Add a new csum flag to tell IP defragmenter that csum_data does _not_
[dragonfly/port-amd64.git] / sys / dev / netif / stge / if_stge.c
blob5fcd1d2687ccba6e7713b5b3ce1d64f853eff3a4
1 /* $NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $ */
2 /* $FreeBSD: src/sys/dev/stge/if_stge.c,v 1.2 2006/08/12 01:21:36 yongari Exp $ */
3 /* $DragonFly: src/sys/dev/netif/stge/if_stge.c,v 1.2 2007/08/14 13:30:35 sephe Exp $ */
5 /*-
6 * Copyright (c) 2001 The NetBSD Foundation, Inc.
7 * All rights reserved.
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Jason R. Thorpe.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
42 * Device driver for the Sundance Tech. TC9021 10/100/1000
43 * Ethernet controller.
46 #include "opt_polling.h"
48 #include <sys/param.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/module.h>
55 #include <sys/rman.h>
56 #include <sys/serialize.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/sysctl.h>
61 #include <net/bpf.h>
62 #include <net/ethernet.h>
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/ifq_var.h>
69 #include <net/vlan/if_vlan_var.h>
71 #include <dev/netif/mii_layer/mii.h>
72 #include <dev/netif/mii_layer/miivar.h>
74 #include <bus/pci/pcireg.h>
75 #include <bus/pci/pcivar.h>
77 #include "if_stgereg.h"
78 #include "if_stgevar.h"
80 #define STGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
82 /* "device miibus" required. See GENERIC if you get errors here. */
83 #include "miibus_if.h"
86 * Devices supported by this driver.
88 static struct stge_product {
89 uint16_t stge_vendorid;
90 uint16_t stge_deviceid;
91 const char *stge_name;
92 } stge_products[] = {
93 { VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST1023,
94 "Sundance ST-1023 Gigabit Ethernet" },
96 { VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST2021,
97 "Sundance ST-2021 Gigabit Ethernet" },
99 { VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021,
100 "Tamarack TC9021 Gigabit Ethernet" },
102 { VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021_ALT,
103 "Tamarack TC9021 Gigabit Ethernet" },
106 * The Sundance sample boards use the Sundance vendor ID,
107 * but the Tamarack product ID.
109 { VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021,
110 "Sundance TC9021 Gigabit Ethernet" },
112 { VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021_ALT,
113 "Sundance TC9021 Gigabit Ethernet" },
115 { VENDOR_DLINK, DEVICEID_DLINK_DL2000,
116 "D-Link DL-2000 Gigabit Ethernet" },
118 { VENDOR_ANTARES, DEVICEID_ANTARES_TC9021,
119 "Antares Gigabit Ethernet" },
121 { 0, 0, NULL }
124 static int stge_probe(device_t);
125 static int stge_attach(device_t);
126 static int stge_detach(device_t);
127 static void stge_shutdown(device_t);
128 static int stge_suspend(device_t);
129 static int stge_resume(device_t);
131 static int stge_encap(struct stge_softc *, struct mbuf **);
132 static void stge_start(struct ifnet *);
133 static void stge_watchdog(struct ifnet *);
134 static int stge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
135 static void stge_init(void *);
136 static void stge_vlan_setup(struct stge_softc *);
137 static void stge_stop(struct stge_softc *);
138 static void stge_start_tx(struct stge_softc *);
139 static void stge_start_rx(struct stge_softc *);
140 static void stge_stop_tx(struct stge_softc *);
141 static void stge_stop_rx(struct stge_softc *);
143 static void stge_reset(struct stge_softc *, uint32_t);
144 static int stge_eeprom_wait(struct stge_softc *);
145 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
146 static void stge_tick(void *);
147 static void stge_stats_update(struct stge_softc *);
148 static void stge_set_filter(struct stge_softc *);
149 static void stge_set_multi(struct stge_softc *);
151 static void stge_link(struct stge_softc *);
152 static void stge_intr(void *);
153 static __inline int stge_tx_error(struct stge_softc *);
154 static void stge_txeof(struct stge_softc *);
155 static void stge_rxeof(struct stge_softc *, int);
156 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
157 static int stge_newbuf(struct stge_softc *, int, int);
158 #ifndef __i386__
159 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
160 #endif
162 static void stge_mii_sync(struct stge_softc *);
163 static void stge_mii_send(struct stge_softc *, uint32_t, int);
164 static int stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
165 static int stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
166 static int stge_miibus_readreg(device_t, int, int);
167 static int stge_miibus_writereg(device_t, int, int, int);
168 static void stge_miibus_statchg(device_t);
169 static int stge_mediachange(struct ifnet *);
170 static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
172 static void stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
173 static void stge_mbuf_dmamap_cb(void *, bus_dma_segment_t *, int,
174 bus_size_t, int);
175 static int stge_dma_alloc(struct stge_softc *);
176 static void stge_dma_free(struct stge_softc *);
177 static void stge_dma_wait(struct stge_softc *);
178 static void stge_init_tx_ring(struct stge_softc *);
179 static int stge_init_rx_ring(struct stge_softc *);
180 #ifdef DEVICE_POLLING
181 static void stge_poll(struct ifnet *, enum poll_cmd, int);
182 #endif
184 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
185 static int sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
186 static int sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
188 static device_method_t stge_methods[] = {
189 /* Device interface */
190 DEVMETHOD(device_probe, stge_probe),
191 DEVMETHOD(device_attach, stge_attach),
192 DEVMETHOD(device_detach, stge_detach),
193 DEVMETHOD(device_shutdown, stge_shutdown),
194 DEVMETHOD(device_suspend, stge_suspend),
195 DEVMETHOD(device_resume, stge_resume),
197 /* MII interface */
198 DEVMETHOD(miibus_readreg, stge_miibus_readreg),
199 DEVMETHOD(miibus_writereg, stge_miibus_writereg),
200 DEVMETHOD(miibus_statchg, stge_miibus_statchg),
202 { 0, 0 }
206 static driver_t stge_driver = {
207 "stge",
208 stge_methods,
209 sizeof(struct stge_softc)
212 static devclass_t stge_devclass;
214 DECLARE_DUMMY_MODULE(if_stge);
215 MODULE_DEPEND(if_stge, miibus, 1, 1, 1);
216 DRIVER_MODULE(if_stge, pci, stge_driver, stge_devclass, 0, 0);
217 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
219 #define MII_SET(x) \
220 CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
221 #define MII_CLR(x) \
222 CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
225 * Sync the PHYs by setting data bit and strobing the clock 32 times.
227 static void
228 stge_mii_sync(struct stge_softc *sc)
230 int i;
232 MII_SET(PC_MgmtDir | PC_MgmtData);
234 for (i = 0; i < 32; i++) {
235 MII_SET(PC_MgmtClk);
236 DELAY(1);
237 MII_CLR(PC_MgmtClk);
238 DELAY(1);
243 * Clock a series of bits through the MII.
245 static void
246 stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
248 int i;
250 MII_CLR(PC_MgmtClk);
252 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
253 if (bits & i)
254 MII_SET(PC_MgmtData);
255 else
256 MII_CLR(PC_MgmtData);
257 DELAY(1);
258 MII_CLR(PC_MgmtClk);
259 DELAY(1);
260 MII_SET(PC_MgmtClk);
265 * Read an PHY register through the MII.
267 static int
268 stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
270 int i, ack;
273 * Set up frame for RX.
275 frame->mii_stdelim = STGE_MII_STARTDELIM;
276 frame->mii_opcode = STGE_MII_READOP;
277 frame->mii_turnaround = 0;
278 frame->mii_data = 0;
280 CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
282 * Turn on data xmit.
284 MII_SET(PC_MgmtDir);
286 stge_mii_sync(sc);
289 * Send command/address info.
291 stge_mii_send(sc, frame->mii_stdelim, 2);
292 stge_mii_send(sc, frame->mii_opcode, 2);
293 stge_mii_send(sc, frame->mii_phyaddr, 5);
294 stge_mii_send(sc, frame->mii_regaddr, 5);
296 /* Turn off xmit. */
297 MII_CLR(PC_MgmtDir);
299 /* Idle bit */
300 MII_CLR((PC_MgmtClk | PC_MgmtData));
301 DELAY(1);
302 MII_SET(PC_MgmtClk);
303 DELAY(1);
305 /* Check for ack */
306 MII_CLR(PC_MgmtClk);
307 DELAY(1);
308 ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
309 MII_SET(PC_MgmtClk);
310 DELAY(1);
313 * Now try reading data bits. If the ack failed, we still
314 * need to clock through 16 cycles to keep the PHY(s) in sync.
316 if (ack) {
317 for(i = 0; i < 16; i++) {
318 MII_CLR(PC_MgmtClk);
319 DELAY(1);
320 MII_SET(PC_MgmtClk);
321 DELAY(1);
323 goto fail;
326 for (i = 0x8000; i; i >>= 1) {
327 MII_CLR(PC_MgmtClk);
328 DELAY(1);
329 if (!ack) {
330 if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
331 frame->mii_data |= i;
332 DELAY(1);
334 MII_SET(PC_MgmtClk);
335 DELAY(1);
338 fail:
339 MII_CLR(PC_MgmtClk);
340 DELAY(1);
341 MII_SET(PC_MgmtClk);
342 DELAY(1);
344 if (ack)
345 return(1);
346 return(0);
350 * Write to a PHY register through the MII.
