2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/pci/if_xl.c,v 1.72.2.28 2003/10/08 06:01:57 murray Exp $
33 * $DragonFly: src/sys/dev/netif/xl/if_xl.c,v 1.49 2007/08/14 13:30:35 sephe Exp $
37 * 3Com 3c90x Etherlink XL PCI NIC driver
39 * Supports the 3Com "boomerang", "cyclone" and "hurricane" PCI
40 * bus-master chips (3c90x cards and embedded controllers) including
43 * 3Com 3c900-TPO 10Mbps/RJ-45
44 * 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC
45 * 3Com 3c905-TX 10/100Mbps/RJ-45
46 * 3Com 3c905-T4 10/100Mbps/RJ-45
47 * 3Com 3c900B-TPO 10Mbps/RJ-45
48 * 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC
49 * 3Com 3c900B-TPC 10Mbps/RJ-45,BNC
50 * 3Com 3c900B-FL 10Mbps/Fiber-optic
51 * 3Com 3c905B-COMBO 10/100Mbps/RJ-45,AUI,BNC
52 * 3Com 3c905B-TX 10/100Mbps/RJ-45
53 * 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic
54 * 3Com 3c905C-TX 10/100Mbps/RJ-45 (Tornado ASIC)
55 * 3Com 3c980-TX 10/100Mbps server adapter (Hurricane ASIC)
56 * 3Com 3c980C-TX 10/100Mbps server adapter (Tornado ASIC)
57 * 3Com 3cSOHO100-TX 10/100Mbps/RJ-45 (Hurricane ASIC)
58 * 3Com 3c450-TX 10/100Mbps/RJ-45 (Tornado ASIC)
59 * 3Com 3c555 10/100Mbps/RJ-45 (MiniPCI, Laptop Hurricane)
60 * 3Com 3c556 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
61 * 3Com 3c556B 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
62 * 3Com 3c575TX 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
63 * 3Com 3c575B 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
64 * 3Com 3c575C 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
65 * 3Com 3cxfem656 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
66 * 3Com 3cxfem656b 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
67 * 3Com 3cxfem656c 10/100Mbps/RJ-45 (Cardbus, Tornado ASIC)
68 * Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45
69 * Dell on-board 3c920 10/100Mbps/RJ-45
70 * Dell Precision on-board 3c905B 10/100Mbps/RJ-45
71 * Dell Latitude laptop docking station embedded 3c905-TX
73 * Written by Bill Paul <wpaul@ctr.columbia.edu>
74 * Electrical Engineering Department
75 * Columbia University, New York City
79 * The 3c90x series chips use a bus-master DMA interface for transfering
80 * packets to and from the controller chip. Some of the "vortex" cards
81 * (3c59x) also supported a bus master mode, however for those chips
82 * you could only DMA packets to/from a contiguous memory buffer. For
83 * transmission this would mean copying the contents of the queued mbuf
84 * chain into an mbuf cluster and then DMAing the cluster. This extra
85 * copy would sort of defeat the purpose of the bus master support for
86 * any packet that doesn't fit into a single mbuf.
88 * By contrast, the 3c90x cards support a fragment-based bus master
89 * mode where mbuf chains can be encapsulated using TX descriptors.
90 * This is similar to other PCI chips such as the Texas Instruments
91 * ThunderLAN and the Intel 82557/82558.
93 * The "vortex" driver (if_vx.c) happens to work for the "boomerang"
94 * bus master chips because they maintain the old PIO interface for
95 * backwards compatibility, but starting with the 3c905B and the
96 * "cyclone" chips, the compatibility interface has been dropped.
97 * Since using bus master DMA is a big win, we use this driver to
98 * support the PCI "boomerang" chips even though they work with the
99 * "vortex" driver in order to obtain better performance.
102 #include "opt_polling.h"
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/sockio.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/kernel.h>
110 #include <sys/socket.h>
111 #include <sys/serialize.h>
113 #include <sys/rman.h>
114 #include <sys/thread2.h>
117 #include <net/ifq_var.h>
118 #include <net/if_arp.h>
119 #include <net/ethernet.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/vlan/if_vlan_var.h>
126 #include "../mii_layer/mii.h"
127 #include "../mii_layer/miivar.h"
129 #include <bus/pci/pcireg.h>
130 #include <bus/pci/pcivar.h>
132 /* "controller miibus0" required. See GENERIC if you get errors here. */
133 #include "miibus_if.h"
135 #include "if_xlreg.h"
137 #define XL905B_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
140 * Various supported device vendors/types and their names.
142 static struct xl_type xl_devs
[] = {
143 { TC_VENDORID
, TC_DEVICEID_BOOMERANG_10BT
,
144 "3Com 3c900-TPO Etherlink XL" },
145 { TC_VENDORID
, TC_DEVICEID_BOOMERANG_10BT_COMBO
,
146 "3Com 3c900-COMBO Etherlink XL" },
147 { TC_VENDORID
, TC_DEVICEID_BOOMERANG_10_100BT
,
148 "3Com 3c905-TX Fast Etherlink XL" },
149 { TC_VENDORID
, TC_DEVICEID_BOOMERANG_100BT4
,
150 "3Com 3c905-T4 Fast Etherlink XL" },
151 { TC_VENDORID
, TC_DEVICEID_KRAKATOA_10BT
,
152 "3Com 3c900B-TPO Etherlink XL" },
153 { TC_VENDORID
, TC_DEVICEID_KRAKATOA_10BT_COMBO
,
154 "3Com 3c900B-COMBO Etherlink XL" },
155 { TC_VENDORID
, TC_DEVICEID_KRAKATOA_10BT_TPC
,
156 "3Com 3c900B-TPC Etherlink XL" },
157 { TC_VENDORID
, TC_DEVICEID_CYCLONE_10FL
,
158 "3Com 3c900B-FL Etherlink XL" },
159 { TC_VENDORID
, TC_DEVICEID_HURRICANE_10_100BT
,
160 "3Com 3c905B-TX Fast Etherlink XL" },
161 { TC_VENDORID
, TC_DEVICEID_CYCLONE_10_100BT4
,
162 "3Com 3c905B-T4 Fast Etherlink XL" },
163 { TC_VENDORID
, TC_DEVICEID_CYCLONE_10_100FX
,
164 "3Com 3c905B-FX/SC Fast Etherlink XL" },
165 { TC_VENDORID
, TC_DEVICEID_CYCLONE_10_100_COMBO
,
166 "3Com 3c905B-COMBO Fast Etherlink XL" },
167 { TC_VENDORID
, TC_DEVICEID_TORNADO_10_100BT
,
168 "3Com 3c905C-TX Fast Etherlink XL" },
169 { TC_VENDORID
, TC_DEVICEID_TORNADO_10_100BT_920B
,
170 "3Com 3c920B-EMB Integrated Fast Etherlink XL" },
171 { TC_VENDORID
, TC_DEVICEID_HURRICANE_10_100BT_SERV
,
172 "3Com 3c980 Fast Etherlink XL" },
173 { TC_VENDORID
, TC_DEVICEID_TORNADO_10_100BT_SERV
,
174 "3Com 3c980C Fast Etherlink XL" },
175 { TC_VENDORID
, TC_DEVICEID_HURRICANE_SOHO100TX
,
176 "3Com 3cSOHO100-TX OfficeConnect" },
177 { TC_VENDORID
, TC_DEVICEID_TORNADO_HOMECONNECT
,
178 "3Com 3c450-TX HomeConnect" },
179 { TC_VENDORID
, TC_DEVICEID_HURRICANE_555
,
180 "3Com 3c555 Fast Etherlink XL" },
181 { TC_VENDORID
, TC_DEVICEID_HURRICANE_556
,
182 "3Com 3c556 Fast Etherlink XL" },
183 { TC_VENDORID
, TC_DEVICEID_HURRICANE_556B
,
184 "3Com 3c556B Fast Etherlink XL" },
185 { TC_VENDORID
, TC_DEVICEID_HURRICANE_575A
,
186 "3Com 3c575TX Fast Etherlink XL" },
187 { TC_VENDORID
, TC_DEVICEID_HURRICANE_575B
,
188 "3Com 3c575B Fast Etherlink XL" },
189 { TC_VENDORID
, TC_DEVICEID_HURRICANE_575C
,
190 "3Com 3c575C Fast Etherlink XL" },
191 { TC_VENDORID
, TC_DEVICEID_HURRICANE_656
,
192 "3Com 3c656 Fast Etherlink XL" },
193 { TC_VENDORID
, TC_DEVICEID_HURRICANE_656B
,
194 "3Com 3c656B Fast Etherlink XL" },
195 { TC_VENDORID
, TC_DEVICEID_TORNADO_656C
,
196 "3Com 3c656C Fast Etherlink XL" },
200 static int xl_probe (device_t
);
201 static int xl_attach (device_t
);
202 static int xl_detach (device_t
);
204 static int xl_newbuf (struct xl_softc
*, struct xl_chain_onefrag
*);
205 static void xl_stats_update (void *);
206 static void xl_stats_update_serialized(void *);
207 static int xl_encap (struct xl_softc
*, struct xl_chain
*,
209 static void xl_rxeof (struct xl_softc
*, int);
210 static int xl_rx_resync (struct xl_softc
*);
211 static void xl_txeof (struct xl_softc
*);
212 static void xl_txeof_90xB (struct xl_softc
*);
213 static void xl_txeoc (struct xl_softc
*);
214 static void xl_intr (void *);
215 static void xl_start_body (struct ifnet
*, int);
216 static void xl_start (struct ifnet
*);
217 static void xl_start_90xB (struct ifnet
*);
218 static int xl_ioctl (struct ifnet
*, u_long
, caddr_t
,
220 static void xl_init (void *);
221 static void xl_stop (struct xl_softc
*);
222 static void xl_watchdog (struct ifnet
*);
223 static void xl_shutdown (device_t
);
224 static int xl_suspend (device_t
);
225 static int xl_resume (device_t
);
226 #ifdef DEVICE_POLLING
227 static void xl_poll (struct ifnet
*, enum poll_cmd
, int);
229 static void xl_enable_intrs (struct xl_softc
*, uint16_t);
231 static int xl_ifmedia_upd (struct ifnet
*);
232 static void xl_ifmedia_sts (struct ifnet
*, struct ifmediareq
*);
234 static int xl_eeprom_wait (struct xl_softc
*);
235 static int xl_read_eeprom (struct xl_softc
*, caddr_t
, int, int, int);
236 static void xl_mii_sync (struct xl_softc
*);
237 static void xl_mii_send (struct xl_softc
*, u_int32_t
, int);
238 static int xl_mii_readreg (struct xl_softc
*, struct xl_mii_frame
*);
239 static int xl_mii_writereg (struct xl_softc
*, struct xl_mii_frame
*);
241 static void xl_setcfg (struct xl_softc
*);
242 static void xl_setmode (struct xl_softc
*, int);
243 static void xl_setmulti (struct xl_softc
*);
244 static void xl_setmulti_hash (struct xl_softc
*);
245 static void xl_reset (struct xl_softc
*);
246 static int xl_list_rx_init (struct xl_softc
*);
247 static void xl_list_tx_init (struct xl_softc
*);
248 static void xl_list_tx_init_90xB(struct xl_softc
*);
249 static void xl_wait (struct xl_softc
*);
250 static void xl_mediacheck (struct xl_softc
*);
251 static void xl_choose_xcvr (struct xl_softc
*, int);
252 static void xl_dma_map_addr (void *, bus_dma_segment_t
*, int, int);
253 static void xl_dma_map_rxbuf (void *, bus_dma_segment_t
*, int, bus_size_t
,
255 static void xl_dma_map_txbuf (void *, bus_dma_segment_t
*, int, bus_size_t
,
258 static int xl_dma_alloc (device_t
);
259 static void xl_dma_free (device_t
);
262 static void xl_testpacket (struct xl_softc
*);
265 static int xl_miibus_readreg (device_t
, int, int);
266 static int xl_miibus_writereg (device_t
, int, int, int);
267 static void xl_miibus_statchg (device_t
);
268 static void xl_miibus_mediainit (device_t
);
270 static device_method_t xl_methods
[] = {
271 /* Device interface */
272 DEVMETHOD(device_probe
, xl_probe
),
273 DEVMETHOD(device_attach
, xl_attach
),
274 DEVMETHOD(device_detach
, xl_detach
),
275 DEVMETHOD(device_shutdown
, xl_shutdown
),
276 DEVMETHOD(device_suspend
, xl_suspend
),
277 DEVMETHOD(device_resume
, xl_resume
),
280 DEVMETHOD(bus_print_child
, bus_generic_print_child
),
281 DEVMETHOD(bus_driver_added
, bus_generic_driver_added
),
284 DEVMETHOD(miibus_readreg
, xl_miibus_readreg
),
285 DEVMETHOD(miibus_writereg
, xl_miibus_writereg
),
286 DEVMETHOD(miibus_statchg
, xl_miibus_statchg
),
287 DEVMETHOD(miibus_mediainit
, xl_miibus_mediainit
),
292 static driver_t xl_driver
= {
295 sizeof(struct xl_softc
)
298 static devclass_t xl_devclass
;
300 DECLARE_DUMMY_MODULE(if_xl
);
301 MODULE_DEPEND(if_xl
, miibus
, 1, 1, 1);
302 DRIVER_MODULE(if_xl
, pci
, xl_driver
, xl_devclass
, 0, 0);
303 DRIVER_MODULE(if_xl
, cardbus
, xl_driver
, xl_devclass
, 0, 0);
304 DRIVER_MODULE(miibus
, xl
, miibus_driver
, miibus_devclass
, 0, 0);
307 xl_enable_intrs(struct xl_softc
*sc
, uint16_t intrs
)
309 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_INTR_ACK
| 0xFF);
310 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_INTR_ENB
| intrs
);
311 if (sc
->xl_flags
& XL_FLAG_FUNCREG
)
312 bus_space_write_4(sc
->xl_ftag
, sc
->xl_fhandle
, 4, 0x8000);
316 xl_dma_map_addr(void *arg
, bus_dma_segment_t
*segs
, int nseg
, int error
)
321 *paddr
= segs
->ds_addr
;
325 xl_dma_map_rxbuf(void *arg
, bus_dma_segment_t
*segs
, int nseg
,
326 bus_size_t mapsize
, int error
)
332 KASSERT(nseg
== 1, ("xl_dma_map_rxbuf: too many DMA segments"));
334 *paddr
= segs
->ds_addr
;
338 xl_dma_map_txbuf(void *arg
, bus_dma_segment_t
*segs
, int nseg
,
339 bus_size_t mapsize
, int error
)
347 KASSERT(nseg
<= XL_MAXFRAGS
, ("too many DMA segments"));
351 for (i
= 0; i
< nseg
; i
++) {
352 KASSERT(segs
[i
].ds_len
<= MCLBYTES
, ("segment size too large"));
353 l
->xl_frag
[i
].xl_addr
= htole32(segs
[i
].ds_addr
);
354 l
->xl_frag
[i
].xl_len
= htole32(segs
[i
].ds_len
);
355 total_len
+= segs
[i
].ds_len
;
357 l
->xl_frag
[nseg
- 1].xl_len
= htole32(segs
[nseg
- 1].ds_len
|
359 l
->xl_status
= htole32(total_len
);
364 * Murphy's law says that it's possible the chip can wedge and
365 * the 'command in progress' bit may never clear. Hence, we wait
366 * only a finite amount of time to avoid getting caught in an
367 * infinite loop. Normally this delay routine would be a macro,
368 * but it isn't called during normal operation so we can afford
369 * to make it a function.
