in string2.
6173 For example, the pattern `x.*y.*z' against the
6174 strings `x-' and `y-z-', if the two strings are
6175 not consecutive in memory. */
6176 DEBUG_PRINT1 ("Restoring best registers.\n");
6178 d = match_end;
6179 dend = ((d >= string1 && d <= end1)
6180 ? end_match_1 : end_match_2);
6182 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6184 regstart[mcnt] = best_regstart[mcnt];
6185 regend[mcnt] = best_regend[mcnt];
6188 } /* d != end_match_2 */
6190 succeed_label:
6191 DEBUG_PRINT1 ("Accepting match.\n");
6192 /* If caller wants register contents data back, do it. */
6193 if (regs && !bufp->no_sub)
6195 /* Have the register data arrays been allocated? */
6196 if (bufp->regs_allocated == REGS_UNALLOCATED)
6197 { /* No. So allocate them with malloc. We need one
6198 extra element beyond `num_regs' for the `-1' marker
6199 GNU code uses. */
6200 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6201 regs->start = TALLOC (regs->num_regs, regoff_t);
6202 regs->end = TALLOC (regs->num_regs, regoff_t);
6203 if (regs->start == NULL || regs->end == NULL)
6205 FREE_VARIABLES ();
6206 return -2;
6208 bufp->regs_allocated = REGS_REALLOCATE;
6210 else if (bufp->regs_allocated == REGS_REALLOCATE)
6211 { /* Yes. If we need more elements than were already
6212 allocated, reallocate them. If we need fewer, just
6213 leave it alone. */
6214 if (regs->num_regs < num_regs + 1)
6216 regs->num_regs = num_regs + 1;
6217 RETALLOC (regs->start, regs->num_regs, regoff_t);
6218 RETALLOC (regs->end, regs->num_regs, regoff_t);
6219 if (regs->start == NULL || regs->end == NULL)
6221 FREE_VARIABLES ();
6222 return -2;
6226 else
6228 /* These braces fend off a "empty body in an else-statement"
6229 warning under GCC when assert expands to nothing. */
6230 assert (bufp->regs_allocated == REGS_FIXED);
6233 /* Convert the pointer data in `regstart' and `regend' to
6234 indices. Register zero has to be set differently,
6235 since we haven't kept track of any info for it. */
6236 if (regs->num_regs > 0)
6238 regs->start[0] = pos;
6239 #ifdef WCHAR
6240 if (MATCHING_IN_FIRST_STRING)
6241 regs->end[0] = (mbs_offset1 != NULL ?
6242 mbs_offset1[d-string1] : 0);
6243 else
6244 regs->end[0] = csize1 + (mbs_offset2 != NULL
6245 ? mbs_offset2[d-string2] : 0);
6246 #else
6247 regs->end[0] = (MATCHING_IN_FIRST_STRING
6248 ? ((regoff_t) (d - string1))
6249 : ((regoff_t) (d - string2 + size1)));
6250 #endif /* WCHAR */
6253 /* Go through the first `min (num_regs, regs->num_regs)'
6254 registers, since that is all we initialized. */
6255 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6256 mcnt++)
6258 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6259 regs->start[mcnt] = regs->end[mcnt] = -1;
6260 else
6262 regs->start[mcnt]
6263 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6264 regs->end[mcnt]
6265 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6269 /* If the regs structure we return has more elements than
6270 were in the pattern, set the extra elements to -1. If
6271 we (re)allocated the registers, this is the case,
6272 because we always allocate enough to have at least one
6273 -1 at the end. */
6274 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6275 regs->start[mcnt] = regs->end[mcnt] = -1;
6276 } /* regs && !bufp->no_sub */
6278 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6279 nfailure_points_pushed, nfailure_points_popped,
6280 nfailure_points_pushed - nfailure_points_popped);
6281 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6283 #ifdef WCHAR
6284 if (MATCHING_IN_FIRST_STRING)
6285 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6286 else
6287 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6288 csize1;
6289 mcnt -= pos;
6290 #else
6291 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6292 ? string1 : string2 - size1);
6293 #endif /* WCHAR */
6295 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6297 FREE_VARIABLES ();
6298 return mcnt;
6301 #ifndef __GNUC__
6302 /* Otherwise match next pattern command. */
6303 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6305 #endif
6306 /* Ignore these. Used to ignore the n of succeed_n's which
6307 currently have n == 0. */
6308 CASE (no_op):
6309 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6310 NEXT;
6312 CASE (succeed):
6313 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6314 goto succeed_label;
6316 /* Match the next n pattern characters exactly. The following
6317 byte in the pattern defines n, and the n bytes after that
6318 are the characters to match. */
6319 CASE (exactn):
6320 #ifdef MBS_SUPPORT
6321 CASE (exactn_bin):
6322 #endif
6323 mcnt = *p++;
6324 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6326 /* This is written out as an if-else so we don't waste time
6327 testing `translate' inside the loop. */
6328 if (translate)
6332 PREFETCH ();
6333 #ifdef WCHAR
6334 if (*d <= 0xff)
6336 if ((UCHAR_T) translate[(unsigned char) *d++]
6337 != (UCHAR_T) *p++)
6338 goto fail;
6340 else
6342 if (*d++ != (CHAR_T) *p++)
6343 goto fail;
6345 #else
6346 if ((UCHAR_T) translate[(unsigned char) *d++]
6347 != (UCHAR_T) *p++)
6348 goto fail;
6349 #endif /* WCHAR */
6351 while (--mcnt);
6353 else
6357 PREFETCH ();
6358 if (*d++ != (CHAR_T) *p++) goto fail;
6360 while (--mcnt);
6362 SET_REGS_MATCHED ();
6363 NEXT;
6366 /* Match any character except possibly a newline or a null. */
6367 CASE (anychar):
6368 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6370 PREFETCH ();
6372 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6373 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6374 goto fail;
6376 SET_REGS_MATCHED ();
6377 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6378 d++;
6379 NEXT;
6382 CASE (charset):
6383 CASE (charset_not):
6385 register UCHAR_T c;
6386 #ifdef WCHAR
6387 unsigned int i, char_class_length, coll_symbol_length,
6388 equiv_class_length, ranges_length, chars_length, length;
6389 CHAR_T *workp, *workp2, *charset_top;
6390 #define WORK_BUFFER_SIZE 128
6391 CHAR_T str_buf[WORK_BUFFER_SIZE];
6392 # ifdef _LIBC
6393 uint32_t nrules;
6394 # endif /* _LIBC */
6395 #endif /* WCHAR */
6396 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6398 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6399 PREFETCH ();
6400 c = TRANSLATE (*d); /* The character to match. */
6401 #ifdef WCHAR
6402 # ifdef _LIBC
6403 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6404 # endif /* _LIBC */
6405 charset_top = p - 1;
6406 char_class_length = *p++;
6407 coll_symbol_length = *p++;
6408 equiv_class_length = *p++;
6409 ranges_length = *p++;
6410 chars_length = *p++;
6411 /* p points charset[6], so the address of the next instruction
6412 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6413 where l=length of char_classes, m=length of collating_symbol,
6414 n=equivalence_class, o=length of char_range,
6415 p'=length of character. */
6416 workp = p;
6417 /* Update p to indicate the next instruction. */
6418 p += char_class_length + coll_symbol_length+ equiv_class_length +
6419 2*ranges_length + chars_length;
6421 /* match with char_class? */
6422 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6424 wctype_t wctype;
6425 uintptr_t alignedp = ((uintptr_t)workp
6426 + __alignof__(wctype_t) - 1)
6427 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6428 wctype = *((wctype_t*)alignedp);
6429 workp += CHAR_CLASS_SIZE;
6430 if (iswctype((wint_t)c, wctype))
6431 goto char_set_matched;
6434 /* match with collating_symbol? */
6435 # ifdef _LIBC
6436 if (nrules != 0)
6438 const unsigned char *extra = (const unsigned char *)
6439 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6441 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6442 workp++)
6444 int32_t *wextra;
6445 wextra = (int32_t*)(extra + *workp++);
6446 for (i = 0; i < *wextra; ++i)
6447 if (TRANSLATE(d[i]) != wextra[1 + i])
6448 break;
6450 if (i == *wextra)
6452 /* Update d, however d will be incremented at
6453 char_set_matched:, we decrement d here. */
6454 d += i - 1;
6455 goto char_set_matched;
6459 else /* (nrules == 0) */
6460 # endif
6461 /* If we can't look up collation data, we use wcscoll
6462 instead. */
6464 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6466 const CHAR_T *backup_d = d, *backup_dend = dend;
6467 length = wcslen (workp);
6469 /* If wcscoll(the collating symbol, whole string) > 0,
6470 any substring of the string never match with the
6471 collating symbol. */
6472 if (wcscoll (workp, d) > 0)
6474 workp += length + 1;
6475 continue;
6478 /* First, we compare the collating symbol with
6479 the first character of the string.
