Add a new csum flag to tell IP defragmenter that csum_data does _not_
[dragonfly/port-amd64.git] / sys / dev / netif / gx / if_gx.c
blob4e015095be2ec67b6ef1f4ca6a66689704d50908
1 /*-
2 * Copyright (c) 1999,2000,2001 Jonathan Lemon
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/dev/gx/if_gx.c,v 1.2.2.3 2001/12/14 19:51:39 jlemon Exp $
30 * $DragonFly: src/sys/dev/netif/gx/if_gx.c,v 1.28 2007/08/14 13:30:35 sephe Exp $
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/serialize.h>
42 #include <sys/bus.h>
43 #include <sys/rman.h>
44 #include <sys/thread2.h>
46 #include <net/if.h>
47 #include <net/ifq_var.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
53 #include <net/bpf.h>
54 #include <net/if_types.h>
55 #include <net/vlan/if_vlan_var.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
63 #include <vm/vm.h> /* for vtophys */
64 #include <vm/pmap.h> /* for vtophys */
65 #include <machine/clock.h> /* for DELAY */
67 #include <bus/pci/pcidevs.h>
68 #include <bus/pci/pcireg.h>
69 #include <bus/pci/pcivar.h>
71 #include "../mii_layer/mii.h"
72 #include "../mii_layer/miivar.h"
74 #include "if_gxreg.h"
75 #include "if_gxvar.h"
77 #include "miibus_if.h"
79 #define TUNABLE_TX_INTR_DELAY 100
80 #define TUNABLE_RX_INTR_DELAY 100
82 #define GX_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
85 * Various supported device vendors/types and their names.
87 struct gx_device {
88 u_int16_t vendor;
89 u_int16_t device;
90 int version_flags;
91 u_int32_t version_ipg;
92 char *name;
95 static struct gx_device gx_devs[] = {
96 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
97 GXF_FORCE_TBI | GXF_OLD_REGS,
98 10 | 2 << 10 | 10 << 20,
99 "Intel Gigabit Ethernet (82542)" },
100 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
101 GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
102 6 | 8 << 10 | 6 << 20,
103 "Intel Gigabit Ethernet (82543GC-F)" },
104 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
105 GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
106 8 | 8 << 10 | 6 << 20,
107 "Intel Gigabit Ethernet (82543GC-T)" },
108 #if 0
109 /* notyet.. */
110 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
111 GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
112 6 | 8 << 10 | 6 << 20,
113 "Intel Gigabit Ethernet (82544EI-F)" },
114 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
115 GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
116 8 | 8 << 10 | 6 << 20,
117 "Intel Gigabit Ethernet (82544EI-T)" },
118 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
119 GXF_DMA | GXF_ENABLE_MWI | GXF_CSUM,
120 8 | 8 << 10 | 6 << 20,
121 "Intel Gigabit Ethernet (82544GC-T)" },
122 #endif
123 { 0, 0, 0, NULL }
126 static struct gx_regs new_regs = {
127 GX_RX_RING_BASE, GX_RX_RING_LEN,
128 GX_RX_RING_HEAD, GX_RX_RING_TAIL,
129 GX_RX_INTR_DELAY, GX_RX_DMA_CTRL,
131 GX_TX_RING_BASE, GX_TX_RING_LEN,
132 GX_TX_RING_HEAD, GX_TX_RING_TAIL,
133 GX_TX_INTR_DELAY, GX_TX_DMA_CTRL,
135 static struct gx_regs old_regs = {
136 GX_RX_OLD_RING_BASE, GX_RX_OLD_RING_LEN,
137 GX_RX_OLD_RING_HEAD, GX_RX_OLD_RING_TAIL,
138 GX_RX_OLD_INTR_DELAY, GX_RX_OLD_DMA_CTRL,
140 GX_TX_OLD_RING_BASE, GX_TX_OLD_RING_LEN,
141 GX_TX_OLD_RING_HEAD, GX_TX_OLD_RING_TAIL,
142 GX_TX_OLD_INTR_DELAY, GX_TX_OLD_DMA_CTRL,
145 static int gx_probe(device_t dev);
146 static int gx_attach(device_t dev);
147 static int gx_detach(device_t dev);
148 static void gx_shutdown(device_t dev);
150 static void gx_intr(void *xsc);
151 static void gx_init(void *xsc);
153 static struct gx_device *gx_match(device_t dev);
154 static void gx_eeprom_getword(struct gx_softc *gx, int addr,
155 u_int16_t *dest);
156 static int gx_read_eeprom(struct gx_softc *gx, caddr_t dest, int off,
157 int cnt);
158 static int gx_ifmedia_upd(struct ifnet *ifp);
159 static void gx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
160 static int gx_miibus_readreg(device_t dev, int phy, int reg);
161 static void gx_miibus_writereg(device_t dev, int phy, int reg, int value);
162 static void gx_miibus_statchg(device_t dev);
163 static int gx_ioctl(struct ifnet *ifp, u_long command, caddr_t data,
164 struct ucred *);
165 static void gx_setmulti(struct gx_softc *gx);
166 static void gx_reset(struct gx_softc *gx);
167 static void gx_phy_reset(struct gx_softc *gx);
168 static void gx_stop(struct gx_softc *gx);
169 static void gx_watchdog(struct ifnet *ifp);
170 static void gx_start(struct ifnet *ifp);
172 static int gx_init_rx_ring(struct gx_softc *gx);
173 static void gx_free_rx_ring(struct gx_softc *gx);
174 static int gx_init_tx_ring(struct gx_softc *gx);
175 static void gx_free_tx_ring(struct gx_softc *gx);
177 static device_method_t gx_methods[] = {
178 /* Device interface */
179 DEVMETHOD(device_probe, gx_probe),
180 DEVMETHOD(device_attach, gx_attach),
181 DEVMETHOD(device_detach, gx_detach),
182 DEVMETHOD(device_shutdown, gx_shutdown),
184 /* MII interface */
185 DEVMETHOD(miibus_readreg, gx_miibus_readreg),
186 DEVMETHOD(miibus_writereg, gx_miibus_writereg),
187 DEVMETHOD(miibus_statchg, gx_miibus_statchg),
189 { 0, 0 }
192 static driver_t gx_driver = {
193 "gx",
194 gx_methods,
195 sizeof(struct gx_softc)
198 static devclass_t gx_devclass;
200 DECLARE_DUMMY_MODULE(if_gx);
201 MODULE_DEPEND(if_gx, miibus, 1, 1, 1);
202 DRIVER_MODULE(if_gx, pci, gx_driver, gx_devclass, 0, 0);
203 DRIVER_MODULE(miibus, gx, miibus_driver, miibus_devclass, 0, 0);
205 static struct gx_device *
206 gx_match(device_t dev)
208 int i;
210 for (i = 0; gx_devs[i].name != NULL; i++) {
211 if ((pci_get_vendor(dev) == gx_devs[i].vendor) &&
212 (pci_get_device(dev) == gx_devs[i].device))
213 return (&gx_devs[i]);
215 return (NULL);
218 static int
219 gx_probe(device_t dev)
221 struct gx_device *gx_dev;
223 gx_dev = gx_match(dev);
224 if (gx_dev == NULL)
225 return (ENXIO);
227 device_set_desc(dev, gx_dev->name);
228 return (0);
231 static int
232 gx_attach(device_t dev)
234 struct gx_softc *gx;
235 struct gx_device *gx_dev;
236 struct ifnet *ifp;
237 u_int32_t command;
238 int rid;
239 int error = 0;
241 gx = device_get_softc(dev);
242 gx->gx_dev = dev;
244 gx_dev = gx_match(dev);
245 gx->gx_vflags = gx_dev->version_flags;
246 gx->gx_ipg = gx_dev->version_ipg;
249 * Map control/status registers.