372 xl_wait(struct xl_softc
*sc
)
376 for (i
= 0; i
< XL_TIMEOUT
; i
++) {
377 if (!(CSR_READ_2(sc
, XL_STATUS
) & XL_STAT_CMDBUSY
))
382 if_printf(&sc
->arpcom
.ac_if
, "command never completed!");
388 * MII access routines are provided for adapters with external
389 * PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in
390 * autoneg logic that's faked up to look like a PHY (3c905B-TX).
391 * Note: if you don't perform the MDIO operations just right,
392 * it's possible to end up with code that works correctly with
393 * some chips/CPUs/processor speeds/bus speeds/etc but not
397 CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
398 CSR_READ_2(sc, XL_W4_PHY_MGMT) | (x))
401 CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
402 CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~(x))
405 * Sync the PHYs by setting data bit and strobing the clock 32 times.
408 xl_mii_sync(struct xl_softc
*sc
)
413 MII_SET(XL_MII_DIR
|XL_MII_DATA
);
415 for (i
= 0; i
< 32; i
++) {
417 MII_SET(XL_MII_DATA
);
418 MII_SET(XL_MII_DATA
);
420 MII_SET(XL_MII_DATA
);
421 MII_SET(XL_MII_DATA
);
428 * Clock a series of bits through the MII.
431 xl_mii_send(struct xl_softc
*sc
, u_int32_t bits
, int cnt
)
438 for (i
= (0x1 << (cnt
- 1)); i
; i
>>= 1) {
440 MII_SET(XL_MII_DATA
);
442 MII_CLR(XL_MII_DATA
);
450 * Read an PHY register through the MII.
453 xl_mii_readreg(struct xl_softc
*sc
, struct xl_mii_frame
*frame
)
458 * Set up frame for RX.
460 frame
->mii_stdelim
= XL_MII_STARTDELIM
;
461 frame
->mii_opcode
= XL_MII_READOP
;
462 frame
->mii_turnaround
= 0;
466 * Select register window 4.
471 CSR_WRITE_2(sc
, XL_W4_PHY_MGMT
, 0);
480 * Send command/address info.
482 xl_mii_send(sc
, frame
->mii_stdelim
, 2);
483 xl_mii_send(sc
, frame
->mii_opcode
, 2);
484 xl_mii_send(sc
, frame
->mii_phyaddr
, 5);
485 xl_mii_send(sc
, frame
->mii_regaddr
, 5);
488 MII_CLR((XL_MII_CLK
|XL_MII_DATA
));
496 ack
= CSR_READ_2(sc
, XL_W4_PHY_MGMT
) & XL_MII_DATA
;
500 * Now try reading data bits. If the ack failed, we still
501 * need to clock through 16 cycles to keep the PHY(s) in sync.
504 for(i
= 0; i
< 16; i
++) {
511 for (i
= 0x8000; i
; i
>>= 1) {
514 if (CSR_READ_2(sc
, XL_W4_PHY_MGMT
) & XL_MII_DATA
)
515 frame
->mii_data
|= i
;
531 * Write to a PHY register through the MII.
534 xl_mii_writereg(struct xl_softc
*sc
, struct xl_mii_frame
*frame
)
537 * Set up frame for TX.
540 frame
->mii_stdelim
= XL_MII_STARTDELIM
;
541 frame
->mii_opcode
= XL_MII_WRITEOP
;
542 frame
->mii_turnaround
= XL_MII_TURNAROUND
;
545 * Select the window 4.
550 * Turn on data output.
556 xl_mii_send(sc
, frame
->mii_stdelim
, 2);
557 xl_mii_send(sc
, frame
->mii_opcode
, 2);
558 xl_mii_send(sc
, frame
->mii_phyaddr
, 5);
559 xl_mii_send(sc
, frame
->mii_regaddr
, 5);
560 xl_mii_send(sc
, frame
->mii_turnaround
, 2);
561 xl_mii_send(sc
, frame
->mii_data
, 16);
576 xl_miibus_readreg(device_t dev
, int phy
, int reg
)
579 struct xl_mii_frame frame
;
581 sc
= device_get_softc(dev
);
584 * Pretend that PHYs are only available at MII address 24.
585 * This is to guard against problems with certain 3Com ASIC
586 * revisions that incorrectly map the internal transceiver
587 * control registers at all MII addresses. This can cause
588 * the miibus code to attach the same PHY several times over.
590 if ((!(sc
->xl_flags
& XL_FLAG_PHYOK
)) && phy
!= 24)
593 bzero((char *)&frame
, sizeof(frame
));
595 frame
.mii_phyaddr
= phy
;
596 frame
.mii_regaddr
= reg
;
597 xl_mii_readreg(sc
, &frame
);
599 return(frame
.mii_data
);
603 xl_miibus_writereg(device_t dev
, int phy
, int reg
, int data
)
606 struct xl_mii_frame frame
;
608 sc
= device_get_softc(dev
);
610 if ((!(sc
->xl_flags
& XL_FLAG_PHYOK
)) && phy
!= 24)
613 bzero((char *)&frame
, sizeof(frame
));
615 frame
.mii_phyaddr
= phy
;
616 frame
.mii_regaddr
= reg
;
617 frame
.mii_data
= data
;
619 xl_mii_writereg(sc
, &frame
);
625 xl_miibus_statchg(device_t dev
)
628 struct mii_data
*mii
;
631 sc
= device_get_softc(dev
);
632 mii
= device_get_softc(sc
->xl_miibus
);
636 /* Set ASIC's duplex mode to match the PHY. */
638 if ((mii
->mii_media_active
& IFM_GMASK
) == IFM_FDX
)
639 CSR_WRITE_1(sc
, XL_W3_MAC_CTRL
, XL_MACCTRL_DUPLEX
);
641 CSR_WRITE_1(sc
, XL_W3_MAC_CTRL
,
642 (CSR_READ_1(sc
, XL_W3_MAC_CTRL
) & ~XL_MACCTRL_DUPLEX
));
648 * Special support for the 3c905B-COMBO. This card has 10/100 support
649 * plus BNC and AUI ports. This means we will have both an miibus attached
650 * plus some non-MII media settings. In order to allow this, we have to
651 * add the extra media to the miibus's ifmedia struct, but we can't do
652 * that during xl_attach() because the miibus hasn't been attached yet.
653 * So instead, we wait until the miibus probe/attach is done, at which
654 * point we will get a callback telling is that it's safe to add our
658 xl_miibus_mediainit(device_t dev
)
661 struct mii_data
*mii
;
664 sc
= device_get_softc(dev
);
665 mii
= device_get_softc(sc
->xl_miibus
);
666 ifm
= &mii
->mii_media
;
668 if (sc
->xl_media
& (XL_MEDIAOPT_AUI
|XL_MEDIAOPT_10FL
)) {
670 * Check for a 10baseFL board in disguise.
672 if (sc
->xl_type
== XL_TYPE_905B
&&
673 sc
->xl_media
== XL_MEDIAOPT_10FL
) {
675 device_printf(dev
, "found 10baseFL\n");
676 ifmedia_add(ifm
, IFM_ETHER
|IFM_10_FL
, 0, NULL
);
677 ifmedia_add(ifm
, IFM_ETHER
|IFM_10_FL
|IFM_HDX
, 0, NULL
);
678 if (sc
->xl_caps
& XL_CAPS_FULL_DUPLEX
)
680 IFM_ETHER
|IFM_10_FL
|IFM_FDX
, 0, NULL
);
683 device_printf(dev
, "found AUI\n");
684 ifmedia_add(ifm
, IFM_ETHER
|IFM_10_5
, 0, NULL
);
688 if (sc
->xl_media
& XL_MEDIAOPT_BNC
) {
690 device_printf(dev
, "found BNC\n");
691 ifmedia_add(ifm
, IFM_ETHER
|IFM_10_2
, 0, NULL
);
698 * The EEPROM is slow: give it time to come ready after issuing
702 xl_eeprom_wait(struct xl_softc
*sc
)
706 for (i
= 0; i
< 100; i
++) {
707 if (CSR_READ_2(sc
, XL_W0_EE_CMD
) & XL_EE_BUSY
)
714 if_printf(&sc
->arpcom
.ac_if
, "eeprom failed to come ready\n");
722 * Read a sequence of words from the EEPROM. Note that ethernet address
723 * data is stored in the EEPROM in network byte order.
726 xl_read_eeprom(struct xl_softc
*sc
, caddr_t dest
, int off
, int cnt
, int swap
)
729 u_int16_t word
= 0, *ptr
;
730 #define EEPROM_5BIT_OFFSET(A) ((((A) << 2) & 0x7F00) | ((A) & 0x003F))
731 #define EEPROM_8BIT_OFFSET(A) ((A) & 0x003F)
733 * It's easy to accidentally overwrite the rom content!
734 * Note: the 3c575 uses 8bit EEPROM offsets.
738 if (xl_eeprom_wait(sc
))
741 if (sc
->xl_flags
& XL_FLAG_EEPROM_OFFSET_30
)
744 for (i
= 0; i
< cnt
; i
++) {
745 if (sc
->xl_flags
& XL_FLAG_8BITROM
)
746 CSR_WRITE_2(sc
, XL_W0_EE_CMD
,
747 XL_EE_8BIT_READ
| EEPROM_8BIT_OFFSET(off
+ i
));
749 CSR_WRITE_2(sc
, XL_W0_EE_CMD
,
750 XL_EE_READ
| EEPROM_5BIT_OFFSET(off
+ i
));
751 err
= xl_eeprom_wait(sc
);
754 word
= CSR_READ_2(sc
, XL_W0_EE_DATA
);
755 ptr
= (u_int16_t
*)(dest
+ (i
* 2));
766 * NICs older than the 3c905B have only one multicast option, which
767 * is to enable reception of all multicast frames.
770 xl_setmulti(struct xl_softc
*sc
)
773 struct ifmultiaddr
*ifma
;
777 ifp
= &sc
->arpcom
.ac_if
;
780 rxfilt
= CSR_READ_1(sc
, XL_W5_RX_FILTER
);
782 if (ifp
->if_flags
& IFF_ALLMULTI
) {
783 rxfilt
|= XL_RXFILTER_ALLMULTI
;
784 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
788 LIST_FOREACH(ifma
, &ifp
->if_multiaddrs
, ifma_link
)
792 rxfilt
|= XL_RXFILTER_ALLMULTI
;
794 rxfilt
&= ~XL_RXFILTER_ALLMULTI
;
796 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
802 * 3c905B adapters have a hash filter that we can program.
805 xl_setmulti_hash(struct xl_softc
*sc
)
809 struct ifmultiaddr
*ifma
;
813 ifp
= &sc
->arpcom
.ac_if
;
816 rxfilt
= CSR_READ_1(sc
, XL_W5_RX_FILTER
);
818 if (ifp
->if_flags
& IFF_ALLMULTI
) {
819 rxfilt
|= XL_RXFILTER_ALLMULTI
;
820 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
823 rxfilt
&= ~XL_RXFILTER_ALLMULTI
;
826 /* first, zot all the existing hash bits */
827 for (i
= 0; i
< XL_HASHFILT_SIZE
; i
++)
828 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_HASH
|i
);
830 /* now program new ones */
831 LIST_FOREACH(ifma
, &ifp
->if_multiaddrs
, ifma_link
) {
832 if (ifma
->ifma_addr
->sa_family
!= AF_LINK
)
836 * Note: the 3c905B currently only supports a 64-bit
837 * hash table, which means we really only need 6 bits,
838 * but the manual indicates that future chip revisions
839 * will have a 256-bit hash table, hence the routine is
840 * set up to calculate 8 bits of position info in case
841 * we need it some day.
842 * Note II, The Sequel: _CURRENT_ versions of the 3c905B
843 * have a 256 bit hash table. This means we have to use
844 * all 8 bits regardless. On older cards, the upper 2
845 * bits will be ignored. Grrrr....
