2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 * Bill Paul <william.paul@windriver.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34 * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.39 2007/08/14 13:30:35 sephe Exp $
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
41 * Written by Bill Paul <william.paul@windriver.com>
46 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49 * are three supported methods for data transfer between host and
50 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51 * Propulsion Technology (tm) DMA. The latter mechanism is a form
52 * of double buffer DMA where the packet data is copied to a
53 * pre-allocated DMA buffer who's physical address has been loaded
54 * into a table at device initialization time. The rationale is that
55 * the virtual to physical address translation needed for normal
56 * scatter/gather DMA is more expensive than the data copy needed
57 * for double buffering. This may be true in Windows NT and the like,
58 * but it isn't true for us, at least on the x86 arch. This driver
59 * uses the scatter/gather I/O method for both TX and RX.
61 * The LXT1001 only supports TCP/IP checksum offload on receive.
62 * Also, the VLAN tagging is done using a 16-entry table which allows
63 * the chip to perform hardware filtering based on VLAN tags. Sadly,
64 * our vlan support doesn't currently play well with this kind of
68 * - Jeff James at Intel, for arranging to have the LXT1001 manual
69 * released (at long last)
70 * - Beny Chen at D-Link, for actually sending it to me
71 * - Brad Short and Keith Alexis at SMC, for sending me sample
72 * SMC9462SX and SMC9462TX adapters for testing
73 * - Paul Saab at Y!, for not killing me (though it remains to be seen
74 * if in fact he did me much of a favor)
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/serialize.h>
85 #include <sys/thread2.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
96 #include <vm/vm.h> /* for vtophys */
97 #include <vm/pmap.h> /* for vtophys */
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
104 #include <bus/pci/pcidevs.h>
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
108 #define LGE_USEIOSPACE
110 #include "if_lgereg.h"
112 /* "controller miibus0" required. See GENERIC if you get errors here. */
113 #include "miibus_if.h"
116 * Various supported device vendors/types and their names.
118 static struct lge_type lge_devs
[] = {
119 { PCI_VENDOR_LEVELONE
, PCI_PRODUCT_LEVELONE_LXT1001
,
120 "Level 1 Gigabit Ethernet" },
124 static int lge_probe(device_t
);
125 static int lge_attach(device_t
);
126 static int lge_detach(device_t
);
128 static int lge_alloc_jumbo_mem(struct lge_softc
*);
129 static void lge_free_jumbo_mem(struct lge_softc
*);
130 static struct lge_jslot
131 *lge_jalloc(struct lge_softc
*);
132 static void lge_jfree(void *);
133 static void lge_jref(void *);
135 static int lge_newbuf(struct lge_softc
*, struct lge_rx_desc
*,
137 static int lge_encap(struct lge_softc
*, struct mbuf
*, uint32_t *);
138 static void lge_rxeof(struct lge_softc
*, int);
139 static void lge_rxeoc(struct lge_softc
*);
140 static void lge_txeof(struct lge_softc
*);
141 static void lge_intr(void *);
142 static void lge_tick(void *);
143 static void lge_tick_serialized(void *);
144 static void lge_start(struct ifnet
*);
145 static int lge_ioctl(struct ifnet
*, u_long
, caddr_t
, struct ucred
*);
146 static void lge_init(void *);
147 static void lge_stop(struct lge_softc
*);
148 static void lge_watchdog(struct ifnet
*);
149 static void lge_shutdown(device_t
);
150 static int lge_ifmedia_upd(struct ifnet
*);
151 static void lge_ifmedia_sts(struct ifnet
*, struct ifmediareq
*);
153 static void lge_eeprom_getword(struct lge_softc
*, int, uint16_t *);
154 static void lge_read_eeprom(struct lge_softc
*, caddr_t
, int, int);
156 static int lge_miibus_readreg(device_t
, int, int);
157 static int lge_miibus_writereg(device_t
, int, int, int);
158 static void lge_miibus_statchg(device_t
);
160 static void lge_setmulti(struct lge_softc
*);
161 static void lge_reset(struct lge_softc
*);
162 static int lge_list_rx_init(struct lge_softc
*);
163 static int lge_list_tx_init(struct lge_softc
*);
165 #ifdef LGE_USEIOSPACE
166 #define LGE_RES SYS_RES_IOPORT
167 #define LGE_RID LGE_PCI_LOIO
169 #define LGE_RES SYS_RES_MEMORY
170 #define LGE_RID LGE_PCI_LOMEM
173 static device_method_t lge_methods
[] = {
174 /* Device interface */
175 DEVMETHOD(device_probe
, lge_probe
),
176 DEVMETHOD(device_attach
, lge_attach
),
177 DEVMETHOD(device_detach
, lge_detach
),
178 DEVMETHOD(device_shutdown
, lge_shutdown
),
181 DEVMETHOD(bus_print_child
, bus_generic_print_child
),
182 DEVMETHOD(bus_driver_added
, bus_generic_driver_added
),
185 DEVMETHOD(miibus_readreg
, lge_miibus_readreg
),
186 DEVMETHOD(miibus_writereg
, lge_miibus_writereg
),
187 DEVMETHOD(miibus_statchg
, lge_miibus_statchg
),
192 static DEFINE_CLASS_0(lge
, lge_driver
, lge_methods
, sizeof(struct lge_softc
));
193 static devclass_t lge_devclass
;
195 DECLARE_DUMMY_MODULE(if_lge
);
196 DRIVER_MODULE(if_lge
, pci
, lge_driver
, lge_devclass
, 0, 0);
197 DRIVER_MODULE(miibus
, lge
, miibus_driver
, miibus_devclass
, 0, 0);
199 #define LGE_SETBIT(sc, reg, x) \
200 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
202 #define LGE_CLRBIT(sc, reg, x) \
203 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
206 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
209 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
212 * Read a word of data stored in the EEPROM at address 'addr.'