6480 If it don't match, we add the next character to
6481 the compare buffer in turn. */
6482 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6484 int match;
6485 if (d == dend)
6487 if (dend == end_match_2)
6488 break;
6489 d = string2;
6490 dend = end_match_2;
6493 /* add next character to the compare buffer. */
6494 str_buf[i] = TRANSLATE(*d);
6495 str_buf[i+1] = '\0';
6497 match = wcscoll (workp, str_buf);
6498 if (match == 0)
6499 goto char_set_matched;
6501 if (match < 0)
6502 /* (str_buf > workp) indicate (str_buf + X > workp),
6503 because for all X (str_buf + X > str_buf).
6504 So we don't need continue this loop. */
6505 break;
6507 /* Otherwise(str_buf < workp),
6508 (str_buf+next_character) may equals (workp).
6509 So we continue this loop. */
6511 /* not matched */
6512 d = backup_d;
6513 dend = backup_dend;
6514 workp += length + 1;
6517 /* match with equivalence_class? */
6518 # ifdef _LIBC
6519 if (nrules != 0)
6521 const CHAR_T *backup_d = d, *backup_dend = dend;
6522 /* Try to match the equivalence class against
6523 those known to the collate implementation. */
6524 const int32_t *table;
6525 const int32_t *weights;
6526 const int32_t *extra;
6527 const int32_t *indirect;
6528 int32_t idx, idx2;
6529 wint_t *cp;
6530 size_t len;
6532 /* This #include defines a local function! */
6533 # include <locale/weightwc.h>
6535 table = (const int32_t *)
6536 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6537 weights = (const wint_t *)
6538 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6539 extra = (const wint_t *)
6540 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6541 indirect = (const int32_t *)
6542 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6544 /* Write 1 collating element to str_buf, and
6545 get its index. */
6546 idx2 = 0;
6548 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6550 cp = (wint_t*)str_buf;
6551 if (d == dend)
6553 if (dend == end_match_2)
6554 break;
6555 d = string2;
6556 dend = end_match_2;
6558 str_buf[i] = TRANSLATE(*(d+i));
6559 str_buf[i+1] = '\0'; /* sentinel */
6560 idx2 = findidx ((const wint_t**)&cp);
6563 /* Update d, however d will be incremented at
6564 char_set_matched:, we decrement d here. */
6565 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6566 if (d >= dend)
6568 if (dend == end_match_2)
6569 d = dend;
6570 else
6572 d = string2;
6573 dend = end_match_2;
6577 len = weights[idx2];
6579 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6580 workp++)
6582 idx = (int32_t)*workp;
6583 /* We already checked idx != 0 in regex_compile. */
6585 if (idx2 != 0 && len == weights[idx])
6587 int cnt = 0;
6588 while (cnt < len && (weights[idx + 1 + cnt]
6589 == weights[idx2 + 1 + cnt]))
6590 ++cnt;
6592 if (cnt == len)
6593 goto char_set_matched;
6596 /* not matched */
6597 d = backup_d;
6598 dend = backup_dend;
6600 else /* (nrules == 0) */
6601 # endif
6602 /* If we can't look up collation data, we use wcscoll
6603 instead. */
6605 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6607 const CHAR_T *backup_d = d, *backup_dend = dend;
6608 length = wcslen (workp);
6610 /* If wcscoll(the collating symbol, whole string) > 0,
6611 any substring of the string never match with the
6612 collating symbol. */
6613 if (wcscoll (workp, d) > 0)
6615 workp += length + 1;
6616 break;
6619 /* First, we compare the equivalence class with
6620 the first character of the string.
6621 If it don't match, we add the next character to
6622 the compare buffer in turn. */
6623 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6625 int match;
6626 if (d == dend)
6628 if (dend == end_match_2)
6629 break;
6630 d = string2;
6631 dend = end_match_2;
6634 /* add next character to the compare buffer. */
6635 str_buf[i] = TRANSLATE(*d);
6636 str_buf[i+1] = '\0';
6638 match = wcscoll (workp, str_buf);
6640 if (match == 0)
6641 goto char_set_matched;
6643 if (match < 0)
6644 /* (str_buf > workp) indicate (str_buf + X > workp),
6645 because for all X (str_buf + X > str_buf).
6646 So we don't need continue this loop. */
6647 break;
6649 /* Otherwise(str_buf < workp),
6650 (str_buf+next_character) may equals (workp).
6651 So we continue this loop. */
6653 /* not matched */
6654 d = backup_d;
6655 dend = backup_dend;
6656 workp += length + 1;
6660 /* match with char_range? */
6661 # ifdef _LIBC
6662 if (nrules != 0)
6664 uint32_t collseqval;
6665 const char *collseq = (const char *)
6666 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6668 collseqval = collseq_table_lookup (collseq, c);
6670 for (; workp < p - chars_length ;)
6672 uint32_t start_val, end_val;
6674 /* We already compute the collation sequence value
6675 of the characters (or collating symbols). */
6676 start_val = (uint32_t) *workp++; /* range_start */
6677 end_val = (uint32_t) *workp++; /* range_end */
6679 if (start_val <= collseqval && collseqval <= end_val)
6680 goto char_set_matched;
6683 else
6684 # endif
6686 /* We set range_start_char at str_buf[0], range_end_char
6687 at str_buf[4], and compared char at str_buf[2]. */
6688 str_buf[1] = 0;
6689 str_buf[2] = c;
6690 str_buf[3] = 0;
6691 str_buf[5] = 0;
6692 for (; workp < p - chars_length ;)
6694 wchar_t *range_start_char, *range_end_char;
6696 /* match if (range_start_char <= c <= range_end_char). */
6698 /* If range_start(or end) < 0, we assume -range_start(end)
6699 is the offset of the collating symbol which is specified
6700 as the character of the range start(end). */
6702 /* range_start */
6703 if (*workp < 0)
6704 range_start_char = charset_top - (*workp++);
6705 else
6707 str_buf[0] = *workp++;
6708 range_start_char = str_buf;
6711 /* range_end */
6712 if (*workp < 0)
6713 range_end_char = charset_top - (*workp++);
6714 else
6716 str_buf[4] = *workp++;
6717 range_end_char = str_buf + 4;
6720 if (wcscoll (range_start_char, str_buf+2) <= 0
6721 && wcscoll (str_buf+2, range_end_char) <= 0)
6722 goto char_set_matched;
6726 /* match with char? */
6727 for (; workp < p ; workp++)
6728 if (c == *workp)
6729 goto char_set_matched;
6731 not = !not;
6733 char_set_matched:
6734 if (not) goto fail;
6735 #else
6736 /* Cast to `unsigned' instead of `unsigned char' in case the
6737 bit list is a full 32 bytes long. */
6738 if (c < (unsigned) (*p * BYTEWIDTH)
6739 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6740 not = !not;
6742 p += 1 + *p;
6744 if (!not) goto fail;
6745 #undef WORK_BUFFER_SIZE
6746 #endif /* WCHAR */
6747 SET_REGS_MATCHED ();
6748 d++;
6749 NEXT;
6753 /* The beginning of a group is represented by start_memory.