251 command = pci_read_config(dev, PCIR_COMMAND, 4);
252 command |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
253 if (gx->gx_vflags & GXF_ENABLE_MWI)
254 command |= PCIM_CMD_MWIEN;
255 pci_write_config(dev, PCIR_COMMAND, command, 4);
256 command = pci_read_config(dev, PCIR_COMMAND, 4);
258 /* XXX check cache line size? */
260 if ((command & PCIM_CMD_MEMEN) == 0) {
261 device_printf(dev, "failed to enable memory mapping!\n");
262 error = ENXIO;
263 goto fail;
266 rid = GX_PCI_LOMEM;
267 gx->gx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
268 RF_ACTIVE);
269 #if 0
270 /* support PIO mode */
271 rid = PCI_LOIO;
272 gx->gx_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
273 RF_ACTIVE);
274 #endif
276 if (gx->gx_res == NULL) {
277 device_printf(dev, "couldn't map memory\n");
278 error = ENXIO;
279 goto fail;
282 gx->gx_btag = rman_get_bustag(gx->gx_res);
283 gx->gx_bhandle = rman_get_bushandle(gx->gx_res);
285 /* Allocate interrupt */
286 rid = 0;
287 gx->gx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
288 RF_SHAREABLE | RF_ACTIVE);
290 if (gx->gx_irq == NULL) {
291 device_printf(dev, "couldn't map interrupt\n");
292 error = ENXIO;
293 goto fail;
296 /* compensate for different register mappings */
297 if (gx->gx_vflags & GXF_OLD_REGS)
298 gx->gx_reg = old_regs;
299 else
300 gx->gx_reg = new_regs;
302 if (gx_read_eeprom(gx, (caddr_t)&gx->arpcom.ac_enaddr,
303 GX_EEMAP_MAC, 3)) {
304 device_printf(dev, "failed to read station address\n");
305 error = ENXIO;
306 goto fail;
309 /* Allocate the ring buffers. */
310 gx->gx_rdata = contigmalloc(sizeof(struct gx_ring_data), M_DEVBUF,
311 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
313 if (gx->gx_rdata == NULL) {
314 device_printf(dev, "no memory for list buffers!\n");
315 error = ENXIO;
316 goto fail;
318 bzero(gx->gx_rdata, sizeof(struct gx_ring_data));
320 /* Set default tuneable values. */
321 gx->gx_tx_intr_delay = TUNABLE_TX_INTR_DELAY;
322 gx->gx_rx_intr_delay = TUNABLE_RX_INTR_DELAY;
324 /* Set up ifnet structure */
325 ifp = &gx->arpcom.ac_if;
326 ifp->if_softc = gx;
327 if_initname(ifp, "gx", device_get_unit(dev));
328 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
329 ifp->if_ioctl = gx_ioctl;
330 ifp->if_start = gx_start;
331 ifp->if_watchdog = gx_watchdog;
332 ifp->if_init = gx_init;
333 ifp->if_mtu = ETHERMTU;
334 ifq_set_maxlen(&ifp->if_snd, GX_TX_RING_CNT - 1);
335 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING;
336 ifq_set_ready(&ifp->if_snd);
338 /* see if we can enable hardware checksumming */
339 if (gx->gx_vflags & GXF_CSUM) {
340 ifp->if_capabilities |= IFCAP_HWCSUM;
341 ifp->if_capenable = ifp->if_capabilities;
344 /* figure out transciever type */
345 if (gx->gx_vflags & GXF_FORCE_TBI ||
346 CSR_READ_4(gx, GX_STATUS) & GX_STAT_TBIMODE)
347 gx->gx_tbimode = 1;
349 if (gx->gx_tbimode) {
350 /* SERDES transceiver */
351 ifmedia_init(&gx->gx_media, IFM_IMASK, gx_ifmedia_upd,
352 gx_ifmedia_sts);
353 ifmedia_add(&gx->gx_media,
354 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
355 ifmedia_add(&gx->gx_media, IFM_ETHER|IFM_AUTO, 0, NULL);
356 ifmedia_set(&gx->gx_media, IFM_ETHER|IFM_AUTO);
357 } else {
358 /* GMII/MII transceiver */
359 gx_phy_reset(gx);
360 if (mii_phy_probe(dev, &gx->gx_miibus, gx_ifmedia_upd,
361 gx_ifmedia_sts)) {
362 device_printf(dev, "GMII/MII, PHY not detected\n");
363 error = ENXIO;
364 goto fail;
369 * Call MI attach routines.