352 static int
353 stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
357 * Set up frame for TX.
359 frame->mii_stdelim = STGE_MII_STARTDELIM;
360 frame->mii_opcode = STGE_MII_WRITEOP;
361 frame->mii_turnaround = STGE_MII_TURNAROUND;
364 * Turn on data output.
366 MII_SET(PC_MgmtDir);
368 stge_mii_sync(sc);
370 stge_mii_send(sc, frame->mii_stdelim, 2);
371 stge_mii_send(sc, frame->mii_opcode, 2);
372 stge_mii_send(sc, frame->mii_phyaddr, 5);
373 stge_mii_send(sc, frame->mii_regaddr, 5);
374 stge_mii_send(sc, frame->mii_turnaround, 2);
375 stge_mii_send(sc, frame->mii_data, 16);
377 /* Idle bit. */
378 MII_SET(PC_MgmtClk);
379 DELAY(1);
380 MII_CLR(PC_MgmtClk);
381 DELAY(1);
384 * Turn off xmit.
386 MII_CLR(PC_MgmtDir);
388 return(0);
392 * sc_miibus_readreg: [mii interface function]
394 * Read a PHY register on the MII of the TC9021.
396 static int
397 stge_miibus_readreg(device_t dev, int phy, int reg)
399 struct stge_softc *sc;
400 struct stge_mii_frame frame;
401 int error;
403 sc = device_get_softc(dev);
405 if (reg == STGE_PhyCtrl) {
406 /* XXX allow ip1000phy read STGE_PhyCtrl register. */
407 error = CSR_READ_1(sc, STGE_PhyCtrl);
408 return (error);
410 bzero(&frame, sizeof(frame));
411 frame.mii_phyaddr = phy;
412 frame.mii_regaddr = reg;
414 error = stge_mii_readreg(sc, &frame);
416 if (error != 0) {
417 /* Don't show errors for PHY probe request */
418 if (reg != 1)
419 device_printf(sc->sc_dev, "phy read fail\n");
420 return (0);
422 return (frame.mii_data);
426 * stge_miibus_writereg: [mii interface function]
428 * Write a PHY register on the MII of the TC9021.
430 static int
431 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
433 struct stge_softc *sc;
434 struct stge_mii_frame frame;
435 int error;
437 sc = device_get_softc(dev);
439 bzero(&frame, sizeof(frame));
440 frame.mii_phyaddr = phy;
441 frame.mii_regaddr = reg;
442 frame.mii_data = val;
444 error = stge_mii_writereg(sc, &frame);
446 if (error != 0)
447 device_printf(sc->sc_dev, "phy write fail\n");
448 return (0);
452 * stge_miibus_statchg: [mii interface function]
454 * Callback from MII layer when media changes.
456 static void
457 stge_miibus_statchg(device_t dev)
459 struct stge_softc *sc;
460 struct mii_data *mii;
462 sc = device_get_softc(dev);
463 mii = device_get_softc(sc->sc_miibus);
465 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)
466 return;
468 sc->sc_MACCtrl = 0;
469 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
470 sc->sc_MACCtrl |= MC_DuplexSelect;
471 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
472 sc->sc_MACCtrl |= MC_RxFlowControlEnable;
473 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
474 sc->sc_MACCtrl |= MC_TxFlowControlEnable;
476 stge_link(sc);
480 * stge_mediastatus: [ifmedia interface function]
482 * Get the current interface media status.
484 static void
485 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
487 struct stge_softc *sc;
488 struct mii_data *mii;
490 sc = ifp->if_softc;
491 mii = device_get_softc(sc->sc_miibus);
493 mii_pollstat(mii);
494 ifmr->ifm_status = mii->mii_media_status;
495 ifmr->ifm_active = mii->mii_media_active;
499 * stge_mediachange: [ifmedia interface function]
501 * Set hardware to newly-selected media.
503 static int
504 stge_mediachange(struct ifnet *ifp)
506 struct stge_softc *sc;
507 struct mii_data *mii;
509 sc = ifp->if_softc;
510 mii = device_get_softc(sc->sc_miibus);
511 mii_mediachg(mii);
513 return (0);
516 static int
517 stge_eeprom_wait(struct stge_softc *sc)
519 int i;
521 for (i = 0; i < STGE_TIMEOUT; i++) {
522 DELAY(1000);
523 if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
524 return (0);
526 return (1);
530 * stge_read_eeprom:
532 * Read data from the serial EEPROM.
534 static void
535 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
538 if (stge_eeprom_wait(sc))
539 device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
541 CSR_WRITE_2(sc, STGE_EepromCtrl,
542 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
543 if (stge_eeprom_wait(sc))
544 device_printf(sc->sc_dev, "EEPROM read timed out\n");
545 *data = CSR_READ_2(sc, STGE_EepromData);
549 static int
550 stge_probe(device_t dev)
552 struct stge_product *sp;
553 uint16_t vendor, devid;
555 vendor = pci_get_vendor(dev);
556 devid = pci_get_device(dev);
558 for (sp = stge_products; sp->stge_name != NULL; sp++) {
559 if (vendor == sp->stge_vendorid &&
560 devid == sp->stge_deviceid) {
561 device_set_desc(dev, sp->stge_name);
562 return (0);
566 return (ENXIO);
569 static int
570 stge_attach(device_t dev)
572 struct stge_softc *sc;
573 struct ifnet *ifp;
574 uint8_t enaddr[ETHER_ADDR_LEN];
575 int error, i;
576 uint16_t cmd;
577 uint32_t val;
579 error = 0;
580 sc = device_get_softc(dev);
581 sc->sc_dev = dev;
582 ifp = &sc->arpcom.ac_if;
584 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
586 callout_init(&sc->sc_tick_ch);
588 #ifndef BURN_BRIDGES
590 * Handle power management nonsense.
592 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
593 uint32_t iobase, membase, irq;
595 /* Save important PCI config data. */
596 iobase = pci_read_config(dev, STGE_PCIR_LOIO, 4);
597 membase = pci_read_config(dev, STGE_PCIR_LOMEM, 4);
598 irq = pci_read_config(dev, PCIR_INTLINE, 4);
600 /* Reset the power state. */
601 device_printf(dev, "chip is in D%d power mode "
602 "-- setting to D0\n", pci_get_powerstate(dev));
604 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
606 /* Restore PCI config data. */
607 pci_write_config(dev, STGE_PCIR_LOIO, iobase, 4);
608 pci_write_config(dev, STGE_PCIR_LOMEM, membase, 4);
609 pci_write_config(dev, PCIR_INTLINE, irq, 4);
611 #endif
614 * Map the device.
616 pci_enable_busmaster(dev);
617 cmd = pci_read_config(dev, PCIR_COMMAND, 2);
618 val = pci_read_config(dev, STGE_PCIR_LOMEM, 4);
620 if ((val & 0x01) != 0) {
621 sc->sc_res_rid = STGE_PCIR_LOMEM;
622 sc->sc_res_type = SYS_RES_MEMORY;
623 } else {
624 sc->sc_res_rid = STGE_PCIR_LOIO;
625 sc->sc_res_type = SYS_RES_IOPORT;
627 val = pci_read_config(dev, sc->sc_res_rid, 4);
628 if ((val & 0x01) == 0) {
629 device_printf(dev, "couldn't locate IO BAR\n");
630 return ENXIO;
634 sc->sc_res = bus_alloc_resource_any(dev, sc->sc_res_type,
635 &sc->sc_res_rid, RF_ACTIVE);
636 if (sc->sc_res == NULL) {
637 device_printf(dev, "couldn't allocate resource\n");
638 return ENXIO;
640 sc->sc_btag = rman_get_bustag(sc->sc_res);
641 sc->sc_bhandle = rman_get_bushandle(sc->sc_res);
643 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
644 &sc->sc_irq_rid,
645 RF_ACTIVE | RF_SHAREABLE);
646 if (sc->sc_irq == NULL) {
647 device_printf(dev, "couldn't allocate IRQ\n");
648 error = ENXIO;
649 goto fail;
652 sc->sc_rev = pci_get_revid(dev);
654 sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
655 sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
657 sysctl_ctx_init(&sc->sc_sysctl_ctx);
658 sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
659 SYSCTL_STATIC_CHILDREN(_hw),
660 OID_AUTO,
661 device_get_nameunit(dev),
662 CTLFLAG_RD, 0, "");
663 if (sc->sc_sysctl_tree == NULL) {
664 device_printf(dev, "can't add sysctl node\n");
665 error = ENXIO;
666 goto fail;
669 SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
670 SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
671 "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
672 sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
674 SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
675 SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
676 "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
677 sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
679 if ((error = stge_dma_alloc(sc) != 0))
680 goto fail;
683 * Determine if we're copper or fiber. It affects how we
684 * reset the card.
686 if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
687 sc->sc_usefiber = 1;
688 else
689 sc->sc_usefiber = 0;
691 /* Load LED configuration from EEPROM. */
692 stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
695 * Reset the chip to a known state.