6754 The arguments are the register number in the next byte, and the
6755 number of groups inner to this one in the next. The text
6756 matched within the group is recorded (in the internal
6757 registers data structure) under the register number. */
6758 CASE (start_memory):
6759 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6760 (long int) *p, (long int) p[1]);
6762 /* Find out if this group can match the empty string. */
6763 p1 = p; /* To send to group_match_null_string_p. */
6765 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6766 REG_MATCH_NULL_STRING_P (reg_info[*p])
6767 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6769 /* Save the position in the string where we were the last time
6770 we were at this open-group operator in case the group is
6771 operated upon by a repetition operator, e.g., with `(a*)*b'
6772 against `ab'; then we want to ignore where we are now in
6773 the string in case this attempt to match fails. */
6774 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6775 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6776 : regstart[*p];
6777 DEBUG_PRINT2 (" old_regstart: %d\n",
6778 POINTER_TO_OFFSET (old_regstart[*p]));
6780 regstart[*p] = d;
6781 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6783 IS_ACTIVE (reg_info[*p]) = 1;
6784 MATCHED_SOMETHING (reg_info[*p]) = 0;
6786 /* Clear this whenever we change the register activity status. */
6787 set_regs_matched_done = 0;
6789 /* This is the new highest active register. */
6790 highest_active_reg = *p;
6792 /* If nothing was active before, this is the new lowest active
6793 register. */
6794 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6795 lowest_active_reg = *p;
6797 /* Move past the register number and inner group count. */
6798 p += 2;
6799 just_past_start_mem = p;
6801 NEXT;
6804 /* The stop_memory opcode represents the end of a group. Its
6805 arguments are the same as start_memory's: the register
6806 number, and the number of inner groups. */
6807 CASE (stop_memory):
6808 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6809 (long int) *p, (long int) p[1]);
6811 /* We need to save the string position the last time we were at
6812 this close-group operator in case the group is operated
6813 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6814 against `aba'; then we want to ignore where we are now in
6815 the string in case this attempt to match fails. */
6816 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6817 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6818 : regend[*p];
6819 DEBUG_PRINT2 (" old_regend: %d\n",
6820 POINTER_TO_OFFSET (old_regend[*p]));
6822 regend[*p] = d;
6823 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6825 /* This register isn't active anymore. */
6826 IS_ACTIVE (reg_info[*p]) = 0;
6828 /* Clear this whenever we change the register activity status. */
6829 set_regs_matched_done = 0;
6831 /* If this was the only register active, nothing is active
6832 anymore. */
6833 if (lowest_active_reg == highest_active_reg)
6835 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6836 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6838 else
6839 { /* We must scan for the new highest active register, since
6840 it isn't necessarily one less than now: consider
6841 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6842 new highest active register is 1. */
6843 UCHAR_T r = *p - 1;
6844 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6845 r--;
6847 /* If we end up at register zero, that means that we saved
6848 the registers as the result of an `on_failure_jump', not
6849 a `start_memory', and we jumped to past the innermost
6850 `stop_memory'. For example, in ((.)*) we save
6851 registers 1 and 2 as a result of the *, but when we pop
6852 back to the second ), we are at the stop_memory 1.
6853 Thus, nothing is active. */
6854 if (r == 0)
6856 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6857 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6859 else
6860 highest_active_reg = r;
6863 /* If just failed to match something this time around with a
6864 group that's operated on by a repetition operator, try to
6865 force exit from the ``loop'', and restore the register
6866 information for this group that we had before trying this
6867 last match. */
6868 if ((!MATCHED_SOMETHING (reg_info[*p])
6869 || just_past_start_mem == p - 1)
6870 && (p + 2) < pend)
6872 boolean is_a_jump_n = false;
6874 p1 = p + 2;
6875 mcnt = 0;
6876 switch ((re_opcode_t) *p1++)
6878 case jump_n:
6879 is_a_jump_n = true;
6880 case pop_failure_jump:
6881 case maybe_pop_jump:
6882 case jump:
6883 case dummy_failure_jump:
6884 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6885 if (is_a_jump_n)
6886 p1 += OFFSET_ADDRESS_SIZE;
6887 break;
6889 default:
6890 /* do nothing */ ;
6892 p1 += mcnt;
6894 /* If the next operation is a jump backwards in the pattern
6895 to an on_failure_jump right before the start_memory
6896 corresponding to this stop_memory, exit from the loop
6897 by forcing a failure after pushing on the stack the
6898 on_failure_jump's jump in the pattern, and d. */
6899 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6900 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6901 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6903 /* If this group ever matched anything, then restore
6904 what its registers were before trying this last
6905 failed match, e.g., with `(a*)*b' against `ab' for
6906 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6907 against `aba' for regend[3].
6909 Also restore the registers for inner groups for,
6910 e.g., `((a*)(b*))*' against `aba' (register 3 would
6911 otherwise get trashed). */
6913 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6915 unsigned r;
6917 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6919 /* Restore this and inner groups' (if any) registers. */
6920 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6921 r++)
6923 regstart[r] = old_regstart[r];
6925 /* xx why this test? */
6926 if (old_regend[r] >= regstart[r])
6927 regend[r] = old_regend[r];
6930 p1++;
6931 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6932 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6934 goto fail;
6938 /* Move past the register number and the inner group count. */
6939 p += 2;
6940 NEXT;
6943 /* \<digit> has been turned into a `duplicate' command which is
6944 followed by the numeric value of <digit> as the register number. */
6945 CASE (duplicate):
6947 register const CHAR_T *d2, *dend2;
6948 int regno = *p++; /* Get which register to match against. */
6949 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6951 /* Can't back reference a group which we've never matched. */
6952 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6953 goto fail;
6955 /* Where in input to try to start matching. */
6956 d2 = regstart[regno];
6958 /* Where to stop matching; if both the place to start and
6959 the place to stop matching are in the same string, then
6960 set to the place to stop, otherwise, for now have to use
6961 the end of the first string. */
6963 dend2 = ((FIRST_STRING_P (regstart[regno])
6964 == FIRST_STRING_P (regend[regno]))
6965 ? regend[regno] : end_match_1);
6966 for (;;)
6968 /* If necessary, advance to next segment in register
6969 contents. */
6970 while (d2 == dend2)
6972 if (dend2 == end_match_2) break;
6973 if (dend2 == regend[regno]) break;
6975 /* End of string1 => advance to string2. */
6976 d2 = string2;
6977 dend2 = regend[regno];
6979 /* At end of register contents => success */
6980 if (d2 == dend2) break;
6982 /* If necessary, advance to next segment in data. */
6983 PREFETCH ();
6985 /* How many characters left in this segment to match. */
6986 mcnt = dend - d;
6988 /* Want how many consecutive characters we can match in
6989 one shot, so, if necessary, adjust the count. */
6990 if (mcnt > dend2 - d2)
6991 mcnt = dend2 - d2;
6993 /* Compare that many; failure if mismatch, else move
6994 past them. */
6995 if (translate
6996 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6997 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6998 goto fail;
6999 d += mcnt, d2 += mcnt;
7001 /* Do this because we've match some characters. */
7002 SET_REGS_MATCHED ();
7005 NEXT;
7008 /* begline matches the empty string at the beginning of the string
7009 (unless `not_bol' is set in `bufp'), and, if
7010 `newline_anchor' is set, after newlines. */
7011 CASE (begline):
7012 DEBUG_PRINT1 ("EXECUTING begline.\n");
7014 if (AT_STRINGS_BEG (d))
7016 if (!bufp->not_bol)
7018 NEXT;
7021 else if (d[-1] == '\n' && bufp->newline_anchor)
7023 NEXT;
7025 /* In all other cases, we fail. */
7026 goto fail;
7029 /* endline is the dual of begline. */
7030 CASE (endline):
7031 DEBUG_PRINT1 ("EXECUTING endline.\n");
7033 if (AT_STRINGS_END (d))
7035 if (!bufp->not_eol)
7037 NEXT;
7041 /* We have to ``prefetch'' the next character. */
7042 else if ((d == end1 ? *string2 : *d) == '\n'
7043 && bufp->newline_anchor)
7045 NEXT;
7047 goto fail;
7050 /* Match at the very beginning of the data. */
7051 CASE (begbuf):
7052 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7053 if (AT_STRINGS_BEG (d))
7055 NEXT;
7057 goto fail;
7060 /* Match at the very end of the data. */
7061 CASE (endbuf):
7062 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7063 if (AT_STRINGS_END (d))
7065 NEXT;
7067 goto fail;
7070 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7071 pushes NULL as the value for the string on the stack. Then
7072 `pop_failure_point' will keep the current value for the
7073 string, instead of restoring it. To see why, consider
7074 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7075 then the . fails against the \n. But the next thing we want
7076 to do is match the \n against the \n; if we restored the
7077 string value, we would be back at the foo.
