Add a new csum flag to tell IP defragmenter that csum_data does _not_
[dragonfly/port-amd64.git] / sys / dev / netif / lge / if_lge.c
blobc273f892a53805e64b32e4ce4ac7672e0a2e4a41
1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 * Bill Paul <william.paul@windriver.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34 * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.39 2007/08/14 13:30:35 sephe Exp $
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
41 * Written by Bill Paul <william.paul@windriver.com>
42 * Wind River Systems
46 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49 * are three supported methods for data transfer between host and
50 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51 * Propulsion Technology (tm) DMA. The latter mechanism is a form
52 * of double buffer DMA where the packet data is copied to a
53 * pre-allocated DMA buffer who's physical address has been loaded
54 * into a table at device initialization time. The rationale is that
55 * the virtual to physical address translation needed for normal
56 * scatter/gather DMA is more expensive than the data copy needed
57 * for double buffering. This may be true in Windows NT and the like,
58 * but it isn't true for us, at least on the x86 arch. This driver
59 * uses the scatter/gather I/O method for both TX and RX.
61 * The LXT1001 only supports TCP/IP checksum offload on receive.
62 * Also, the VLAN tagging is done using a 16-entry table which allows
63 * the chip to perform hardware filtering based on VLAN tags. Sadly,
64 * our vlan support doesn't currently play well with this kind of
65 * hardware support.
67 * Special thanks to:
68 * - Jeff James at Intel, for arranging to have the LXT1001 manual
69 * released (at long last)
70 * - Beny Chen at D-Link, for actually sending it to me
71 * - Brad Short and Keith Alexis at SMC, for sending me sample
72 * SMC9462SX and SMC9462TX adapters for testing
73 * - Paul Saab at Y!, for not killing me (though it remains to be seen
74 * if in fact he did me much of a favor)
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/serialize.h>
85 #include <sys/thread2.h>
87 #include <net/if.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
94 #include <net/bpf.h>
96 #include <vm/vm.h> /* for vtophys */
97 #include <vm/pmap.h> /* for vtophys */
98 #include <sys/bus.h>
99 #include <sys/rman.h>
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
104 #include <bus/pci/pcidevs.h>
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
108 #define LGE_USEIOSPACE
110 #include "if_lgereg.h"
112 /* "controller miibus0" required. See GENERIC if you get errors here. */
113 #include "miibus_if.h"
116 * Various supported device vendors/types and their names.
118 static struct lge_type lge_devs[] = {
119 { PCI_VENDOR_LEVELONE, PCI_PRODUCT_LEVELONE_LXT1001,
120 "Level 1 Gigabit Ethernet" },
121 { 0, 0, NULL }
124 static int lge_probe(device_t);
125 static int lge_attach(device_t);
126 static int lge_detach(device_t);
128 static int lge_alloc_jumbo_mem(struct lge_softc *);
129 static void lge_free_jumbo_mem(struct lge_softc *);
130 static struct lge_jslot
131 *lge_jalloc(struct lge_softc *);
132 static void lge_jfree(void *);
133 static void lge_jref(void *);
135 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
136 struct mbuf *);
137 static int lge_encap(struct lge_softc *, struct mbuf *, uint32_t *);
138 static void lge_rxeof(struct lge_softc *, int);
139 static void lge_rxeoc(struct lge_softc *);
140 static void lge_txeof(struct lge_softc *);
141 static void lge_intr(void *);
142 static void lge_tick(void *);
143 static void lge_tick_serialized(void *);
144 static void lge_start(struct ifnet *);
145 static int lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
146 static void lge_init(void *);
147 static void lge_stop(struct lge_softc *);
148 static void lge_watchdog(struct ifnet *);
149 static void lge_shutdown(device_t);
150 static int lge_ifmedia_upd(struct ifnet *);
151 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
153 static void lge_eeprom_getword(struct lge_softc *, int, uint16_t *);
154 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int);
156 static int lge_miibus_readreg(device_t, int, int);
157 static int lge_miibus_writereg(device_t, int, int, int);
158 static void lge_miibus_statchg(device_t);
160 static void lge_setmulti(struct lge_softc *);
161 static void lge_reset(struct lge_softc *);
162 static int lge_list_rx_init(struct lge_softc *);
163 static int lge_list_tx_init(struct lge_softc *);
165 #ifdef LGE_USEIOSPACE
166 #define LGE_RES SYS_RES_IOPORT
167 #define LGE_RID LGE_PCI_LOIO
168 #else
169 #define LGE_RES SYS_RES_MEMORY
170 #define LGE_RID LGE_PCI_LOMEM
171 #endif
173 static device_method_t lge_methods[] = {
174 /* Device interface */
175 DEVMETHOD(device_probe, lge_probe),
176 DEVMETHOD(device_attach, lge_attach),
177 DEVMETHOD(device_detach, lge_detach),
178 DEVMETHOD(device_shutdown, lge_shutdown),
180 /* bus interface */
181 DEVMETHOD(bus_print_child, bus_generic_print_child),
182 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
184 /* MII interface */
185 DEVMETHOD(miibus_readreg, lge_miibus_readreg),
186 DEVMETHOD(miibus_writereg, lge_miibus_writereg),
187 DEVMETHOD(miibus_statchg, lge_miibus_statchg),
189 { 0, 0 }
192 static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc));
193 static devclass_t lge_devclass;
195 DECLARE_DUMMY_MODULE(if_lge);
196 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
197 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
199 #define LGE_SETBIT(sc, reg, x) \
200 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
202 #define LGE_CLRBIT(sc, reg, x) \
203 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
205 #define SIO_SET(x) \
206 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
208 #define SIO_CLR(x) \
209 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
212 * Read a word of data stored in the EEPROM at address 'addr.'