371 ether_ifattach(ifp, gx->arpcom.ac_enaddr, NULL);
373 error = bus_setup_intr(dev, gx->gx_irq, INTR_NETSAFE,
374 gx_intr, gx, &gx->gx_intrhand,
375 ifp->if_serializer);
376 if (error) {
377 ether_ifdetach(ifp);
378 device_printf(dev, "couldn't setup irq\n");
379 goto fail;
382 return (0);
384 fail:
385 gx_detach(dev);
386 return (error);
389 static void
390 gx_init(void *xsc)
392 struct gx_softc *gx = (struct gx_softc *)xsc;
393 struct ifmedia *ifm;
394 struct ifnet *ifp = &gx->arpcom.ac_if;
395 u_int16_t *m;
396 u_int32_t ctrl;
397 int i, tmp;
399 /* Disable host interrupts, halt chip. */
400 gx_reset(gx);
402 /* disable I/O, flush RX/TX FIFOs, and free RX/TX buffers */
403 gx_stop(gx);
405 /* Load our MAC address, invalidate other 15 RX addresses. */
406 m = (u_int16_t *)&gx->arpcom.ac_enaddr[0];
407 CSR_WRITE_4(gx, GX_RX_ADDR_BASE, (m[1] << 16) | m[0]);
408 CSR_WRITE_4(gx, GX_RX_ADDR_BASE + 4, m[2] | GX_RA_VALID);
409 for (i = 1; i < 16; i++)
410 CSR_WRITE_8(gx, GX_RX_ADDR_BASE + i * 8, (u_quad_t)0);
412 /* Program multicast filter. */
413 gx_setmulti(gx);
415 /* Init RX ring. */
416 gx_init_rx_ring(gx);
418 /* Init TX ring. */
419 gx_init_tx_ring(gx);
421 if (gx->gx_vflags & GXF_DMA) {
422 /* set up DMA control */
423 CSR_WRITE_4(gx, gx->gx_reg.r_rx_dma_ctrl, 0x00010000);
424 CSR_WRITE_4(gx, gx->gx_reg.r_tx_dma_ctrl, 0x00000000);
427 /* enable receiver */
428 ctrl = GX_RXC_ENABLE | GX_RXC_RX_THOLD_EIGHTH | GX_RXC_RX_BSIZE_2K;
429 ctrl |= GX_RXC_BCAST_ACCEPT;
431 /* Enable or disable promiscuous mode as needed. */
432 if (ifp->if_flags & IFF_PROMISC)
433 ctrl |= GX_RXC_UNI_PROMISC;
435 /* This is required if we want to accept jumbo frames */
436 if (ifp->if_mtu > ETHERMTU)
437 ctrl |= GX_RXC_LONG_PKT_ENABLE;
439 /* setup receive checksum control */
440 if (ifp->if_capenable & IFCAP_RXCSUM)
441 CSR_WRITE_4(gx, GX_RX_CSUM_CONTROL,
442 GX_CSUM_TCP/* | GX_CSUM_IP*/);
444 /* setup transmit checksum control */
445 if (ifp->if_capenable & IFCAP_TXCSUM)
446 ifp->if_hwassist = GX_CSUM_FEATURES;
448 ctrl |= GX_RXC_STRIP_ETHERCRC; /* not on 82542? */
449 CSR_WRITE_4(gx, GX_RX_CONTROL, ctrl);
451 /* enable transmitter */
452 ctrl = GX_TXC_ENABLE | GX_TXC_PAD_SHORT_PKTS | GX_TXC_COLL_RETRY_16;
454 /* XXX we should support half-duplex here too... */
455 ctrl |= GX_TXC_COLL_TIME_FDX;
457 CSR_WRITE_4(gx, GX_TX_CONTROL, ctrl);
460 * set up recommended IPG times, which vary depending on chip type:
461 * IPG transmit time: 80ns
462 * IPG receive time 1: 20ns
463 * IPG receive time 2: 80ns
465 CSR_WRITE_4(gx, GX_TX_IPG, gx->gx_ipg);
467 /* set up 802.3x MAC flow control address -- 01:80:c2:00:00:01 */
468 CSR_WRITE_4(gx, GX_FLOW_CTRL_BASE, 0x00C28001);
469 CSR_WRITE_4(gx, GX_FLOW_CTRL_BASE+4, 0x00000100);
471 /* set up 802.3x MAC flow control type -- 88:08 */
472 CSR_WRITE_4(gx, GX_FLOW_CTRL_TYPE, 0x8808);
474 /* Set up tuneables */
475 CSR_WRITE_4(gx, gx->gx_reg.r_rx_delay, gx->gx_rx_intr_delay);
476 CSR_WRITE_4(gx, gx->gx_reg.r_tx_delay, gx->gx_tx_intr_delay);
479 * Configure chip for correct operation.
481 ctrl = GX_CTRL_DUPLEX;
482 #if BYTE_ORDER == BIG_ENDIAN
483 ctrl |= GX_CTRL_BIGENDIAN;
484 #endif
485 ctrl |= GX_CTRL_VLAN_ENABLE;
487 if (gx->gx_tbimode) {
489 * It seems that TXCW must be initialized from the EEPROM
490 * manually.
492 * XXX
493 * should probably read the eeprom and re-insert the
494 * values here.
496 #define TXCONFIG_WORD 0x000001A0
497 CSR_WRITE_4(gx, GX_TX_CONFIG, TXCONFIG_WORD);
499 /* turn on hardware autonegotiate */
500 GX_SETBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
501 } else {
503 * Auto-detect speed from PHY, instead of using direct
504 * indication. The SLU bit doesn't force the link, but
505 * must be present for ASDE to work.
507 gx_phy_reset(gx);
508 ctrl |= GX_CTRL_SET_LINK_UP | GX_CTRL_AUTOSPEED;
512 * Take chip out of reset and start it running.