215 lge_eeprom_getword(struct lge_softc
*sc
, int addr
, uint16_t *dest
)
220 CSR_WRITE_4(sc
, LGE_EECTL
, LGE_EECTL_CMD_READ
|
221 LGE_EECTL_SINGLEACCESS
| ((addr
>> 1) << 8));
223 for (i
= 0; i
< LGE_TIMEOUT
; i
++) {
224 if ((CSR_READ_4(sc
, LGE_EECTL
) & LGE_EECTL_CMD_READ
) == 0)
228 if (i
== LGE_TIMEOUT
) {
229 kprintf("lge%d: EEPROM read timed out\n", sc
->lge_unit
);
233 val
= CSR_READ_4(sc
, LGE_EEDATA
);
236 *dest
= (val
>> 16) & 0xFFFF;
238 *dest
= val
& 0xFFFF;
242 * Read a sequence of words from the EEPROM.
245 lge_read_eeprom(struct lge_softc
*sc
, caddr_t dest
, int off
, int cnt
)
248 uint16_t word
= 0, *ptr
;
250 for (i
= 0; i
< cnt
; i
++) {
251 lge_eeprom_getword(sc
, off
+ i
, &word
);
252 ptr
= (uint16_t *)(dest
+ (i
* 2));
258 lge_miibus_readreg(device_t dev
, int phy
, int reg
)
260 struct lge_softc
*sc
= device_get_softc(dev
);
264 * If we have a non-PCS PHY, pretend that the internal
265 * autoneg stuff at PHY address 0 isn't there so that
266 * the miibus code will find only the GMII PHY.
268 if (sc
->lge_pcs
== 0 && phy
== 0)
271 CSR_WRITE_4(sc
, LGE_GMIICTL
, (phy
<< 8) | reg
| LGE_GMIICMD_READ
);
273 for (i
= 0; i
< LGE_TIMEOUT
; i
++) {
274 if ((CSR_READ_4(sc
, LGE_GMIICTL
) & LGE_GMIICTL_CMDBUSY
) == 0)
278 if (i
== LGE_TIMEOUT
) {
279 kprintf("lge%d: PHY read timed out\n", sc
->lge_unit
);
283 return(CSR_READ_4(sc
, LGE_GMIICTL
) >> 16);
287 lge_miibus_writereg(device_t dev
, int phy
, int reg
, int data
)
289 struct lge_softc
*sc
= device_get_softc(dev
);
292 CSR_WRITE_4(sc
, LGE_GMIICTL
,
293 (data
<< 16) | (phy
<< 8) | reg
| LGE_GMIICMD_WRITE
);
295 for (i
= 0; i
< LGE_TIMEOUT
; i
++) {
296 if ((CSR_READ_4(sc
, LGE_GMIICTL
) & LGE_GMIICTL_CMDBUSY
) == 0)
300 if (i
== LGE_TIMEOUT
) {
301 kprintf("lge%d: PHY write timed out\n", sc
->lge_unit
);
309 lge_miibus_statchg(device_t dev
)
311 struct lge_softc
*sc
= device_get_softc(dev
);
312 struct mii_data
*mii
= device_get_softc(sc
->lge_miibus
);
314 LGE_CLRBIT(sc
, LGE_GMIIMODE
, LGE_GMIIMODE_SPEED
);
315 switch (IFM_SUBTYPE(mii
->mii_media_active
)) {
318 LGE_SETBIT(sc
, LGE_GMIIMODE
, LGE_SPEED_1000
);
321 LGE_SETBIT(sc
, LGE_GMIIMODE
, LGE_SPEED_100
);
324 LGE_SETBIT(sc
, LGE_GMIIMODE
, LGE_SPEED_10
);
328 * Choose something, even if it's wrong. Clearing
329 * all the bits will hose autoneg on the internal
332 LGE_SETBIT(sc
, LGE_GMIIMODE
, LGE_SPEED_1000
);
336 if ((mii
->mii_media_active
& IFM_GMASK
) == IFM_FDX
)
337 LGE_SETBIT(sc
, LGE_GMIIMODE
, LGE_GMIIMODE_FDX
);
339 LGE_CLRBIT(sc
, LGE_GMIIMODE
, LGE_GMIIMODE_FDX
);
343 lge_setmulti(struct lge_softc
*sc
)
345 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
346 struct ifmultiaddr
*ifma
;
347 uint32_t h
= 0, hashes
[2] = { 0, 0 };
349 /* Make sure multicast hash table is enabled. */
350 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_SETRST_CTL1
| LGE_MODE1_RX_MCAST
);
352 if (ifp
->if_flags
& IFF_ALLMULTI
|| ifp
->if_flags
& IFF_PROMISC
) {
353 CSR_WRITE_4(sc
, LGE_MAR0
, 0xFFFFFFFF);
354 CSR_WRITE_4(sc
, LGE_MAR1
, 0xFFFFFFFF);
358 /* first, zot all the existing hash bits */
359 CSR_WRITE_4(sc
, LGE_MAR0
, 0);
360 CSR_WRITE_4(sc
, LGE_MAR1
, 0);
362 /* now program new ones */
363 LIST_FOREACH(ifma
, &ifp
->if_multiaddrs
, ifma_link
) {
364 if (ifma
->ifma_addr
->sa_family
!= AF_LINK
)
366 h
= ether_crc32_be(LLADDR((struct sockaddr_dl
*)
367 ifma
->ifma_addr
), ETHER_ADDR_LEN
) >> 26;
369 hashes
[0] |= (1 << h
);
371 hashes
[1] |= (1 << (h
- 32));
374 CSR_WRITE_4(sc
, LGE_MAR0
, hashes
[0]);
375 CSR_WRITE_4(sc
, LGE_MAR1
, hashes
[1]);
381 lge_reset(struct lge_softc
*sc
)
385 LGE_SETBIT(sc
, LGE_MODE1
, LGE_MODE1_SETRST_CTL0
| LGE_MODE1_SOFTRST
);
387 for (i
= 0; i
< LGE_TIMEOUT
; i
++) {
388 if ((CSR_READ_4(sc
, LGE_MODE1
) & LGE_MODE1_SOFTRST
) == 0)
392 if (i
== LGE_TIMEOUT
)
393 kprintf("lge%d: reset never completed\n", sc
->lge_unit
);
395 /* Wait a little while for the chip to get its brains in order. */
400 * Probe for a Level 1 chip. Check the PCI vendor and device
401 * IDs against our list and return a device name if we find a match.