214 static void
215 lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest)
217 int i;
218 uint32_t val;
220 CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
221 LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8));
223 for (i = 0; i < LGE_TIMEOUT; i++) {
224 if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0)
225 break;
228 if (i == LGE_TIMEOUT) {
229 kprintf("lge%d: EEPROM read timed out\n", sc->lge_unit);
230 return;
233 val = CSR_READ_4(sc, LGE_EEDATA);
235 if (addr & 1)
236 *dest = (val >> 16) & 0xFFFF;
237 else
238 *dest = val & 0xFFFF;
242 * Read a sequence of words from the EEPROM.
244 static void
245 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt)
247 int i;
248 uint16_t word = 0, *ptr;
250 for (i = 0; i < cnt; i++) {
251 lge_eeprom_getword(sc, off + i, &word);
252 ptr = (uint16_t *)(dest + (i * 2));
253 *ptr = ntohs(word);
257 static int
258 lge_miibus_readreg(device_t dev, int phy, int reg)
260 struct lge_softc *sc = device_get_softc(dev);
261 int i;
264 * If we have a non-PCS PHY, pretend that the internal
265 * autoneg stuff at PHY address 0 isn't there so that
266 * the miibus code will find only the GMII PHY.
268 if (sc->lge_pcs == 0 && phy == 0)
269 return(0);
271 CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
273 for (i = 0; i < LGE_TIMEOUT; i++) {
274 if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
275 break;
278 if (i == LGE_TIMEOUT) {
279 kprintf("lge%d: PHY read timed out\n", sc->lge_unit);
280 return(0);
283 return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
286 static int
287 lge_miibus_writereg(device_t dev, int phy, int reg, int data)
289 struct lge_softc *sc = device_get_softc(dev);
290 int i;
292 CSR_WRITE_4(sc, LGE_GMIICTL,
293 (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
295 for (i = 0; i < LGE_TIMEOUT; i++) {
296 if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
297 break;
300 if (i == LGE_TIMEOUT) {
301 kprintf("lge%d: PHY write timed out\n", sc->lge_unit);
302 return(0);
305 return(0);
308 static void
309 lge_miibus_statchg(device_t dev)
311 struct lge_softc *sc = device_get_softc(dev);
312 struct mii_data *mii = device_get_softc(sc->lge_miibus);
314 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
315 switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 case IFM_1000_T:
317 case IFM_1000_SX:
318 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
319 break;
320 case IFM_100_TX:
321 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
322 break;
323 case IFM_10_T:
324 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
325 break;
326 default:
328 * Choose something, even if it's wrong. Clearing
329 * all the bits will hose autoneg on the internal
330 * PHY.
332 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
333 break;
336 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
337 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
338 else
339 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
342 static void
343 lge_setmulti(struct lge_softc *sc)
345 struct ifnet *ifp = &sc->arpcom.ac_if;
346 struct ifmultiaddr *ifma;
347 uint32_t h = 0, hashes[2] = { 0, 0 };
349 /* Make sure multicast hash table is enabled. */
350 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST);
352 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
353 CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
354 CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
355 return;
358 /* first, zot all the existing hash bits */
359 CSR_WRITE_4(sc, LGE_MAR0, 0);
360 CSR_WRITE_4(sc, LGE_MAR1, 0);
362 /* now program new ones */
363 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
364 if (ifma->ifma_addr->sa_family != AF_LINK)
365 continue;
366 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
367 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
368 if (h < 32)
369 hashes[0] |= (1 << h);
370 else
371 hashes[1] |= (1 << (h - 32));
374 CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
375 CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
377 return;
380 static void
381 lge_reset(struct lge_softc *sc)
383 int i;
385 LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST);
387 for (i = 0; i < LGE_TIMEOUT; i++) {
388 if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0)
389 break;
392 if (i == LGE_TIMEOUT)
393 kprintf("lge%d: reset never completed\n", sc->lge_unit);
395 /* Wait a little while for the chip to get its brains in order. */
396 DELAY(1000);
400 * Probe for a Level 1 chip. Check the PCI vendor and device
401 * IDs against our list and return a device name if we find a match.