514 CSR_WRITE_4(gx, GX_CTRL, ctrl);
516 /* Turn interrupts on. */
517 CSR_WRITE_4(gx, GX_INT_MASK_SET, GX_INT_WANTED);
519 ifp->if_flags |= IFF_RUNNING;
520 ifp->if_flags &= ~IFF_OACTIVE;
523 * Set the current media.
525 if (gx->gx_miibus != NULL) {
526 mii_mediachg(device_get_softc(gx->gx_miibus));
527 } else {
528 ifm = &gx->gx_media;
529 tmp = ifm->ifm_media;
530 ifm->ifm_media = ifm->ifm_cur->ifm_media;
531 gx_ifmedia_upd(ifp);
532 ifm->ifm_media = tmp;
536 * XXX
537 * Have the LINK0 flag force the link in TBI mode.
539 if (gx->gx_tbimode && ifp->if_flags & IFF_LINK0) {
540 GX_CLRBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
541 GX_SETBIT(gx, GX_CTRL, GX_CTRL_SET_LINK_UP);
544 #if 0
545 kprintf("66mhz: %s 64bit: %s\n",
546 CSR_READ_4(gx, GX_STATUS) & GX_STAT_PCI66 ? "yes" : "no",
547 CSR_READ_4(gx, GX_STATUS) & GX_STAT_BUS64 ? "yes" : "no");
548 #endif
552 * Stop all chip I/O so that the kernel's probe routines don't
553 * get confused by errant DMAs when rebooting.
555 static void
556 gx_shutdown(device_t dev)
558 struct gx_softc *gx;
560 gx = device_get_softc(dev);
561 gx_reset(gx);
562 gx_stop(gx);
565 static int
566 gx_detach(device_t dev)
568 struct gx_softc *gx = device_get_softc(dev);
569 struct ifnet *ifp = &gx->arpcom.ac_if;
571 if (device_is_attached(dev)) {
572 lwkt_serialize_enter(ifp->if_serializer);
573 gx_reset(gx);
574 gx_stop(gx);
575 bus_teardown_intr(gx->gx_dev, gx->gx_irq, gx->gx_intrhand);
576 lwkt_serialize_exit(ifp->if_serializer);
578 ether_ifdetach(ifp);
580 if (gx->gx_miibus)
581 device_delete_child(gx->gx_dev, gx->gx_miibus);
582 bus_generic_detach(gx->gx_dev);
584 if (gx->gx_irq)
585 bus_release_resource(gx->gx_dev, SYS_RES_IRQ, 0, gx->gx_irq);
586 if (gx->gx_res)
587 bus_release_resource(gx->gx_dev, SYS_RES_MEMORY,
588 GX_PCI_LOMEM, gx->gx_res);
590 if (gx->gx_rdata)
591 contigfree(gx->gx_rdata, sizeof(struct gx_ring_data),
592 M_DEVBUF);
594 if (gx->gx_tbimode)
595 ifmedia_removeall(&gx->gx_media);
597 return (0);
600 static void
601 gx_eeprom_getword(struct gx_softc *gx, int addr, u_int16_t *dest)
603 u_int16_t word = 0;
604 u_int32_t base, reg;
605 int x;
607 addr = (GX_EE_OPC_READ << GX_EE_ADDR_SIZE) |
608 (addr & ((1 << GX_EE_ADDR_SIZE) - 1));
610 base = CSR_READ_4(gx, GX_EEPROM_CTRL);
611 base &= ~(GX_EE_DATA_OUT | GX_EE_DATA_IN | GX_EE_CLOCK);
612 base |= GX_EE_SELECT;
614 CSR_WRITE_4(gx, GX_EEPROM_CTRL, base);
616 for (x = 1 << ((GX_EE_OPC_SIZE + GX_EE_ADDR_SIZE) - 1); x; x >>= 1) {
617 reg = base | (addr & x ? GX_EE_DATA_IN : 0);
618 CSR_WRITE_4(gx, GX_EEPROM_CTRL, reg);
619 DELAY(10);
620 CSR_WRITE_4(gx, GX_EEPROM_CTRL, reg | GX_EE_CLOCK);
621 DELAY(10);
622 CSR_WRITE_4(gx, GX_EEPROM_CTRL, reg);
623 DELAY(10);
626 for (x = 1 << 15; x; x >>= 1) {
627 CSR_WRITE_4(gx, GX_EEPROM_CTRL, base | GX_EE_CLOCK);
628 DELAY(10);
629 reg = CSR_READ_4(gx, GX_EEPROM_CTRL);
630 if (reg & GX_EE_DATA_OUT)
631 word |= x;
632 CSR_WRITE_4(gx, GX_EEPROM_CTRL, base);
633 DELAY(10);
636 CSR_WRITE_4(gx, GX_EEPROM_CTRL, base & ~GX_EE_SELECT);
637 DELAY(10);
639 *dest = word;
642 static int
643 gx_read_eeprom(struct gx_softc *gx, caddr_t dest, int off, int cnt)
645 u_int16_t *word;
646 int i;
648 word = (u_int16_t *)dest;
649 for (i = 0; i < cnt; i ++) {
650 gx_eeprom_getword(gx, off + i, word);
651 word++;
653 return (0);
657 * Set media options.
659 static int
660 gx_ifmedia_upd(struct ifnet *ifp)
662 struct gx_softc *gx;
663 struct ifmedia *ifm;
664 struct mii_data *mii;
666 gx = ifp->if_softc;
668 if (gx->gx_tbimode) {
669 ifm = &gx->gx_media;
670 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
671 return (EINVAL);
672 switch (IFM_SUBTYPE(ifm->ifm_media)) {
673 case IFM_AUTO:
674 GX_SETBIT(gx, GX_CTRL, GX_CTRL_LINK_RESET);
675 GX_SETBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
676 GX_CLRBIT(gx, GX_CTRL, GX_CTRL_LINK_RESET);
677 break;
678 case IFM_1000_SX:
679 device_printf(gx->gx_dev,
680 "manual config not supported yet.\n");
681 #if 0
682 GX_CLRBIT(gx, GX_TX_CONFIG, GX_TXCFG_AUTONEG);
683 config = /* bit symbols for 802.3z */0;
684 ctrl |= GX_CTRL_SET_LINK_UP;
685 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
686 ctrl |= GX_CTRL_DUPLEX;
687 #endif
688 break;
689 default:
690 return (EINVAL);
692 } else {
693 ifm = &gx->gx_media;
696 * 1000TX half duplex does not work.