697 stge_reset(sc, STGE_RESET_FULL);
700 * Reading the station address from the EEPROM doesn't seem
701 * to work, at least on my sample boards. Instead, since
702 * the reset sequence does AutoInit, read it from the station
703 * address registers. For Sundance 1023 you can only read it
704 * from EEPROM.
706 if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
707 uint16_t v;
709 v = CSR_READ_2(sc, STGE_StationAddress0);
710 enaddr[0] = v & 0xff;
711 enaddr[1] = v >> 8;
712 v = CSR_READ_2(sc, STGE_StationAddress1);
713 enaddr[2] = v & 0xff;
714 enaddr[3] = v >> 8;
715 v = CSR_READ_2(sc, STGE_StationAddress2);
716 enaddr[4] = v & 0xff;
717 enaddr[5] = v >> 8;
718 sc->sc_stge1023 = 0;
719 } else {
720 uint16_t myaddr[ETHER_ADDR_LEN / 2];
721 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
722 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
723 &myaddr[i]);
724 myaddr[i] = le16toh(myaddr[i]);
726 bcopy(myaddr, enaddr, sizeof(enaddr));
727 sc->sc_stge1023 = 1;
730 ifp->if_softc = sc;
731 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
732 ifp->if_ioctl = stge_ioctl;
733 ifp->if_start = stge_start;
734 ifp->if_watchdog = stge_watchdog;
735 ifp->if_init = stge_init;
736 #ifdef DEVICE_POLLING
737 ifp->if_poll = stge_poll;
738 #endif
739 ifp->if_mtu = ETHERMTU;
740 ifq_set_maxlen(&ifp->if_snd, STGE_TX_RING_CNT - 1);
741 ifq_set_ready(&ifp->if_snd);
742 /* Revision B3 and earlier chips have checksum bug. */
743 if (sc->sc_rev >= 0x0c) {
744 ifp->if_hwassist = STGE_CSUM_FEATURES;
745 ifp->if_capabilities = IFCAP_HWCSUM;
746 } else {
747 ifp->if_hwassist = 0;
748 ifp->if_capabilities = 0;
750 ifp->if_capenable = ifp->if_capabilities;
753 * Read some important bits from the PhyCtrl register.
755 sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
756 (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
758 /* Set up MII bus. */
759 if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, stge_mediachange,
760 stge_mediastatus)) != 0) {
761 device_printf(sc->sc_dev, "no PHY found!\n");
762 goto fail;
765 ether_ifattach(ifp, enaddr, NULL);
767 /* VLAN capability setup */
768 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
769 #ifdef notyet
770 if (sc->sc_rev >= 0x0c)
771 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
772 #endif
773 ifp->if_capenable = ifp->if_capabilities;
776 * Tell the upper layer(s) we support long frames.
777 * Must appear after the call to ether_ifattach() because
778 * ether_ifattach() sets ifi_hdrlen to the default value.
780 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
783 * The manual recommends disabling early transmit, so we
784 * do. It's disabled anyway, if using IP checksumming,
785 * since the entire packet must be in the FIFO in order
786 * for the chip to perform the checksum.
788 sc->sc_txthresh = 0x0fff;
791 * Disable MWI if the PCI layer tells us to.
793 sc->sc_DMACtrl = 0;
794 if ((cmd & PCIM_CMD_MWRICEN) == 0)
795 sc->sc_DMACtrl |= DMAC_MWIDisable;
798 * Hookup IRQ
800 error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, stge_intr, sc,
801 &sc->sc_ih, ifp->if_serializer);
802 if (error != 0) {
803 ether_ifdetach(ifp);
804 device_printf(sc->sc_dev, "couldn't set up IRQ\n");
805 goto fail;
808 fail:
809 if (error != 0)
810 stge_detach(dev);
812 return (error);
815 static int
816 stge_detach(device_t dev)
818 struct stge_softc *sc = device_get_softc(dev);
819 struct ifnet *ifp = &sc->arpcom.ac_if;
821 if (device_is_attached(dev)) {
822 lwkt_serialize_enter(ifp->if_serializer);
823 /* XXX */
824 sc->sc_detach = 1;
825 stge_stop(sc);
826 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
827 lwkt_serialize_exit(ifp->if_serializer);
829 ether_ifdetach(ifp);
832 if (sc->sc_sysctl_tree != NULL)
833 sysctl_ctx_free(&sc->sc_sysctl_ctx);
835 if (sc->sc_miibus != NULL)
836 device_delete_child(dev, sc->sc_miibus);
837 bus_generic_detach(dev);
839 stge_dma_free(sc);
841 if (sc->sc_irq != NULL) {
842 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
843 sc->sc_irq);
845 if (sc->sc_res != NULL) {
846 bus_release_resource(dev, sc->sc_res_type, sc->sc_res_rid,
847 sc->sc_res);
850 return (0);
853 struct stge_dmamap_arg {
854 bus_addr_t stge_busaddr;
857 static void
858 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
860 struct stge_dmamap_arg *ctx;
862 if (error != 0)
863 return;
865 KASSERT(nseg == 1, ("too many segments %d\n", nseg));
867 ctx = (struct stge_dmamap_arg *)arg;
868 ctx->stge_busaddr = segs[0].ds_addr;
871 struct stge_mbuf_dmamap_arg {
872 int nsegs;
873 bus_dma_segment_t *segs;
876 static void
877 stge_mbuf_dmamap_cb(void *xarg, bus_dma_segment_t *segs, int nsegs,
878 bus_size_t mapsz __unused, int error)
880 struct stge_mbuf_dmamap_arg *arg = xarg;
881 int i;
883 if (error) {
884 arg->nsegs = 0;
885 return;
888 KASSERT(nsegs <= arg->nsegs,
889 ("too many segments(%d), should be <= %d\n",
890 nsegs, arg->nsegs));
892 arg->nsegs = nsegs;
893 for (i = 0; i < nsegs; ++i)
894 arg->segs[i] = segs[i];
897 static int
898 stge_dma_alloc(struct stge_softc *sc)
900 struct stge_dmamap_arg ctx;
901 struct stge_txdesc *txd;
902 struct stge_rxdesc *rxd;
903 int error, i;
905 /* create parent tag. */
906 error = bus_dma_tag_create(NULL, /* parent */
907 1, 0, /* algnmnt, boundary */
908 STGE_DMA_MAXADDR, /* lowaddr */
909 BUS_SPACE_MAXADDR, /* highaddr */
910 NULL, NULL, /* filter, filterarg */
911 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
912 0, /* nsegments */
913 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
914 0, /* flags */
915 &sc->sc_cdata.stge_parent_tag);
916 if (error != 0) {
917 device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
918 goto fail;
920 /* create tag for Tx ring. */
921 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
922 STGE_RING_ALIGN, 0, /* algnmnt, boundary */
923 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
924 BUS_SPACE_MAXADDR, /* highaddr */
925 NULL, NULL, /* filter, filterarg */
926 STGE_TX_RING_SZ, /* maxsize */
927 1, /* nsegments */
928 STGE_TX_RING_SZ, /* maxsegsize */
929 0, /* flags */
930 &sc->sc_cdata.stge_tx_ring_tag);
931 if (error != 0) {
932 device_printf(sc->sc_dev,
933 "failed to allocate Tx ring DMA tag\n");
934 goto fail;
937 /* create tag for Rx ring. */
938 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
939 STGE_RING_ALIGN, 0, /* algnmnt, boundary */
940 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
941 BUS_SPACE_MAXADDR, /* highaddr */
942 NULL, NULL, /* filter, filterarg */
943 STGE_RX_RING_SZ, /* maxsize */
944 1, /* nsegments */
945 STGE_RX_RING_SZ, /* maxsegsize */
946 0, /* flags */
947 &sc->sc_cdata.stge_rx_ring_tag);
948 if (error != 0) {
949 device_printf(sc->sc_dev,
950 "failed to allocate Rx ring DMA tag\n");
951 goto fail;
954 /* create tag for Tx buffers. */
955 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
956 1, 0, /* algnmnt, boundary */
957 BUS_SPACE_MAXADDR, /* lowaddr */
958 BUS_SPACE_MAXADDR, /* highaddr */
959 NULL, NULL, /* filter, filterarg */
960 MCLBYTES * STGE_MAXTXSEGS, /* maxsize */
961 STGE_MAXTXSEGS, /* nsegments */
962 MCLBYTES, /* maxsegsize */
963 0, /* flags */
964 &sc->sc_cdata.stge_tx_tag);
965 if (error != 0) {
966 device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
967 goto fail;
970 /* create tag for Rx buffers. */
971 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
972 1, 0, /* algnmnt, boundary */
973 BUS_SPACE_MAXADDR, /* lowaddr */
974 BUS_SPACE_MAXADDR, /* highaddr */
975 NULL, NULL, /* filter, filterarg */
976 MCLBYTES, /* maxsize */
977 1, /* nsegments */
978 MCLBYTES, /* maxsegsize */
979 0, /* flags */
980 &sc->sc_cdata.stge_rx_tag);
981 if (error != 0) {
982 device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
983 goto fail;
986 /* allocate DMA'able memory and load the DMA map for Tx ring. */
987 error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
988 (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
989 &sc->sc_cdata.stge_tx_ring_map);
990 if (error != 0) {
991 device_printf(sc->sc_dev,
992 "failed to allocate DMA'able memory for Tx ring\n");
993 goto fail;
996 ctx.stge_busaddr = 0;
997 error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
998 sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
999 STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1000 if (error != 0 || ctx.stge_busaddr == 0) {
1001 device_printf(sc->sc_dev,
1002 "failed to load DMA'able memory for Tx ring\n");