848 LLADDR((struct sockaddr_dl
*)ifma
->ifma_addr
),
849 ETHER_ADDR_LEN
) & 0xff;
850 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_HASH
|XL_HASH_SET
|h
);
855 rxfilt
|= XL_RXFILTER_MULTIHASH
;
857 rxfilt
&= ~XL_RXFILTER_MULTIHASH
;
859 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
866 xl_testpacket(struct xl_softc
*sc
)
871 ifp
= &sc
->arpcom
.ac_if
;
873 MGETHDR(m
, MB_DONTWAIT
, MT_DATA
);
878 bcopy(&sc
->arpcom
.ac_enaddr
,
879 mtod(m
, struct ether_header
*)->ether_dhost
, ETHER_ADDR_LEN
);
880 bcopy(&sc
->arpcom
.ac_enaddr
,
881 mtod(m
, struct ether_header
*)->ether_shost
, ETHER_ADDR_LEN
);
882 mtod(m
, struct ether_header
*)->ether_type
= htons(3);
883 mtod(m
, unsigned char *)[14] = 0;
884 mtod(m
, unsigned char *)[15] = 0;
885 mtod(m
, unsigned char *)[16] = 0xE3;
886 m
->m_len
= m
->m_pkthdr
.len
= sizeof(struct ether_header
) + 3;
887 IF_ENQUEUE(&ifp
->if_snd
, m
);
895 xl_setcfg(struct xl_softc
*sc
)
900 icfg
= CSR_READ_4(sc
, XL_W3_INTERNAL_CFG
);
901 icfg
&= ~XL_ICFG_CONNECTOR_MASK
;
902 if (sc
->xl_media
& XL_MEDIAOPT_MII
||
903 sc
->xl_media
& XL_MEDIAOPT_BT4
)
904 icfg
|= (XL_XCVR_MII
<< XL_ICFG_CONNECTOR_BITS
);
905 if (sc
->xl_media
& XL_MEDIAOPT_BTX
)
906 icfg
|= (XL_XCVR_AUTO
<< XL_ICFG_CONNECTOR_BITS
);
908 CSR_WRITE_4(sc
, XL_W3_INTERNAL_CFG
, icfg
);
909 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_COAX_STOP
);
915 xl_setmode(struct xl_softc
*sc
, int media
)
917 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
921 if_printf(ifp
, "selecting ");
924 mediastat
= CSR_READ_2(sc
, XL_W4_MEDIA_STATUS
);
926 icfg
= CSR_READ_4(sc
, XL_W3_INTERNAL_CFG
);
928 if (sc
->xl_media
& XL_MEDIAOPT_BT
) {
929 if (IFM_SUBTYPE(media
) == IFM_10_T
) {
930 kprintf("10baseT transceiver, ");
931 sc
->xl_xcvr
= XL_XCVR_10BT
;
932 icfg
&= ~XL_ICFG_CONNECTOR_MASK
;
933 icfg
|= (XL_XCVR_10BT
<< XL_ICFG_CONNECTOR_BITS
);
934 mediastat
|= XL_MEDIASTAT_LINKBEAT
|
935 XL_MEDIASTAT_JABGUARD
;
936 mediastat
&= ~XL_MEDIASTAT_SQEENB
;
940 if (sc
->xl_media
& XL_MEDIAOPT_BFX
) {
941 if (IFM_SUBTYPE(media
) == IFM_100_FX
) {
942 kprintf("100baseFX port, ");
943 sc
->xl_xcvr
= XL_XCVR_100BFX
;
944 icfg
&= ~XL_ICFG_CONNECTOR_MASK
;
945 icfg
|= (XL_XCVR_100BFX
<< XL_ICFG_CONNECTOR_BITS
);
946 mediastat
|= XL_MEDIASTAT_LINKBEAT
;
947 mediastat
&= ~XL_MEDIASTAT_SQEENB
;
951 if (sc
->xl_media
& (XL_MEDIAOPT_AUI
|XL_MEDIAOPT_10FL
)) {
952 if (IFM_SUBTYPE(media
) == IFM_10_5
) {
953 kprintf("AUI port, ");
954 sc
->xl_xcvr
= XL_XCVR_AUI
;
955 icfg
&= ~XL_ICFG_CONNECTOR_MASK
;
956 icfg
|= (XL_XCVR_AUI
<< XL_ICFG_CONNECTOR_BITS
);
957 mediastat
&= ~(XL_MEDIASTAT_LINKBEAT
|
958 XL_MEDIASTAT_JABGUARD
);
959 mediastat
|= ~XL_MEDIASTAT_SQEENB
;
961 if (IFM_SUBTYPE(media
) == IFM_10_FL
) {
962 kprintf("10baseFL transceiver, ");
963 sc
->xl_xcvr
= XL_XCVR_AUI
;
964 icfg
&= ~XL_ICFG_CONNECTOR_MASK
;
965 icfg
|= (XL_XCVR_AUI
<< XL_ICFG_CONNECTOR_BITS
);
966 mediastat
&= ~(XL_MEDIASTAT_LINKBEAT
|
967 XL_MEDIASTAT_JABGUARD
);
968 mediastat
|= ~XL_MEDIASTAT_SQEENB
;
972 if (sc
->xl_media
& XL_MEDIAOPT_BNC
) {
973 if (IFM_SUBTYPE(media
) == IFM_10_2
) {
974 kprintf("BNC port, ");
975 sc
->xl_xcvr
= XL_XCVR_COAX
;
976 icfg
&= ~XL_ICFG_CONNECTOR_MASK
;
977 icfg
|= (XL_XCVR_COAX
<< XL_ICFG_CONNECTOR_BITS
);
978 mediastat
&= ~(XL_MEDIASTAT_LINKBEAT
|
979 XL_MEDIASTAT_JABGUARD
|
980 XL_MEDIASTAT_SQEENB
);
984 if ((media
& IFM_GMASK
) == IFM_FDX
||
985 IFM_SUBTYPE(media
) == IFM_100_FX
) {
986 kprintf("full duplex\n");
988 CSR_WRITE_1(sc
, XL_W3_MAC_CTRL
, XL_MACCTRL_DUPLEX
);
990 kprintf("half duplex\n");
992 CSR_WRITE_1(sc
, XL_W3_MAC_CTRL
,
993 (CSR_READ_1(sc
, XL_W3_MAC_CTRL
) & ~XL_MACCTRL_DUPLEX
));
996 if (IFM_SUBTYPE(media
) == IFM_10_2
)
997 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_COAX_START
);
999 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_COAX_STOP
);
1000 CSR_WRITE_4(sc
, XL_W3_INTERNAL_CFG
, icfg
);
1002 CSR_WRITE_2(sc
, XL_W4_MEDIA_STATUS
, mediastat
);
1008 xl_reset(struct xl_softc
*sc
)
1013 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RESET
|
1014 ((sc
->xl_flags
& XL_FLAG_WEIRDRESET
) ?
1015 XL_RESETOPT_DISADVFD
:0));
1018 * If we're using memory mapped register mode, pause briefly
1019 * after issuing the reset command before trying to access any
1020 * other registers. With my 3c575C cardbus card, failing to do
1021 * this results in the system locking up while trying to poll
1022 * the command busy bit in the status register.
1024 if (sc
->xl_flags
& XL_FLAG_USE_MMIO
)
1027 for (i
= 0; i
< XL_TIMEOUT
; i
++) {
1029 if (!(CSR_READ_2(sc
, XL_STATUS
) & XL_STAT_CMDBUSY
))
1033 if (i
== XL_TIMEOUT
)
1034 if_printf(&sc
->arpcom
.ac_if
, "reset didn't complete\n");
1036 /* Reset TX and RX. */
1037 /* Note: the RX reset takes an absurd amount of time
1038 * on newer versions of the Tornado chips such as those
1039 * on the 3c905CX and newer 3c908C cards. We wait an
1040 * extra amount of time so that xl_wait() doesn't complain
1041 * and annoy the users.
1043 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_RESET
);
1046 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_RESET
);
1049 if (sc
->xl_flags
& XL_FLAG_INVERT_LED_PWR
||
1050 sc
->xl_flags
& XL_FLAG_INVERT_MII_PWR
) {
1052 CSR_WRITE_2(sc
, XL_W2_RESET_OPTIONS
, CSR_READ_2(sc
,
1053 XL_W2_RESET_OPTIONS
)
1054 | ((sc
->xl_flags
& XL_FLAG_INVERT_LED_PWR
)?XL_RESETOPT_INVERT_LED
:0)
1055 | ((sc
->xl_flags
& XL_FLAG_INVERT_MII_PWR
)?XL_RESETOPT_INVERT_MII
:0)
1059 /* Wait a little while for the chip to get its brains in order. */
1065 * Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device
1066 * IDs against our list and return a device name if we find a match.
1069 xl_probe(device_t dev
)
1074 vid
= pci_get_vendor(dev
);
1075 did
= pci_get_device(dev
);
1076 for (t
= xl_devs
; t
->xl_name
!= NULL
; t
++) {
1077 if (vid
== t
->xl_vid
&& did
== t
->xl_did
) {
1078 device_set_desc(dev
, t
->xl_name
);
1086 * This routine is a kludge to work around possible hardware faults
1087 * or manufacturing defects that can cause the media options register
1088 * (or reset options register, as it's called for the first generation
1089 * 3c90x adapters) to return an incorrect result. I have encountered
1090 * one Dell Latitude laptop docking station with an integrated 3c905-TX
1091 * which doesn't have any of the 'mediaopt' bits set. This screws up
1092 * the attach routine pretty badly because it doesn't know what media
1093 * to look for. If we find ourselves in this predicament, this routine
1094 * will try to guess the media options values and warn the user of a
1095 * possible manufacturing defect with his adapter/system/whatever.
1098 xl_mediacheck(struct xl_softc
*sc
)
1100 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
1103 * If some of the media options bits are set, assume they are
1104 * correct. If not, try to figure it out down below.
1105 * XXX I should check for 10baseFL, but I don't have an adapter
1108 if (sc
->xl_media
& (XL_MEDIAOPT_MASK
& ~XL_MEDIAOPT_VCO
)) {
1110 * Check the XCVR value. If it's not in the normal range
1111 * of values, we need to fake it up here.
1113 if (sc
->xl_xcvr
<= XL_XCVR_AUTO
)
1116 if_printf(ifp
, "bogus xcvr value in EEPROM (%x)\n",
1119 "choosing new default based on card type\n");
1122 if (sc
->xl_type
== XL_TYPE_905B
&&
1123 sc
->xl_media
& XL_MEDIAOPT_10FL
)
1125 if_printf(ifp
, "WARNING: no media options bits set in "
1126 "the media options register!!\n");
1127 if_printf(ifp
, "this could be a manufacturing defect in "
1128 "your adapter or system\n");
1129 if_printf(ifp
, "attempting to guess media type; you "
1130 "should probably consult your vendor\n");
1133 xl_choose_xcvr(sc
, 1);
1137 xl_choose_xcvr(struct xl_softc
*sc
, int verbose
)
1139 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
1143 * Read the device ID from the EEPROM.
1144 * This is what's loaded into the PCI device ID register, so it has
1145 * to be correct otherwise we wouldn't have gotten this far.
1147 xl_read_eeprom(sc
, (caddr_t
)&devid
, XL_EE_PRODID
, 1, 0);
1150 case TC_DEVICEID_BOOMERANG_10BT
: /* 3c900-TPO */
1151 case TC_DEVICEID_KRAKATOA_10BT
: /* 3c900B-TPO */
1152 sc
->xl_media
= XL_MEDIAOPT_BT
;
1153 sc
->xl_xcvr
= XL_XCVR_10BT
;
1155 if_printf(ifp
, "guessing 10BaseT transceiver\n");
1157 case TC_DEVICEID_BOOMERANG_10BT_COMBO
: /* 3c900-COMBO */
1158 case TC_DEVICEID_KRAKATOA_10BT_COMBO
: /* 3c900B-COMBO */
1159 sc
->xl_media
= XL_MEDIAOPT_BT
|XL_MEDIAOPT_BNC
|XL_MEDIAOPT_AUI
;
1160 sc
->xl_xcvr
= XL_XCVR_10BT
;
1162 if_printf(ifp
, "guessing COMBO (AUI/BNC/TP)\n");
1164 case TC_DEVICEID_KRAKATOA_10BT_TPC
: /* 3c900B-TPC */
1165 sc
->xl_media
= XL_MEDIAOPT_BT
|XL_MEDIAOPT_BNC
;
1166 sc
->xl_xcvr
= XL_XCVR_10BT
;
1168 if_printf(ifp
, "guessing TPC (BNC/TP)\n");
1170 case TC_DEVICEID_CYCLONE_10FL
: /* 3c900B-FL */
1171 sc
->xl_media
= XL_MEDIAOPT_10FL
;
1172 sc
->xl_xcvr
= XL_XCVR_AUI
;
1174 if_printf(ifp
, "guessing 10baseFL\n");
1176 case TC_DEVICEID_BOOMERANG_10_100BT
: /* 3c905-TX */
1177 case TC_DEVICEID_HURRICANE_555
: /* 3c555 */
1178 case TC_DEVICEID_HURRICANE_556
: /* 3c556 */
1179 case TC_DEVICEID_HURRICANE_556B
: /* 3c556B */
1180 case TC_DEVICEID_HURRICANE_575A
: /* 3c575TX */
1181 case TC_DEVICEID_HURRICANE_575B
: /* 3c575B */
1182 case TC_DEVICEID_HURRICANE_575C
: /* 3c575C */
1183 case TC_DEVICEID_HURRICANE_656
: /* 3c656 */
1184 case TC_DEVICEID_HURRICANE_656B
: /* 3c656B */
1185 case TC_DEVICEID_TORNADO_656C
: /* 3c656C */
1186 case TC_DEVICEID_TORNADO_10_100BT_920B
: /* 3c920B-EMB */
1187 sc
->xl_media
= XL_MEDIAOPT_MII
;
1188 sc
->xl_xcvr
= XL_XCVR_MII
;
1190 if_printf(ifp
, "guessing MII\n");
1192 case TC_DEVICEID_BOOMERANG_100BT4
: /* 3c905-T4 */
1193 case TC_DEVICEID_CYCLONE_10_100BT4
: /* 3c905B-T4 */
1194 sc
->xl_media
= XL_MEDIAOPT_BT4
;
1195 sc
->xl_xcvr
= XL_XCVR_MII
;
1197 if_printf(ifp
, "guessing 100BaseT4/MII\n");
1199 case TC_DEVICEID_HURRICANE_10_100BT
: /* 3c905B-TX */
1200 case TC_DEVICEID_HURRICANE_10_100BT_SERV
:/*3c980-TX */
1201 case TC_DEVICEID_TORNADO_10_100BT_SERV
: /* 3c980C-TX */
1202 case TC_DEVICEID_HURRICANE_SOHO100TX
: /* 3cSOHO100-TX */
1203 case TC_DEVICEID_TORNADO_10_100BT
: /* 3c905C-TX */
1204 case TC_DEVICEID_TORNADO_HOMECONNECT
: /* 3c450-TX */
1205 sc
->xl_media
= XL_MEDIAOPT_BTX
;
1206 sc
->xl_xcvr
= XL_XCVR_AUTO
;
1208 if_printf(ifp
, "guessing 10/100 internal\n");
1210 case TC_DEVICEID_CYCLONE_10_100_COMBO
: /* 3c905B-COMBO */
1211 sc
->xl_media
= XL_MEDIAOPT_BTX
|XL_MEDIAOPT_BNC
|XL_MEDIAOPT_AUI
;
1212 sc
->xl_xcvr
= XL_XCVR_AUTO
;
1214 if_printf(ifp
, "guessing 10/100 plus BNC/AUI\n");
1218 "unknown device ID: %x -- defaulting to 10baseT\n", devid
);
1219 sc
->xl_media
= XL_MEDIAOPT_BT
;
1227 * Attach the interface. Allocate softc structures, do ifmedia
1228 * setup and ethernet/BPF attach.