698 if (IFM_TYPE(ifm->ifm_media) == IFM_ETHER &&
699 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T &&
700 (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) == 0)
701 return (EINVAL);
702 mii = device_get_softc(gx->gx_miibus);
703 mii_mediachg(mii);
705 return (0);
709 * Report current media status.
711 static void
712 gx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
714 struct gx_softc *gx;
715 struct mii_data *mii;
716 u_int32_t status;
718 gx = ifp->if_softc;
720 if (gx->gx_tbimode) {
721 ifmr->ifm_status = IFM_AVALID;
722 ifmr->ifm_active = IFM_ETHER;
724 status = CSR_READ_4(gx, GX_STATUS);
725 if ((status & GX_STAT_LINKUP) == 0)
726 return;
728 ifmr->ifm_status |= IFM_ACTIVE;
729 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
730 } else {
731 mii = device_get_softc(gx->gx_miibus);
732 mii_pollstat(mii);
733 if ((mii->mii_media_active & (IFM_1000_T | IFM_HDX)) ==
734 (IFM_1000_T | IFM_HDX))
735 mii->mii_media_active = IFM_ETHER | IFM_NONE;
736 ifmr->ifm_active = mii->mii_media_active;
737 ifmr->ifm_status = mii->mii_media_status;
741 static void
742 gx_mii_shiftin(struct gx_softc *gx, int data, int length)
744 u_int32_t reg, x;
747 * Set up default GPIO direction + PHY data out.
749 reg = CSR_READ_4(gx, GX_CTRL);
750 reg &= ~(GX_CTRL_GPIO_DIR_MASK | GX_CTRL_PHY_IO | GX_CTRL_PHY_CLK);
751 reg |= GX_CTRL_GPIO_DIR | GX_CTRL_PHY_IO_DIR;
754 * Shift in data to PHY.
756 for (x = 1 << (length - 1); x; x >>= 1) {
757 if (data & x)
758 reg |= GX_CTRL_PHY_IO;
759 else
760 reg &= ~GX_CTRL_PHY_IO;
761 CSR_WRITE_4(gx, GX_CTRL, reg);
762 DELAY(10);
763 CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
764 DELAY(10);
765 CSR_WRITE_4(gx, GX_CTRL, reg);
766 DELAY(10);
770 static u_int16_t
771 gx_mii_shiftout(struct gx_softc *gx)
773 u_int32_t reg;
774 u_int16_t data;
775 int x;
778 * Set up default GPIO direction + PHY data in.
780 reg = CSR_READ_4(gx, GX_CTRL);
781 reg &= ~(GX_CTRL_GPIO_DIR_MASK | GX_CTRL_PHY_IO | GX_CTRL_PHY_CLK);
782 reg |= GX_CTRL_GPIO_DIR;
784 CSR_WRITE_4(gx, GX_CTRL, reg);
785 DELAY(10);
786 CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
787 DELAY(10);
788 CSR_WRITE_4(gx, GX_CTRL, reg);
789 DELAY(10);
791 * Shift out data from PHY.
793 data = 0;
794 for (x = 1 << 15; x; x >>= 1) {
795 CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
796 DELAY(10);
797 if (CSR_READ_4(gx, GX_CTRL) & GX_CTRL_PHY_IO)
798 data |= x;
799 CSR_WRITE_4(gx, GX_CTRL, reg);
800 DELAY(10);
802 CSR_WRITE_4(gx, GX_CTRL, reg | GX_CTRL_PHY_CLK);
803 DELAY(10);
804 CSR_WRITE_4(gx, GX_CTRL, reg);
805 DELAY(10);
807 return (data);
810 static int
811 gx_miibus_readreg(device_t dev, int phy, int reg)
813 struct gx_softc *gx;
815 gx = device_get_softc(dev);
816 if (gx->gx_tbimode)
817 return (0);
820 * XXX
821 * Note: Cordova has a MDIC register. livingood and < have mii bits
824 gx_mii_shiftin(gx, GX_PHY_PREAMBLE, GX_PHY_PREAMBLE_LEN);
825 gx_mii_shiftin(gx, (GX_PHY_SOF << 12) | (GX_PHY_OP_READ << 10) |
826 (phy << 5) | reg, GX_PHY_READ_LEN);
827 return (gx_mii_shiftout(gx));
830 static void
831 gx_miibus_writereg(device_t dev, int phy, int reg, int value)
833 struct gx_softc *gx;
835 gx = device_get_softc(dev);
836 if (gx->gx_tbimode)
837 return;
839 gx_mii_shiftin(gx, GX_PHY_PREAMBLE, GX_PHY_PREAMBLE_LEN);
840 gx_mii_shiftin(gx, (GX_PHY_SOF << 30) | (GX_PHY_OP_WRITE << 28) |
841 (phy << 23) | (reg << 18) | (GX_PHY_TURNAROUND << 16) |
842 (value & 0xffff), GX_PHY_WRITE_LEN);
845 static void
846 gx_miibus_statchg(device_t dev)
848 struct gx_softc *gx = device_get_softc(dev);
849 struct mii_data *mii;
850 int reg;
852 if (gx->gx_tbimode)
853 return;
856 * Set flow control behavior to mirror what PHY negotiated.