1003 goto fail;
1005 sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
1007 /* allocate DMA'able memory and load the DMA map for Rx ring. */
1008 error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
1009 (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1010 &sc->sc_cdata.stge_rx_ring_map);
1011 if (error != 0) {
1012 device_printf(sc->sc_dev,
1013 "failed to allocate DMA'able memory for Rx ring\n");
1014 goto fail;
1017 ctx.stge_busaddr = 0;
1018 error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
1019 sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
1020 STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1021 if (error != 0 || ctx.stge_busaddr == 0) {
1022 device_printf(sc->sc_dev,
1023 "failed to load DMA'able memory for Rx ring\n");
1024 goto fail;
1026 sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
1028 /* create DMA maps for Tx buffers. */
1029 for (i = 0; i < STGE_TX_RING_CNT; i++) {
1030 txd = &sc->sc_cdata.stge_txdesc[i];
1031 txd->tx_m = NULL;
1032 txd->tx_dmamap = 0;
1033 error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
1034 &txd->tx_dmamap);
1035 if (error != 0) {
1036 device_printf(sc->sc_dev,
1037 "failed to create Tx dmamap\n");
1038 goto fail;
1041 /* create DMA maps for Rx buffers. */
1042 if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1043 &sc->sc_cdata.stge_rx_sparemap)) != 0) {
1044 device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
1045 goto fail;
1047 for (i = 0; i < STGE_RX_RING_CNT; i++) {
1048 rxd = &sc->sc_cdata.stge_rxdesc[i];
1049 rxd->rx_m = NULL;
1050 rxd->rx_dmamap = 0;
1051 error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1052 &rxd->rx_dmamap);
1053 if (error != 0) {
1054 device_printf(sc->sc_dev,
1055 "failed to create Rx dmamap\n");
1056 goto fail;
1060 fail:
1061 return (error);
1064 static void
1065 stge_dma_free(struct stge_softc *sc)
1067 struct stge_txdesc *txd;
1068 struct stge_rxdesc *rxd;
1069 int i;
1071 /* Tx ring */
1072 if (sc->sc_cdata.stge_tx_ring_tag) {
1073 if (sc->sc_cdata.stge_tx_ring_map)
1074 bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
1075 sc->sc_cdata.stge_tx_ring_map);
1076 if (sc->sc_cdata.stge_tx_ring_map &&
1077 sc->sc_rdata.stge_tx_ring)
1078 bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
1079 sc->sc_rdata.stge_tx_ring,
1080 sc->sc_cdata.stge_tx_ring_map);
1081 sc->sc_rdata.stge_tx_ring = NULL;
1082 sc->sc_cdata.stge_tx_ring_map = 0;
1083 bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
1084 sc->sc_cdata.stge_tx_ring_tag = NULL;
1086 /* Rx ring */
1087 if (sc->sc_cdata.stge_rx_ring_tag) {
1088 if (sc->sc_cdata.stge_rx_ring_map)
1089 bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
1090 sc->sc_cdata.stge_rx_ring_map);
1091 if (sc->sc_cdata.stge_rx_ring_map &&
1092 sc->sc_rdata.stge_rx_ring)
1093 bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
1094 sc->sc_rdata.stge_rx_ring,
1095 sc->sc_cdata.stge_rx_ring_map);
1096 sc->sc_rdata.stge_rx_ring = NULL;
1097 sc->sc_cdata.stge_rx_ring_map = 0;
1098 bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
1099 sc->sc_cdata.stge_rx_ring_tag = NULL;
1101 /* Tx buffers */
1102 if (sc->sc_cdata.stge_tx_tag) {
1103 for (i = 0; i < STGE_TX_RING_CNT; i++) {
1104 txd = &sc->sc_cdata.stge_txdesc[i];
1105 if (txd->tx_dmamap) {
1106 bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
1107 txd->tx_dmamap);
1108 txd->tx_dmamap = 0;
1111 bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
1112 sc->sc_cdata.stge_tx_tag = NULL;
1114 /* Rx buffers */
1115 if (sc->sc_cdata.stge_rx_tag) {
1116 for (i = 0; i < STGE_RX_RING_CNT; i++) {
1117 rxd = &sc->sc_cdata.stge_rxdesc[i];
1118 if (rxd->rx_dmamap) {
1119 bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1120 rxd->rx_dmamap);
1121 rxd->rx_dmamap = 0;
1124 if (sc->sc_cdata.stge_rx_sparemap) {
1125 bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1126 sc->sc_cdata.stge_rx_sparemap);
1127 sc->sc_cdata.stge_rx_sparemap = 0;
1129 bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
1130 sc->sc_cdata.stge_rx_tag = NULL;
1133 if (sc->sc_cdata.stge_parent_tag) {
1134 bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
1135 sc->sc_cdata.stge_parent_tag = NULL;
1140 * stge_shutdown:
1142 * Make sure the interface is stopped at reboot time.
1144 static void
1145 stge_shutdown(device_t dev)
1147 struct stge_softc *sc = device_get_softc(dev);
1148 struct ifnet *ifp = &sc->arpcom.ac_if;
1150 lwkt_serialize_enter(ifp->if_serializer);
1151 stge_stop(sc);
1152 lwkt_serialize_exit(ifp->if_serializer);
1155 static int
1156 stge_suspend(device_t dev)
1158 struct stge_softc *sc = device_get_softc(dev);
1159 struct ifnet *ifp = &sc->arpcom.ac_if;
1161 lwkt_serialize_enter(ifp->if_serializer);
1162 stge_stop(sc);
1163 sc->sc_suspended = 1;
1164 lwkt_serialize_exit(ifp->if_serializer);
1166 return (0);
1169 static int
1170 stge_resume(device_t dev)
1172 struct stge_softc *sc = device_get_softc(dev);
1173 struct ifnet *ifp = &sc->arpcom.ac_if;
1175 lwkt_serialize_enter(ifp->if_serializer);
1176 if (ifp->if_flags & IFF_UP)
1177 stge_init(sc);
1178 sc->sc_suspended = 0;
1179 lwkt_serialize_exit(ifp->if_serializer);
1181 return (0);
1184 static void
1185 stge_dma_wait(struct stge_softc *sc)
1187 int i;
1189 for (i = 0; i < STGE_TIMEOUT; i++) {
1190 DELAY(2);
1191 if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1192 break;
1195 if (i == STGE_TIMEOUT)
1196 device_printf(sc->sc_dev, "DMA wait timed out\n");
1199 static int
1200 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1202 struct stge_txdesc *txd;
1203 struct stge_tfd *tfd;
1204 struct mbuf *m;
1205 struct stge_mbuf_dmamap_arg arg;
1206 bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1207 int error, i, si;
1208 uint64_t csum_flags, tfc;
1210 if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1211 return (ENOBUFS);
1213 arg.nsegs = STGE_MAXTXSEGS;
1214 arg.segs = txsegs;
1215 error = bus_dmamap_load_mbuf(sc->sc_cdata.stge_tx_tag,
1216 txd->tx_dmamap, *m_head,
1217 stge_mbuf_dmamap_cb, &arg,
1218 BUS_DMA_NOWAIT);
1219 if (error == EFBIG) {
1220 m = m_defrag(*m_head, MB_DONTWAIT);
1221 if (m == NULL) {
1222 m_freem(*m_head);
1223 *m_head = NULL;
1224 return (ENOMEM);
1226 *m_head = m;
1227 error = bus_dmamap_load_mbuf(sc->sc_cdata.stge_tx_tag,
1228 txd->tx_dmamap, *m_head,
1229 stge_mbuf_dmamap_cb, &arg,
1230 BUS_DMA_NOWAIT);
1231 if (error != 0) {
1232 m_freem(*m_head);
1233 *m_head = NULL;
1234 return (error);
1236 } else if (error != 0)
1237 return (error);
1238 if (arg.nsegs == 0) {
1239 m_freem(*m_head);
1240 *m_head = NULL;
1241 return (EIO);
1244 m = *m_head;
1245 csum_flags = 0;
1246 if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1247 if (m->m_pkthdr.csum_flags & CSUM_IP)
1248 csum_flags |= TFD_IPChecksumEnable;
1249 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1250 csum_flags |= TFD_TCPChecksumEnable;
1251 else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1252 csum_flags |= TFD_UDPChecksumEnable;
1255 si = sc->sc_cdata.stge_tx_prod;
1256 tfd = &sc->sc_rdata.stge_tx_ring[si];
1257 for (i = 0; i < arg.nsegs; i++) {
1258 tfd->tfd_frags[i].frag_word0 =
1259 htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1260 FRAG_LEN(txsegs[i].ds_len));
1262 sc->sc_cdata.stge_tx_cnt++;
1264 tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1265 TFD_FragCount(arg.nsegs) | csum_flags;
1266 if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1267 tfc |= TFD_TxDMAIndicate;
1269 /* Update producer index. */
1270 sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1272 /* Check if we have a VLAN tag to insert. */
1273 if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1274 m->m_pkthdr.rcvif != NULL &&
1275 m->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1276 struct ifvlan *ifv;
1278 ifv = m->m_pkthdr.rcvif->if_softc;
1279 if (ifv != NULL)
1280 tfc |= TFD_VLANTagInsert | TFD_VID(ifv->ifv_tag);
1282 tfd->tfd_control = htole64(tfc);
1284 /* Update Tx Queue. */
1285 STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1286 STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1287 txd->tx_m = m;
1289 /* Sync descriptors. */
1290 bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1291 BUS_DMASYNC_PREWRITE);
1292 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1293 sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1295 return (0);
1299 * stge_start: [ifnet interface function]
1301 * Start packet transmission on the interface.