1231 xl_attach(device_t dev
)
1233 u_char eaddr
[ETHER_ADDR_LEN
];
1235 struct xl_softc
*sc
;
1237 int media
= IFM_ETHER
|IFM_100_TX
|IFM_FDX
;
1238 int error
= 0, rid
, res
;
1241 sc
= device_get_softc(dev
);
1243 ifmedia_init(&sc
->ifmedia
, 0, xl_ifmedia_upd
, xl_ifmedia_sts
);
1245 did
= pci_get_device(dev
);
1248 if (did
== TC_DEVICEID_HURRICANE_555
)
1249 sc
->xl_flags
|= XL_FLAG_EEPROM_OFFSET_30
| XL_FLAG_PHYOK
;
1250 if (did
== TC_DEVICEID_HURRICANE_556
||
1251 did
== TC_DEVICEID_HURRICANE_556B
)
1252 sc
->xl_flags
|= XL_FLAG_FUNCREG
| XL_FLAG_PHYOK
|
1253 XL_FLAG_EEPROM_OFFSET_30
| XL_FLAG_WEIRDRESET
|
1254 XL_FLAG_INVERT_LED_PWR
| XL_FLAG_INVERT_MII_PWR
;
1255 if (did
== TC_DEVICEID_HURRICANE_555
||
1256 did
== TC_DEVICEID_HURRICANE_556
)
1257 sc
->xl_flags
|= XL_FLAG_8BITROM
;
1258 if (did
== TC_DEVICEID_HURRICANE_556B
)
1259 sc
->xl_flags
|= XL_FLAG_NO_XCVR_PWR
;
1260 if (did
== TC_DEVICEID_HURRICANE_575B
||
1261 did
== TC_DEVICEID_HURRICANE_575C
||
1262 did
== TC_DEVICEID_HURRICANE_656B
||
1263 did
== TC_DEVICEID_TORNADO_656C
)
1264 sc
->xl_flags
|= XL_FLAG_FUNCREG
;
1265 if (did
== TC_DEVICEID_HURRICANE_575A
||
1266 did
== TC_DEVICEID_HURRICANE_575B
||
1267 did
== TC_DEVICEID_HURRICANE_575C
||
1268 did
== TC_DEVICEID_HURRICANE_656B
||
1269 did
== TC_DEVICEID_TORNADO_656C
)
1270 sc
->xl_flags
|= XL_FLAG_PHYOK
| XL_FLAG_EEPROM_OFFSET_30
|
1272 if (did
== TC_DEVICEID_HURRICANE_656
)
1273 sc
->xl_flags
|= XL_FLAG_FUNCREG
| XL_FLAG_PHYOK
;
1274 if (did
== TC_DEVICEID_HURRICANE_575B
)
1275 sc
->xl_flags
|= XL_FLAG_INVERT_LED_PWR
;
1276 if (did
== TC_DEVICEID_HURRICANE_575C
)
1277 sc
->xl_flags
|= XL_FLAG_INVERT_MII_PWR
;
1278 if (did
== TC_DEVICEID_TORNADO_656C
)
1279 sc
->xl_flags
|= XL_FLAG_INVERT_MII_PWR
;
1280 if (did
== TC_DEVICEID_HURRICANE_656
||
1281 did
== TC_DEVICEID_HURRICANE_656B
)
1282 sc
->xl_flags
|= XL_FLAG_INVERT_MII_PWR
|
1283 XL_FLAG_INVERT_LED_PWR
;
1284 if (did
== TC_DEVICEID_TORNADO_10_100BT_920B
)
1285 sc
->xl_flags
|= XL_FLAG_PHYOK
;
1286 #ifndef BURN_BRIDGES
1288 * If this is a 3c905B, we have to check one extra thing.
1289 * The 905B supports power management and may be placed in
1290 * a low-power mode (D3 mode), typically by certain operating
1291 * systems which shall not be named. The PCI BIOS is supposed
1292 * to reset the NIC and bring it out of low-power mode, but
1293 * some do not. Consequently, we have to see if this chip
1294 * supports power management, and if so, make sure it's not
1295 * in low-power mode. If power management is available, the
1296 * capid byte will be 0x01.
1298 * I _think_ that what actually happens is that the chip
1299 * loses its PCI configuration during the transition from
1300 * D3 back to D0; this means that it should be possible for
1301 * us to save the PCI iobase, membase and IRQ, put the chip
1302 * back in the D0 state, then restore the PCI config ourselves.
1305 if (pci_get_powerstate(dev
) != PCI_POWERSTATE_D0
) {
1306 u_int32_t iobase
, membase
, irq
;
1308 /* Save important PCI config data. */
1309 iobase
= pci_read_config(dev
, XL_PCI_LOIO
, 4);
1310 membase
= pci_read_config(dev
, XL_PCI_LOMEM
, 4);
1311 irq
= pci_read_config(dev
, XL_PCI_INTLINE
, 4);
1313 /* Reset the power state. */
1314 device_printf(dev
, "chip is in D%d power mode "
1315 "-- setting to D0\n", pci_get_powerstate(dev
));
1317 pci_set_powerstate(dev
, PCI_POWERSTATE_D0
);
1319 /* Restore PCI config data. */
1320 pci_write_config(dev
, XL_PCI_LOIO
, iobase
, 4);
1321 pci_write_config(dev
, XL_PCI_LOMEM
, membase
, 4);
1322 pci_write_config(dev
, XL_PCI_INTLINE
, irq
, 4);
1326 * Map control/status registers.
1328 pci_enable_busmaster(dev
);
1331 res
= SYS_RES_MEMORY
;
1334 sc
->xl_res
= bus_alloc_resource_any(dev
, res
, &rid
, RF_ACTIVE
);
1337 if (sc
->xl_res
!= NULL
) {
1338 sc
->xl_flags
|= XL_FLAG_USE_MMIO
;
1340 device_printf(dev
, "using memory mapped I/O\n");
1343 res
= SYS_RES_IOPORT
;
1344 sc
->xl_res
= bus_alloc_resource_any(dev
, res
, &rid
, RF_ACTIVE
);
1345 if (sc
->xl_res
== NULL
) {
1346 device_printf(dev
, "couldn't map ports/memory\n");
1351 device_printf(dev
, "using port I/O\n");
1354 sc
->xl_btag
= rman_get_bustag(sc
->xl_res
);
1355 sc
->xl_bhandle
= rman_get_bushandle(sc
->xl_res
);
1357 if (sc
->xl_flags
& XL_FLAG_FUNCREG
) {
1358 rid
= XL_PCI_FUNCMEM
;
1359 sc
->xl_fres
= bus_alloc_resource_any(dev
, SYS_RES_MEMORY
, &rid
,
1362 if (sc
->xl_fres
== NULL
) {
1363 device_printf(dev
, "couldn't map funcreg memory\n");
1368 sc
->xl_ftag
= rman_get_bustag(sc
->xl_fres
);
1369 sc
->xl_fhandle
= rman_get_bushandle(sc
->xl_fres
);
1372 /* Allocate interrupt */
1374 sc
->xl_irq
= bus_alloc_resource_any(dev
, SYS_RES_IRQ
, &rid
,
1375 RF_SHAREABLE
| RF_ACTIVE
);
1376 if (sc
->xl_irq
== NULL
) {
1377 device_printf(dev
, "couldn't map interrupt\n");
1382 ifp
= &sc
->arpcom
.ac_if
;
1383 if_initname(ifp
, device_get_name(dev
), device_get_unit(dev
));
1385 /* Reset the adapter. */
1389 * Get station address from the EEPROM.
1391 if (xl_read_eeprom(sc
, (caddr_t
)&eaddr
, XL_EE_OEM_ADR0
, 3, 1)) {
1392 device_printf(dev
, "failed to read station address\n");
1397 callout_init(&sc
->xl_stat_timer
);
1399 error
= xl_dma_alloc(dev
);
1404 * Figure out the card type. 3c905B adapters have the
1405 * 'supportsNoTxLength' bit set in the capabilities
1406 * word in the EEPROM.
1407 * Note: my 3c575C cardbus card lies. It returns a value
1408 * of 0x1578 for its capabilities word, which is somewhat
1409 * nonsensical. Another way to distinguish a 3c90x chip
1410 * from a 3c90xB/C chip is to check for the 'supportsLargePackets'
1411 * bit. This will only be set for 3c90x boomerage chips.
1413 xl_read_eeprom(sc
, (caddr_t
)&sc
->xl_caps
, XL_EE_CAPS
, 1, 0);
1414 if (sc
->xl_caps
& XL_CAPS_NO_TXLENGTH
||
1415 !(sc
->xl_caps
& XL_CAPS_LARGE_PKTS
))
1416 sc
->xl_type
= XL_TYPE_905B
;
1418 sc
->xl_type
= XL_TYPE_90X
;
1420 device_printf(dev
, "type %s\n",
1421 sc
->xl_type
== XL_TYPE_905B
? "90XB" : "90X");
1425 ifp
->if_mtu
= ETHERMTU
;
1426 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
1427 ifp
->if_ioctl
= xl_ioctl
;
1428 if (sc
->xl_type
== XL_TYPE_905B
) {
1429 ifp
->if_start
= xl_start_90xB
;
1430 ifp
->if_capabilities
|= IFCAP_HWCSUM
| IFCAP_VLAN_MTU
;
1432 ifp
->if_start
= xl_start
;
1434 ifp
->if_watchdog
= xl_watchdog
;
1435 ifp
->if_init
= xl_init
;
1436 #ifdef DEVICE_POLLING
1437 ifp
->if_poll
= xl_poll
;
1439 ifp
->if_baudrate
= 10000000;
1440 ifq_set_maxlen(&ifp
->if_snd
, XL_TX_LIST_CNT
- 1);
1441 ifq_set_ready(&ifp
->if_snd
);
1443 * NOTE: Hardware checksum features disabled by default.
1444 * This seems to corrupt tx packet data one out of a
1445 * million packets or so and then generates a good checksum
1446 * so the receiver doesn't know the packet is bad
1448 ifp
->if_capenable
= ifp
->if_capabilities
& ~IFCAP_HWCSUM
;
1449 if (ifp
->if_capenable
& IFCAP_TXCSUM
)
1450 ifp
->if_hwassist
= XL905B_CSUM_FEATURES
;
1453 * Now we have to see what sort of media we have.
1454 * This includes probing for an MII interace and a
1458 sc
->xl_media
= CSR_READ_2(sc
, XL_W3_MEDIA_OPT
);
1460 if_printf(ifp
, "media options word: %x\n", sc
->xl_media
);
1462 xl_read_eeprom(sc
, (char *)&xcvr
, XL_EE_ICFG_0
, 2, 0);
1463 sc
->xl_xcvr
= xcvr
[0] | xcvr
[1] << 16;
1464 sc
->xl_xcvr
&= XL_ICFG_CONNECTOR_MASK
;
1465 sc
->xl_xcvr
>>= XL_ICFG_CONNECTOR_BITS
;
1469 if (sc
->xl_media
& XL_MEDIAOPT_MII
|| sc
->xl_media
& XL_MEDIAOPT_BTX
1470 || sc
->xl_media
& XL_MEDIAOPT_BT4
) {
1472 if_printf(ifp
, "found MII/AUTO\n");
1475 error
= mii_phy_probe(dev
, &sc
->xl_miibus
,
1476 xl_ifmedia_upd
, xl_ifmedia_sts
);
1478 if_printf(ifp
, "no PHY found!\n");
1486 * Sanity check. If the user has selected "auto" and this isn't
1487 * a 10/100 card of some kind, we need to force the transceiver
1488 * type to something sane.
1490 if (sc
->xl_xcvr
== XL_XCVR_AUTO
)
1491 xl_choose_xcvr(sc
, bootverbose
);
1496 if (sc
->xl_media
& XL_MEDIAOPT_BT
) {
1498 if_printf(ifp
, "found 10baseT\n");
1499 ifmedia_add(&sc
->ifmedia
, IFM_ETHER
|IFM_10_T
, 0, NULL
);
1500 ifmedia_add(&sc
->ifmedia
, IFM_ETHER
|IFM_10_T
|IFM_HDX
, 0, NULL
);
1501 if (sc
->xl_caps
& XL_CAPS_FULL_DUPLEX
)
1502 ifmedia_add(&sc
->ifmedia
,
1503 IFM_ETHER
|IFM_10_T
|IFM_FDX
, 0, NULL
);
1506 if (sc
->xl_media
& (XL_MEDIAOPT_AUI
|XL_MEDIAOPT_10FL
)) {
1508 * Check for a 10baseFL board in disguise.
1510 if (sc
->xl_type
== XL_TYPE_905B
&&
1511 sc
->xl_media
== XL_MEDIAOPT_10FL
) {
1513 if_printf(ifp
, "found 10baseFL\n");
1514 ifmedia_add(&sc
->ifmedia
, IFM_ETHER
|IFM_10_FL
, 0, NULL
);
1515 ifmedia_add(&sc
->ifmedia
, IFM_ETHER
|IFM_10_FL
|IFM_HDX
,
1517 if (sc
->xl_caps
& XL_CAPS_FULL_DUPLEX
)
1518 ifmedia_add(&sc
->ifmedia
,
1519 IFM_ETHER
|IFM_10_FL
|IFM_FDX
, 0, NULL
);
1522 if_printf(ifp
, "found AUI\n");
1523 ifmedia_add(&sc
->ifmedia
, IFM_ETHER
|IFM_10_5
, 0, NULL
);
1527 if (sc
->xl_media
& XL_MEDIAOPT_BNC
) {
1529 if_printf(ifp
, "found BNC\n");
1530 ifmedia_add(&sc
->ifmedia
, IFM_ETHER
|IFM_10_2
, 0, NULL
);
1533 if (sc
->xl_media
& XL_MEDIAOPT_BFX
) {
1535 if_printf(ifp
, "found 100baseFX\n");
1536 ifp
->if_baudrate
= 100000000;
1537 ifmedia_add(&sc
->ifmedia
, IFM_ETHER
|IFM_100_FX
, 0, NULL
);
1540 /* Choose a default media. */
1541 switch(sc
->xl_xcvr
) {
1543 media
= IFM_ETHER
|IFM_10_T
;
1544 xl_setmode(sc
, media
);
1547 if (sc
->xl_type
== XL_TYPE_905B
&&
1548 sc
->xl_media
== XL_MEDIAOPT_10FL
) {
1549 media
= IFM_ETHER
|IFM_10_FL
;
1550 xl_setmode(sc
, media
);
1552 media
= IFM_ETHER
|IFM_10_5
;
1553 xl_setmode(sc
, media
);
1557 media
= IFM_ETHER
|IFM_10_2
;
1558 xl_setmode(sc
, media
);
1561 case XL_XCVR_100BTX
:
1563 /* Chosen by miibus */
1565 case XL_XCVR_100BFX
:
1566 media
= IFM_ETHER
|IFM_100_FX
;
1569 if_printf(ifp
, "unknown XCVR type: %d\n", sc
->xl_xcvr
);
1571 * This will probably be wrong, but it prevents
1572 * the ifmedia code from panicking.