7079 Because this is used only in specific cases, we don't need to
7080 check all the things that `on_failure_jump' does, to make
7081 sure the right things get saved on the stack. Hence we don't
7082 share its code. The only reason to push anything on the
7083 stack at all is that otherwise we would have to change
7084 `anychar's code to do something besides goto fail in this
7085 case; that seems worse than this. */
7086 CASE (on_failure_keep_string_jump):
7087 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7089 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7090 #ifdef _LIBC
7091 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
7092 #else
7093 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
7094 #endif
7096 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
7097 NEXT;
7100 /* Uses of on_failure_jump:
7102 Each alternative starts with an on_failure_jump that points
7103 to the beginning of the next alternative. Each alternative
7104 except the last ends with a jump that in effect jumps past
7105 the rest of the alternatives. (They really jump to the
7106 ending jump of the following alternative, because tensioning
7107 these jumps is a hassle.)
7109 Repeats start with an on_failure_jump that points past both
7110 the repetition text and either the following jump or
7111 pop_failure_jump back to this on_failure_jump. */
7112 CASE (on_failure_jump):
7113 on_failure:
7114 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7116 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7117 #ifdef _LIBC
7118 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7119 #else
7120 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7121 #endif
7123 /* If this on_failure_jump comes right before a group (i.e.,
7124 the original * applied to a group), save the information
7125 for that group and all inner ones, so that if we fail back
7126 to this point, the group's information will be correct.
7127 For example, in \(a*\)*\1, we need the preceding group,
7128 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7130 /* We can't use `p' to check ahead because we push
7131 a failure point to `p + mcnt' after we do this. */
7132 p1 = p;
7134 /* We need to skip no_op's before we look for the
7135 start_memory in case this on_failure_jump is happening as
7136 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7137 against aba. */
7138 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7139 p1++;
7141 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7143 /* We have a new highest active register now. This will
7144 get reset at the start_memory we are about to get to,
7145 but we will have saved all the registers relevant to
7146 this repetition op, as described above. */
7147 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7148 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7149 lowest_active_reg = *(p1 + 1);
7152 DEBUG_PRINT1 (":\n");
7153 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7154 NEXT;
7157 /* A smart repeat ends with `maybe_pop_jump'.
7158 We change it to either `pop_failure_jump' or `jump'. */
7159 CASE (maybe_pop_jump):
7160 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7161 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7163 register UCHAR_T *p2 = p;
7165 /* Compare the beginning of the repeat with what in the
7166 pattern follows its end. If we can establish that there
7167 is nothing that they would both match, i.e., that we
7168 would have to backtrack because of (as in, e.g., `a*a')
7169 then we can change to pop_failure_jump, because we'll
7170 never have to backtrack.
7172 This is not true in the case of alternatives: in
7173 `(a|ab)*' we do need to backtrack to the `ab' alternative
7174 (e.g., if the string was `ab'). But instead of trying to
7175 detect that here, the alternative has put on a dummy
7176 failure point which is what we will end up popping. */
7178 /* Skip over open/close-group commands.
7179 If what follows this loop is a ...+ construct,
7180 look at what begins its body, since we will have to
7181 match at least one of that. */
7182 while (1)
7184 if (p2 + 2 < pend
7185 && ((re_opcode_t) *p2 == stop_memory
7186 || (re_opcode_t) *p2 == start_memory))
7187 p2 += 3;
7188 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7189 && (re_opcode_t) *p2 == dummy_failure_jump)
7190 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7191 else
7192 break;
7195 p1 = p + mcnt;
7196 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7197 to the `maybe_finalize_jump' of this case. Examine what
7198 follows. */
7200 /* If we're at the end of the pattern, we can change. */
7201 if (p2 == pend)
7203 /* Consider what happens when matching ":\(.*\)"
7204 against ":/". I don't really understand this code
7205 yet. */
7206 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7207 pop_failure_jump;
7208 DEBUG_PRINT1
7209 (" End of pattern: change to `pop_failure_jump'.\n");
7212 else if ((re_opcode_t) *p2 == exactn
7213 #ifdef MBS_SUPPORT
7214 || (re_opcode_t) *p2 == exactn_bin
7215 #endif
7216 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7218 register UCHAR_T c
7219 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7221 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7222 #ifdef MBS_SUPPORT
7223 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7224 #endif
7225 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7227 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7228 pop_failure_jump;
7229 #ifdef WCHAR
7230 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7231 (wint_t) c,
7232 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7233 #else
7234 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7235 (char) c,
7236 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7237 #endif
7240 #ifndef WCHAR
7241 else if ((re_opcode_t) p1[3] == charset
7242 || (re_opcode_t) p1[3] == charset_not)
7244 int not = (re_opcode_t) p1[3] == charset_not;
7246 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7247 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7248 not = !not;
7250 /* `not' is equal to 1 if c would match, which means
7251 that we can't change to pop_failure_jump. */
7252 if (!not)
7254 p[-3] = (unsigned char) pop_failure_jump;
7255 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7258 #endif /* not WCHAR */
7260 #ifndef WCHAR
7261 else if ((re_opcode_t) *p2 == charset)
7263 /* We win if the first character of the loop is not part
7264 of the charset. */
7265 if ((re_opcode_t) p1[3] == exactn
7266 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7267 && (p2[2 + p1[5] / BYTEWIDTH]
7268 & (1 << (p1[5] % BYTEWIDTH)))))
7270 p[-3] = (unsigned char) pop_failure_jump;
7271 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7274 else if ((re_opcode_t) p1[3] == charset_not)
7276 int idx;
7277 /* We win if the charset_not inside the loop
7278 lists every character listed in the charset after. */
7279 for (idx = 0; idx < (int) p2[1]; idx++)
7280 if (! (p2[2 + idx] == 0
7281 || (idx < (int) p1[4]
7282 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7283 break;
7285 if (idx == p2[1])
7287 p[-3] = (unsigned char) pop_failure_jump;
7288 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7291 else if ((re_opcode_t) p1[3] == charset)
7293 int idx;
7294 /* We win if the charset inside the loop
7295 has no overlap with the one after the loop. */
7296 for (idx = 0;
7297 idx < (int) p2[1] && idx < (int) p1[4];
7298 idx++)