1303 static void
1304 stge_start(struct ifnet *ifp)
1306 struct stge_softc *sc;
1307 struct mbuf *m_head;
1308 int enq;
1310 sc = ifp->if_softc;
1312 ASSERT_SERIALIZED(ifp->if_serializer);
1314 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
1315 IFF_RUNNING)
1316 return;
1318 for (enq = 0; !ifq_is_empty(&ifp->if_snd); ) {
1319 if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1320 ifp->if_flags |= IFF_OACTIVE;
1321 break;
1324 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1325 if (m_head == NULL)
1326 break;
1328 * Pack the data into the transmit ring. If we
1329 * don't have room, set the OACTIVE flag and wait
1330 * for the NIC to drain the ring.
1332 if (stge_encap(sc, &m_head)) {
1333 if (m_head == NULL)
1334 break;
1335 ifp->if_flags |= IFF_OACTIVE;
1336 break;
1339 enq++;
1341 * If there's a BPF listener, bounce a copy of this frame
1342 * to him.
1344 BPF_MTAP(ifp, m_head);
1347 if (enq > 0) {
1348 /* Transmit */
1349 CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1351 /* Set a timeout in case the chip goes out to lunch. */
1352 ifp->if_timer = 5;
1357 * stge_watchdog: [ifnet interface function]
1359 * Watchdog timer handler.
1361 static void
1362 stge_watchdog(struct ifnet *ifp)
1364 ASSERT_SERIALIZED(ifp->if_serializer);
1366 if_printf(ifp, "device timeout\n");
1367 ifp->if_oerrors++;
1368 stge_init(ifp->if_softc);
1372 * stge_ioctl: [ifnet interface function]
1374 * Handle control requests from the operator.
1376 static int
1377 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1379 struct stge_softc *sc;
1380 struct ifreq *ifr;
1381 struct mii_data *mii;
1382 int error, mask;
1384 ASSERT_SERIALIZED(ifp->if_serializer);
1386 sc = ifp->if_softc;
1387 ifr = (struct ifreq *)data;
1388 error = 0;
1389 switch (cmd) {
1390 case SIOCSIFMTU:
1391 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1392 error = EINVAL;
1393 else if (ifp->if_mtu != ifr->ifr_mtu) {
1394 ifp->if_mtu = ifr->ifr_mtu;
1395 stge_init(sc);
1397 break;
1398 case SIOCSIFFLAGS:
1399 if ((ifp->if_flags & IFF_UP) != 0) {
1400 if ((ifp->if_flags & IFF_RUNNING) != 0) {
1401 if (((ifp->if_flags ^ sc->sc_if_flags)
1402 & IFF_PROMISC) != 0)
1403 stge_set_filter(sc);
1404 } else {
1405 if (sc->sc_detach == 0)
1406 stge_init(sc);
1408 } else {
1409 if ((ifp->if_flags & IFF_RUNNING) != 0)
1410 stge_stop(sc);
1412 sc->sc_if_flags = ifp->if_flags;
1413 break;
1414 case SIOCADDMULTI:
1415 case SIOCDELMULTI:
1416 if ((ifp->if_flags & IFF_RUNNING) != 0)
1417 stge_set_multi(sc);
1418 break;
1419 case SIOCSIFMEDIA:
1420 case SIOCGIFMEDIA:
1421 mii = device_get_softc(sc->sc_miibus);
1422 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1423 break;
1424 case SIOCSIFCAP:
1425 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1426 if ((mask & IFCAP_HWCSUM) != 0) {
1427 ifp->if_capenable ^= IFCAP_HWCSUM;
1428 if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1429 (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1430 ifp->if_hwassist = STGE_CSUM_FEATURES;
1431 else
1432 ifp->if_hwassist = 0;
1434 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1435 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1436 if (ifp->if_flags & IFF_RUNNING)
1437 stge_vlan_setup(sc);
1439 #if 0
1440 VLAN_CAPABILITIES(ifp);
1441 #endif
1442 break;
1443 default:
1444 error = ether_ioctl(ifp, cmd, data);
1445 break;
1448 return (error);
1451 static void
1452 stge_link(struct stge_softc *sc)
1454 uint32_t v, ac;
1455 int i;
1458 * Update STGE_MACCtrl register depending on link status.
1459 * (duplex, flow control etc)
1461 v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1462 v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1463 v |= sc->sc_MACCtrl;
1464 CSR_WRITE_4(sc, STGE_MACCtrl, v);
1465 if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1466 /* Duplex setting changed, reset Tx/Rx functions. */
1467 ac = CSR_READ_4(sc, STGE_AsicCtrl);
1468 ac |= AC_TxReset | AC_RxReset;
1469 CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1470 for (i = 0; i < STGE_TIMEOUT; i++) {
1471 DELAY(100);
1472 if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1473 break;
1475 if (i == STGE_TIMEOUT)
1476 device_printf(sc->sc_dev, "reset failed to complete\n");
1480 static __inline int
1481 stge_tx_error(struct stge_softc *sc)
1483 uint32_t txstat;
1484 int error;
1486 for (error = 0;;) {
1487 txstat = CSR_READ_4(sc, STGE_TxStatus);
1488 if ((txstat & TS_TxComplete) == 0)
1489 break;
1490 /* Tx underrun */
1491 if ((txstat & TS_TxUnderrun) != 0) {
1493 * XXX
1494 * There should be a more better way to recover
1495 * from Tx underrun instead of a full reset.
1497 if (sc->sc_nerr++ < STGE_MAXERR)
1498 device_printf(sc->sc_dev, "Tx underrun, "
1499 "resetting...\n");
1500 if (sc->sc_nerr == STGE_MAXERR)
1501 device_printf(sc->sc_dev, "too many errors; "
1502 "not reporting any more\n");
1503 error = -1;
1504 break;
1506 /* Maximum/Late collisions, Re-enable Tx MAC. */
1507 if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1508 CSR_WRITE_4(sc, STGE_MACCtrl,
1509 (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1510 MC_TxEnable);
1513 return (error);
1517 * stge_intr:
1519 * Interrupt service routine.
1521 static void
1522 stge_intr(void *arg)
1524 struct stge_softc *sc = arg;
1525 struct ifnet *ifp = &sc->arpcom.ac_if;
1526 int reinit;
1527 uint16_t status;
1529 ASSERT_SERIALIZED(ifp->if_serializer);
1531 status = CSR_READ_2(sc, STGE_IntStatus);
1532 if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1533 return;
1535 /* Disable interrupts. */
1536 for (reinit = 0;;) {
1537 status = CSR_READ_2(sc, STGE_IntStatusAck);
1538 status &= sc->sc_IntEnable;
1539 if (status == 0)
1540 break;
1541 /* Host interface errors. */
1542 if ((status & IS_HostError) != 0) {
1543 device_printf(sc->sc_dev,
1544 "Host interface error, resetting...\n");
1545 reinit = 1;
1546 goto force_init;
1549 /* Receive interrupts. */
1550 if ((status & IS_RxDMAComplete) != 0) {
1551 stge_rxeof(sc, -1);
1552 if ((status & IS_RFDListEnd) != 0)
1553 CSR_WRITE_4(sc, STGE_DMACtrl,
1554 DMAC_RxDMAPollNow);
1557 /* Transmit interrupts. */
1558 if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1559 stge_txeof(sc);
1561 /* Transmission errors.*/
1562 if ((status & IS_TxComplete) != 0) {
1563 if ((reinit = stge_tx_error(sc)) != 0)
1564 break;
1568 force_init:
1569 if (reinit != 0)
1570 stge_init(sc);
1572 /* Re-enable interrupts. */
1573 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1575 /* Try to get more packets going. */
1576 if (!ifq_is_empty(&ifp->if_snd))
1577 ifp->if_start(ifp);
1581 * stge_txeof:
1583 * Helper; handle transmit interrupts.
1585 static void
1586 stge_txeof(struct stge_softc *sc)
1588 struct ifnet *ifp = &sc->arpcom.ac_if;
1589 struct stge_txdesc *txd;
1590 uint64_t control;
1591 int cons;
1593 txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1594 if (txd == NULL)
1595 return;
1596 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1597 sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1600 * Go through our Tx list and free mbufs for those
1601 * frames which have been transmitted.