1574 media
= IFM_ETHER
|IFM_10_T
;
1578 if (sc
->xl_miibus
== NULL
)
1579 ifmedia_set(&sc
->ifmedia
, media
);
1583 if (sc
->xl_flags
& XL_FLAG_NO_XCVR_PWR
) {
1585 CSR_WRITE_2(sc
, XL_W0_MFG_ID
, XL_NO_XCVR_PWR_MAGICBITS
);
1589 * Call MI attach routine.
1591 ether_ifattach(ifp
, eaddr
, NULL
);
1594 * Tell the upper layer(s) we support long frames.
1596 ifp
->if_data
.ifi_hdrlen
= sizeof(struct ether_vlan_header
);
1598 /* Hook interrupt last to avoid having to lock softc */
1599 error
= bus_setup_intr(dev
, sc
->xl_irq
, INTR_NETSAFE
,
1600 xl_intr
, sc
, &sc
->xl_intrhand
,
1601 ifp
->if_serializer
);
1603 if_printf(ifp
, "couldn't set up irq\n");
1604 ether_ifdetach(ifp
);
1616 * Shutdown hardware and free up resources. This can be called any
1617 * time after the mutex has been initialized. It is called in both
1618 * the error case in attach and the normal detach case so it needs
1619 * to be careful about only freeing resources that have actually been
1623 xl_detach(device_t dev
)
1625 struct xl_softc
*sc
;
1629 sc
= device_get_softc(dev
);
1630 ifp
= &sc
->arpcom
.ac_if
;
1632 if (sc
->xl_flags
& XL_FLAG_USE_MMIO
) {
1634 res
= SYS_RES_MEMORY
;
1637 res
= SYS_RES_IOPORT
;
1640 if (device_is_attached(dev
)) {
1641 lwkt_serialize_enter(ifp
->if_serializer
);
1644 bus_teardown_intr(dev
, sc
->xl_irq
, sc
->xl_intrhand
);
1645 lwkt_serialize_exit(ifp
->if_serializer
);
1647 ether_ifdetach(ifp
);
1651 device_delete_child(dev
, sc
->xl_miibus
);
1652 bus_generic_detach(dev
);
1653 ifmedia_removeall(&sc
->ifmedia
);
1656 bus_release_resource(dev
, SYS_RES_IRQ
, 0, sc
->xl_irq
);
1657 if (sc
->xl_fres
!= NULL
)
1658 bus_release_resource(dev
, SYS_RES_MEMORY
,
1659 XL_PCI_FUNCMEM
, sc
->xl_fres
);
1661 bus_release_resource(dev
, res
, rid
, sc
->xl_res
);
1669 xl_dma_alloc(device_t dev
)
1671 struct xl_softc
*sc
;
1672 struct xl_chain_data
*cd
;
1673 struct xl_list_data
*ld
;
1676 sc
= device_get_softc(dev
);
1681 * Now allocate a tag for the DMA descriptor lists and a chunk
1682 * of DMA-able memory based on the tag. Also obtain the DMA
1683 * addresses of the RX and TX ring, which we'll need later.
1684 * All of our lists are allocated as a contiguous block
1687 error
= bus_dma_tag_create(NULL
, 8, 0,
1688 BUS_SPACE_MAXADDR_32BIT
, BUS_SPACE_MAXADDR
,
1690 XL_RX_LIST_SZ
, 1, XL_RX_LIST_SZ
,
1693 device_printf(dev
, "failed to allocate rx dma tag\n");
1697 error
= bus_dmamem_alloc(ld
->xl_rx_tag
, (void **)&ld
->xl_rx_list
,
1698 BUS_DMA_WAITOK
| BUS_DMA_ZERO
,
1701 device_printf(dev
, "no memory for rx list buffers!\n");
1702 bus_dma_tag_destroy(ld
->xl_rx_tag
);
1703 ld
->xl_rx_tag
= NULL
;
1707 error
= bus_dmamap_load(ld
->xl_rx_tag
, ld
->xl_rx_dmamap
,
1708 ld
->xl_rx_list
, XL_RX_LIST_SZ
,
1709 xl_dma_map_addr
, &ld
->xl_rx_dmaaddr
,
1712 device_printf(dev
, "cannot get dma address of the rx ring!\n");
1713 bus_dmamem_free(ld
->xl_rx_tag
, ld
->xl_rx_list
,
1715 bus_dma_tag_destroy(ld
->xl_rx_tag
);
1716 ld
->xl_rx_tag
= NULL
;
1720 error
= bus_dma_tag_create(NULL
, 8, 0,
1721 BUS_SPACE_MAXADDR_32BIT
, BUS_SPACE_MAXADDR
,
1723 XL_TX_LIST_SZ
, 1, XL_TX_LIST_SZ
,
1726 device_printf(dev
, "failed to allocate tx dma tag\n");
1730 error
= bus_dmamem_alloc(ld
->xl_tx_tag
, (void **)&ld
->xl_tx_list
,
1731 BUS_DMA_WAITOK
| BUS_DMA_ZERO
,
1734 device_printf(dev
, "no memory for list buffers!\n");
1735 bus_dma_tag_destroy(ld
->xl_tx_tag
);
1736 ld
->xl_tx_tag
= NULL
;
1740 error
= bus_dmamap_load(ld
->xl_tx_tag
, ld
->xl_tx_dmamap
,
1741 ld
->xl_tx_list
, XL_TX_LIST_SZ
,
1742 xl_dma_map_addr
, &ld
->xl_tx_dmaaddr
,
1745 device_printf(dev
, "cannot get dma address of the tx ring!\n");
1746 bus_dmamem_free(ld
->xl_tx_tag
, ld
->xl_tx_list
,
1748 bus_dma_tag_destroy(ld
->xl_tx_tag
);
1749 ld
->xl_tx_tag
= NULL
;
1754 * Allocate a DMA tag for the mapping of mbufs.
1756 error
= bus_dma_tag_create(NULL
, 1, 0,
1757 BUS_SPACE_MAXADDR_32BIT
, BUS_SPACE_MAXADDR
,
1759 MCLBYTES
* XL_MAXFRAGS
, XL_MAXFRAGS
,
1760 MCLBYTES
, 0, &sc
->xl_mtag
);
1762 device_printf(dev
, "failed to allocate mbuf dma tag\n");
1767 * Allocate a spare DMA map for the RX ring.
1769 error
= bus_dmamap_create(sc
->xl_mtag
, 0, &sc
->xl_tmpmap
);
1771 device_printf(dev
, "failed to create mbuf dma map\n");
1772 bus_dma_tag_destroy(sc
->xl_mtag
);
1777 for (i
= 0; i
< XL_RX_LIST_CNT
; i
++) {
1778 error
= bus_dmamap_create(sc
->xl_mtag
, 0,
1779 &cd
->xl_rx_chain
[i
].xl_map
);
1781 device_printf(dev
, "failed to create %dth "
1782 "rx descriptor dma map!\n", i
);
1785 cd
->xl_rx_chain
[i
].xl_ptr
= &ld
->xl_rx_list
[i
];
1788 for (i
= 0; i
< XL_TX_LIST_CNT
; i
++) {
1789 error
= bus_dmamap_create(sc
->xl_mtag
, 0,
1790 &cd
->xl_tx_chain
[i
].xl_map
);
1792 device_printf(dev
, "failed to create %dth "
1793 "tx descriptor dma map!\n", i
);
1796 cd
->xl_tx_chain
[i
].xl_ptr
= &ld
->xl_tx_list
[i
];
1802 xl_dma_free(device_t dev
)
1804 struct xl_softc
*sc
;
1805 struct xl_chain_data
*cd
;
1806 struct xl_list_data
*ld
;
1809 sc
= device_get_softc(dev
);
1813 for (i
= 0; i
< XL_RX_LIST_CNT
; ++i
) {
1814 if (cd
->xl_rx_chain
[i
].xl_ptr
!= NULL
) {
1815 if (cd
->xl_rx_chain
[i
].xl_mbuf
!= NULL
) {
1816 bus_dmamap_unload(sc
->xl_mtag
,
1817 cd
->xl_rx_chain
[i
].xl_map
);
1818 m_freem(cd
->xl_rx_chain
[i
].xl_mbuf
);
1820 bus_dmamap_destroy(sc
->xl_mtag
,
1821 cd
->xl_rx_chain
[i
].xl_map
);
1825 for (i
= 0; i
< XL_TX_LIST_CNT
; ++i
) {
1826 if (cd
->xl_tx_chain
[i
].xl_ptr
!= NULL
) {
1827 if (cd
->xl_tx_chain
[i
].xl_mbuf
!= NULL
) {
1828 bus_dmamap_unload(sc
->xl_mtag
,
1829 cd
->xl_tx_chain
[i
].xl_map
);
1830 m_freem(cd
->xl_tx_chain
[i
].xl_mbuf
);
1832 bus_dmamap_destroy(sc
->xl_mtag
,
1833 cd
->xl_tx_chain
[i
].xl_map
);
1837 if (ld
->xl_rx_tag
) {
1838 bus_dmamap_unload(ld
->xl_rx_tag
, ld
->xl_rx_dmamap
);
1839 bus_dmamem_free(ld
->xl_rx_tag
, ld
->xl_rx_list
,
1841 bus_dma_tag_destroy(ld
->xl_rx_tag
);
1844 if (ld
->xl_tx_tag
) {
1845 bus_dmamap_unload(ld
->xl_tx_tag
, ld
->xl_tx_dmamap
);
1846 bus_dmamem_free(ld
->xl_tx_tag
, ld
->xl_tx_list
,
1848 bus_dma_tag_destroy(ld
->xl_tx_tag
);
1852 bus_dmamap_destroy(sc
->xl_mtag
, sc
->xl_tmpmap
);
1853 bus_dma_tag_destroy(sc
->xl_mtag
);
1858 * Initialize the transmit descriptors.
1861 xl_list_tx_init(struct xl_softc
*sc
)
1863 struct xl_chain_data
*cd
;
1864 struct xl_list_data
*ld
;
1869 for (i
= 0; i
< XL_TX_LIST_CNT
; i
++) {
1870 cd
->xl_tx_chain
[i
].xl_phys
= ld
->xl_tx_dmaaddr
+
1871 i
* sizeof(struct xl_list
);
1872 if (i
== (XL_TX_LIST_CNT
- 1))
1873 cd
->xl_tx_chain
[i
].xl_next
= NULL
;
1875 cd
->xl_tx_chain
[i
].xl_next
= &cd
->xl_tx_chain
[i
+ 1];
1878 cd
->xl_tx_free
= &cd
->xl_tx_chain
[0];
1879 cd
->xl_tx_tail
= cd
->xl_tx_head
= NULL
;
1881 bus_dmamap_sync(ld
->xl_tx_tag
, ld
->xl_tx_dmamap
, BUS_DMASYNC_PREWRITE
);
1885 * Initialize the transmit descriptors.
1888 xl_list_tx_init_90xB(struct xl_softc
*sc
)
1890 struct xl_chain_data
*cd
;
1891 struct xl_list_data
*ld
;
1896 for (i
= 0; i
< XL_TX_LIST_CNT
; i
++) {
1897 cd
->xl_tx_chain
[i
].xl_phys
= ld
->xl_tx_dmaaddr
+
1898 i
* sizeof(struct xl_list
);
1899 if (i
== (XL_TX_LIST_CNT
- 1))
1900 cd
->xl_tx_chain
[i
].xl_next
= &cd
->xl_tx_chain
[0];
1902 cd
->xl_tx_chain
[i
].xl_next
= &cd
->xl_tx_chain
[i
+ 1];
1904 cd
->xl_tx_chain
[i
].xl_prev
=
1905 &cd
->xl_tx_chain
[XL_TX_LIST_CNT
- 1];
1907 cd
->xl_tx_chain
[i
].xl_prev
=
1908 &cd
->xl_tx_chain
[i
- 1];
1912 ld
->xl_tx_list
[0].xl_status
= htole32(XL_TXSTAT_EMPTY
);
1918 bus_dmamap_sync(ld
->xl_tx_tag
, ld
->xl_tx_dmamap
, BUS_DMASYNC_PREWRITE
);
1922 * Initialize the RX descriptors and allocate mbufs for them. Note that
1923 * we arrange the descriptors in a closed ring, so that the last descriptor
1924 * points back to the first.
1927 xl_list_rx_init(struct xl_softc
*sc
)
1929 struct xl_chain_data
*cd
;
1930 struct xl_list_data
*ld
;
1937 for (i
= 0; i
< XL_RX_LIST_CNT
; i
++) {
1938 error
= xl_newbuf(sc
, &cd
->xl_rx_chain
[i
]);
1941 if (i
== (XL_RX_LIST_CNT
- 1))
1945 nextptr
= ld
->xl_rx_dmaaddr
+
1946 next
* sizeof(struct xl_list_onefrag
);
1947 cd
->xl_rx_chain
[i
].xl_next
= &cd
->xl_rx_chain
[next
];
1948 ld
->xl_rx_list
[i
].xl_next
= htole32(nextptr
);
1951 bus_dmamap_sync(ld
->xl_rx_tag
, ld
->xl_rx_dmamap
, BUS_DMASYNC_PREWRITE
);
1952 cd
->xl_rx_head
= &cd
->xl_rx_chain
[0];
1958 * Initialize an RX descriptor and attach an MBUF cluster.
1959 * If we fail to do so, we need to leave the old mbuf and
1960 * the old DMA map untouched so that it can be reused.
1963 xl_newbuf(struct xl_softc
*sc
, struct xl_chain_onefrag
*c
)
1970 m_new
= m_getcl(MB_DONTWAIT
, MT_DATA
, M_PKTHDR
);
1974 m_new
->m_len
= m_new
->m_pkthdr
.len
= MCLBYTES
;
1976 /* Force longword alignment for packet payload. */
1977 m_adj(m_new
, ETHER_ALIGN
);
1979 error
= bus_dmamap_load_mbuf(sc
->xl_mtag
, sc
->xl_tmpmap
, m_new
,
1980 xl_dma_map_rxbuf
, &baddr
, BUS_DMA_NOWAIT
);
1983 if_printf(&sc
->arpcom
.ac_if
, "can't map mbuf (error %d)\n",
1988 bus_dmamap_unload(sc
->xl_mtag
, c
->xl_map
);
1990 c
->xl_map
= sc
->xl_tmpmap
;
1991 sc
->xl_tmpmap
= map
;
1993 c
->xl_ptr
->xl_frag
.xl_len
= htole32(m_new
->m_len
| XL_LAST_FRAG
);
1994 c
->xl_ptr
->xl_status
= 0;
1995 c
->xl_ptr
->xl_frag
.xl_addr
= htole32(baddr
);
1996 bus_dmamap_sync(sc
->xl_mtag
, c
->xl_map
, BUS_DMASYNC_PREREAD
);
2001 xl_rx_resync(struct xl_softc
*sc
)
2003 struct xl_chain_onefrag
*pos
;
2006 pos
= sc
->xl_cdata
.xl_rx_head
;
2008 for (i
= 0; i
< XL_RX_LIST_CNT
; i
++) {
2009 if (pos
->xl_ptr
->xl_status
)
2014 if (i
== XL_RX_LIST_CNT
)
2017 sc
->xl_cdata
.xl_rx_head
= pos
;
2023 * A frame has been uploaded: pass the resulting mbuf chain up to
2024 * the higher level protocols.