7299 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7300 break;
7302 if (idx == p2[1] || idx == p1[4])
7304 p[-3] = (unsigned char) pop_failure_jump;
7305 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7309 #endif /* not WCHAR */
7311 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7312 if ((re_opcode_t) p[-1] != pop_failure_jump)
7314 p[-1] = (UCHAR_T) jump;
7315 DEBUG_PRINT1 (" Match => jump.\n");
7316 goto unconditional_jump;
7318 /* Note fall through. */
7321 /* The end of a simple repeat has a pop_failure_jump back to
7322 its matching on_failure_jump, where the latter will push a
7323 failure point. The pop_failure_jump takes off failure
7324 points put on by this pop_failure_jump's matching
7325 on_failure_jump; we got through the pattern to here from the
7326 matching on_failure_jump, so didn't fail. */
7327 CASE (pop_failure_jump):
7329 /* We need to pass separate storage for the lowest and
7330 highest registers, even though we don't care about the
7331 actual values. Otherwise, we will restore only one
7332 register from the stack, since lowest will == highest in
7333 `pop_failure_point'. */
7334 active_reg_t dummy_low_reg, dummy_high_reg;
7335 UCHAR_T *pdummy = NULL;
7336 const CHAR_T *sdummy = NULL;
7338 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7339 POP_FAILURE_POINT (sdummy, pdummy,
7340 dummy_low_reg, dummy_high_reg,
7341 reg_dummy, reg_dummy, reg_info_dummy);
7343 /* Note fall through. */
7345 unconditional_jump:
7346 #ifdef _LIBC
7347 DEBUG_PRINT2 ("\n%p: ", p);
7348 #else
7349 DEBUG_PRINT2 ("\n0x%x: ", p);
7350 #endif
7351 /* Note fall through. */
7353 /* Unconditionally jump (without popping any failure points). */
7354 CASE (jump):
7355 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7356 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7357 p += mcnt; /* Do the jump. */
7358 #ifdef _LIBC
7359 DEBUG_PRINT2 ("(to %p).\n", p);
7360 #else
7361 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7362 #endif
7363 NEXT;
7366 /* We need this opcode so we can detect where alternatives end
7367 in `group_match_null_string_p' et al. */
7368 CASE (jump_past_alt):
7369 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7370 goto unconditional_jump;
7373 /* Normally, the on_failure_jump pushes a failure point, which
7374 then gets popped at pop_failure_jump. We will end up at
7375 pop_failure_jump, also, and with a pattern of, say, `a+', we
7376 are skipping over the on_failure_jump, so we have to push
7377 something meaningless for pop_failure_jump to pop. */
7378 CASE (dummy_failure_jump):
7379 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7380 /* It doesn't matter what we push for the string here. What
7381 the code at `fail' tests is the value for the pattern. */
7382 PUSH_FAILURE_POINT (NULL, NULL, -2);
7383 goto unconditional_jump;
7386 /* At the end of an alternative, we need to push a dummy failure
7387 point in case we are followed by a `pop_failure_jump', because
7388 we don't want the failure point for the alternative to be
7389 popped. For example, matching `(a|ab)*' against `aab'
7390 requires that we match the `ab' alternative. */
7391 CASE (push_dummy_failure):
7392 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7393 /* See comments just above at `dummy_failure_jump' about the
7394 two zeroes. */
7395 PUSH_FAILURE_POINT (NULL, NULL, -2);
7396 NEXT;
7398 /* Have to succeed matching what follows at least n times.
7399 After that, handle like `on_failure_jump'. */
7400 CASE (succeed_n):
7401 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7402 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7404 assert (mcnt >= 0);
7405 /* Originally, this is how many times we HAVE to succeed. */
7406 if (mcnt > 0)
7408 mcnt--;
7409 p += OFFSET_ADDRESS_SIZE;
7410 STORE_NUMBER_AND_INCR (p, mcnt);
7411 #ifdef _LIBC
7412 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7413 , mcnt);
7414 #else
7415 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7416 , mcnt);
7417 #endif
7419 else if (mcnt == 0)
7421 #ifdef _LIBC
7422 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7423 p + OFFSET_ADDRESS_SIZE);
7424 #else
7425 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7426 p + OFFSET_ADDRESS_SIZE);
7427 #endif /* _LIBC */
7429 #ifdef WCHAR
7430 p[1] = (UCHAR_T) no_op;
7431 #else
7432 p[2] = (UCHAR_T) no_op;
7433 p[3] = (UCHAR_T) no_op;
7434 #endif /* WCHAR */
7435 goto on_failure;
7437 NEXT;
7439 CASE (jump_n):
7440 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7441 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7443 /* Originally, this is how many times we CAN jump. */
7444 if (mcnt)
7446 mcnt--;
7447 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7449 #ifdef _LIBC
7450 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7451 mcnt);
7452 #else
7453 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7454 mcnt);
7455 #endif /* _LIBC */
7456 goto unconditional_jump;
7458 /* If don't have to jump any more, skip over the rest of command. */
7459 else
7460 p += 2 * OFFSET_ADDRESS_SIZE;
7461 NEXT;
7463 CASE (set_number_at):
7465 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7467 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7468 p1 = p + mcnt;
7469 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7470 #ifdef _LIBC
7471 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7472 #else
7473 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7474 #endif
7475 STORE_NUMBER (p1, mcnt);
7476 NEXT;
7479 #if 0
7480 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7481 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7482 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7483 macro and introducing temporary variables works around the bug. */
7485 CASE (wordbound):
7486 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7487 if (AT_WORD_BOUNDARY (d))
7489 NEXT;
7491 goto fail;
7493 CASE (notwordbound):
7494 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7495 if (AT_WORD_BOUNDARY (d))
7496 goto fail;
7497 NEXT;
7498 #else
7499 CASE (wordbound):
7501 boolean prevchar, thischar;
7503 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7504 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7506 NEXT;
7509 prevchar = WORDCHAR_P (d - 1);
7510 thischar = WORDCHAR_P (d);
7511 if (prevchar != thischar)
7513 NEXT;
7515 goto fail;
7518 CASE (notwordbound):
7520 boolean prevchar, thischar;
7522 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7523 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7524 goto fail;
7526 prevchar = WORDCHAR_P (d - 1);
7527 thischar = WORDCHAR_P (d);
7528 if (prevchar != thischar)
7529 goto fail;
7530 NEXT;
7532 #endif
7534 CASE (wordbeg):
7535 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7536 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7537 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7539 NEXT;
7541 goto fail;
7543 CASE (wordend):
7544 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7545 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7546 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7548 NEXT;
7550 goto fail;
7552 #ifdef emacs
7553 CASE (before_dot):
7554 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7555 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7556 goto fail;
7557 NEXT;
7559 CASE (at_dot):
7560 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7561 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7562 goto fail;
7563 NEXT;