404 lge_probe(device_t dev
)
407 uint16_t vendor
, product
;
409 vendor
= pci_get_vendor(dev
);
410 product
= pci_get_device(dev
);
412 for (t
= lge_devs
; t
->lge_name
!= NULL
; t
++) {
413 if (vendor
== t
->lge_vid
&& product
== t
->lge_did
) {
414 device_set_desc(dev
, t
->lge_name
);
423 * Attach the interface. Allocate softc structures, do ifmedia
424 * setup and ethernet/BPF attach.
427 lge_attach(device_t dev
)
429 uint8_t eaddr
[ETHER_ADDR_LEN
];
430 struct lge_softc
*sc
;
432 int unit
, error
= 0, rid
;
434 sc
= device_get_softc(dev
);
435 unit
= device_get_unit(dev
);
436 callout_init(&sc
->lge_stat_timer
);
437 lwkt_serialize_init(&sc
->lge_jslot_serializer
);
440 * Handle power management nonsense.
442 if (pci_get_powerstate(dev
) != PCI_POWERSTATE_D0
) {
443 uint32_t iobase
, membase
, irq
;
445 /* Save important PCI config data. */
446 iobase
= pci_read_config(dev
, LGE_PCI_LOIO
, 4);
447 membase
= pci_read_config(dev
, LGE_PCI_LOMEM
, 4);
448 irq
= pci_read_config(dev
, LGE_PCI_INTLINE
, 4);
450 /* Reset the power state. */
451 device_printf(dev
, "chip is in D%d power mode "
452 "-- setting to D0\n", pci_get_powerstate(dev
));
454 pci_set_powerstate(dev
, PCI_POWERSTATE_D0
);
456 /* Restore PCI config data. */
457 pci_write_config(dev
, LGE_PCI_LOIO
, iobase
, 4);
458 pci_write_config(dev
, LGE_PCI_LOMEM
, membase
, 4);
459 pci_write_config(dev
, LGE_PCI_INTLINE
, irq
, 4);
462 pci_enable_busmaster(dev
);
465 sc
->lge_res
= bus_alloc_resource_any(dev
, LGE_RES
, &rid
, RF_ACTIVE
);
467 if (sc
->lge_res
== NULL
) {
468 kprintf("lge%d: couldn't map ports/memory\n", unit
);
473 sc
->lge_btag
= rman_get_bustag(sc
->lge_res
);
474 sc
->lge_bhandle
= rman_get_bushandle(sc
->lge_res
);
476 /* Allocate interrupt */
478 sc
->lge_irq
= bus_alloc_resource_any(dev
, SYS_RES_IRQ
, &rid
,
479 RF_SHAREABLE
| RF_ACTIVE
);
481 if (sc
->lge_irq
== NULL
) {
482 kprintf("lge%d: couldn't map interrupt\n", unit
);
487 /* Reset the adapter. */
491 * Get station address from the EEPROM.
493 lge_read_eeprom(sc
, (caddr_t
)&eaddr
[0], LGE_EE_NODEADDR_0
, 1);
494 lge_read_eeprom(sc
, (caddr_t
)&eaddr
[2], LGE_EE_NODEADDR_1
, 1);
495 lge_read_eeprom(sc
, (caddr_t
)&eaddr
[4], LGE_EE_NODEADDR_2
, 1);
499 sc
->lge_ldata
= contigmalloc(sizeof(struct lge_list_data
), M_DEVBUF
,
500 M_WAITOK
, 0, 0xffffffff, PAGE_SIZE
, 0);
502 if (sc
->lge_ldata
== NULL
) {
503 kprintf("lge%d: no memory for list buffers!\n", unit
);
507 bzero(sc
->lge_ldata
, sizeof(struct lge_list_data
));
509 /* Try to allocate memory for jumbo buffers. */
510 if (lge_alloc_jumbo_mem(sc
)) {
511 kprintf("lge%d: jumbo buffer allocation failed\n",
517 ifp
= &sc
->arpcom
.ac_if
;
519 if_initname(ifp
, "lge", unit
);
520 ifp
->if_mtu
= ETHERMTU
;
521 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
522 ifp
->if_ioctl
= lge_ioctl
;
523 ifp
->if_start
= lge_start
;
524 ifp
->if_watchdog
= lge_watchdog
;
525 ifp
->if_init
= lge_init
;
526 ifp
->if_baudrate
= 1000000000;
527 ifq_set_maxlen(&ifp
->if_snd
, LGE_TX_LIST_CNT
- 1);
528 ifq_set_ready(&ifp
->if_snd
);
529 ifp
->if_capabilities
= IFCAP_RXCSUM
;
530 ifp
->if_capenable
= ifp
->if_capabilities
;
532 if (CSR_READ_4(sc
, LGE_GMIIMODE
) & LGE_GMIIMODE_PCSENH
)
540 if (mii_phy_probe(dev
, &sc
->lge_miibus
,
541 lge_ifmedia_upd
, lge_ifmedia_sts
)) {
542 kprintf("lge%d: MII without any PHY!\n", sc
->lge_unit
);
548 * Call MI attach routine.