403 static int
404 lge_probe(device_t dev)
406 struct lge_type *t;
407 uint16_t vendor, product;
409 vendor = pci_get_vendor(dev);
410 product = pci_get_device(dev);
412 for (t = lge_devs; t->lge_name != NULL; t++) {
413 if (vendor == t->lge_vid && product == t->lge_did) {
414 device_set_desc(dev, t->lge_name);
415 return(0);
419 return(ENXIO);
423 * Attach the interface. Allocate softc structures, do ifmedia
424 * setup and ethernet/BPF attach.
426 static int
427 lge_attach(device_t dev)
429 uint8_t eaddr[ETHER_ADDR_LEN];
430 struct lge_softc *sc;
431 struct ifnet *ifp;
432 int unit, error = 0, rid;
434 sc = device_get_softc(dev);
435 unit = device_get_unit(dev);
436 callout_init(&sc->lge_stat_timer);
437 lwkt_serialize_init(&sc->lge_jslot_serializer);
440 * Handle power management nonsense.
442 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
443 uint32_t iobase, membase, irq;
445 /* Save important PCI config data. */
446 iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
447 membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
448 irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
450 /* Reset the power state. */
451 device_printf(dev, "chip is in D%d power mode "
452 "-- setting to D0\n", pci_get_powerstate(dev));
454 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
456 /* Restore PCI config data. */
457 pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
458 pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
459 pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
462 pci_enable_busmaster(dev);
464 rid = LGE_RID;
465 sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
467 if (sc->lge_res == NULL) {
468 kprintf("lge%d: couldn't map ports/memory\n", unit);
469 error = ENXIO;
470 goto fail;
473 sc->lge_btag = rman_get_bustag(sc->lge_res);
474 sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
476 /* Allocate interrupt */
477 rid = 0;
478 sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
479 RF_SHAREABLE | RF_ACTIVE);
481 if (sc->lge_irq == NULL) {
482 kprintf("lge%d: couldn't map interrupt\n", unit);
483 error = ENXIO;
484 goto fail;
487 /* Reset the adapter. */
488 lge_reset(sc);
491 * Get station address from the EEPROM.
493 lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1);
494 lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1);
495 lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1);
497 sc->lge_unit = unit;
499 sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
500 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
502 if (sc->lge_ldata == NULL) {
503 kprintf("lge%d: no memory for list buffers!\n", unit);
504 error = ENXIO;
505 goto fail;
507 bzero(sc->lge_ldata, sizeof(struct lge_list_data));
509 /* Try to allocate memory for jumbo buffers. */
510 if (lge_alloc_jumbo_mem(sc)) {
511 kprintf("lge%d: jumbo buffer allocation failed\n",
512 sc->lge_unit);
513 error = ENXIO;
514 goto fail;
517 ifp = &sc->arpcom.ac_if;
518 ifp->if_softc = sc;
519 if_initname(ifp, "lge", unit);
520 ifp->if_mtu = ETHERMTU;
521 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
522 ifp->if_ioctl = lge_ioctl;
523 ifp->if_start = lge_start;
524 ifp->if_watchdog = lge_watchdog;
525 ifp->if_init = lge_init;
526 ifp->if_baudrate = 1000000000;
527 ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
528 ifq_set_ready(&ifp->if_snd);
529 ifp->if_capabilities = IFCAP_RXCSUM;
530 ifp->if_capenable = ifp->if_capabilities;
532 if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
533 sc->lge_pcs = 1;
534 else
535 sc->lge_pcs = 0;
538 * Do MII setup.
540 if (mii_phy_probe(dev, &sc->lge_miibus,
541 lge_ifmedia_upd, lge_ifmedia_sts)) {
542 kprintf("lge%d: MII without any PHY!\n", sc->lge_unit);
543 error = ENXIO;
544 goto fail;
548 * Call MI attach routine.