7565 CASE (after_dot):
7566 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7567 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7568 goto fail;
7569 NEXT;
7571 CASE (syntaxspec):
7572 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7573 mcnt = *p++;
7574 goto matchsyntax;
7576 CASE (wordchar):
7577 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7578 mcnt = (int) Sword;
7579 matchsyntax:
7580 PREFETCH ();
7581 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7582 d++;
7583 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7584 goto fail;
7585 SET_REGS_MATCHED ();
7586 NEXT;
7588 CASE (notsyntaxspec):
7589 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7590 mcnt = *p++;
7591 goto matchnotsyntax;
7593 CASE (notwordchar):
7594 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7595 mcnt = (int) Sword;
7596 matchnotsyntax:
7597 PREFETCH ();
7598 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7599 d++;
7600 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7601 goto fail;
7602 SET_REGS_MATCHED ();
7603 NEXT;
7605 #else /* not emacs */
7606 CASE (wordchar):
7607 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7608 PREFETCH ();
7609 if (!WORDCHAR_P (d))
7610 goto fail;
7611 SET_REGS_MATCHED ();
7612 d++;
7613 NEXT;
7615 CASE (notwordchar):
7616 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7617 PREFETCH ();
7618 if (WORDCHAR_P (d))
7619 goto fail;
7620 SET_REGS_MATCHED ();
7621 d++;
7622 NEXT;
7623 #endif /* not emacs */
7625 #ifndef __GNUC__
7626 default:
7627 abort ();
7629 continue; /* Successfully executed one pattern command; keep going. */
7630 #endif
7633 /* We goto here if a matching operation fails. */
7634 fail:
7635 if (!FAIL_STACK_EMPTY ())
7636 { /* A restart point is known. Restore to that state. */
7637 DEBUG_PRINT1 ("\nFAIL:\n");
7638 POP_FAILURE_POINT (d, p,
7639 lowest_active_reg, highest_active_reg,
7640 regstart, regend, reg_info);
7642 /* If this failure point is a dummy, try the next one. */
7643 if (!p)
7644 goto fail;
7646 /* If we failed to the end of the pattern, don't examine *p. */
7647 assert (p <= pend);
7648 if (p < pend)
7650 boolean is_a_jump_n = false;
7652 /* If failed to a backwards jump that's part of a repetition
7653 loop, need to pop this failure point and use the next one. */
7654 switch ((re_opcode_t) *p)
7656 case jump_n:
7657 is_a_jump_n = true;
7658 case maybe_pop_jump:
7659 case pop_failure_jump:
7660 case jump:
7661 p1 = p + 1;
7662 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7663 p1 += mcnt;
7665 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7666 || (!is_a_jump_n
7667 && (re_opcode_t) *p1 == on_failure_jump))
7668 goto fail;
7669 break;
7670 default:
7671 /* do nothing */ ;
7675 if (d >= string1 && d <= end1)
7676 dend = end_match_1;
7678 else
7679 break; /* Matching at this starting point really fails. */
7680 } /* for (;;) */
7682 if (best_regs_set)
7683 goto restore_best_regs;
7685 FREE_VARIABLES ();
7687 return -1; /* Failure to match. */
7688 } /* re_match_2 */
7690 /* Subroutine definitions for re_match_2. */
7693 /* We are passed P pointing to a register number after a start_memory.
7695 Return true if the pattern up to the corresponding stop_memory can
7696 match the empty string, and false otherwise.
7698 If we find the matching stop_memory, sets P to point to one past its number.
7699 Otherwise, sets P to an undefined byte less than or equal to END.
7701 We don't handle duplicates properly (yet). */
7703 static boolean
7704 PREFIX(group_match_null_string_p) (p, end, reg_info)
7705 UCHAR_T **p, *end;
7706 PREFIX(register_info_type) *reg_info;
7708 int mcnt;
7709 /* Point to after the args to the start_memory. */
7710 UCHAR_T *p1 = *p + 2;
7712 while (p1 < end)
7714 /* Skip over opcodes that can match nothing, and return true or
7715 false, as appropriate, when we get to one that can't, or to the
7716 matching stop_memory. */
7718 switch ((re_opcode_t) *p1)
7720 /* Could be either a loop or a series of alternatives. */
7721 case on_failure_jump:
7722 p1++;
7723 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7725 /* If the next operation is not a jump backwards in the
7726 pattern. */
7728 if (mcnt >= 0)
7730 /* Go through the on_failure_jumps of the alternatives,
7731 seeing if any of the alternatives cannot match nothing.
7732 The last alternative starts with only a jump,
7733 whereas the rest start with on_failure_jump and end
7734 with a jump, e.g., here is the pattern for `a|b|c':
7736 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7737 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7738 /exactn/1/c
7740 So, we have to first go through the first (n-1)
7741 alternatives and then deal with the last one separately. */
7744 /* Deal with the first (n-1) alternatives, which start
7745 with an on_failure_jump (see above) that jumps to right
7746 past a jump_past_alt. */
7748 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7749 jump_past_alt)
7751 /* `mcnt' holds how many bytes long the alternative
7752 is, including the ending `jump_past_alt' and
7753 its number. */
7755 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7756 (1 + OFFSET_ADDRESS_SIZE),
7757 reg_info))
7758 return false;
7760 /* Move to right after this alternative, including the
7761 jump_past_alt. */
7762 p1 += mcnt;
7764 /* Break if it's the beginning of an n-th alternative
7765 that doesn't begin with an on_failure_jump. */
7766 if ((re_opcode_t) *p1 != on_failure_jump)
7767 break;
7769 /* Still have to check that it's not an n-th
7770 alternative that starts with an on_failure_jump. */
7771 p1++;
7772 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7773 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7774 jump_past_alt)
7776 /* Get to the beginning of the n-th alternative. */
7777 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7778 break;
7782 /* Deal with the last alternative: go back and get number
7783 of the `jump_past_alt' just before it. `mcnt' contains
7784 the length of the alternative. */
7785 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7787 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7788 return false;
7790 p1 += mcnt; /* Get past the n-th alternative. */
7791 } /* if mcnt > 0 */
7792 break;
7795 case stop_memory:
7796 assert (p1[1] == **p);
7797 *p = p1 + 2;
7798 return true;
7801 default:
7802 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7803 return false;
7805 } /* while p1 < end */
7807 return false;
7808 } /* group_match_null_string_p */
7811 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7812 It expects P to be the first byte of a single alternative and END one
7813 byte past the last. The alternative can contain groups. */
7815 static boolean
7816 PREFIX(alt_match_null_string_p) (p, end, reg_info)
7817 UCHAR_T *p, *end;
7818 PREFIX(register_info_type) *reg_info;
7820 int mcnt;
7821 UCHAR_T *p1 = p;
7823 while (p1 < end)
7825 /* Skip over opcodes that can match nothing, and break when we get
7826 to one that can't. */
7828 switch ((re_opcode_t) *p1)
7830 /* It's a loop. */
7831 case on_failure_jump:
7832 p1++;
7833 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7834 p1 += mcnt;
7835 break;
7837 default:
7838 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7839 return false;
7841 } /* while p1 < end */
7843 return true;
7844 } /* alt_match_null_string_p */
7847 /* Deals with the ops common to group_match_null_string_p and
7848 alt_match_null_string_p.