2027 xl_rxeof(struct xl_softc
*sc
, int count
)
2031 struct xl_chain_onefrag
*cur_rx
;
2035 ifp
= &sc
->arpcom
.ac_if
;
2039 bus_dmamap_sync(sc
->xl_ldata
.xl_rx_tag
, sc
->xl_ldata
.xl_rx_dmamap
,
2040 BUS_DMASYNC_POSTREAD
);
2041 while((rxstat
= le32toh(sc
->xl_cdata
.xl_rx_head
->xl_ptr
->xl_status
))) {
2042 #ifdef DEVICE_POLLING
2043 if (count
>= 0 && count
-- == 0)
2046 cur_rx
= sc
->xl_cdata
.xl_rx_head
;
2047 sc
->xl_cdata
.xl_rx_head
= cur_rx
->xl_next
;
2048 total_len
= rxstat
& XL_RXSTAT_LENMASK
;
2051 * Since we have told the chip to allow large frames,
2052 * we need to trap giant frame errors in software. We allow
2053 * a little more than the normal frame size to account for
2054 * frames with VLAN tags.
2056 if (total_len
> XL_MAX_FRAMELEN
)
2057 rxstat
|= (XL_RXSTAT_UP_ERROR
|XL_RXSTAT_OVERSIZE
);
2060 * If an error occurs, update stats, clear the
2061 * status word and leave the mbuf cluster in place:
2062 * it should simply get re-used next time this descriptor
2063 * comes up in the ring.
2065 if (rxstat
& XL_RXSTAT_UP_ERROR
) {
2067 cur_rx
->xl_ptr
->xl_status
= 0;
2068 bus_dmamap_sync(sc
->xl_ldata
.xl_rx_tag
,
2069 sc
->xl_ldata
.xl_rx_dmamap
, BUS_DMASYNC_PREWRITE
);
2074 * If the error bit was not set, the upload complete
2075 * bit should be set which means we have a valid packet.
2076 * If not, something truly strange has happened.
2078 if (!(rxstat
& XL_RXSTAT_UP_CMPLT
)) {
2080 "bad receive status -- packet dropped\n");
2082 cur_rx
->xl_ptr
->xl_status
= 0;
2083 bus_dmamap_sync(sc
->xl_ldata
.xl_rx_tag
,
2084 sc
->xl_ldata
.xl_rx_dmamap
, BUS_DMASYNC_PREWRITE
);
2088 /* No errors; receive the packet. */
2089 bus_dmamap_sync(sc
->xl_mtag
, cur_rx
->xl_map
,
2090 BUS_DMASYNC_POSTREAD
);
2091 m
= cur_rx
->xl_mbuf
;
2094 * Try to conjure up a new mbuf cluster. If that
2095 * fails, it means we have an out of memory condition and
2096 * should leave the buffer in place and continue. This will
2097 * result in a lost packet, but there's little else we
2098 * can do in this situation.
2100 if (xl_newbuf(sc
, cur_rx
)) {
2102 cur_rx
->xl_ptr
->xl_status
= 0;
2103 bus_dmamap_sync(sc
->xl_ldata
.xl_rx_tag
,
2104 sc
->xl_ldata
.xl_rx_dmamap
, BUS_DMASYNC_PREWRITE
);
2107 bus_dmamap_sync(sc
->xl_ldata
.xl_rx_tag
,
2108 sc
->xl_ldata
.xl_rx_dmamap
, BUS_DMASYNC_PREWRITE
);
2111 m
->m_pkthdr
.rcvif
= ifp
;
2112 m
->m_pkthdr
.len
= m
->m_len
= total_len
;
2114 if (ifp
->if_capenable
& IFCAP_RXCSUM
) {
2115 /* Do IP checksum checking. */
2116 if (rxstat
& XL_RXSTAT_IPCKOK
)
2117 m
->m_pkthdr
.csum_flags
|= CSUM_IP_CHECKED
;
2118 if (!(rxstat
& XL_RXSTAT_IPCKERR
))
2119 m
->m_pkthdr
.csum_flags
|= CSUM_IP_VALID
;
2120 if ((rxstat
& XL_RXSTAT_TCPCOK
&&
2121 !(rxstat
& XL_RXSTAT_TCPCKERR
)) ||
2122 (rxstat
& XL_RXSTAT_UDPCKOK
&&
2123 !(rxstat
& XL_RXSTAT_UDPCKERR
))) {
2124 m
->m_pkthdr
.csum_flags
|=
2125 CSUM_DATA_VALID
|CSUM_PSEUDO_HDR
|
2126 CSUM_FRAG_NOT_CHECKED
;
2127 m
->m_pkthdr
.csum_data
= 0xffff;
2131 ifp
->if_input(ifp
, m
);
2134 if (sc
->xl_type
!= XL_TYPE_905B
) {
2136 * Handle the 'end of channel' condition. When the upload
2137 * engine hits the end of the RX ring, it will stall. This
2138 * is our cue to flush the RX ring, reload the uplist pointer
2139 * register and unstall the engine.
2140 * XXX This is actually a little goofy. With the ThunderLAN
2141 * chip, you get an interrupt when the receiver hits the end
2142 * of the receive ring, which tells you exactly when you
2143 * you need to reload the ring pointer. Here we have to
2144 * fake it. I'm mad at myself for not being clever enough
2145 * to avoid the use of a goto here.
2147 if (CSR_READ_4(sc
, XL_UPLIST_PTR
) == 0 ||
2148 CSR_READ_4(sc
, XL_UPLIST_STATUS
) & XL_PKTSTAT_UP_STALLED
) {
2149 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_UP_STALL
);
2151 CSR_WRITE_4(sc
, XL_UPLIST_PTR
,
2152 sc
->xl_ldata
.xl_rx_dmaaddr
);
2153 sc
->xl_cdata
.xl_rx_head
= &sc
->xl_cdata
.xl_rx_chain
[0];
2154 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_UP_UNSTALL
);
2161 * A frame was downloaded to the chip. It's safe for us to clean up
2165 xl_txeof(struct xl_softc
*sc
)
2167 struct xl_chain
*cur_tx
;
2170 ifp
= &sc
->arpcom
.ac_if
;
2172 /* Clear the timeout timer. */
2176 * Go through our tx list and free mbufs for those
2177 * frames that have been uploaded. Note: the 3c905B
2178 * sets a special bit in the status word to let us
2179 * know that a frame has been downloaded, but the
2180 * original 3c900/3c905 adapters don't do that.
2181 * Consequently, we have to use a different test if
2182 * xl_type != XL_TYPE_905B.
2184 while(sc
->xl_cdata
.xl_tx_head
!= NULL
) {
2185 cur_tx
= sc
->xl_cdata
.xl_tx_head
;
2187 if (CSR_READ_4(sc
, XL_DOWNLIST_PTR
))
2190 sc
->xl_cdata
.xl_tx_head
= cur_tx
->xl_next
;
2191 bus_dmamap_sync(sc
->xl_mtag
, cur_tx
->xl_map
,
2192 BUS_DMASYNC_POSTWRITE
);
2193 bus_dmamap_unload(sc
->xl_mtag
, cur_tx
->xl_map
);
2194 m_freem(cur_tx
->xl_mbuf
);
2195 cur_tx
->xl_mbuf
= NULL
;
2198 cur_tx
->xl_next
= sc
->xl_cdata
.xl_tx_free
;
2199 sc
->xl_cdata
.xl_tx_free
= cur_tx
;
2202 if (sc
->xl_cdata
.xl_tx_head
== NULL
) {
2203 ifp
->if_flags
&= ~IFF_OACTIVE
;
2204 sc
->xl_cdata
.xl_tx_tail
= NULL
;
2206 if (CSR_READ_4(sc
, XL_DMACTL
) & XL_DMACTL_DOWN_STALLED
||
2207 !CSR_READ_4(sc
, XL_DOWNLIST_PTR
)) {
2208 CSR_WRITE_4(sc
, XL_DOWNLIST_PTR
,
2209 sc
->xl_cdata
.xl_tx_head
->xl_phys
);
2210 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_DOWN_UNSTALL
);
2218 xl_txeof_90xB(struct xl_softc
*sc
)
2220 struct xl_chain
*cur_tx
= NULL
;
2224 ifp
= &sc
->arpcom
.ac_if
;
2226 bus_dmamap_sync(sc
->xl_ldata
.xl_tx_tag
, sc
->xl_ldata
.xl_tx_dmamap
,
2227 BUS_DMASYNC_POSTREAD
);
2228 idx
= sc
->xl_cdata
.xl_tx_cons
;
2229 while(idx
!= sc
->xl_cdata
.xl_tx_prod
) {
2231 cur_tx
= &sc
->xl_cdata
.xl_tx_chain
[idx
];
2233 if (!(le32toh(cur_tx
->xl_ptr
->xl_status
) &
2234 XL_TXSTAT_DL_COMPLETE
))
2237 if (cur_tx
->xl_mbuf
!= NULL
) {
2238 bus_dmamap_sync(sc
->xl_mtag
, cur_tx
->xl_map
,
2239 BUS_DMASYNC_POSTWRITE
);
2240 bus_dmamap_unload(sc
->xl_mtag
, cur_tx
->xl_map
);
2241 m_freem(cur_tx
->xl_mbuf
);
2242 cur_tx
->xl_mbuf
= NULL
;
2247 sc
->xl_cdata
.xl_tx_cnt
--;
2248 XL_INC(idx
, XL_TX_LIST_CNT
);
2252 sc
->xl_cdata
.xl_tx_cons
= idx
;
2255 ifp
->if_flags
&= ~IFF_OACTIVE
;
2261 * TX 'end of channel' interrupt handler. Actually, we should
2262 * only get a 'TX complete' interrupt if there's a transmit error,
2263 * so this is really TX error handler.
2266 xl_txeoc(struct xl_softc
*sc
)
2268 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
2271 while((txstat
= CSR_READ_1(sc
, XL_TX_STATUS
))) {
2272 if (txstat
& XL_TXSTATUS_UNDERRUN
||
2273 txstat
& XL_TXSTATUS_JABBER
||
2274 txstat
& XL_TXSTATUS_RECLAIM
) {
2275 if_printf(ifp
, "transmission error: %x\n", txstat
);
2276 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_RESET
);
2278 if (sc
->xl_type
== XL_TYPE_905B
) {
2279 if (sc
->xl_cdata
.xl_tx_cnt
) {
2282 i
= sc
->xl_cdata
.xl_tx_cons
;
2283 c
= &sc
->xl_cdata
.xl_tx_chain
[i
];
2284 CSR_WRITE_4(sc
, XL_DOWNLIST_PTR
,
2286 CSR_WRITE_1(sc
, XL_DOWN_POLL
, 64);
2289 if (sc
->xl_cdata
.xl_tx_head
!= NULL
)
2290 CSR_WRITE_4(sc
, XL_DOWNLIST_PTR
,
2291 sc
->xl_cdata
.xl_tx_head
->xl_phys
);
2294 * Remember to set this for the
2295 * first generation 3c90X chips.
2297 CSR_WRITE_1(sc
, XL_TX_FREETHRESH
, XL_PACKET_SIZE
>> 8);
2298 if (txstat
& XL_TXSTATUS_UNDERRUN
&&
2299 sc
->xl_tx_thresh
< XL_PACKET_SIZE
) {
2300 sc
->xl_tx_thresh
+= XL_MIN_FRAMELEN
;
2301 if_printf(ifp
, "tx underrun, increasing tx start"
2302 " threshold to %d bytes\n",
2305 CSR_WRITE_2(sc
, XL_COMMAND
,
2306 XL_CMD_TX_SET_START
|sc
->xl_tx_thresh
);
2307 if (sc
->xl_type
== XL_TYPE_905B
) {
2308 CSR_WRITE_2(sc
, XL_COMMAND
,
2309 XL_CMD_SET_TX_RECLAIM
|(XL_PACKET_SIZE
>> 4));
2311 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_ENABLE
);
2312 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_DOWN_UNSTALL
);
2314 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_ENABLE
);
2315 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_DOWN_UNSTALL
);
2318 * Write an arbitrary byte to the TX_STATUS register
2319 * to clear this interrupt/error and advance to the next.