550 ether_ifattach(ifp, eaddr, NULL);
552 error = bus_setup_intr(dev, sc->lge_irq, INTR_NETSAFE,
553 lge_intr, sc, &sc->lge_intrhand,
554 ifp->if_serializer);
555 if (error) {
556 ether_ifdetach(ifp);
557 kprintf("lge%d: couldn't set up irq\n", unit);
558 goto fail;
561 return(0);
563 fail:
564 lge_detach(dev);
565 return(error);
568 static int
569 lge_detach(device_t dev)
571 struct lge_softc *sc= device_get_softc(dev);
572 struct ifnet *ifp = &sc->arpcom.ac_if;
574 if (device_is_attached(dev)) {
575 lwkt_serialize_enter(ifp->if_serializer);
576 lge_reset(sc);
577 lge_stop(sc);
578 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
579 lwkt_serialize_exit(ifp->if_serializer);
581 ether_ifdetach(ifp);
584 if (sc->lge_miibus)
585 device_delete_child(dev, sc->lge_miibus);
586 bus_generic_detach(dev);
588 if (sc->lge_irq)
589 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
590 if (sc->lge_res)
591 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
593 if (sc->lge_ldata)
594 contigfree(sc->lge_ldata, sizeof(struct lge_list_data),
595 M_DEVBUF);
596 lge_free_jumbo_mem(sc);
598 return(0);
602 * Initialize the transmit descriptors.
604 static int
605 lge_list_tx_init(struct lge_softc *sc)
607 struct lge_list_data *ld;
608 struct lge_ring_data *cd;
609 int i;
611 cd = &sc->lge_cdata;
612 ld = sc->lge_ldata;
613 for (i = 0; i < LGE_TX_LIST_CNT; i++) {
614 ld->lge_tx_list[i].lge_mbuf = NULL;
615 ld->lge_tx_list[i].lge_ctl = 0;
618 cd->lge_tx_prod = cd->lge_tx_cons = 0;
620 return(0);
625 * Initialize the RX descriptors and allocate mbufs for them. Note that
626 * we arralge the descriptors in a closed ring, so that the last descriptor
627 * points back to the first.
629 static int
630 lge_list_rx_init(struct lge_softc *sc)
632 struct lge_list_data *ld;
633 struct lge_ring_data *cd;
634 int i;
636 ld = sc->lge_ldata;
637 cd = &sc->lge_cdata;
639 cd->lge_rx_prod = cd->lge_rx_cons = 0;
641 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
643 for (i = 0; i < LGE_RX_LIST_CNT; i++) {
644 if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
645 break;
646 if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
647 return(ENOBUFS);
650 /* Clear possible 'rx command queue empty' interrupt. */
651 CSR_READ_4(sc, LGE_ISR);
653 return(0);
657 * Initialize an RX descriptor and attach an MBUF cluster.
659 static int
660 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
662 struct mbuf *m_new = NULL;
663 struct lge_jslot *buf;
665 if (m == NULL) {
666 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
667 if (m_new == NULL) {
668 kprintf("lge%d: no memory for rx list "
669 "-- packet dropped!\n", sc->lge_unit);
670 return(ENOBUFS);
673 /* Allocate the jumbo buffer */
674 buf = lge_jalloc(sc);
675 if (buf == NULL) {
676 #ifdef LGE_VERBOSE
677 kprintf("lge%d: jumbo allocation failed "
678 "-- packet dropped!\n", sc->lge_unit);
679 #endif
680 m_freem(m_new);
681 return(ENOBUFS);
683 /* Attach the buffer to the mbuf */
684 m_new->m_ext.ext_arg = buf;
685 m_new->m_ext.ext_buf = buf->lge_buf;
686 m_new->m_ext.ext_free = lge_jfree;
687 m_new->m_ext.ext_ref = lge_jref;
688 m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN;
690 m_new->m_data = m_new->m_ext.ext_buf;
691 m_new->m_flags |= M_EXT;
692 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
693 } else {
694 m_new = m;
695 m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
696 m_new->m_data = m_new->m_ext.ext_buf;
700 * Adjust alignment so packet payload begins on a
701 * longword boundary. Mandatory for Alpha, useful on
702 * x86 too.
704 m_adj(m_new, ETHER_ALIGN);
706 c->lge_mbuf = m_new;
707 c->lge_fragptr_hi = 0;
708 c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
709 c->lge_fraglen = m_new->m_len;
710 c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
711 c->lge_sts = 0;
714 * Put this buffer in the RX command FIFO. To do this,
715 * we just write the physical address of the descriptor
716 * into the RX descriptor address registers. Note that
717 * there are two registers, one high DWORD and one low
718 * DWORD, which lets us specify a 64-bit address if
719 * desired. We only use a 32-bit address for now.
720 * Writing to the low DWORD register is what actually
721 * causes the command to be issued, so we do that
722 * last.
724 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
725 LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
727 return(0);
730 static int
731 lge_alloc_jumbo_mem(struct lge_softc *sc)
733 struct lge_jslot *entry;
734 caddr_t ptr;
735 int i;
737 /* Grab a big chunk o' storage. */
738 sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
739 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
741 if (sc->lge_cdata.lge_jumbo_buf == NULL) {
742 kprintf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
743 return(ENOBUFS);
746 SLIST_INIT(&sc->lge_jfree_listhead);
749 * Now divide it up into 9K pieces and save the addresses
750 * in an array.