7850 Sets P to one after the op and its arguments, if any. */
7852 static boolean
7853 PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7854 UCHAR_T **p, *end;
7855 PREFIX(register_info_type) *reg_info;
7857 int mcnt;
7858 boolean ret;
7859 int reg_no;
7860 UCHAR_T *p1 = *p;
7862 switch ((re_opcode_t) *p1++)
7864 case no_op:
7865 case begline:
7866 case endline:
7867 case begbuf:
7868 case endbuf:
7869 case wordbeg:
7870 case wordend:
7871 case wordbound:
7872 case notwordbound:
7873 #ifdef emacs
7874 case before_dot:
7875 case at_dot:
7876 case after_dot:
7877 #endif
7878 break;
7880 case start_memory:
7881 reg_no = *p1;
7882 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7883 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7885 /* Have to set this here in case we're checking a group which
7886 contains a group and a back reference to it. */
7888 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7889 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7891 if (!ret)
7892 return false;
7893 break;
7895 /* If this is an optimized succeed_n for zero times, make the jump. */
7896 case jump:
7897 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7898 if (mcnt >= 0)
7899 p1 += mcnt;
7900 else
7901 return false;
7902 break;
7904 case succeed_n:
7905 /* Get to the number of times to succeed. */
7906 p1 += OFFSET_ADDRESS_SIZE;
7907 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7909 if (mcnt == 0)
7911 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7912 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7913 p1 += mcnt;
7915 else
7916 return false;
7917 break;
7919 case duplicate:
7920 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7921 return false;
7922 break;
7924 case set_number_at:
7925 p1 += 2 * OFFSET_ADDRESS_SIZE;
7927 default:
7928 /* All other opcodes mean we cannot match the empty string. */
7929 return false;
7932 *p = p1;
7933 return true;
7934 } /* common_op_match_null_string_p */
7937 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7938 bytes; nonzero otherwise. */
7940 static int
7941 PREFIX(bcmp_translate) (s1, s2, len, translate)
7942 const CHAR_T *s1, *s2;
7943 register int len;
7944 RE_TRANSLATE_TYPE translate;
7946 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7947 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7948 while (len)
7950 #ifdef WCHAR
7951 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7952 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7953 return 1;
7954 #else /* BYTE */
7955 if (translate[*p1++] != translate[*p2++]) return 1;
7956 #endif /* WCHAR */
7957 len--;
7959 return 0;
7963 #else /* not INSIDE_RECURSION */
7965 /* Entry points for GNU code. */
7967 /* re_compile_pattern is the GNU regular expression compiler: it
7968 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7969 Returns 0 if the pattern was valid, otherwise an error string.
7971 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7972 are set in BUFP on entry.
7974 We call regex_compile to do the actual compilation. */
7976 const char *
7977 re_compile_pattern (pattern, length, bufp)
7978 const char *pattern;
7979 size_t length;
7980 struct re_pattern_buffer *bufp;
7982 reg_errcode_t ret;
7984 /* GNU code is written to assume at least RE_NREGS registers will be set
7985 (and at least one extra will be -1). */
7986 bufp->regs_allocated = REGS_UNALLOCATED;
7988 /* And GNU code determines whether or not to get register information
7989 by passing null for the REGS argument to re_match, etc., not by
7990 setting no_sub. */
7991 bufp->no_sub = 0;
7993 /* Match anchors at newline. */
7994 bufp->newline_anchor = 1;
7996 # ifdef MBS_SUPPORT
7997 if (MB_CUR_MAX != 1)
7998 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7999 else
8000 # endif
8001 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
8003 if (!ret)
8004 return NULL;
8005 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8007 #ifdef _LIBC
8008 weak_alias (__re_compile_pattern, re_compile_pattern)
8009 #endif
8011 /* Entry points compatible with 4.2 BSD regex library. We don't define
8012 them unless specifically requested. */
8014 #if defined _REGEX_RE_COMP || defined _LIBC
8016 /* BSD has one and only one pattern buffer. */
8017 static struct re_pattern_buffer re_comp_buf;
8019 char *
8020 #ifdef _LIBC
8021 /* Make these definitions weak in libc, so POSIX programs can redefine
8022 these names if they don't use our functions, and still use
8023 regcomp/regexec below without link errors. */
8024 weak_function
8025 #endif
8026 re_comp (s)
8027 const char *s;
8029 reg_errcode_t ret;
8031 if (!s)
8033 if (!re_comp_buf.buffer)
8034 return gettext ("No previous regular expression");
8035 return 0;
8038 if (!re_comp_buf.buffer)
8040 re_comp_buf.buffer = (unsigned char *) malloc (200);
8041 if (re_comp_buf.buffer == NULL)
8042 return (char *) gettext (re_error_msgid
8043 + re_error_msgid_idx[(int) REG_ESPACE]);
8044 re_comp_buf.allocated = 200;
8046 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
8047 if (re_comp_buf.fastmap == NULL)
8048 return (char *) gettext (re_error_msgid
8049 + re_error_msgid_idx[(int) REG_ESPACE]);
8052 /* Since `re_exec' always passes NULL for the `regs' argument, we
8053 don't need to initialize the pattern buffer fields which affect it. */
8055 /* Match anchors at newlines. */
8056 re_comp_buf.newline_anchor = 1;
8058 # ifdef MBS_SUPPORT
8059 if (MB_CUR_MAX != 1)
8060 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
8061 else
8062 # endif
8063 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
8065 if (!ret)
8066 return NULL;
8068 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
8069 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8074 #ifdef _LIBC
8075 weak_function
8076 #endif
8077 re_exec (s)
8078 const char *s;
8080 const int len = strlen (s);
8081 return
8082 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
8085 #endif /* _REGEX_RE_COMP */
8087 /* POSIX.2 functions. Don't define these for Emacs. */
8089 #ifndef emacs
8091 /* regcomp takes a regular expression as a string and compiles it.
8093 PREG is a regex_t *. We do not expect any fields to be initialized,
8094 since POSIX says we shouldn't. Thus, we set
8096 `buffer' to the compiled pattern;
8097 `used' to the length of the compiled pattern;
8098 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8099 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8100 RE_SYNTAX_POSIX_BASIC;
8101 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8102 `fastmap' to an allocated space for the fastmap;
8103 `fastmap_accurate' to zero;
8104 `re_nsub' to the number of subexpressions in PATTERN.
8106 PATTERN is the address of the pattern string.
8108 CFLAGS is a series of bits which affect compilation.
8110 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8111 use POSIX basic syntax.
8113 If REG_NEWLINE is set, then . and [^...] don't match newline.
8114 Also, regexec will try a match beginning after every newline.
8116 If REG_ICASE is set, then we considers upper- and lowercase
8117 versions of letters to be equivalent when matching.
8119 If REG_NOSUB is set, then when PREG is passed to regexec, that
8120 routine will report only success or failure, and nothing about the
8121 registers.
8123 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8124 the return codes and their meanings.) */
8127 regcomp (preg, pattern, cflags)
8128 regex_t *preg;
8129 const char *pattern;
8130 int cflags;
8132 reg_errcode_t ret;
8133 reg_syntax_t syntax
8134 = (cflags & REG_EXTENDED) ?
8135 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8137 /* regex_compile will allocate the space for the compiled pattern. */
8138 preg->buffer = 0;
8139 preg->allocated = 0;
8140 preg->used = 0;
8142 /* Try to allocate space for the fastmap. */
8143 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8145 if (cflags & REG_ICASE)
8147 unsigned i;
8149 preg->translate
8150 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8151 * sizeof (*(RE_TRANSLATE_TYPE)0));
8152 if (preg->translate == NULL)
8153 return (int) REG_ESPACE;
8155 /* Map uppercase characters to corresponding lowercase ones. */
8156 for (i = 0; i < CHAR_SET_SIZE; i++)
8157 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8159 else
8160 preg->translate = NULL;
8162 /* If REG_NEWLINE is set, newlines are treated differently. */
8163 if (cflags & REG_NEWLINE)
8164 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8165 syntax &= ~RE_DOT_NEWLINE;
8166 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8167 /* It also changes the matching behavior. */
8168 preg->newline_anchor = 1;
8170 else
8171 preg->newline_anchor = 0;
8173 preg->no_sub = !!(cflags & REG_NOSUB);
8175 /* POSIX says a null character in the pattern terminates it, so we
8176 can use strlen here in compiling the pattern. */
8177 # ifdef MBS_SUPPORT
8178 if (MB_CUR_MAX != 1)
8179 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8180 else
8181 # endif
8182 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8184 /* POSIX doesn't distinguish between an unmatched open-group and an
8185 unmatched close-group: both are REG_EPAREN. */
8186 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8188 if (ret == REG_NOERROR && preg->fastmap)
8190 /* Compute the fastmap now, since regexec cannot modify the pattern
8191 buffer. */
8192 if (re_compile_fastmap (preg) == -2)
8194 /* Some error occurred while computing the fastmap, just forget
8195 about it. */
8196 free (preg->fastmap);
8197 preg->fastmap = NULL;
8201 return (int) ret;
8203 #ifdef _LIBC
8204 weak_alias (__regcomp, regcomp)
8205 #endif
8208 /* regexec searches for a given pattern, specified by PREG, in the
8209 string STRING.