550 ether_ifattach(ifp
, eaddr
, NULL
);
552 error
= bus_setup_intr(dev
, sc
->lge_irq
, INTR_NETSAFE
,
553 lge_intr
, sc
, &sc
->lge_intrhand
,
557 kprintf("lge%d: couldn't set up irq\n", unit
);
569 lge_detach(device_t dev
)
571 struct lge_softc
*sc
= device_get_softc(dev
);
572 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
574 if (device_is_attached(dev
)) {
575 lwkt_serialize_enter(ifp
->if_serializer
);
578 bus_teardown_intr(dev
, sc
->lge_irq
, sc
->lge_intrhand
);
579 lwkt_serialize_exit(ifp
->if_serializer
);
585 device_delete_child(dev
, sc
->lge_miibus
);
586 bus_generic_detach(dev
);
589 bus_release_resource(dev
, SYS_RES_IRQ
, 0, sc
->lge_irq
);
591 bus_release_resource(dev
, LGE_RES
, LGE_RID
, sc
->lge_res
);
594 contigfree(sc
->lge_ldata
, sizeof(struct lge_list_data
),
596 lge_free_jumbo_mem(sc
);
602 * Initialize the transmit descriptors.
605 lge_list_tx_init(struct lge_softc
*sc
)
607 struct lge_list_data
*ld
;
608 struct lge_ring_data
*cd
;
613 for (i
= 0; i
< LGE_TX_LIST_CNT
; i
++) {
614 ld
->lge_tx_list
[i
].lge_mbuf
= NULL
;
615 ld
->lge_tx_list
[i
].lge_ctl
= 0;
618 cd
->lge_tx_prod
= cd
->lge_tx_cons
= 0;
625 * Initialize the RX descriptors and allocate mbufs for them. Note that
626 * we arralge the descriptors in a closed ring, so that the last descriptor
627 * points back to the first.
630 lge_list_rx_init(struct lge_softc
*sc
)
632 struct lge_list_data
*ld
;
633 struct lge_ring_data
*cd
;
639 cd
->lge_rx_prod
= cd
->lge_rx_cons
= 0;
641 CSR_WRITE_4(sc
, LGE_RXDESC_ADDR_HI
, 0);
643 for (i
= 0; i
< LGE_RX_LIST_CNT
; i
++) {
644 if (CSR_READ_1(sc
, LGE_RXCMDFREE_8BIT
) == 0)
646 if (lge_newbuf(sc
, &ld
->lge_rx_list
[i
], NULL
) == ENOBUFS
)
650 /* Clear possible 'rx command queue empty' interrupt. */
651 CSR_READ_4(sc
, LGE_ISR
);
657 * Initialize an RX descriptor and attach an MBUF cluster.
660 lge_newbuf(struct lge_softc
*sc
, struct lge_rx_desc
*c
, struct mbuf
*m
)
662 struct mbuf
*m_new
= NULL
;
663 struct lge_jslot
*buf
;
666 MGETHDR(m_new
, MB_DONTWAIT
, MT_DATA
);
668 kprintf("lge%d: no memory for rx list "
669 "-- packet dropped!\n", sc
->lge_unit
);
673 /* Allocate the jumbo buffer */
674 buf
= lge_jalloc(sc
);
677 kprintf("lge%d: jumbo allocation failed "
678 "-- packet dropped!\n", sc
->lge_unit
);
683 /* Attach the buffer to the mbuf */
684 m_new
->m_ext
.ext_arg
= buf
;
685 m_new
->m_ext
.ext_buf
= buf
->lge_buf
;
686 m_new
->m_ext
.ext_free
= lge_jfree
;
687 m_new
->m_ext
.ext_ref
= lge_jref
;
688 m_new
->m_ext
.ext_size
= LGE_JUMBO_FRAMELEN
;
690 m_new
->m_data
= m_new
->m_ext
.ext_buf
;
691 m_new
->m_flags
|= M_EXT
;
692 m_new
->m_len
= m_new
->m_pkthdr
.len
= m_new
->m_ext
.ext_size
;
695 m_new
->m_len
= m_new
->m_pkthdr
.len
= LGE_JLEN
;
696 m_new
->m_data
= m_new
->m_ext
.ext_buf
;
700 * Adjust alignment so packet payload begins on a
701 * longword boundary. Mandatory for Alpha, useful on
704 m_adj(m_new
, ETHER_ALIGN
);
707 c
->lge_fragptr_hi
= 0;
708 c
->lge_fragptr_lo
= vtophys(mtod(m_new
, caddr_t
));
709 c
->lge_fraglen
= m_new
->m_len
;
710 c
->lge_ctl
= m_new
->m_len
| LGE_RXCTL_WANTINTR
| LGE_FRAGCNT(1);
714 * Put this buffer in the RX command FIFO. To do this,
715 * we just write the physical address of the descriptor
716 * into the RX descriptor address registers. Note that
717 * there are two registers, one high DWORD and one low
718 * DWORD, which lets us specify a 64-bit address if
719 * desired. We only use a 32-bit address for now.