1603 for (cons = sc->sc_cdata.stge_tx_cons;;
1604 cons = (cons + 1) % STGE_TX_RING_CNT) {
1605 if (sc->sc_cdata.stge_tx_cnt <= 0)
1606 break;
1607 control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1608 if ((control & TFD_TFDDone) == 0)
1609 break;
1610 sc->sc_cdata.stge_tx_cnt--;
1611 ifp->if_flags &= ~IFF_OACTIVE;
1613 bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1614 BUS_DMASYNC_POSTWRITE);
1615 bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1617 /* Output counter is updated with statistics register */
1618 m_freem(txd->tx_m);
1619 txd->tx_m = NULL;
1620 STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1621 STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1622 txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1624 sc->sc_cdata.stge_tx_cons = cons;
1625 if (sc->sc_cdata.stge_tx_cnt == 0)
1626 ifp->if_timer = 0;
1628 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1629 sc->sc_cdata.stge_tx_ring_map,
1630 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1633 static __inline void
1634 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1636 struct stge_rfd *rfd;
1638 rfd = &sc->sc_rdata.stge_rx_ring[idx];
1639 rfd->rfd_status = 0;
1642 #ifndef __i386__
1644 * It seems that TC9021's DMA engine has alignment restrictions in
1645 * DMA scatter operations. The first DMA segment has no address
1646 * alignment restrictins but the rest should be aligned on 4(?) bytes
1647 * boundary. Otherwise it would corrupt random memory. Since we don't
1648 * know which one is used for the first segment in advance we simply
1649 * don't align at all.
1650 * To avoid copying over an entire frame to align, we allocate a new
1651 * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1652 * prepended into the existing mbuf chain.
1654 static __inline struct mbuf *
1655 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1657 struct mbuf *n;
1659 n = NULL;
1660 if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1661 bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1662 m->m_data += ETHER_HDR_LEN;
1663 n = m;
1664 } else {
1665 MGETHDR(n, MB_DONTWAIT, MT_DATA);
1666 if (n != NULL) {
1667 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1668 m->m_data += ETHER_HDR_LEN;
1669 m->m_len -= ETHER_HDR_LEN;
1670 n->m_len = ETHER_HDR_LEN;
1671 M_MOVE_PKTHDR(n, m);
1672 n->m_next = m;
1673 } else
1674 m_freem(m);
1677 return (n);
1679 #endif
1682 * stge_rxeof:
1684 * Helper; handle receive interrupts.
1686 static void
1687 stge_rxeof(struct stge_softc *sc, int count)
1689 struct ifnet *ifp = &sc->arpcom.ac_if;
1690 struct stge_rxdesc *rxd;
1691 struct mbuf *mp, *m;
1692 uint64_t status64;
1693 uint32_t status;
1694 int cons, prog;
1696 bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1697 sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1699 prog = 0;
1700 for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1701 prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1702 #ifdef DEVICE_POLLING
1703 if (count >= 0 && count-- == 0)
1704 break;
1705 #endif
1707 status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1708 status = RFD_RxStatus(status64);
1709 if ((status & RFD_RFDDone) == 0)
1710 break;
1712 prog++;
1713 rxd = &sc->sc_cdata.stge_rxdesc[cons];
1714 mp = rxd->rx_m;
1717 * If the packet had an error, drop it. Note we count
1718 * the error later in the periodic stats update.
1720 if ((status & RFD_FrameEnd) != 0 && (status &
1721 (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1722 RFD_RxAlignmentError | RFD_RxFCSError |
1723 RFD_RxLengthError)) != 0) {
1724 stge_discard_rxbuf(sc, cons);
1725 if (sc->sc_cdata.stge_rxhead != NULL) {
1726 m_freem(sc->sc_cdata.stge_rxhead);
1727 STGE_RXCHAIN_RESET(sc);
1729 continue;
1732 * Add a new receive buffer to the ring.
1734 if (stge_newbuf(sc, cons, 0) != 0) {
1735 ifp->if_iqdrops++;
1736 stge_discard_rxbuf(sc, cons);
1737 if (sc->sc_cdata.stge_rxhead != NULL) {
1738 m_freem(sc->sc_cdata.stge_rxhead);
1739 STGE_RXCHAIN_RESET(sc);
1741 continue;
1744 if ((status & RFD_FrameEnd) != 0)
1745 mp->m_len = RFD_RxDMAFrameLen(status) -
1746 sc->sc_cdata.stge_rxlen;
1747 sc->sc_cdata.stge_rxlen += mp->m_len;
1749 /* Chain mbufs. */
1750 if (sc->sc_cdata.stge_rxhead == NULL) {
1751 sc->sc_cdata.stge_rxhead = mp;
1752 sc->sc_cdata.stge_rxtail = mp;
1753 } else {
1754 mp->m_flags &= ~M_PKTHDR;
1755 sc->sc_cdata.stge_rxtail->m_next = mp;
1756 sc->sc_cdata.stge_rxtail = mp;
1759 if ((status & RFD_FrameEnd) != 0) {
1760 m = sc->sc_cdata.stge_rxhead;
1761 m->m_pkthdr.rcvif = ifp;
1762 m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1764 if (m->m_pkthdr.len > sc->sc_if_framesize) {
1765 m_freem(m);
1766 STGE_RXCHAIN_RESET(sc);
1767 continue;
1770 * Set the incoming checksum information for
1771 * the packet.
1773 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1774 if ((status & RFD_IPDetected) != 0) {
1775 m->m_pkthdr.csum_flags |=
1776 CSUM_IP_CHECKED;
1777 if ((status & RFD_IPError) == 0)
1778 m->m_pkthdr.csum_flags |=
1779 CSUM_IP_VALID;
1781 if (((status & RFD_TCPDetected) != 0 &&
1782 (status & RFD_TCPError) == 0) ||
1783 ((status & RFD_UDPDetected) != 0 &&
1784 (status & RFD_UDPError) == 0)) {
1785 m->m_pkthdr.csum_flags |=
1786 (CSUM_DATA_VALID |
1787 CSUM_PSEUDO_HDR |
1788 CSUM_FRAG_NOT_CHECKED);
1789 m->m_pkthdr.csum_data = 0xffff;
1793 #ifndef __i386__
1794 if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1795 if ((m = stge_fixup_rx(sc, m)) == NULL) {
1796 STGE_RXCHAIN_RESET(sc);
1797 continue;
1800 #endif
1802 /* Check for VLAN tagged packets. */
1803 if ((status & RFD_VLANDetected) != 0 &&
1804 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1805 VLAN_INPUT_TAG(m, RFD_TCI(status64));
1806 } else {
1807 /* Pass it on. */
1808 ifp->if_input(ifp, m);
1811 STGE_RXCHAIN_RESET(sc);
1815 if (prog > 0) {
1816 /* Update the consumer index. */
1817 sc->sc_cdata.stge_rx_cons = cons;
1818 bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1819 sc->sc_cdata.stge_rx_ring_map,
1820 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1824 #ifdef DEVICE_POLLING
1825 static void
1826 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1828 struct stge_softc *sc;
1829 uint16_t status;
1831 sc = ifp->if_softc;
1833 switch (cmd) {
1834 case POLL_REGISTER:
1835 CSR_WRITE_2(sc, STGE_IntEnable, 0);
1836 break;
1837 case POLL_DEREGISTER:
1838 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1839 break;
1840 case POLL_ONLY:
1841 case POLL_AND_CHECK_STATUS:
1842 sc->sc_cdata.stge_rxcycles = count;
1843 stge_rxeof(sc, count);
1844 stge_txeof(sc);
1846 if (cmd == POLL_AND_CHECK_STATUS) {
1847 status = CSR_READ_2(sc, STGE_IntStatus);
1848 status &= sc->sc_IntEnable;
1849 if (status != 0) {
1850 if (status & IS_HostError) {
1851 device_printf(sc->sc_dev,
1852 "Host interface error, "
1853 "resetting...\n");
1854 stge_init(sc);
1856 if ((status & IS_TxComplete) != 0 &&
1857 stge_tx_error(sc) != 0)
1858 stge_init(sc);
1863 if (!ifq_is_empty(&ifp->if_snd))
1864 ifp->if_start(ifp);
1867 #endif /* DEVICE_POLLING */
1870 * stge_tick:
1872 * One second timer, used to tick the MII.
1874 static void
1875 stge_tick(void *arg)
1877 struct stge_softc *sc = arg;
1878 struct ifnet *ifp = &sc->arpcom.ac_if;
1879 struct mii_data *mii;
1881 lwkt_serialize_enter(ifp->if_serializer);
1883 mii = device_get_softc(sc->sc_miibus);
1884 mii_tick(mii);
1886 /* Update statistics counters. */
1887 stge_stats_update(sc);
1890 * Relcaim any pending Tx descriptors to release mbufs in a
1891 * timely manner as we don't generate Tx completion interrupts
1892 * for every frame. This limits the delay to a maximum of one
1893 * second.
1895 if (sc->sc_cdata.stge_tx_cnt != 0)
1896 stge_txeof(sc);
1898 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1900 lwkt_serialize_exit(ifp->if_serializer);
1904 * stge_stats_update:
1906 * Read the TC9021 statistics counters.