8211 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8212 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8213 least NMATCH elements, and we set them to the offsets of the
8214 corresponding matched substrings.
8216 EFLAGS specifies `execution flags' which affect matching: if
8217 REG_NOTBOL is set, then ^ does not match at the beginning of the
8218 string; if REG_NOTEOL is set, then $ does not match at the end.
8220 We return 0 if we find a match and REG_NOMATCH if not. */
8223 regexec (preg, string, nmatch, pmatch, eflags)
8224 const regex_t *preg;
8225 const char *string;
8226 size_t nmatch;
8227 regmatch_t pmatch[];
8228 int eflags;
8230 int ret;
8231 struct re_registers regs;
8232 regex_t private_preg;
8233 int len = strlen (string);
8234 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8236 private_preg = *preg;
8238 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8239 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8241 /* The user has told us exactly how many registers to return
8242 information about, via `nmatch'. We have to pass that on to the
8243 matching routines. */
8244 private_preg.regs_allocated = REGS_FIXED;
8246 if (want_reg_info)
8248 regs.num_regs = nmatch;
8249 regs.start = TALLOC (nmatch * 2, regoff_t);
8250 if (regs.start == NULL)
8251 return (int) REG_NOMATCH;
8252 regs.end = regs.start + nmatch;
8255 /* Perform the searching operation. */
8256 ret = re_search (&private_preg, string, len,
8257 /* start: */ 0, /* range: */ len,
8258 want_reg_info ? &regs : (struct re_registers *) 0);
8260 /* Copy the register information to the POSIX structure. */
8261 if (want_reg_info)
8263 if (ret >= 0)
8265 unsigned r;
8267 for (r = 0; r < nmatch; r++)
8269 pmatch[r].rm_so = regs.start[r];
8270 pmatch[r].rm_eo = regs.end[r];
8274 /* If we needed the temporary register info, free the space now. */
8275 free (regs.start);
8278 /* We want zero return to mean success, unlike `re_search'. */
8279 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8281 #ifdef _LIBC
8282 weak_alias (__regexec, regexec)
8283 #endif
8286 /* Returns a message corresponding to an error code, ERRCODE, returned
8287 from either regcomp or regexec. We don't use PREG here. */
8289 size_t
8290 regerror (errcode, preg, errbuf, errbuf_size)
8291 int errcode;
8292 const regex_t *preg;
8293 char *errbuf;
8294 size_t errbuf_size;
8296 const char *msg;
8297 size_t msg_size;
8299 if (errcode < 0
8300 || errcode >= (int) (sizeof (re_error_msgid_idx)
8301 / sizeof (re_error_msgid_idx[0])))
8302 /* Only error codes returned by the rest of the code should be passed
8303 to this routine. If we are given anything else, or if other regex
8304 code generates an invalid error code, then the program has a bug.
8305 Dump core so we can fix it. */
8306 abort ();
8308 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8310 msg_size = strlen (msg) + 1; /* Includes the null. */
8312 if (errbuf_size != 0)
8314 if (msg_size > errbuf_size)
8316 #if defined HAVE_MEMPCPY || defined _LIBC
8317 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8318 #else
8319 memcpy (errbuf, msg, errbuf_size - 1);
8320 errbuf[errbuf_size - 1] = 0;
8321 #endif
8323 else
8324 memcpy (errbuf, msg, msg_size);
8327 return msg_size;
8329 #ifdef _LIBC
8330 weak_alias (__regerror, regerror)
8331 #endif
8334 /* Free dynamically allocated space used by PREG. */
8336 void
8337 regfree (preg)
8338 regex_t *preg;
8340 if (preg->buffer != NULL)
8341 free (preg->buffer);
8342 preg->buffer = NULL;
8344 preg->allocated = 0;
8345 preg->used = 0;
8347 if (preg->fastmap != NULL)
8348 free (preg->fastmap);
8349 preg->fastmap = NULL;
8350 preg->fastmap_accurate = 0;
8352 if (preg->translate != NULL)
8353 free (preg->translate);
8354 preg->translate = NULL;
8356 #ifdef _LIBC
8357 weak_alias (__regfree, regfree)
8358 #endif
8360 #endif /* not emacs */
8362 #endif /* not INSIDE_RECURSION */
8365 #undef STORE_NUMBER
8366 #undef STORE_NUMBER_AND_INCR
8367 #undef EXTRACT_NUMBER
8368 #undef EXTRACT_NUMBER_AND_INCR
8370 #undef DEBUG_PRINT_COMPILED_PATTERN
8371 #undef DEBUG_PRINT_DOUBLE_STRING
8373 #undef INIT_FAIL_STACK
8374 #undef RESET_FAIL_STACK
8375 #undef DOUBLE_FAIL_STACK
8376 #undef PUSH_PATTERN_OP
8377 #undef PUSH_FAILURE_POINTER
8378 #undef PUSH_FAILURE_INT
8379 #undef PUSH_FAILURE_ELT
8380 #undef POP_FAILURE_POINTER
8381 #undef POP_FAILURE_INT
8382 #undef POP_FAILURE_ELT
8383 #undef DEBUG_PUSH
8384 #undef DEBUG_POP
8385 #undef PUSH_FAILURE_POINT
8386 #undef POP_FAILURE_POINT
8388 #undef REG_UNSET_VALUE
8389 #undef REG_UNSET
8391 #undef PATFETCH
8392 #undef PATFETCH_RAW
8393 #undef PATUNFETCH
8394 #undef TRANSLATE
8396 #undef INIT_BUF_SIZE
8397 #undef GET_BUFFER_SPACE
8398 #undef BUF_PUSH
8399 #undef BUF_PUSH_2
8400 #undef BUF_PUSH_3
8401 #undef STORE_JUMP
8402 #undef STORE_JUMP2
8403 #undef INSERT_JUMP
8404 #undef INSERT_JUMP2
8405 #undef EXTEND_BUFFER
8406 #undef GET_UNSIGNED_NUMBER
8407 #undef FREE_STACK_RETURN
8409 # undef POINTER_TO_OFFSET
8410 # undef MATCHING_IN_FRST_STRING
8411 # undef PREFETCH
8412 # undef AT_STRINGS_BEG
8413 # undef AT_STRINGS_END
8414 # undef WORDCHAR_P
8415 # undef FREE_VAR
8416 # undef FREE_VARIABLES
8417 # undef NO_HIGHEST_ACTIVE_REG
8418 # undef NO_LOWEST_ACTIVE_REG
8420 # undef CHAR_T
8421 # undef UCHAR_T
8422 # undef COMPILED_BUFFER_VAR
8423 # undef OFFSET_ADDRESS_SIZE
8424 # undef CHAR_CLASS_SIZE
8425 # undef PREFIX
8426 # undef ARG_PREFIX
8427 # undef PUT_CHAR
8428 # undef BYTE
8429 # undef WCHAR
8431 # define DEFINED_ONCE