752 ptr = sc->lge_cdata.lge_jumbo_buf;
753 for (i = 0; i < LGE_JSLOTS; i++) {
754 entry = &sc->lge_cdata.lge_jslots[i];
755 entry->lge_sc = sc;
756 entry->lge_buf = ptr;
757 entry->lge_inuse = 0;
758 entry->lge_slot = i;
759 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
760 ptr += LGE_JLEN;
763 return(0);
766 static void
767 lge_free_jumbo_mem(struct lge_softc *sc)
769 if (sc->lge_cdata.lge_jumbo_buf)
770 contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
774 * Allocate a jumbo buffer.
776 static struct lge_jslot *
777 lge_jalloc(struct lge_softc *sc)
779 struct lge_jslot *entry;
781 lwkt_serialize_enter(&sc->lge_jslot_serializer);
782 entry = SLIST_FIRST(&sc->lge_jfree_listhead);
783 if (entry) {
784 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link);
785 entry->lge_inuse = 1;
786 } else {
787 #ifdef LGE_VERBOSE
788 kprintf("lge%d: no free jumbo buffers\n", sc->lge_unit);
789 #endif
791 lwkt_serialize_exit(&sc->lge_jslot_serializer);
792 return(entry);
796 * Adjust usage count on a jumbo buffer. In general this doesn't
797 * get used much because our jumbo buffers don't get passed around
798 * a lot, but it's implemented for correctness.
800 static void
801 lge_jref(void *arg)
803 struct lge_jslot *entry = (struct lge_jslot *)arg;
804 struct lge_softc *sc = entry->lge_sc;
806 if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
807 panic("lge_jref: asked to reference buffer "
808 "that we don't manage!");
809 else if (entry->lge_inuse == 0)
810 panic("lge_jref: buffer already free!");
811 else
812 atomic_add_int(&entry->lge_inuse, 1);
816 * Release a jumbo buffer.
818 static void
819 lge_jfree(void *arg)
821 struct lge_jslot *entry = (struct lge_jslot *)arg;
822 struct lge_softc *sc = entry->lge_sc;
824 if (sc == NULL)
825 panic("lge_jfree: can't find softc pointer!");
827 if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) {
828 panic("lge_jfree: asked to free buffer that we don't manage!");
829 } else if (entry->lge_inuse == 0) {
830 panic("lge_jfree: buffer already free!");
831 } else {
832 lwkt_serialize_enter(&sc->lge_jslot_serializer);
833 atomic_subtract_int(&entry->lge_inuse, 1);
834 if (entry->lge_inuse == 0) {
835 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
836 entry, jslot_link);
838 lwkt_serialize_exit(&sc->lge_jslot_serializer);
843 * A frame has been uploaded: pass the resulting mbuf chain up to
844 * the higher level protocols.
846 static void
847 lge_rxeof(struct lge_softc *sc, int cnt)
849 struct ifnet *ifp = &sc->arpcom.ac_if;
850 struct mbuf *m;
851 struct lge_rx_desc *cur_rx;
852 int c, i, total_len = 0;
853 uint32_t rxsts, rxctl;
856 /* Find out how many frames were processed. */
857 c = cnt;
858 i = sc->lge_cdata.lge_rx_cons;
860 /* Suck them in. */
861 while(c) {
862 struct mbuf *m0 = NULL;
864 cur_rx = &sc->lge_ldata->lge_rx_list[i];
865 rxctl = cur_rx->lge_ctl;
866 rxsts = cur_rx->lge_sts;
867 m = cur_rx->lge_mbuf;
868 cur_rx->lge_mbuf = NULL;
869 total_len = LGE_RXBYTES(cur_rx);
870 LGE_INC(i, LGE_RX_LIST_CNT);
871 c--;
874 * If an error occurs, update stats, clear the
875 * status word and leave the mbuf cluster in place:
876 * it should simply get re-used next time this descriptor
877 * comes up in the ring.