858 mii = device_get_softc(gx->gx_miibus);
860 reg = CSR_READ_4(gx, GX_CTRL);
861 if (mii->mii_media_active & IFM_FLAG0)
862 reg |= GX_CTRL_RX_FLOWCTRL;
863 else
864 reg &= ~GX_CTRL_RX_FLOWCTRL;
865 if (mii->mii_media_active & IFM_FLAG1)
866 reg |= GX_CTRL_TX_FLOWCTRL;
867 else
868 reg &= ~GX_CTRL_TX_FLOWCTRL;
869 CSR_WRITE_4(gx, GX_CTRL, reg);
872 static int
873 gx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
875 struct gx_softc *gx = ifp->if_softc;
876 struct ifreq *ifr = (struct ifreq *)data;
877 struct mii_data *mii;
878 int mask, error = 0;
880 switch (command) {
881 case SIOCSIFMTU:
882 if (ifr->ifr_mtu > GX_MAX_MTU) {
883 error = EINVAL;
884 } else {
885 ifp->if_mtu = ifr->ifr_mtu;
886 gx_init(gx);
888 break;
889 case SIOCSIFFLAGS:
890 if ((ifp->if_flags & IFF_UP) == 0) {
891 gx_stop(gx);
892 } else if (ifp->if_flags & IFF_RUNNING &&
893 ((ifp->if_flags & IFF_PROMISC) !=
894 (gx->gx_if_flags & IFF_PROMISC))) {
895 if (ifp->if_flags & IFF_PROMISC)
896 GX_SETBIT(gx, GX_RX_CONTROL, GX_RXC_UNI_PROMISC);
897 else
898 GX_CLRBIT(gx, GX_RX_CONTROL, GX_RXC_UNI_PROMISC);
899 } else {
900 gx_init(gx);
902 gx->gx_if_flags = ifp->if_flags;
903 break;
904 case SIOCADDMULTI:
905 case SIOCDELMULTI:
906 if (ifp->if_flags & IFF_RUNNING)
907 gx_setmulti(gx);
908 break;
909 case SIOCSIFMEDIA:
910 case SIOCGIFMEDIA:
911 if (gx->gx_miibus != NULL) {
912 mii = device_get_softc(gx->gx_miibus);
913 error = ifmedia_ioctl(ifp, ifr,
914 &mii->mii_media, command);
915 } else {
916 error = ifmedia_ioctl(ifp, ifr, &gx->gx_media, command);
918 break;
919 case SIOCSIFCAP:
920 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
921 if (mask & IFCAP_HWCSUM) {
922 if (IFCAP_HWCSUM & ifp->if_capenable)
923 ifp->if_capenable &= ~IFCAP_HWCSUM;
924 else
925 ifp->if_capenable |= IFCAP_HWCSUM;
926 if (ifp->if_flags & IFF_RUNNING)
927 gx_init(gx);
929 break;
930 default:
931 error = ether_ioctl(ifp, command, data);
932 break;
934 return (error);
937 static void
938 gx_phy_reset(struct gx_softc *gx)
940 int reg;
942 GX_SETBIT(gx, GX_CTRL, GX_CTRL_SET_LINK_UP);
945 * PHY reset is active low.
947 reg = CSR_READ_4(gx, GX_CTRL_EXT);
948 reg &= ~(GX_CTRLX_GPIO_DIR_MASK | GX_CTRLX_PHY_RESET);
949 reg |= GX_CTRLX_GPIO_DIR;
951 CSR_WRITE_4(gx, GX_CTRL_EXT, reg | GX_CTRLX_PHY_RESET);
952 DELAY(10);
953 CSR_WRITE_4(gx, GX_CTRL_EXT, reg);
954 DELAY(10);
955 CSR_WRITE_4(gx, GX_CTRL_EXT, reg | GX_CTRLX_PHY_RESET);
956 DELAY(10);
958 #if 0
959 /* post-livingood (cordova) only */
960 GX_SETBIT(gx, GX_CTRL, 0x80000000);
961 DELAY(1000);
962 GX_CLRBIT(gx, GX_CTRL, 0x80000000);
963 #endif
966 static void
967 gx_reset(struct gx_softc *gx)
970 /* Disable host interrupts. */
971 CSR_WRITE_4(gx, GX_INT_MASK_CLR, GX_INT_ALL);
973 /* reset chip (THWAP!) */
974 GX_SETBIT(gx, GX_CTRL, GX_CTRL_DEVICE_RESET);
975 DELAY(10);
978 static void
979 gx_stop(struct gx_softc *gx)
981 struct ifnet *ifp;
983 ifp = &gx->arpcom.ac_if;
985 /* reset and flush transmitter */
986 CSR_WRITE_4(gx, GX_TX_CONTROL, GX_TXC_RESET);
988 /* reset and flush receiver */
989 CSR_WRITE_4(gx, GX_RX_CONTROL, GX_RXC_RESET);
991 /* reset link */
992 if (gx->gx_tbimode)
993 GX_SETBIT(gx, GX_CTRL, GX_CTRL_LINK_RESET);
995 /* Free the RX lists. */
996 gx_free_rx_ring(gx);
998 /* Free TX buffers. */
999 gx_free_tx_ring(gx);
1001 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1004 static void
1005 gx_watchdog(struct ifnet *ifp)
1007 struct gx_softc *gx;
1009 gx = ifp->if_softc;
1011 device_printf(gx->gx_dev, "watchdog timeout -- resetting\n");
1012 gx_reset(gx);
1013 gx_init(gx);
1015 ifp->if_oerrors++;
1019 * Intialize a receive ring descriptor.
1021 static int
1022 gx_newbuf(struct gx_softc *gx, int idx, struct mbuf *m)
1024 struct mbuf *m_new = NULL;
1025 struct gx_rx_desc *r;
1027 if (m == NULL) {
1028 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1029 if (m_new == NULL) {
1030 device_printf(gx->gx_dev,
1031 "mbuf allocation failed -- packet dropped\n");
1032 return (ENOBUFS);
1034 MCLGET(m_new, MB_DONTWAIT);
1035 if ((m_new->m_flags & M_EXT) == 0) {
1036 device_printf(gx->gx_dev,
1037 "cluster allocation failed -- packet dropped\n");
1038 m_freem(m_new);
1039 return (ENOBUFS);
1041 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1042 } else {
1043 m->m_len = m->m_pkthdr.len = MCLBYTES;
1044 m->m_data = m->m_ext.ext_buf;
1045 m->m_next = NULL;
1046 m_new = m;
1050 * XXX
1051 * this will _NOT_ work for large MTU's; it will overwrite
1052 * the end of the buffer. E.g.: take this out for jumbograms,
1053 * but then that breaks alignment.