1908 static void
1909 stge_stats_update(struct stge_softc *sc)
1911 struct ifnet *ifp = &sc->arpcom.ac_if;
1913 CSR_READ_4(sc,STGE_OctetRcvOk);
1915 ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
1917 ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
1919 CSR_READ_4(sc, STGE_OctetXmtdOk);
1921 ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
1923 ifp->if_collisions +=
1924 CSR_READ_4(sc, STGE_LateCollisions) +
1925 CSR_READ_4(sc, STGE_MultiColFrames) +
1926 CSR_READ_4(sc, STGE_SingleColFrames);
1928 ifp->if_oerrors +=
1929 CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1930 CSR_READ_2(sc, STGE_FramesWEXDeferal);
1934 * stge_reset:
1936 * Perform a soft reset on the TC9021.
1938 static void
1939 stge_reset(struct stge_softc *sc, uint32_t how)
1941 uint32_t ac;
1942 uint8_t v;
1943 int i, dv;
1945 dv = 5000;
1946 ac = CSR_READ_4(sc, STGE_AsicCtrl);
1947 switch (how) {
1948 case STGE_RESET_TX:
1949 ac |= AC_TxReset | AC_FIFO;
1950 dv = 100;
1951 break;
1952 case STGE_RESET_RX:
1953 ac |= AC_RxReset | AC_FIFO;
1954 dv = 100;
1955 break;
1956 case STGE_RESET_FULL:
1957 default:
1959 * Only assert RstOut if we're fiber. We need GMII clocks
1960 * to be present in order for the reset to complete on fiber
1961 * cards.
1963 ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1964 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1965 (sc->sc_usefiber ? AC_RstOut : 0);
1966 break;
1969 CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1971 /* Account for reset problem at 10Mbps. */
1972 DELAY(dv);
1974 for (i = 0; i < STGE_TIMEOUT; i++) {
1975 if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1976 break;
1977 DELAY(dv);
1980 if (i == STGE_TIMEOUT)
1981 device_printf(sc->sc_dev, "reset failed to complete\n");
1983 /* Set LED, from Linux IPG driver. */
1984 ac = CSR_READ_4(sc, STGE_AsicCtrl);
1985 ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1986 if ((sc->sc_led & 0x01) != 0)
1987 ac |= AC_LEDMode;
1988 if ((sc->sc_led & 0x03) != 0)
1989 ac |= AC_LEDModeBit1;
1990 if ((sc->sc_led & 0x08) != 0)
1991 ac |= AC_LEDSpeed;
1992 CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1994 /* Set PHY, from Linux IPG driver */
1995 v = CSR_READ_1(sc, STGE_PhySet);
1996 v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1997 v |= ((sc->sc_led & 0x70) >> 4);
1998 CSR_WRITE_1(sc, STGE_PhySet, v);
2002 * stge_init: [ ifnet interface function ]
2004 * Initialize the interface.
2006 static void
2007 stge_init(void *xsc)
2009 struct stge_softc *sc = xsc;
2010 struct ifnet *ifp = &sc->arpcom.ac_if;
2011 struct mii_data *mii;
2012 uint16_t eaddr[3];
2013 uint32_t v;
2014 int error;
2016 ASSERT_SERIALIZED(ifp->if_serializer);
2018 mii = device_get_softc(sc->sc_miibus);
2021 * Cancel any pending I/O.
2023 stge_stop(sc);
2025 /* Init descriptors. */
2026 error = stge_init_rx_ring(sc);
2027 if (error != 0) {
2028 device_printf(sc->sc_dev,
2029 "initialization failed: no memory for rx buffers\n");
2030 stge_stop(sc);
2031 goto out;
2033 stge_init_tx_ring(sc);
2035 /* Set the station address. */
2036 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2037 CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2038 CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2039 CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2042 * Set the statistics masks. Disable all the RMON stats,
2043 * and disable selected stats in the non-RMON stats registers.
2045 CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2046 CSR_WRITE_4(sc, STGE_StatisticsMask,
2047 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2048 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2049 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2050 (1U << 21));
2052 /* Set up the receive filter. */
2053 stge_set_filter(sc);
2054 /* Program multicast filter. */
2055 stge_set_multi(sc);
2058 * Give the transmit and receive ring to the chip.
2060 CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2061 STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2062 CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2063 STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2065 CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2066 STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2067 CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2068 STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2071 * Initialize the Tx auto-poll period. It's OK to make this number
2072 * large (255 is the max, but we use 127) -- we explicitly kick the
2073 * transmit engine when there's actually a packet.
2075 CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2077 /* ..and the Rx auto-poll period. */
2078 CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2080 /* Initialize the Tx start threshold. */
2081 CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2083 /* Rx DMA thresholds, from Linux */
2084 CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2085 CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2087 /* Rx early threhold, from Linux */
2088 CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2090 /* Tx DMA thresholds, from Linux */
2091 CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2092 CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2095 * Initialize the Rx DMA interrupt control register. We
2096 * request an interrupt after every incoming packet, but
2097 * defer it for sc_rxint_dmawait us. When the number of
2098 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2099 * deferring the interrupt, and signal it immediately.
2101 CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2102 RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2103 RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2106 * Initialize the interrupt mask.
2108 sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2109 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2110 #ifdef DEVICE_POLLING
2111 /* Disable interrupts if we are polling. */
2112 if (ifp->if_flags & IFF_POLLING)
2113 CSR_WRITE_2(sc, STGE_IntEnable, 0);
2114 else
2115 #endif
2116 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2119 * Configure the DMA engine.
2120 * XXX Should auto-tune TxBurstLimit.
2122 CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2125 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2126 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2127 * in the Rx FIFO.
2129 CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2130 CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2133 * Set the maximum frame size.
2135 sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2136 CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2139 * Initialize MacCtrl -- do it before setting the media,
2140 * as setting the media will actually program the register.
2142 * Note: We have to poke the IFS value before poking
2143 * anything else.
2145 /* Tx/Rx MAC should be disabled before programming IFS.*/
2146 CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2148 stge_vlan_setup(sc);
2150 if (sc->sc_rev >= 6) { /* >= B.2 */
2151 /* Multi-frag frame bug work-around. */
2152 CSR_WRITE_2(sc, STGE_DebugCtrl,
2153 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2155 /* Tx Poll Now bug work-around. */
2156 CSR_WRITE_2(sc, STGE_DebugCtrl,
2157 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2158 /* Tx Poll Now bug work-around. */
2159 CSR_WRITE_2(sc, STGE_DebugCtrl,
2160 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2163 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2164 v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2165 CSR_WRITE_4(sc, STGE_MACCtrl, v);
2167 * It seems that transmitting frames without checking the state of
2168 * Rx/Tx MAC wedge the hardware.
2170 stge_start_tx(sc);
2171 stge_start_rx(sc);
2174 * Set the current media.
2176 mii_mediachg(mii);
2179 * Start the one second MII clock.
2181 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2184 * ...all done!
2186 ifp->if_flags |= IFF_RUNNING;
2187 ifp->if_flags &= ~IFF_OACTIVE;
2189 out:
2190 if (error != 0)
2191 device_printf(sc->sc_dev, "interface not running\n");
2194 static void
2195 stge_vlan_setup(struct stge_softc *sc)
2197 struct ifnet *ifp = &sc->arpcom.ac_if;
2198 uint32_t v;
2201 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2202 * MC_AutoVLANuntagging bit.
2203 * MC_AutoVLANtagging bit selects which VLAN source to use
2204 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2205 * bit has priority over MC_AutoVLANtagging bit. So we always
2206 * use TFC instead of STGE_VLANTag register.
2208 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2209 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2210 v |= MC_AutoVLANuntagging;
2211 else
2212 v &= ~MC_AutoVLANuntagging;
2213 CSR_WRITE_4(sc, STGE_MACCtrl, v);
2217 * Stop transmission on the interface.
2219 static void
2220 stge_stop(struct stge_softc *sc)
2222 struct ifnet *ifp = &sc->arpcom.ac_if;
2223 struct stge_txdesc *txd;
2224 struct stge_rxdesc *rxd;
2225 uint32_t v;
2226 int i;
2228 ASSERT_SERIALIZED(ifp->if_serializer);
2231 * Stop the one second clock.
2233 callout_stop(&sc->sc_tick_ch);
2236 * Reset the chip to a known state.
2238 stge_reset(sc, STGE_RESET_FULL);
2241 * Disable interrupts.
2243 CSR_WRITE_2(sc, STGE_IntEnable, 0);
2246 * Stop receiver, transmitter, and stats update.
2248 stge_stop_rx(sc);
2249 stge_stop_tx(sc);
2250 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2251 v |= MC_StatisticsDisable;
2252 CSR_WRITE_4(sc, STGE_MACCtrl, v);
2255 * Stop the transmit and receive DMA.
2257 stge_dma_wait(sc);
2258 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2259 CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2260 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2261 CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2264 * Free RX and TX mbufs still in the queues.
2266 for (i = 0; i < STGE_RX_RING_CNT; i++) {
2267 rxd = &sc->sc_cdata.stge_rxdesc[i];
2268 if (rxd->rx_m != NULL) {
2269 bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2270 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2271 bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2272 rxd->rx_dmamap);
2273 m_freem(rxd->rx_m);
2274 rxd->rx_m = NULL;
2277 for (i = 0; i < STGE_TX_RING_CNT; i++) {
2278 txd = &sc->sc_cdata.stge_txdesc[i];
2279 if (txd->tx_m != NULL) {
2280 bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2281 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2282 bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2283 txd->tx_dmamap);
2284 m_freem(txd->tx_m);
2285 txd->tx_m = NULL;
2290 * Mark the interface down and cancel the watchdog timer.