720 * Writing to the low DWORD register is what actually
721 * causes the command to be issued, so we do that
724 CSR_WRITE_4(sc
, LGE_RXDESC_ADDR_LO
, vtophys(c
));
725 LGE_INC(sc
->lge_cdata
.lge_rx_prod
, LGE_RX_LIST_CNT
);
731 lge_alloc_jumbo_mem(struct lge_softc
*sc
)
733 struct lge_jslot
*entry
;
737 /* Grab a big chunk o' storage. */
738 sc
->lge_cdata
.lge_jumbo_buf
= contigmalloc(LGE_JMEM
, M_DEVBUF
,
739 M_WAITOK
, 0, 0xffffffff, PAGE_SIZE
, 0);
741 if (sc
->lge_cdata
.lge_jumbo_buf
== NULL
) {
742 kprintf("lge%d: no memory for jumbo buffers!\n", sc
->lge_unit
);
746 SLIST_INIT(&sc
->lge_jfree_listhead
);
749 * Now divide it up into 9K pieces and save the addresses
752 ptr
= sc
->lge_cdata
.lge_jumbo_buf
;
753 for (i
= 0; i
< LGE_JSLOTS
; i
++) {
754 entry
= &sc
->lge_cdata
.lge_jslots
[i
];
756 entry
->lge_buf
= ptr
;
757 entry
->lge_inuse
= 0;
759 SLIST_INSERT_HEAD(&sc
->lge_jfree_listhead
, entry
, jslot_link
);
767 lge_free_jumbo_mem(struct lge_softc
*sc
)
769 if (sc
->lge_cdata
.lge_jumbo_buf
)
770 contigfree(sc
->lge_cdata
.lge_jumbo_buf
, LGE_JMEM
, M_DEVBUF
);
774 * Allocate a jumbo buffer.
776 static struct lge_jslot
*
777 lge_jalloc(struct lge_softc
*sc
)
779 struct lge_jslot
*entry
;
781 lwkt_serialize_enter(&sc
->lge_jslot_serializer
);
782 entry
= SLIST_FIRST(&sc
->lge_jfree_listhead
);
784 SLIST_REMOVE_HEAD(&sc
->lge_jfree_listhead
, jslot_link
);
785 entry
->lge_inuse
= 1;
788 kprintf("lge%d: no free jumbo buffers\n", sc
->lge_unit
);
791 lwkt_serialize_exit(&sc
->lge_jslot_serializer
);
796 * Adjust usage count on a jumbo buffer. In general this doesn't
797 * get used much because our jumbo buffers don't get passed around
798 * a lot, but it's implemented for correctness.
803 struct lge_jslot
*entry
= (struct lge_jslot
*)arg
;
804 struct lge_softc
*sc
= entry
->lge_sc
;
806 if (&sc
->lge_cdata
.lge_jslots
[entry
->lge_slot
] != entry
)
807 panic("lge_jref: asked to reference buffer "
808 "that we don't manage!");
809 else if (entry
->lge_inuse
== 0)
810 panic("lge_jref: buffer already free!");
812 atomic_add_int(&entry
->lge_inuse
, 1);
816 * Release a jumbo buffer.
821 struct lge_jslot
*entry
= (struct lge_jslot
*)arg
;
822 struct lge_softc
*sc
= entry
->lge_sc
;
825 panic("lge_jfree: can't find softc pointer!");
827 if (&sc
->lge_cdata
.lge_jslots
[entry
->lge_slot
] != entry
) {
828 panic("lge_jfree: asked to free buffer that we don't manage!");
829 } else if (entry
->lge_inuse
== 0) {
830 panic("lge_jfree: buffer already free!");
832 lwkt_serialize_enter(&sc
->lge_jslot_serializer
);
833 atomic_subtract_int(&entry
->lge_inuse
, 1);
834 if (entry
->lge_inuse
== 0) {
835 SLIST_INSERT_HEAD(&sc
->lge_jfree_listhead
,
838 lwkt_serialize_exit(&sc
->lge_jslot_serializer
);
843 * A frame has been uploaded: pass the resulting mbuf chain up to
844 * the higher level protocols.
847 lge_rxeof(struct lge_softc
*sc
, int cnt
)
849 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
851 struct lge_rx_desc
*cur_rx
;
852 int c
, i
, total_len
= 0;
853 uint32_t rxsts
, rxctl
;
856 /* Find out how many frames were processed. */
858 i
= sc
->lge_cdata
.lge_rx_cons
;
862 struct mbuf
*m0
= NULL
;
864 cur_rx
= &sc
->lge_ldata
->lge_rx_list
[i
];
865 rxctl
= cur_rx
->lge_ctl
;
866 rxsts
= cur_rx
->lge_sts
;
867 m
= cur_rx
->lge_mbuf
;
868 cur_rx
->lge_mbuf
= NULL
;
869 total_len
= LGE_RXBYTES(cur_rx
);
870 LGE_INC(i
, LGE_RX_LIST_CNT
);
874 * If an error occurs, update stats, clear the
875 * status word and leave the mbuf cluster in place:
876 * it should simply get re-used next time this descriptor
877 * comes up in the ring.
879 if (rxctl
& LGE_RXCTL_ERRMASK
) {
881 lge_newbuf(sc
, &LGE_RXTAIL(sc
), m
);
885 if (lge_newbuf(sc
, &LGE_RXTAIL(sc
), NULL
) == ENOBUFS
) {
886 m0
= m_devget(mtod(m
, char *) - ETHER_ALIGN
,
887 total_len
+ ETHER_ALIGN
, 0, ifp
, NULL
);
888 lge_newbuf(sc
, &LGE_RXTAIL(sc
), m
);
890 kprintf("lge%d: no receive buffers "
891 "available -- packet dropped!\n",
896 m_adj(m0
, ETHER_ALIGN
);
899 m
->m_pkthdr
.rcvif
= ifp
;
900 m
->m_pkthdr
.len
= m
->m_len
= total_len
;
905 /* Do IP checksum checking. */
906 if (rxsts
& LGE_RXSTS_ISIP
)
907 m
->m_pkthdr
.csum_flags
|= CSUM_IP_CHECKED
;
908 if (!(rxsts
& LGE_RXSTS_IPCSUMERR
))
909 m
->m_pkthdr
.csum_flags
|= CSUM_IP_VALID
;
910 if ((rxsts
& LGE_RXSTS_ISTCP
&&
911 !(rxsts
& LGE_RXSTS_TCPCSUMERR
)) ||
912 (rxsts
& LGE_RXSTS_ISUDP
&&
913 !(rxsts
& LGE_RXSTS_UDPCSUMERR
))) {
914 m
->m_pkthdr
.csum_flags
|=
915 CSUM_DATA_VALID
|CSUM_PSEUDO_HDR
|
916 CSUM_FRAG_NOT_CHECKED
;
917 m
->m_pkthdr
.csum_data
= 0xffff;
920 ifp
->if_input(ifp
, m
);
923 sc
->lge_cdata
.lge_rx_cons
= i
;
927 lge_rxeoc(struct lge_softc
*sc
)
929 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
931 ifp
->if_flags
&= ~IFF_RUNNING
;
936 * A frame was downloaded to the chip. It's safe for us to clean up
940 lge_txeof(struct lge_softc
*sc
)
942 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
943 struct lge_tx_desc
*cur_tx
= NULL
;
944 uint32_t idx
, txdone
;
946 /* Clear the timeout timer. */
950 * Go through our tx list and free mbufs for those
951 * frames that have been transmitted.