1055 if (gx->arpcom.ac_if.if_mtu <= ETHERMTU)
1056 m_adj(m_new, ETHER_ALIGN);
1058 gx->gx_cdata.gx_rx_chain[idx] = m_new;
1059 r = &gx->gx_rdata->gx_rx_ring[idx];
1060 r->rx_addr = vtophys(mtod(m_new, caddr_t));
1061 r->rx_staterr = 0;
1063 return (0);
1067 * The receive ring can have up to 64K descriptors, which at 2K per mbuf
1068 * cluster, could add up to 128M of memory. Due to alignment constraints,
1069 * the number of descriptors must be a multiple of 8. For now, we
1070 * allocate 256 entries and hope that our CPU is fast enough to keep up
1071 * with the NIC.
1073 static int
1074 gx_init_rx_ring(struct gx_softc *gx)
1076 int i, error;
1078 for (i = 0; i < GX_RX_RING_CNT; i++) {
1079 error = gx_newbuf(gx, i, NULL);
1080 if (error)
1081 return (error);
1084 /* bring receiver out of reset state, leave disabled */
1085 CSR_WRITE_4(gx, GX_RX_CONTROL, 0);
1087 /* set up ring registers */
1088 CSR_WRITE_8(gx, gx->gx_reg.r_rx_base,
1089 (u_quad_t)vtophys(gx->gx_rdata->gx_rx_ring));
1091 CSR_WRITE_4(gx, gx->gx_reg.r_rx_length,
1092 GX_RX_RING_CNT * sizeof(struct gx_rx_desc));
1093 CSR_WRITE_4(gx, gx->gx_reg.r_rx_head, 0);
1094 CSR_WRITE_4(gx, gx->gx_reg.r_rx_tail, GX_RX_RING_CNT - 1);
1095 gx->gx_rx_tail_idx = 0;
1097 return (0);
1100 static void
1101 gx_free_rx_ring(struct gx_softc *gx)
1103 struct mbuf **mp;
1104 int i;
1106 mp = gx->gx_cdata.gx_rx_chain;
1107 for (i = 0; i < GX_RX_RING_CNT; i++, mp++) {
1108 if (*mp != NULL) {
1109 m_freem(*mp);
1110 *mp = NULL;
1113 bzero((void *)gx->gx_rdata->gx_rx_ring,
1114 GX_RX_RING_CNT * sizeof(struct gx_rx_desc));
1116 /* release any partially-received packet chain */
1117 if (gx->gx_pkthdr != NULL) {
1118 m_freem(gx->gx_pkthdr);
1119 gx->gx_pkthdr = NULL;
1123 static int
1124 gx_init_tx_ring(struct gx_softc *gx)
1127 /* bring transmitter out of reset state, leave disabled */
1128 CSR_WRITE_4(gx, GX_TX_CONTROL, 0);
1130 /* set up ring registers */
1131 CSR_WRITE_8(gx, gx->gx_reg.r_tx_base,
1132 (u_quad_t)vtophys(gx->gx_rdata->gx_tx_ring));
1133 CSR_WRITE_4(gx, gx->gx_reg.r_tx_length,
1134 GX_TX_RING_CNT * sizeof(struct gx_tx_desc));
1135 CSR_WRITE_4(gx, gx->gx_reg.r_tx_head, 0);
1136 CSR_WRITE_4(gx, gx->gx_reg.r_tx_tail, 0);
1137 gx->gx_tx_head_idx = 0;
1138 gx->gx_tx_tail_idx = 0;
1139 gx->gx_txcnt = 0;
1141 /* set up initial TX context */
1142 gx->gx_txcontext = GX_TXCONTEXT_NONE;
1144 return (0);
1147 static void
1148 gx_free_tx_ring(struct gx_softc *gx)
1150 struct mbuf **mp;
1151 int i;
1153 mp = gx->gx_cdata.gx_tx_chain;
1154 for (i = 0; i < GX_TX_RING_CNT; i++, mp++) {
1155 if (*mp != NULL) {
1156 m_freem(*mp);
1157 *mp = NULL;
1160 bzero((void *)&gx->gx_rdata->gx_tx_ring,
1161 GX_TX_RING_CNT * sizeof(struct gx_tx_desc));
1164 static void
1165 gx_setmulti(struct gx_softc *gx)
1167 int i;
1169 /* wipe out the multicast table */
1170 for (i = 1; i < 128; i++)
1171 CSR_WRITE_4(gx, GX_MULTICAST_BASE + i * 4, 0);
1174 static void
1175 gx_rxeof(struct gx_softc *gx)
1177 struct gx_rx_desc *rx;
1178 struct ifnet *ifp;
1179 int idx, staterr, len;
1180 struct mbuf *m;
1182 gx->gx_rx_interrupts++;
1184 ifp = &gx->arpcom.ac_if;
1185 idx = gx->gx_rx_tail_idx;
1187 while (gx->gx_rdata->gx_rx_ring[idx].rx_staterr & GX_RXSTAT_COMPLETED) {
1189 rx = &gx->gx_rdata->gx_rx_ring[idx];
1190 m = gx->gx_cdata.gx_rx_chain[idx];
1192 * gx_newbuf overwrites status and length bits, so we
1193 * make a copy of them here.
1195 len = rx->rx_len;
1196 staterr = rx->rx_staterr;
1198 if (staterr & GX_INPUT_ERROR)
1199 goto ierror;
1201 if (gx_newbuf(gx, idx, NULL) == ENOBUFS)
1202 goto ierror;
1204 GX_INC(idx, GX_RX_RING_CNT);
1206 if (staterr & GX_RXSTAT_INEXACT_MATCH) {
1208 * multicast packet, must verify against
1209 * multicast address.