879 if (rxctl & LGE_RXCTL_ERRMASK) {
880 ifp->if_ierrors++;
881 lge_newbuf(sc, &LGE_RXTAIL(sc), m);
882 continue;
885 if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
886 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
887 total_len + ETHER_ALIGN, 0, ifp, NULL);
888 lge_newbuf(sc, &LGE_RXTAIL(sc), m);
889 if (m0 == NULL) {
890 kprintf("lge%d: no receive buffers "
891 "available -- packet dropped!\n",
892 sc->lge_unit);
893 ifp->if_ierrors++;
894 continue;
896 m_adj(m0, ETHER_ALIGN);
897 m = m0;
898 } else {
899 m->m_pkthdr.rcvif = ifp;
900 m->m_pkthdr.len = m->m_len = total_len;
903 ifp->if_ipackets++;
905 /* Do IP checksum checking. */
906 if (rxsts & LGE_RXSTS_ISIP)
907 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
908 if (!(rxsts & LGE_RXSTS_IPCSUMERR))
909 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
910 if ((rxsts & LGE_RXSTS_ISTCP &&
911 !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
912 (rxsts & LGE_RXSTS_ISUDP &&
913 !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
914 m->m_pkthdr.csum_flags |=
915 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
916 CSUM_FRAG_NOT_CHECKED;
917 m->m_pkthdr.csum_data = 0xffff;
920 ifp->if_input(ifp, m);
923 sc->lge_cdata.lge_rx_cons = i;
926 static void
927 lge_rxeoc(struct lge_softc *sc)
929 struct ifnet *ifp = &sc->arpcom.ac_if;
931 ifp->if_flags &= ~IFF_RUNNING;
932 lge_init(sc);
936 * A frame was downloaded to the chip. It's safe for us to clean up
937 * the list buffers.
939 static void
940 lge_txeof(struct lge_softc *sc)
942 struct ifnet *ifp = &sc->arpcom.ac_if;
943 struct lge_tx_desc *cur_tx = NULL;
944 uint32_t idx, txdone;
946 /* Clear the timeout timer. */
947 ifp->if_timer = 0;
950 * Go through our tx list and free mbufs for those
951 * frames that have been transmitted.
953 idx = sc->lge_cdata.lge_tx_cons;
954 txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
956 while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
957 cur_tx = &sc->lge_ldata->lge_tx_list[idx];
959 ifp->if_opackets++;
960 if (cur_tx->lge_mbuf != NULL) {
961 m_freem(cur_tx->lge_mbuf);
962 cur_tx->lge_mbuf = NULL;
964 cur_tx->lge_ctl = 0;
966 txdone--;
967 LGE_INC(idx, LGE_TX_LIST_CNT);
968 ifp->if_timer = 0;
971 sc->lge_cdata.lge_tx_cons = idx;
973 if (cur_tx != NULL)
974 ifp->if_flags &= ~IFF_OACTIVE;
977 static void
978 lge_tick(void *xsc)
980 struct lge_softc *sc = xsc;
981 struct ifnet *ifp = &sc->arpcom.ac_if;
983 lwkt_serialize_enter(ifp->if_serializer);
984 lge_tick_serialized(xsc);
985 lwkt_serialize_exit(ifp->if_serializer);
988 static void
989 lge_tick_serialized(void *xsc)
991 struct lge_softc *sc = xsc;
992 struct mii_data *mii;
993 struct ifnet *ifp = &sc->arpcom.ac_if;
995 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
996 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
997 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
998 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1000 if (!sc->lge_link) {
1001 mii = device_get_softc(sc->lge_miibus);
1002 mii_tick(mii);
1003 mii_pollstat(mii);
1004 if (mii->mii_media_status & IFM_ACTIVE &&
1005 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1006 sc->lge_link++;
1007 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1008 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1009 kprintf("lge%d: gigabit link up\n",
1010 sc->lge_unit);
1011 if (!ifq_is_empty(&ifp->if_snd))
1012 (*ifp->if_start)(ifp);
1016 callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1019 static void
1020 lge_intr(void *arg)
1022 struct lge_softc *sc = arg;
1023 struct ifnet *ifp = &sc->arpcom.ac_if;
1024 uint32_t status;
1026 /* Supress unwanted interrupts */
1027 if ((ifp->if_flags & IFF_UP) == 0) {
1028 lge_stop(sc);
1029 return;
1032 for (;;) {
1034 * Reading the ISR register clears all interrupts, and
1035 * clears the 'interrupts enabled' bit in the IMR
1036 * register.
1038 status = CSR_READ_4(sc, LGE_ISR);
1040 if ((status & LGE_INTRS) == 0)
1041 break;
1043 if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1044 lge_txeof(sc);
1046 if (status & LGE_ISR_RXDMA_DONE)
1047 lge_rxeof(sc, LGE_RX_DMACNT(status));
1049 if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1050 lge_rxeoc(sc);
1052 if (status & LGE_ISR_PHY_INTR) {
1053 sc->lge_link = 0;
1054 callout_stop(&sc->lge_stat_timer);
1055 lge_tick_serialized(sc);
1059 /* Re-enable interrupts. */
1060 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1062 if (!ifq_is_empty(&ifp->if_snd))
1063 (*ifp->if_start)(ifp);
1067 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1068 * pointers to the fragment pointers.