953 idx
= sc
->lge_cdata
.lge_tx_cons
;
954 txdone
= CSR_READ_1(sc
, LGE_TXDMADONE_8BIT
);
956 while (idx
!= sc
->lge_cdata
.lge_tx_prod
&& txdone
) {
957 cur_tx
= &sc
->lge_ldata
->lge_tx_list
[idx
];
960 if (cur_tx
->lge_mbuf
!= NULL
) {
961 m_freem(cur_tx
->lge_mbuf
);
962 cur_tx
->lge_mbuf
= NULL
;
967 LGE_INC(idx
, LGE_TX_LIST_CNT
);
971 sc
->lge_cdata
.lge_tx_cons
= idx
;
974 ifp
->if_flags
&= ~IFF_OACTIVE
;
980 struct lge_softc
*sc
= xsc
;
981 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
983 lwkt_serialize_enter(ifp
->if_serializer
);
984 lge_tick_serialized(xsc
);
985 lwkt_serialize_exit(ifp
->if_serializer
);
989 lge_tick_serialized(void *xsc
)
991 struct lge_softc
*sc
= xsc
;
992 struct mii_data
*mii
;
993 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
995 CSR_WRITE_4(sc
, LGE_STATSIDX
, LGE_STATS_SINGLE_COLL_PKTS
);
996 ifp
->if_collisions
+= CSR_READ_4(sc
, LGE_STATSVAL
);
997 CSR_WRITE_4(sc
, LGE_STATSIDX
, LGE_STATS_MULTI_COLL_PKTS
);
998 ifp
->if_collisions
+= CSR_READ_4(sc
, LGE_STATSVAL
);
1000 if (!sc
->lge_link
) {
1001 mii
= device_get_softc(sc
->lge_miibus
);
1004 if (mii
->mii_media_status
& IFM_ACTIVE
&&
1005 IFM_SUBTYPE(mii
->mii_media_active
) != IFM_NONE
) {
1007 if (IFM_SUBTYPE(mii
->mii_media_active
) == IFM_1000_SX
||
1008 IFM_SUBTYPE(mii
->mii_media_active
) == IFM_1000_T
)
1009 kprintf("lge%d: gigabit link up\n",
1011 if (!ifq_is_empty(&ifp
->if_snd
))
1012 (*ifp
->if_start
)(ifp
);
1016 callout_reset(&sc
->lge_stat_timer
, hz
, lge_tick
, sc
);
1022 struct lge_softc
*sc
= arg
;
1023 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
1026 /* Supress unwanted interrupts */
1027 if ((ifp
->if_flags
& IFF_UP
) == 0) {
1034 * Reading the ISR register clears all interrupts, and
1035 * clears the 'interrupts enabled' bit in the IMR
1038 status
= CSR_READ_4(sc
, LGE_ISR
);
1040 if ((status
& LGE_INTRS
) == 0)
1043 if ((status
& (LGE_ISR_TXCMDFIFO_EMPTY
|LGE_ISR_TXDMA_DONE
)))
1046 if (status
& LGE_ISR_RXDMA_DONE
)
1047 lge_rxeof(sc
, LGE_RX_DMACNT(status
));
1049 if (status
& LGE_ISR_RXCMDFIFO_EMPTY
)
1052 if (status
& LGE_ISR_PHY_INTR
) {
1054 callout_stop(&sc
->lge_stat_timer
);
1055 lge_tick_serialized(sc
);
1059 /* Re-enable interrupts. */
1060 CSR_WRITE_4(sc
, LGE_IMR
, LGE_IMR_SETRST_CTL0
|LGE_IMR_INTR_ENB
);
1062 if (!ifq_is_empty(&ifp
->if_snd
))
1063 (*ifp
->if_start
)(ifp
);
1067 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1068 * pointers to the fragment pointers.
1071 lge_encap(struct lge_softc
*sc
, struct mbuf
*m_head
, uint32_t *txidx
)
1073 struct lge_frag
*f
= NULL
;
1074 struct lge_tx_desc
*cur_tx
;
1076 int frag
= 0, tot_len
= 0;
1079 * Start packing the mbufs in this chain into
1080 * the fragment pointers. Stop when we run out
1081 * of fragments or hit the end of the mbuf chain.
1084 cur_tx
= &sc
->lge_ldata
->lge_tx_list
[*txidx
];
1087 for (m
= m_head
; m
!= NULL
; m
= m
->m_next
) {
1088 if (m
->m_len
!= 0) {
1089 tot_len
+= m
->m_len
;
1090 f
= &cur_tx
->lge_frags
[frag
];
1091 f
->lge_fraglen
= m
->m_len
;
1092 f
->lge_fragptr_lo
= vtophys(mtod(m
, vm_offset_t
));
1093 f
->lge_fragptr_hi
= 0;
1101 cur_tx
->lge_mbuf
= m_head
;
1102 cur_tx
->lge_ctl
= LGE_TXCTL_WANTINTR
|LGE_FRAGCNT(frag
)|tot_len
;
1103 LGE_INC((*txidx
), LGE_TX_LIST_CNT
);
1105 /* Queue for transmit */
1106 CSR_WRITE_4(sc
, LGE_TXDESC_ADDR_LO
, vtophys(cur_tx
));
1112 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1113 * to the mbuf data regions directly in the transmit lists. We also save a
1114 * copy of the pointers since the transmit list fragment pointers are
1115 * physical addresses.