2321 CSR_WRITE_1(sc
, XL_TX_STATUS
, 0x01);
2327 #ifdef DEVICE_POLLING
2330 xl_poll(struct ifnet
*ifp
, enum poll_cmd cmd
, int count
)
2332 struct xl_softc
*sc
= ifp
->if_softc
;
2336 xl_enable_intrs(sc
, 0);
2338 case POLL_DEREGISTER
:
2339 xl_enable_intrs(sc
, XL_INTRS
);
2342 case POLL_AND_CHECK_STATUS
:
2343 xl_rxeof(sc
, count
);
2344 if (sc
->xl_type
== XL_TYPE_905B
)
2349 if (!ifq_is_empty(&ifp
->if_snd
)) {
2350 if (sc
->xl_type
== XL_TYPE_905B
)
2353 xl_start_body(ifp
, 0);
2356 if (cmd
== POLL_AND_CHECK_STATUS
) {
2359 /* XXX copy & pasted from xl_intr() */
2360 status
= CSR_READ_2(sc
, XL_STATUS
);
2361 if ((status
& XL_INTRS
) && status
!= 0xFFFF) {
2362 CSR_WRITE_2(sc
, XL_COMMAND
,
2363 XL_CMD_INTR_ACK
| (status
& XL_INTRS
));
2365 if (status
& XL_STAT_TX_COMPLETE
) {
2370 if (status
& XL_STAT_ADFAIL
) {
2375 if (status
& XL_STAT_STATSOFLOW
) {
2376 sc
->xl_stats_no_timeout
= 1;
2377 xl_stats_update_serialized(sc
);
2378 sc
->xl_stats_no_timeout
= 0;
2386 #endif /* DEVICE_POLLING */
2391 struct xl_softc
*sc
;
2396 ifp
= &sc
->arpcom
.ac_if
;
2398 while(((status
= CSR_READ_2(sc
, XL_STATUS
)) & XL_INTRS
) &&
2401 CSR_WRITE_2(sc
, XL_COMMAND
,
2402 XL_CMD_INTR_ACK
|(status
& XL_INTRS
));
2404 if (status
& XL_STAT_UP_COMPLETE
) {
2407 curpkts
= ifp
->if_ipackets
;
2409 if (curpkts
== ifp
->if_ipackets
) {
2410 while (xl_rx_resync(sc
))
2415 if (status
& XL_STAT_DOWN_COMPLETE
) {
2416 if (sc
->xl_type
== XL_TYPE_905B
)
2422 if (status
& XL_STAT_TX_COMPLETE
) {
2427 if (status
& XL_STAT_ADFAIL
) {
2432 if (status
& XL_STAT_STATSOFLOW
) {
2433 sc
->xl_stats_no_timeout
= 1;
2434 xl_stats_update_serialized(sc
);
2435 sc
->xl_stats_no_timeout
= 0;
2439 if (!ifq_is_empty(&ifp
->if_snd
))
2440 (*ifp
->if_start
)(ifp
);
2446 xl_stats_update(void *xsc
)
2448 struct xl_softc
*sc
= xsc
;
2450 lwkt_serialize_enter(sc
->arpcom
.ac_if
.if_serializer
);
2451 xl_stats_update_serialized(xsc
);
2452 lwkt_serialize_exit(sc
->arpcom
.ac_if
.if_serializer
);
2456 xl_stats_update_serialized(void *xsc
)
2458 struct xl_softc
*sc
;
2460 struct xl_stats xl_stats
;
2463 struct mii_data
*mii
= NULL
;
2465 bzero((char *)&xl_stats
, sizeof(struct xl_stats
));
2468 ifp
= &sc
->arpcom
.ac_if
;
2469 if (sc
->xl_miibus
!= NULL
)
2470 mii
= device_get_softc(sc
->xl_miibus
);
2472 p
= (u_int8_t
*)&xl_stats
;
2474 /* Read all the stats registers. */
2477 for (i
= 0; i
< 16; i
++)
2478 *p
++ = CSR_READ_1(sc
, XL_W6_CARRIER_LOST
+ i
);
2480 ifp
->if_ierrors
+= xl_stats
.xl_rx_overrun
;
2482 ifp
->if_collisions
+= xl_stats
.xl_tx_multi_collision
+
2483 xl_stats
.xl_tx_single_collision
+
2484 xl_stats
.xl_tx_late_collision
;
2487 * Boomerang and cyclone chips have an extra stats counter
2488 * in window 4 (BadSSD). We have to read this too in order
2489 * to clear out all the stats registers and avoid a statsoflow
2493 CSR_READ_1(sc
, XL_W4_BADSSD
);
2495 if ((mii
!= NULL
) && (!sc
->xl_stats_no_timeout
))
2500 if (!sc
->xl_stats_no_timeout
)
2501 callout_reset(&sc
->xl_stat_timer
, hz
, xl_stats_update
, sc
);
2507 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2508 * pointers to the fragment pointers.
2511 xl_encap(struct xl_softc
*sc
, struct xl_chain
*c
, struct mbuf
*m_head
)
2517 ifp
= &sc
->arpcom
.ac_if
;
2520 * Start packing the mbufs in this chain into
2521 * the fragment pointers. Stop when we run out
2522 * of fragments or hit the end of the mbuf chain.
2524 error
= bus_dmamap_load_mbuf(sc
->xl_mtag
, c
->xl_map
, m_head
,
2525 xl_dma_map_txbuf
, c
->xl_ptr
, BUS_DMA_NOWAIT
);
2527 if (error
&& error
!= EFBIG
) {
2529 if_printf(ifp
, "can't map mbuf (error %d)\n", error
);
2534 * Handle special case: we used up all 63 fragments,
2535 * but we have more mbufs left in the chain. Copy the
2536 * data into an mbuf cluster. Note that we don't
2537 * bother clearing the values in the other fragment
2538 * pointers/counters; it wouldn't gain us anything,
2539 * and would waste cycles.
2544 m_new
= m_defrag(m_head
, MB_DONTWAIT
);
2545 if (m_new
== NULL
) {
2552 error
= bus_dmamap_load_mbuf(sc
->xl_mtag
, c
->xl_map
,
2553 m_head
, xl_dma_map_txbuf
, c
->xl_ptr
, BUS_DMA_NOWAIT
);
2556 if_printf(ifp
, "can't map mbuf (error %d)\n", error
);
2561 if (sc
->xl_type
== XL_TYPE_905B
) {
2562 status
= XL_TXSTAT_RND_DEFEAT
;
2564 if (m_head
->m_pkthdr
.csum_flags
) {
2565 if (m_head
->m_pkthdr
.csum_flags
& CSUM_IP
)
2566 status
|= XL_TXSTAT_IPCKSUM
;
2567 if (m_head
->m_pkthdr
.csum_flags
& CSUM_TCP
)
2568 status
|= XL_TXSTAT_TCPCKSUM
;
2569 if (m_head
->m_pkthdr
.csum_flags
& CSUM_UDP
)
2570 status
|= XL_TXSTAT_UDPCKSUM
;
2572 c
->xl_ptr
->xl_status
= htole32(status
);
2575 c
->xl_mbuf
= m_head
;
2576 bus_dmamap_sync(sc
->xl_mtag
, c
->xl_map
, BUS_DMASYNC_PREWRITE
);
2581 xl_start(struct ifnet
*ifp
)
2583 xl_start_body(ifp
, 1);
2587 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2588 * to the mbuf data regions directly in the transmit lists. We also save a
2589 * copy of the pointers since the transmit list fragment pointers are
2590 * physical addresses.
2593 xl_start_body(struct ifnet
*ifp
, int proc_rx
)
2595 struct xl_softc
*sc
;
2596 struct mbuf
*m_head
= NULL
;
2597 struct xl_chain
*prev
= NULL
, *cur_tx
= NULL
, *start_tx
;
2598 struct xl_chain
*prev_tx
;
2604 * Check for an available queue slot. If there are none,
2607 if (sc
->xl_cdata
.xl_tx_free
== NULL
) {
2610 if (sc
->xl_cdata
.xl_tx_free
== NULL
) {
2611 ifp
->if_flags
|= IFF_OACTIVE
;
2616 start_tx
= sc
->xl_cdata
.xl_tx_free
;
2618 while(sc
->xl_cdata
.xl_tx_free
!= NULL
) {
2619 m_head
= ifq_dequeue(&ifp
->if_snd
, NULL
);
2623 /* Pick a descriptor off the free list. */
2625 cur_tx
= sc
->xl_cdata
.xl_tx_free
;
2627 /* Pack the data into the descriptor. */
2628 error
= xl_encap(sc
, cur_tx
, m_head
);
2634 sc
->xl_cdata
.xl_tx_free
= cur_tx
->xl_next
;
2635 cur_tx
->xl_next
= NULL
;
2637 /* Chain it together. */
2639 prev
->xl_next
= cur_tx
;
2640 prev
->xl_ptr
->xl_next
= htole32(cur_tx
->xl_phys
);
2644 BPF_MTAP(ifp
, cur_tx
->xl_mbuf
);
2648 * If there are no packets queued, bail.
2654 * Place the request for the upload interrupt
2655 * in the last descriptor in the chain. This way, if
2656 * we're chaining several packets at once, we'll only
2657 * get an interupt once for the whole chain rather than
2658 * once for each packet.
2660 cur_tx
->xl_ptr
->xl_status
= htole32(le32toh(cur_tx
->xl_ptr
->xl_status
) |
2664 * Queue the packets. If the TX channel is clear, update
2665 * the downlist pointer register.
2667 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_DOWN_STALL
);
2670 if (sc
->xl_cdata
.xl_tx_head
!= NULL
) {
2671 sc
->xl_cdata
.xl_tx_tail
->xl_next
= start_tx
;
2672 sc
->xl_cdata
.xl_tx_tail
->xl_ptr
->xl_next
=
2673 htole32(start_tx
->xl_phys
);
2674 status
= sc
->xl_cdata
.xl_tx_tail
->xl_ptr
->xl_status
;
2675 sc
->xl_cdata
.xl_tx_tail
->xl_ptr
->xl_status
=
2676 htole32(le32toh(status
) & ~XL_TXSTAT_DL_INTR
);
2677 sc
->xl_cdata
.xl_tx_tail
= cur_tx
;
2679 sc
->xl_cdata
.xl_tx_head
= start_tx
;
2680 sc
->xl_cdata
.xl_tx_tail
= cur_tx
;
2682 bus_dmamap_sync(sc
->xl_ldata
.xl_tx_tag
, sc
->xl_ldata
.xl_tx_dmamap
,
2683 BUS_DMASYNC_PREWRITE
);
2685 if (!CSR_READ_4(sc
, XL_DOWNLIST_PTR
))
2686 CSR_WRITE_4(sc
, XL_DOWNLIST_PTR
, start_tx
->xl_phys
);
2688 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_DOWN_UNSTALL
);
2693 * Set a timeout in case the chip goes out to lunch.
2699 * XXX Under certain conditions, usually on slower machines
2700 * where interrupts may be dropped, it's possible for the
2701 * adapter to chew up all the buffers in the receive ring
2702 * and stall, without us being able to do anything about it.
2703 * To guard against this, we need to make a pass over the
2704 * RX queue to make sure there aren't any packets pending.
2705 * Doing it here means we can flush the receive ring at the
2706 * same time the chip is DMAing the transmit descriptors we
2709 * 3Com goes to some lengths to emphasize the Parallel
2710 * Tasking (tm) nature of their chips in all their marketing
2711 * literature; we may as well take advantage of it. :)
2718 xl_start_90xB(struct ifnet
*ifp
)
2720 struct xl_softc
*sc
;
2721 struct mbuf
*m_head
= NULL
;
2722 struct xl_chain
*prev
= NULL
, *cur_tx
= NULL
, *start_tx
;
2723 struct xl_chain
*prev_tx
;
2728 if (ifp
->if_flags
& IFF_OACTIVE
)
2731 idx
= sc
->xl_cdata
.xl_tx_prod
;
2732 start_tx
= &sc
->xl_cdata
.xl_tx_chain
[idx
];
2734 while (sc
->xl_cdata
.xl_tx_chain
[idx
].xl_mbuf
== NULL
) {
2736 if ((XL_TX_LIST_CNT
- sc
->xl_cdata
.xl_tx_cnt
) < 3) {
2737 ifp
->if_flags
|= IFF_OACTIVE
;
2741 m_head
= ifq_dequeue(&ifp
->if_snd
, NULL
);
2746 cur_tx
= &sc
->xl_cdata
.xl_tx_chain
[idx
];
2748 /* Pack the data into the descriptor. */
2749 error
= xl_encap(sc
, cur_tx
, m_head
);
2755 /* Chain it together. */
2757 prev
->xl_ptr
->xl_next
= htole32(cur_tx
->xl_phys
);
2760 BPF_MTAP(ifp
, cur_tx
->xl_mbuf
);
2762 XL_INC(idx
, XL_TX_LIST_CNT
);
2763 sc
->xl_cdata
.xl_tx_cnt
++;
2767 * If there are no packets queued, bail.
2773 * Place the request for the upload interrupt
2774 * in the last descriptor in the chain. This way, if
2775 * we're chaining several packets at once, we'll only
2776 * get an interupt once for the whole chain rather than
2777 * once for each packet.
2779 cur_tx
->xl_ptr
->xl_status
= htole32(le32toh(cur_tx
->xl_ptr
->xl_status
) |
2782 /* Start transmission */
2783 sc
->xl_cdata
.xl_tx_prod
= idx
;
2784 start_tx
->xl_prev
->xl_ptr
->xl_next
= htole32(start_tx
->xl_phys
);
2786 bus_dmamap_sync(sc
->xl_ldata
.xl_tx_tag
, sc
->xl_ldata
.xl_tx_dmamap
,
2787 BUS_DMASYNC_PREWRITE
);
2790 * Set a timeout in case the chip goes out to lunch.
2798 struct xl_softc
*sc
= xsc
;
2799 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
2801 u_int16_t rxfilt
= 0;
2802 struct mii_data
*mii
= NULL
;
2805 * Cancel pending I/O and free all RX/TX buffers.
2809 if (sc
->xl_miibus
== NULL
) {
2810 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_RESET
);
2813 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_RESET
);
2817 if (sc
->xl_miibus
!= NULL
)
2818 mii
= device_get_softc(sc
->xl_miibus
);
2820 /* Init our MAC address */
2822 for (i
= 0; i
< ETHER_ADDR_LEN
; i
++) {
2823 CSR_WRITE_1(sc
, XL_W2_STATION_ADDR_LO
+ i
,
2824 sc
->arpcom
.ac_enaddr
[i
]);
2827 /* Clear the station mask. */
2828 for (i
= 0; i
< 3; i
++)
2829 CSR_WRITE_2(sc
, XL_W2_STATION_MASK_LO
+ (i
* 2), 0);
2831 /* Reset TX and RX. */
2832 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_RESET
);
2834 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_RESET
);
2837 /* Init circular RX list. */
2838 error
= xl_list_rx_init(sc
);
2840 if_printf(ifp
, "initialization of the rx ring failed (%d)\n",
2846 /* Init TX descriptors. */
2847 if (sc
->xl_type
== XL_TYPE_905B
)
2848 xl_list_tx_init_90xB(sc
);
2850 xl_list_tx_init(sc
);
2853 * Set the TX freethresh value.
2854 * Note that this has no effect on 3c905B "cyclone"
2855 * cards but is required for 3c900/3c905 "boomerang"
2856 * cards in order to enable the download engine.
2858 CSR_WRITE_1(sc
, XL_TX_FREETHRESH
, XL_PACKET_SIZE
>> 8);
2860 /* Set the TX start threshold for best performance. */
2861 sc
->xl_tx_thresh
= XL_MIN_FRAMELEN
;
2862 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_SET_START
|sc
->xl_tx_thresh
);
2865 * If this is a 3c905B, also set the tx reclaim threshold.
2866 * This helps cut down on the number of tx reclaim errors
2867 * that could happen on a busy network. The chip multiplies
2868 * the register value by 16 to obtain the actual threshold
2869 * in bytes, so we divide by 16 when setting the value here.