2292 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2293 ifp->if_timer = 0;
2296 static void
2297 stge_start_tx(struct stge_softc *sc)
2299 uint32_t v;
2300 int i;
2302 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2303 if ((v & MC_TxEnabled) != 0)
2304 return;
2305 v |= MC_TxEnable;
2306 CSR_WRITE_4(sc, STGE_MACCtrl, v);
2307 CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2308 for (i = STGE_TIMEOUT; i > 0; i--) {
2309 DELAY(10);
2310 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2311 if ((v & MC_TxEnabled) != 0)
2312 break;
2314 if (i == 0)
2315 device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2318 static void
2319 stge_start_rx(struct stge_softc *sc)
2321 uint32_t v;
2322 int i;
2324 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2325 if ((v & MC_RxEnabled) != 0)
2326 return;
2327 v |= MC_RxEnable;
2328 CSR_WRITE_4(sc, STGE_MACCtrl, v);
2329 CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2330 for (i = STGE_TIMEOUT; i > 0; i--) {
2331 DELAY(10);
2332 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2333 if ((v & MC_RxEnabled) != 0)
2334 break;
2336 if (i == 0)
2337 device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2340 static void
2341 stge_stop_tx(struct stge_softc *sc)
2343 uint32_t v;
2344 int i;
2346 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2347 if ((v & MC_TxEnabled) == 0)
2348 return;
2349 v |= MC_TxDisable;
2350 CSR_WRITE_4(sc, STGE_MACCtrl, v);
2351 for (i = STGE_TIMEOUT; i > 0; i--) {
2352 DELAY(10);
2353 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2354 if ((v & MC_TxEnabled) == 0)
2355 break;
2357 if (i == 0)
2358 device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2361 static void
2362 stge_stop_rx(struct stge_softc *sc)
2364 uint32_t v;
2365 int i;
2367 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2368 if ((v & MC_RxEnabled) == 0)
2369 return;
2370 v |= MC_RxDisable;
2371 CSR_WRITE_4(sc, STGE_MACCtrl, v);
2372 for (i = STGE_TIMEOUT; i > 0; i--) {
2373 DELAY(10);
2374 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2375 if ((v & MC_RxEnabled) == 0)
2376 break;
2378 if (i == 0)
2379 device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2382 static void
2383 stge_init_tx_ring(struct stge_softc *sc)
2385 struct stge_ring_data *rd;
2386 struct stge_txdesc *txd;
2387 bus_addr_t addr;
2388 int i;
2390 STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2391 STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2393 sc->sc_cdata.stge_tx_prod = 0;
2394 sc->sc_cdata.stge_tx_cons = 0;
2395 sc->sc_cdata.stge_tx_cnt = 0;
2397 rd = &sc->sc_rdata;
2398 bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2399 for (i = 0; i < STGE_TX_RING_CNT; i++) {
2400 if (i == (STGE_TX_RING_CNT - 1))
2401 addr = STGE_TX_RING_ADDR(sc, 0);
2402 else
2403 addr = STGE_TX_RING_ADDR(sc, i + 1);
2404 rd->stge_tx_ring[i].tfd_next = htole64(addr);
2405 rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2406 txd = &sc->sc_cdata.stge_txdesc[i];
2407 STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2410 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2411 sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_PREWRITE);
2414 static int
2415 stge_init_rx_ring(struct stge_softc *sc)
2417 struct stge_ring_data *rd;
2418 bus_addr_t addr;
2419 int i;
2421 sc->sc_cdata.stge_rx_cons = 0;
2422 STGE_RXCHAIN_RESET(sc);
2424 rd = &sc->sc_rdata;
2425 bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2426 for (i = 0; i < STGE_RX_RING_CNT; i++) {
2427 if (stge_newbuf(sc, i, 1) != 0)
2428 return (ENOBUFS);
2429 if (i == (STGE_RX_RING_CNT - 1))
2430 addr = STGE_RX_RING_ADDR(sc, 0);
2431 else
2432 addr = STGE_RX_RING_ADDR(sc, i + 1);
2433 rd->stge_rx_ring[i].rfd_next = htole64(addr);
2434 rd->stge_rx_ring[i].rfd_status = 0;
2437 bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2438 sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_PREWRITE);
2440 return (0);
2444 * stge_newbuf:
2446 * Add a receive buffer to the indicated descriptor.
2448 static int
2449 stge_newbuf(struct stge_softc *sc, int idx, int waitok)
2451 struct stge_rxdesc *rxd;
2452 struct stge_rfd *rfd;
2453 struct mbuf *m;
2454 struct stge_mbuf_dmamap_arg arg;
2455 bus_dma_segment_t segs[1];
2456 bus_dmamap_t map;
2458 m = m_getcl(waitok ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2459 if (m == NULL)
2460 return (ENOBUFS);
2461 m->m_len = m->m_pkthdr.len = MCLBYTES;
2463 * The hardware requires 4bytes aligned DMA address when JUMBO
2464 * frame is used.
2466 if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2467 m_adj(m, ETHER_ALIGN);
2469 arg.segs = segs;
2470 arg.nsegs = 1;
2471 if (bus_dmamap_load_mbuf(sc->sc_cdata.stge_rx_tag,
2472 sc->sc_cdata.stge_rx_sparemap, m, stge_mbuf_dmamap_cb, &arg,
2473 waitok ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT) != 0) {
2474 m_freem(m);
2475 return (ENOBUFS);
2478 rxd = &sc->sc_cdata.stge_rxdesc[idx];
2479 if (rxd->rx_m != NULL) {
2480 bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2481 BUS_DMASYNC_POSTREAD);
2482 bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2484 map = rxd->rx_dmamap;
2485 rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2486 sc->sc_cdata.stge_rx_sparemap = map;
2487 bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2488 BUS_DMASYNC_PREREAD);
2489 rxd->rx_m = m;
2491 rfd = &sc->sc_rdata.stge_rx_ring[idx];
2492 rfd->rfd_frag.frag_word0 =
2493 htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2494 rfd->rfd_status = 0;
2496 return (0);
2500 * stge_set_filter:
2502 * Set up the receive filter.
2504 static void
2505 stge_set_filter(struct stge_softc *sc)
2507 struct ifnet *ifp = &sc->arpcom.ac_if;
2508 uint16_t mode;
2510 mode = CSR_READ_2(sc, STGE_ReceiveMode);
2511 mode |= RM_ReceiveUnicast;
2512 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2513 mode |= RM_ReceiveBroadcast;
2514 else
2515 mode &= ~RM_ReceiveBroadcast;
2516 if ((ifp->if_flags & IFF_PROMISC) != 0)
2517 mode |= RM_ReceiveAllFrames;
2518 else
2519 mode &= ~RM_ReceiveAllFrames;
2521 CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2524 static void
2525 stge_set_multi(struct stge_softc *sc)
2527 struct ifnet *ifp = &sc->arpcom.ac_if;
2528 struct ifmultiaddr *ifma;
2529 uint32_t crc;
2530 uint32_t mchash[2];
2531 uint16_t mode;
2532 int count;
2534 mode = CSR_READ_2(sc, STGE_ReceiveMode);
2535 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2536 if ((ifp->if_flags & IFF_PROMISC) != 0)
2537 mode |= RM_ReceiveAllFrames;
2538 else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2539 mode |= RM_ReceiveMulticast;
2540 CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2541 return;
2544 /* clear existing filters. */
2545 CSR_WRITE_4(sc, STGE_HashTable0, 0);
2546 CSR_WRITE_4(sc, STGE_HashTable1, 0);
2549 * Set up the multicast address filter by passing all multicast
2550 * addresses through a CRC generator, and then using the low-order
2551 * 6 bits as an index into the 64 bit multicast hash table. The
2552 * high order bits select the register, while the rest of the bits
2553 * select the bit within the register.
2556 bzero(mchash, sizeof(mchash));
2558 count = 0;
2559 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2560 if (ifma->ifma_addr->sa_family != AF_LINK)
2561 continue;
2562 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2563 ifma->ifma_addr), ETHER_ADDR_LEN);
2565 /* Just want the 6 least significant bits. */
2566 crc &= 0x3f;
2568 /* Set the corresponding bit in the hash table. */
2569 mchash[crc >> 5] |= 1 << (crc & 0x1f);
2570 count++;
2573 mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2574 if (count > 0)
2575 mode |= RM_ReceiveMulticastHash;
2576 else
2577 mode &= ~RM_ReceiveMulticastHash;
2579 CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2580 CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2581 CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2584 static int
2585 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2587 int error, value;
2589 if (!arg1)
2590 return (EINVAL);
2591 value = *(int *)arg1;
2592 error = sysctl_handle_int(oidp, &value, 0, req);
2593 if (error || !req->newptr)
2594 return (error);
2595 if (value < low || value > high)
2596 return (EINVAL);
2597 *(int *)arg1 = value;
2599 return (0);
2602 static int
2603 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2605 return (sysctl_int_range(oidp, arg1, arg2, req,
2606 STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2609 static int
2610 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2612 return (sysctl_int_range(oidp, arg1, arg2, req,
2613 STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));