1119 lge_start(struct ifnet
*ifp
)
1121 struct lge_softc
*sc
= ifp
->if_softc
;
1122 struct mbuf
*m_head
= NULL
;
1129 idx
= sc
->lge_cdata
.lge_tx_prod
;
1131 if (ifp
->if_flags
& IFF_OACTIVE
)
1135 while(sc
->lge_ldata
->lge_tx_list
[idx
].lge_mbuf
== NULL
) {
1136 if (CSR_READ_1(sc
, LGE_TXCMDFREE_8BIT
) == 0)
1139 m_head
= ifq_poll(&ifp
->if_snd
);
1143 if (lge_encap(sc
, m_head
, &idx
)) {
1144 ifp
->if_flags
|= IFF_OACTIVE
;
1147 ifq_dequeue(&ifp
->if_snd
, m_head
);
1150 BPF_MTAP(ifp
, m_head
);
1156 sc
->lge_cdata
.lge_tx_prod
= idx
;
1159 * Set a timeout in case the chip goes out to lunch.
1167 struct lge_softc
*sc
= xsc
;
1168 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
1169 struct mii_data
*mii
;
1171 if (ifp
->if_flags
& IFF_RUNNING
)
1175 * Cancel pending I/O and free all RX/TX buffers.
1180 mii
= device_get_softc(sc
->lge_miibus
);
1182 /* Set MAC address */
1183 CSR_WRITE_4(sc
, LGE_PAR0
, *(uint32_t *)(&sc
->arpcom
.ac_enaddr
[0]));
1184 CSR_WRITE_4(sc
, LGE_PAR1
, *(uint32_t *)(&sc
->arpcom
.ac_enaddr
[4]));
1186 /* Init circular RX list. */
1187 if (lge_list_rx_init(sc
) == ENOBUFS
) {
1188 kprintf("lge%d: initialization failed: no "
1189 "memory for rx buffers\n", sc
->lge_unit
);
1195 * Init tx descriptors.
1197 lge_list_tx_init(sc
);
1199 /* Set initial value for MODE1 register. */
1200 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_RX_UCAST
|
1201 LGE_MODE1_TX_CRC
| LGE_MODE1_TXPAD
|
1202 LGE_MODE1_RX_FLOWCTL
| LGE_MODE1_SETRST_CTL0
|
1203 LGE_MODE1_SETRST_CTL1
| LGE_MODE1_SETRST_CTL2
);
1205 /* If we want promiscuous mode, set the allframes bit. */
1206 if (ifp
->if_flags
& IFF_PROMISC
) {
1207 CSR_WRITE_4(sc
, LGE_MODE1
,
1208 LGE_MODE1_SETRST_CTL1
| LGE_MODE1_RX_PROMISC
);
1210 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_RX_PROMISC
);
1214 * Set the capture broadcast bit to capture broadcast frames.
1216 if (ifp
->if_flags
& IFF_BROADCAST
) {
1217 CSR_WRITE_4(sc
, LGE_MODE1
,
1218 LGE_MODE1_SETRST_CTL1
| LGE_MODE1_RX_BCAST
);
1220 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_RX_BCAST
);
1223 /* Packet padding workaround? */
1224 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_SETRST_CTL1
|LGE_MODE1_RMVPAD
);
1226 /* No error frames */
1227 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_RX_ERRPKTS
);
1229 /* Receive large frames */
1230 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_SETRST_CTL1
| LGE_MODE1_RX_GIANTS
);
1232 /* Workaround: disable RX/TX flow control */
1233 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_TX_FLOWCTL
);
1234 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_RX_FLOWCTL
);
1236 /* Make sure to strip CRC from received frames */
1237 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_RX_CRC
);
1239 /* Turn off magic packet mode */
1240 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_MPACK_ENB
);
1242 /* Turn off all VLAN stuff */
1243 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_VLAN_RX
| LGE_MODE1_VLAN_TX
|
1244 LGE_MODE1_VLAN_STRIP
| LGE_MODE1_VLAN_INSERT
);
1246 /* Workarond: FIFO overflow */
1247 CSR_WRITE_2(sc
, LGE_RXFIFO_HIWAT
, 0x3FFF);
1248 CSR_WRITE_4(sc
, LGE_IMR
, LGE_IMR_SETRST_CTL1
|LGE_IMR_RXFIFO_WAT
);
1251 * Load the multicast filter.
1256 * Enable hardware checksum validation for all received IPv4
1257 * packets, do not reject packets with bad checksums.
1259 CSR_WRITE_4(sc
, LGE_MODE2
, LGE_MODE2_RX_IPCSUM
|
1260 LGE_MODE2_RX_TCPCSUM
| LGE_MODE2_RX_UDPCSUM
|
1261 LGE_MODE2_RX_ERRCSUM
);
1264 * Enable the delivery of PHY interrupts based on
1265 * link/speed/duplex status chalges.
1267 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_SETRST_CTL0
| LGE_MODE1_GMIIPOLL
);
1269 /* Enable receiver and transmitter. */
1270 CSR_WRITE_4(sc
, LGE_RXDESC_ADDR_HI
, 0);
1271 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_SETRST_CTL1
| LGE_MODE1_RX_ENB
);
1273 CSR_WRITE_4(sc
, LGE_TXDESC_ADDR_HI
, 0);
1274 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_SETRST_CTL1
| LGE_MODE1_TX_ENB
);
1277 * Enable interrupts.