1070 static int
1071 lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1073 struct lge_frag *f = NULL;
1074 struct lge_tx_desc *cur_tx;
1075 struct mbuf *m;
1076 int frag = 0, tot_len = 0;
1079 * Start packing the mbufs in this chain into
1080 * the fragment pointers. Stop when we run out
1081 * of fragments or hit the end of the mbuf chain.
1083 m = m_head;
1084 cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1085 frag = 0;
1087 for (m = m_head; m != NULL; m = m->m_next) {
1088 if (m->m_len != 0) {
1089 tot_len += m->m_len;
1090 f = &cur_tx->lge_frags[frag];
1091 f->lge_fraglen = m->m_len;
1092 f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1093 f->lge_fragptr_hi = 0;
1094 frag++;
1098 if (m != NULL)
1099 return(ENOBUFS);
1101 cur_tx->lge_mbuf = m_head;
1102 cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1103 LGE_INC((*txidx), LGE_TX_LIST_CNT);
1105 /* Queue for transmit */
1106 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1108 return(0);
1112 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1113 * to the mbuf data regions directly in the transmit lists. We also save a
1114 * copy of the pointers since the transmit list fragment pointers are
1115 * physical addresses.
1118 static void
1119 lge_start(struct ifnet *ifp)
1121 struct lge_softc *sc = ifp->if_softc;
1122 struct mbuf *m_head = NULL;
1123 uint32_t idx;
1124 int need_timer;
1126 if (!sc->lge_link)
1127 return;
1129 idx = sc->lge_cdata.lge_tx_prod;
1131 if (ifp->if_flags & IFF_OACTIVE)
1132 return;
1134 need_timer = 0;
1135 while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1136 if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1137 break;
1139 m_head = ifq_poll(&ifp->if_snd);
1140 if (m_head == NULL)
1141 break;
1143 if (lge_encap(sc, m_head, &idx)) {
1144 ifp->if_flags |= IFF_OACTIVE;
1145 break;
1147 ifq_dequeue(&ifp->if_snd, m_head);
1148 need_timer = 1;
1150 BPF_MTAP(ifp, m_head);
1153 if (!need_timer)
1154 return;
1156 sc->lge_cdata.lge_tx_prod = idx;
1159 * Set a timeout in case the chip goes out to lunch.
1161 ifp->if_timer = 5;
1164 static void
1165 lge_init(void *xsc)
1167 struct lge_softc *sc = xsc;
1168 struct ifnet *ifp = &sc->arpcom.ac_if;
1169 struct mii_data *mii;
1171 if (ifp->if_flags & IFF_RUNNING)
1172 return;
1175 * Cancel pending I/O and free all RX/TX buffers.
1177 lge_stop(sc);
1178 lge_reset(sc);
1180 mii = device_get_softc(sc->lge_miibus);
1182 /* Set MAC address */
1183 CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1184 CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1186 /* Init circular RX list. */
1187 if (lge_list_rx_init(sc) == ENOBUFS) {
1188 kprintf("lge%d: initialization failed: no "
1189 "memory for rx buffers\n", sc->lge_unit);
1190 lge_stop(sc);
1191 return;
1195 * Init tx descriptors.
1197 lge_list_tx_init(sc);
1199 /* Set initial value for MODE1 register. */
1200 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST |
1201 LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD |
1202 LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 |
1203 LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2);
1205 /* If we want promiscuous mode, set the allframes bit. */
1206 if (ifp->if_flags & IFF_PROMISC) {
1207 CSR_WRITE_4(sc, LGE_MODE1,
1208 LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC);
1209 } else {
1210 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1214 * Set the capture broadcast bit to capture broadcast frames.
1216 if (ifp->if_flags & IFF_BROADCAST) {
1217 CSR_WRITE_4(sc, LGE_MODE1,
1218 LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST);
1219 } else {
1220 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1223 /* Packet padding workaround? */
1224 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1226 /* No error frames */
1227 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1229 /* Receive large frames */
1230 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS);
1232 /* Workaround: disable RX/TX flow control */
1233 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1234 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1236 /* Make sure to strip CRC from received frames */
1237 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1239 /* Turn off magic packet mode */
1240 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1242 /* Turn off all VLAN stuff */
1243 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX |
1244 LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT);
1246 /* Workarond: FIFO overflow */
1247 CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1248 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1251 * Load the multicast filter.
1253 lge_setmulti(sc);
1256 * Enable hardware checksum validation for all received IPv4
1257 * packets, do not reject packets with bad checksums.
1259 CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM |
1260 LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM |
1261 LGE_MODE2_RX_ERRCSUM);
1264 * Enable the delivery of PHY interrupts based on
1265 * link/speed/duplex status chalges.