2870 * The existing threshold value can be examined by reading
2871 * the register at offset 9 in window 5.
2873 if (sc
->xl_type
== XL_TYPE_905B
) {
2874 CSR_WRITE_2(sc
, XL_COMMAND
,
2875 XL_CMD_SET_TX_RECLAIM
|(XL_PACKET_SIZE
>> 4));
2878 /* Set RX filter bits. */
2880 rxfilt
= CSR_READ_1(sc
, XL_W5_RX_FILTER
);
2882 /* Set the individual bit to receive frames for this host only. */
2883 rxfilt
|= XL_RXFILTER_INDIVIDUAL
;
2885 /* If we want promiscuous mode, set the allframes bit. */
2886 if (ifp
->if_flags
& IFF_PROMISC
) {
2887 rxfilt
|= XL_RXFILTER_ALLFRAMES
;
2888 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
2890 rxfilt
&= ~XL_RXFILTER_ALLFRAMES
;
2891 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
2895 * Set capture broadcast bit to capture broadcast frames.
2897 if (ifp
->if_flags
& IFF_BROADCAST
) {
2898 rxfilt
|= XL_RXFILTER_BROADCAST
;
2899 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
2901 rxfilt
&= ~XL_RXFILTER_BROADCAST
;
2902 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_FILT
|rxfilt
);
2906 * Program the multicast filter, if necessary.
2908 if (sc
->xl_type
== XL_TYPE_905B
)
2909 xl_setmulti_hash(sc
);
2913 if (sc
->xl_type
== XL_TYPE_905B
) {
2914 /* Set UP polling interval */
2915 CSR_WRITE_1(sc
, XL_UP_POLL
, 64);
2919 * Load the address of the RX list. We have to
2920 * stall the upload engine before we can manipulate
2921 * the uplist pointer register, then unstall it when
2922 * we're finished. We also have to wait for the
2923 * stall command to complete before proceeding.
2924 * Note that we have to do this after any RX resets
2925 * have completed since the uplist register is cleared
2928 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_UP_STALL
);
2930 CSR_WRITE_4(sc
, XL_UPLIST_PTR
, sc
->xl_ldata
.xl_rx_dmaaddr
);
2931 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_UP_UNSTALL
);
2934 if (sc
->xl_type
== XL_TYPE_905B
) {
2935 /* Set DN polling interval */
2936 CSR_WRITE_1(sc
, XL_DOWN_POLL
, 64);
2938 /* Load the address of the TX list */
2939 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_DOWN_STALL
);
2941 CSR_WRITE_4(sc
, XL_DOWNLIST_PTR
,
2942 sc
->xl_cdata
.xl_tx_chain
[0].xl_phys
);
2943 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_DOWN_UNSTALL
);
2948 * If the coax transceiver is on, make sure to enable
2949 * the DC-DC converter.
2952 if (sc
->xl_xcvr
== XL_XCVR_COAX
)
2953 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_COAX_START
);
2955 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_COAX_STOP
);
2958 * increase packet size to allow reception of 802.1q or ISL packets.
2959 * For the 3c90x chip, set the 'allow large packets' bit in the MAC
2960 * control register. For 3c90xB/C chips, use the RX packet size
2964 if (sc
->xl_type
== XL_TYPE_905B
) {
2965 CSR_WRITE_2(sc
, XL_W3_MAXPKTSIZE
, XL_PACKET_SIZE
);
2968 macctl
= CSR_READ_1(sc
, XL_W3_MAC_CTRL
);
2969 macctl
|= XL_MACCTRL_ALLOW_LARGE_PACK
;
2970 CSR_WRITE_1(sc
, XL_W3_MAC_CTRL
, macctl
);
2973 /* Clear out the stats counters. */
2974 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_STATS_DISABLE
);
2975 sc
->xl_stats_no_timeout
= 1;
2976 xl_stats_update_serialized(sc
);
2977 sc
->xl_stats_no_timeout
= 0;
2979 CSR_WRITE_2(sc
, XL_W4_NET_DIAG
, XL_NETDIAG_UPPER_BYTES_ENABLE
);
2980 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_STATS_ENABLE
);
2983 * Enable interrupts.
2985 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_STAT_ENB
| XL_INTRS
);
2986 #ifdef DEVICE_POLLING
2987 /* Do not enable interrupt if polling(4) is enabled */
2988 if ((ifp
->if_flags
& IFF_POLLING
) != 0)
2989 xl_enable_intrs(sc
, 0);
2992 xl_enable_intrs(sc
, XL_INTRS
);
2994 /* Set the RX early threshold */
2995 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_SET_THRESH
|(XL_PACKET_SIZE
>>2));
2996 CSR_WRITE_2(sc
, XL_DMACTL
, XL_DMACTL_UP_RX_EARLY
);
2998 /* Enable receiver and transmitter. */
2999 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_ENABLE
);
3001 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_ENABLE
);
3007 /* Select window 7 for normal operations. */
3010 ifp
->if_flags
|= IFF_RUNNING
;
3011 ifp
->if_flags
&= ~IFF_OACTIVE
;
3013 callout_reset(&sc
->xl_stat_timer
, hz
, xl_stats_update
, sc
);
3017 * Set media options.
3020 xl_ifmedia_upd(struct ifnet
*ifp
)
3022 struct xl_softc
*sc
;
3023 struct ifmedia
*ifm
= NULL
;
3024 struct mii_data
*mii
= NULL
;
3027 if (sc
->xl_miibus
!= NULL
)
3028 mii
= device_get_softc(sc
->xl_miibus
);
3032 ifm
= &mii
->mii_media
;
3034 switch(IFM_SUBTYPE(ifm
->ifm_media
)) {
3039 xl_setmode(sc
, ifm
->ifm_media
);
3046 if (sc
->xl_media
& XL_MEDIAOPT_MII
|| sc
->xl_media
& XL_MEDIAOPT_BTX
3047 || sc
->xl_media
& XL_MEDIAOPT_BT4
) {
3050 xl_setmode(sc
, ifm
->ifm_media
);
3057 * Report current media status.
3060 xl_ifmedia_sts(struct ifnet
*ifp
, struct ifmediareq
*ifmr
)
3062 struct xl_softc
*sc
;
3064 struct mii_data
*mii
= NULL
;
3067 if (sc
->xl_miibus
!= NULL
)
3068 mii
= device_get_softc(sc
->xl_miibus
);
3071 icfg
= CSR_READ_4(sc
, XL_W3_INTERNAL_CFG
) & XL_ICFG_CONNECTOR_MASK
;
3072 icfg
>>= XL_ICFG_CONNECTOR_BITS
;
3074 ifmr
->ifm_active
= IFM_ETHER
;
3078 ifmr
->ifm_active
= IFM_ETHER
|IFM_10_T
;
3079 if (CSR_READ_1(sc
, XL_W3_MAC_CTRL
) & XL_MACCTRL_DUPLEX
)
3080 ifmr
->ifm_active
|= IFM_FDX
;
3082 ifmr
->ifm_active
|= IFM_HDX
;
3085 if (sc
->xl_type
== XL_TYPE_905B
&&
3086 sc
->xl_media
== XL_MEDIAOPT_10FL
) {
3087 ifmr
->ifm_active
= IFM_ETHER
|IFM_10_FL
;
3088 if (CSR_READ_1(sc
, XL_W3_MAC_CTRL
) & XL_MACCTRL_DUPLEX
)
3089 ifmr
->ifm_active
|= IFM_FDX
;
3091 ifmr
->ifm_active
|= IFM_HDX
;
3093 ifmr
->ifm_active
= IFM_ETHER
|IFM_10_5
;
3096 ifmr
->ifm_active
= IFM_ETHER
|IFM_10_2
;
3099 * XXX MII and BTX/AUTO should be separate cases.
3102 case XL_XCVR_100BTX
:
3107 ifmr
->ifm_active
= mii
->mii_media_active
;
3108 ifmr
->ifm_status
= mii
->mii_media_status
;
3111 case XL_XCVR_100BFX
:
3112 ifmr
->ifm_active
= IFM_ETHER
|IFM_100_FX
;
3115 if_printf(ifp
, "unknown XCVR type: %d\n", icfg
);
3123 xl_ioctl(struct ifnet
*ifp
, u_long command
, caddr_t data
, struct ucred
*cr
)
3125 struct xl_softc
*sc
= ifp
->if_softc
;
3126 struct ifreq
*ifr
= (struct ifreq
*) data
;
3128 struct mii_data
*mii
= NULL
;
3134 rxfilt
= CSR_READ_1(sc
, XL_W5_RX_FILTER
);
3135 if (ifp
->if_flags
& IFF_UP
) {
3136 if (ifp
->if_flags
& IFF_RUNNING
&&
3137 ifp
->if_flags
& IFF_PROMISC
&&
3138 !(sc
->xl_if_flags
& IFF_PROMISC
)) {
3139 rxfilt
|= XL_RXFILTER_ALLFRAMES
;
3140 CSR_WRITE_2(sc
, XL_COMMAND
,
3141 XL_CMD_RX_SET_FILT
|rxfilt
);
3143 } else if (ifp
->if_flags
& IFF_RUNNING
&&
3144 !(ifp
->if_flags
& IFF_PROMISC
) &&
3145 sc
->xl_if_flags
& IFF_PROMISC
) {
3146 rxfilt
&= ~XL_RXFILTER_ALLFRAMES
;
3147 CSR_WRITE_2(sc
, XL_COMMAND
,
3148 XL_CMD_RX_SET_FILT
|rxfilt
);
3153 if (ifp
->if_flags
& IFF_RUNNING
)
3156 sc
->xl_if_flags
= ifp
->if_flags
;
3161 if (sc
->xl_type
== XL_TYPE_905B
)
3162 xl_setmulti_hash(sc
);
3169 if (sc
->xl_miibus
!= NULL
)
3170 mii
= device_get_softc(sc
->xl_miibus
);
3172 error
= ifmedia_ioctl(ifp
, ifr
,
3173 &sc
->ifmedia
, command
);
3175 error
= ifmedia_ioctl(ifp
, ifr
,
3176 &mii
->mii_media
, command
);
3179 ifp
->if_capenable
&= ~IFCAP_HWCSUM
;
3180 ifp
->if_capenable
|= (ifr
->ifr_reqcap
& IFCAP_HWCSUM
);
3181 if (ifp
->if_capenable
& IFCAP_HWCSUM
)
3182 ifp
->if_hwassist
= XL905B_CSUM_FEATURES
;
3184 ifp
->if_hwassist
= 0;
3187 error
= ether_ioctl(ifp
, command
, data
);
3194 xl_watchdog(struct ifnet
*ifp
)
3196 struct xl_softc
*sc
;
3197 u_int16_t status
= 0;
3203 status
= CSR_READ_2(sc
, XL_W4_MEDIA_STATUS
);
3204 if_printf(ifp
, "watchdog timeout\n");
3206 if (status
& XL_MEDIASTAT_CARRIER
)
3207 if_printf(ifp
, "no carrier - transceiver cable problem?\n");
3214 if (!ifq_is_empty(&ifp
->if_snd
))
3215 (*ifp
->if_start
)(ifp
);
3219 * Stop the adapter and free any mbufs allocated to the
3223 xl_stop(struct xl_softc
*sc
)
3228 ifp
= &sc
->arpcom
.ac_if
;
3231 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_DISABLE
);
3232 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_STATS_DISABLE
);
3233 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_INTR_ENB
);
3234 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_DISCARD
);
3236 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_DISABLE
);
3237 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_COAX_STOP
);
3241 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_RX_RESET
);
3243 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_TX_RESET
);
3247 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_INTR_ACK
|XL_STAT_INTLATCH
);
3248 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_STAT_ENB
|0);
3249 CSR_WRITE_2(sc
, XL_COMMAND
, XL_CMD_INTR_ENB
|0);
3250 if (sc
->xl_flags
& XL_FLAG_FUNCREG
)
3251 bus_space_write_4(sc
->xl_ftag
, sc
->xl_fhandle
, 4, 0x8000);
3253 /* Stop the stats updater. */
3254 callout_stop(&sc
->xl_stat_timer
);
3257 * Free data in the RX lists.
3259 for (i
= 0; i
< XL_RX_LIST_CNT
; i
++) {
3260 if (sc
->xl_cdata
.xl_rx_chain
[i
].xl_mbuf
!= NULL
) {
3261 bus_dmamap_unload(sc
->xl_mtag
,
3262 sc
->xl_cdata
.xl_rx_chain
[i
].xl_map
);
3263 m_freem(sc
->xl_cdata
.xl_rx_chain
[i
].xl_mbuf
);
3264 sc
->xl_cdata
.xl_rx_chain
[i
].xl_mbuf
= NULL
;
3267 bzero(sc
->xl_ldata
.xl_rx_list
, XL_RX_LIST_SZ
);
3270 * Free the TX list buffers.
3272 for (i
= 0; i
< XL_TX_LIST_CNT
; i
++) {
3273 if (sc
->xl_cdata
.xl_tx_chain
[i
].xl_mbuf
!= NULL
) {
3274 bus_dmamap_unload(sc
->xl_mtag
,
3275 sc
->xl_cdata
.xl_tx_chain
[i
].xl_map
);
3276 m_freem(sc
->xl_cdata
.xl_tx_chain
[i
].xl_mbuf
);
3277 sc
->xl_cdata
.xl_tx_chain
[i
].xl_mbuf
= NULL
;
3280 bzero(sc
->xl_ldata
.xl_tx_list
, XL_TX_LIST_SZ
);
3282 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
3286 * Stop all chip I/O so that the kernel's probe routines don't
3287 * get confused by errant DMAs when rebooting.
3290 xl_shutdown(device_t dev
)
3292 struct xl_softc
*sc
= device_get_softc(dev
);
3294 lwkt_serialize_enter(sc
->arpcom
.ac_if
.if_serializer
);
3297 lwkt_serialize_exit(sc
->arpcom
.ac_if
.if_serializer
);
3301 xl_suspend(device_t dev
)
3303 struct xl_softc
*sc
= device_get_softc(dev
);
3305 lwkt_serialize_enter(sc
->arpcom
.ac_if
.if_serializer
);
3307 lwkt_serialize_exit(sc
->arpcom
.ac_if
.if_serializer
);
3313 xl_resume(device_t dev
)
3315 struct xl_softc
*sc
;
3318 sc
= device_get_softc(dev
);
3319 ifp
= &sc
->arpcom
.ac_if
;
3321 lwkt_serialize_enter(ifp
->if_serializer
);
3323 if (ifp
->if_flags
& IFF_UP
)
3325 lwkt_serialize_exit(ifp
->if_serializer
);