1279 CSR_WRITE_4(sc
, LGE_IMR
, LGE_IMR_SETRST_CTL0
|
1280 LGE_IMR_SETRST_CTL1
| LGE_IMR_INTR_ENB
|LGE_INTRS
);
1282 lge_ifmedia_upd(ifp
);
1284 ifp
->if_flags
|= IFF_RUNNING
;
1285 ifp
->if_flags
&= ~IFF_OACTIVE
;
1287 callout_reset(&sc
->lge_stat_timer
, hz
, lge_tick
, sc
);
1291 * Set media options.
1294 lge_ifmedia_upd(struct ifnet
*ifp
)
1296 struct lge_softc
*sc
= ifp
->if_softc
;
1297 struct mii_data
*mii
= device_get_softc(sc
->lge_miibus
);
1300 if (mii
->mii_instance
) {
1301 struct mii_softc
*miisc
;
1302 LIST_FOREACH(miisc
, &mii
->mii_phys
, mii_list
)
1303 mii_phy_reset(miisc
);
1311 * Report current media status.
1314 lge_ifmedia_sts(struct ifnet
*ifp
, struct ifmediareq
*ifmr
)
1316 struct lge_softc
*sc
= ifp
->if_softc
;
1317 struct mii_data
*mii
;
1319 mii
= device_get_softc(sc
->lge_miibus
);
1321 ifmr
->ifm_active
= mii
->mii_media_active
;
1322 ifmr
->ifm_status
= mii
->mii_media_status
;
1326 lge_ioctl(struct ifnet
*ifp
, u_long command
, caddr_t data
, struct ucred
*cr
)
1328 struct lge_softc
*sc
= ifp
->if_softc
;
1329 struct ifreq
*ifr
= (struct ifreq
*) data
;
1330 struct mii_data
*mii
;
1335 if (ifr
->ifr_mtu
> LGE_JUMBO_MTU
)
1338 ifp
->if_mtu
= ifr
->ifr_mtu
;
1341 if (ifp
->if_flags
& IFF_UP
) {
1342 if (ifp
->if_flags
& IFF_RUNNING
&&
1343 ifp
->if_flags
& IFF_PROMISC
&&
1344 !(sc
->lge_if_flags
& IFF_PROMISC
)) {
1345 CSR_WRITE_4(sc
, LGE_MODE1
,
1346 LGE_MODE1_SETRST_CTL1
|
1347 LGE_MODE1_RX_PROMISC
);
1348 } else if (ifp
->if_flags
& IFF_RUNNING
&&
1349 !(ifp
->if_flags
& IFF_PROMISC
) &&
1350 sc
->lge_if_flags
& IFF_PROMISC
) {
1351 CSR_WRITE_4(sc
, LGE_MODE1
,
1352 LGE_MODE1_RX_PROMISC
);
1354 ifp
->if_flags
&= ~IFF_RUNNING
;
1358 if (ifp
->if_flags
& IFF_RUNNING
)
1361 sc
->lge_if_flags
= ifp
->if_flags
;
1371 mii
= device_get_softc(sc
->lge_miibus
);
1372 error
= ifmedia_ioctl(ifp
, ifr
, &mii
->mii_media
, command
);
1375 error
= ether_ioctl(ifp
, command
, data
);
1383 lge_watchdog(struct ifnet
*ifp
)
1385 struct lge_softc
*sc
= ifp
->if_softc
;
1388 kprintf("lge%d: watchdog timeout\n", sc
->lge_unit
);
1392 ifp
->if_flags
&= ~IFF_RUNNING
;
1395 if (!ifq_is_empty(&ifp
->if_snd
))
1396 (*ifp
->if_start
)(ifp
);
1400 * Stop the adapter and free any mbufs allocated to the
1404 lge_stop(struct lge_softc
*sc
)
1406 struct ifnet
*ifp
= &sc
->arpcom
.ac_if
;
1410 callout_stop(&sc
->lge_stat_timer
);
1411 CSR_WRITE_4(sc
, LGE_IMR
, LGE_IMR_INTR_ENB
);
1413 /* Disable receiver and transmitter. */
1414 CSR_WRITE_4(sc
, LGE_MODE1
, LGE_MODE1_RX_ENB
|LGE_MODE1_TX_ENB
);
1418 * Free data in the RX lists.
1420 for (i
= 0; i
< LGE_RX_LIST_CNT
; i
++) {
1421 if (sc
->lge_ldata
->lge_rx_list
[i
].lge_mbuf
!= NULL
) {
1422 m_freem(sc
->lge_ldata
->lge_rx_list
[i
].lge_mbuf
);
1423 sc
->lge_ldata
->lge_rx_list
[i
].lge_mbuf
= NULL
;
1426 bzero(&sc
->lge_ldata
->lge_rx_list
, sizeof(sc
->lge_ldata
->lge_rx_list
));
1429 * Free the TX list buffers.
1431 for (i
= 0; i
< LGE_TX_LIST_CNT
; i
++) {
1432 if (sc
->lge_ldata
->lge_tx_list
[i
].lge_mbuf
!= NULL
) {
1433 m_freem(sc
->lge_ldata
->lge_tx_list
[i
].lge_mbuf
);
1434 sc
->lge_ldata
->lge_tx_list
[i
].lge_mbuf
= NULL
;
1438 bzero(&sc
->lge_ldata
->lge_tx_list
, sizeof(sc
->lge_ldata
->lge_tx_list
));
1440 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
1444 * Stop all chip I/O so that the kernel's probe routines don't
1445 * get confused by errant DMAs when rebooting.
1448 lge_shutdown(device_t dev
)
1450 struct lge_softc
*sc
= device_get_softc(dev
);