1267 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL);
1269 /* Enable receiver and transmitter. */
1270 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1271 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB);
1273 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1274 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB);
1277 * Enable interrupts.
1279 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 |
1280 LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS);
1282 lge_ifmedia_upd(ifp);
1284 ifp->if_flags |= IFF_RUNNING;
1285 ifp->if_flags &= ~IFF_OACTIVE;
1287 callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1291 * Set media options.
1293 static int
1294 lge_ifmedia_upd(struct ifnet *ifp)
1296 struct lge_softc *sc = ifp->if_softc;
1297 struct mii_data *mii = device_get_softc(sc->lge_miibus);
1299 sc->lge_link = 0;
1300 if (mii->mii_instance) {
1301 struct mii_softc *miisc;
1302 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1303 mii_phy_reset(miisc);
1305 mii_mediachg(mii);
1307 return(0);
1311 * Report current media status.
1313 static void
1314 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1316 struct lge_softc *sc = ifp->if_softc;
1317 struct mii_data *mii;
1319 mii = device_get_softc(sc->lge_miibus);
1320 mii_pollstat(mii);
1321 ifmr->ifm_active = mii->mii_media_active;
1322 ifmr->ifm_status = mii->mii_media_status;
1325 static int
1326 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1328 struct lge_softc *sc = ifp->if_softc;
1329 struct ifreq *ifr = (struct ifreq *) data;
1330 struct mii_data *mii;
1331 int error = 0;
1333 switch(command) {
1334 case SIOCSIFMTU:
1335 if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1336 error = EINVAL;
1337 else
1338 ifp->if_mtu = ifr->ifr_mtu;
1339 break;
1340 case SIOCSIFFLAGS:
1341 if (ifp->if_flags & IFF_UP) {
1342 if (ifp->if_flags & IFF_RUNNING &&
1343 ifp->if_flags & IFF_PROMISC &&
1344 !(sc->lge_if_flags & IFF_PROMISC)) {
1345 CSR_WRITE_4(sc, LGE_MODE1,
1346 LGE_MODE1_SETRST_CTL1|
1347 LGE_MODE1_RX_PROMISC);
1348 } else if (ifp->if_flags & IFF_RUNNING &&
1349 !(ifp->if_flags & IFF_PROMISC) &&
1350 sc->lge_if_flags & IFF_PROMISC) {
1351 CSR_WRITE_4(sc, LGE_MODE1,
1352 LGE_MODE1_RX_PROMISC);
1353 } else {
1354 ifp->if_flags &= ~IFF_RUNNING;
1355 lge_init(sc);
1357 } else {
1358 if (ifp->if_flags & IFF_RUNNING)
1359 lge_stop(sc);
1361 sc->lge_if_flags = ifp->if_flags;
1362 error = 0;
1363 break;
1364 case SIOCADDMULTI:
1365 case SIOCDELMULTI:
1366 lge_setmulti(sc);
1367 error = 0;
1368 break;
1369 case SIOCGIFMEDIA:
1370 case SIOCSIFMEDIA:
1371 mii = device_get_softc(sc->lge_miibus);
1372 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1373 break;
1374 default:
1375 error = ether_ioctl(ifp, command, data);
1376 break;
1379 return(error);
1382 static void
1383 lge_watchdog(struct ifnet *ifp)
1385 struct lge_softc *sc = ifp->if_softc;
1387 ifp->if_oerrors++;
1388 kprintf("lge%d: watchdog timeout\n", sc->lge_unit);
1390 lge_stop(sc);
1391 lge_reset(sc);
1392 ifp->if_flags &= ~IFF_RUNNING;
1393 lge_init(sc);
1395 if (!ifq_is_empty(&ifp->if_snd))
1396 (*ifp->if_start)(ifp);
1400 * Stop the adapter and free any mbufs allocated to the
1401 * RX and TX lists.
1403 static void
1404 lge_stop(struct lge_softc *sc)
1406 struct ifnet *ifp = &sc->arpcom.ac_if;
1407 int i;
1409 ifp->if_timer = 0;
1410 callout_stop(&sc->lge_stat_timer);
1411 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1413 /* Disable receiver and transmitter. */
1414 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1415 sc->lge_link = 0;
1418 * Free data in the RX lists.
1420 for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1421 if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1422 m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1423 sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1426 bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1429 * Free the TX list buffers.
1431 for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1432 if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1433 m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1434 sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1438 bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1440 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1444 * Stop all chip I/O so that the kernel's probe routines don't
1445 * get confused by errant DMAs when rebooting.
1447 static void
1448 lge_shutdown(device_t dev)
1450 struct lge_softc *sc = device_get_softc(dev);
1452 lge_reset(sc);
1453 lge_stop(sc);