1213 if ((staterr & GX_RXSTAT_END_OF_PACKET) == 0) {
1214 if (gx->gx_pkthdr == NULL) {
1215 m->m_len = len;
1216 m->m_pkthdr.len = len;
1217 gx->gx_pkthdr = m;
1218 gx->gx_pktnextp = &m->m_next;
1219 } else {
1220 m->m_len = len;
1221 gx->gx_pkthdr->m_pkthdr.len += len;
1222 *(gx->gx_pktnextp) = m;
1223 gx->gx_pktnextp = &m->m_next;
1225 continue;
1228 if (gx->gx_pkthdr == NULL) {
1229 m->m_len = len;
1230 m->m_pkthdr.len = len;
1231 } else {
1232 m->m_len = len;
1233 gx->gx_pkthdr->m_pkthdr.len += len;
1234 *(gx->gx_pktnextp) = m;
1235 m = gx->gx_pkthdr;
1236 gx->gx_pkthdr = NULL;
1239 ifp->if_ipackets++;
1240 m->m_pkthdr.rcvif = ifp;
1242 #define IP_CSMASK (GX_RXSTAT_IGNORE_CSUM | GX_RXSTAT_HAS_IP_CSUM)
1243 #define TCP_CSMASK \
1244 (GX_RXSTAT_IGNORE_CSUM | GX_RXSTAT_HAS_TCP_CSUM | GX_RXERR_TCP_CSUM)
1245 if (ifp->if_capenable & IFCAP_RXCSUM) {
1246 #if 0
1248 * Intel Erratum #23 indicates that the Receive IP
1249 * Checksum offload feature has been completely
1250 * disabled.
1252 if ((staterr & IP_CSUM_MASK) == GX_RXSTAT_HAS_IP_CSUM) {
1253 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1254 if ((staterr & GX_RXERR_IP_CSUM) == 0)
1255 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1257 #endif
1258 if ((staterr & TCP_CSMASK) == GX_RXSTAT_HAS_TCP_CSUM) {
1259 m->m_pkthdr.csum_flags |=
1260 CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
1261 CSUM_FRAG_NOT_CHECKED;
1262 m->m_pkthdr.csum_data = 0xffff;
1266 * If we received a packet with a vlan tag, pass it
1267 * to vlan_input() instead of ether_input().
1269 if (staterr & GX_RXSTAT_VLAN_PKT)
1270 VLAN_INPUT_TAG(m, rx->rx_special);
1271 else
1272 ifp->if_input(ifp, m);
1273 continue;
1275 ierror:
1276 ifp->if_ierrors++;
1277 gx_newbuf(gx, idx, m);
1280 * XXX
1281 * this isn't quite right. Suppose we have a packet that
1282 * spans 5 descriptors (9K split into 2K buffers). If
1283 * the 3rd descriptor sets an error, we need to ignore
1284 * the last two. The way things stand now, the last two
1285 * will be accepted as a single packet.
1287 * we don't worry about this -- the chip may not set an
1288 * error in this case, and the checksum of the upper layers
1289 * will catch the error.
1291 if (gx->gx_pkthdr != NULL) {
1292 m_freem(gx->gx_pkthdr);
1293 gx->gx_pkthdr = NULL;
1295 GX_INC(idx, GX_RX_RING_CNT);
1298 gx->gx_rx_tail_idx = idx;
1299 if (--idx < 0)
1300 idx = GX_RX_RING_CNT - 1;
1301 CSR_WRITE_4(gx, gx->gx_reg.r_rx_tail, idx);
1304 static void
1305 gx_txeof(struct gx_softc *gx)
1307 struct ifnet *ifp;
1308 int idx, cnt;
1310 gx->gx_tx_interrupts++;
1312 ifp = &gx->arpcom.ac_if;
1313 idx = gx->gx_tx_head_idx;
1314 cnt = gx->gx_txcnt;
1317 * If the system chipset performs I/O write buffering, it is
1318 * possible for the PIO read of the head descriptor to bypass the
1319 * memory write of the descriptor, resulting in reading a descriptor
1320 * which has not been updated yet.
1322 while (cnt) {
1323 struct gx_tx_desc_old *tx;
1325 tx = (struct gx_tx_desc_old *)&gx->gx_rdata->gx_tx_ring[idx];
1326 cnt--;
1328 if ((tx->tx_command & GX_TXOLD_END_OF_PKT) == 0) {
1329 GX_INC(idx, GX_TX_RING_CNT);
1330 continue;
1333 if ((tx->tx_status & GX_TXSTAT_DONE) == 0)
1334 break;
1336 ifp->if_opackets++;
1338 m_freem(gx->gx_cdata.gx_tx_chain[idx]);
1339 gx->gx_cdata.gx_tx_chain[idx] = NULL;
1340 gx->gx_txcnt = cnt;
1341 ifp->if_timer = 0;
1343 GX_INC(idx, GX_TX_RING_CNT);
1344 gx->gx_tx_head_idx = idx;
1347 if (gx->gx_txcnt == 0)
1348 ifp->if_flags &= ~IFF_OACTIVE;
1351 static void
1352 gx_intr(void *xsc)
1354 struct gx_softc *gx = xsc;
1355 struct ifnet *ifp = &gx->arpcom.ac_if;
1356 u_int32_t intr;
1358 gx->gx_interrupts++;
1360 /* Disable host interrupts. */
1361 CSR_WRITE_4(gx, GX_INT_MASK_CLR, GX_INT_ALL);
1364 * find out why we're being bothered.
1365 * reading this register automatically clears all bits.
1367 intr = CSR_READ_4(gx, GX_INT_READ);
1369 /* Check RX return ring producer/consumer */
1370 if (intr & (GX_INT_RCV_TIMER | GX_INT_RCV_THOLD | GX_INT_RCV_OVERRUN))
1371 gx_rxeof(gx);
1373 /* Check TX ring producer/consumer */
1374 if (intr & (GX_INT_XMIT_DONE | GX_INT_XMIT_EMPTY))
1375 gx_txeof(gx);
1378 * handle other interrupts here.
1382 * Link change interrupts are not reliable; the interrupt may
1383 * not be generated if the link is lost. However, the register
1384 * read is reliable, so check that. Use SEQ errors to possibly
1385 * indicate that the link has changed.
1387 if (intr & GX_INT_LINK_CHANGE) {
1388 if ((CSR_READ_4(gx, GX_STATUS) & GX_STAT_LINKUP) == 0) {
1389 device_printf(gx->gx_dev, "link down\n");
1390 } else {
1391 device_printf(gx->gx_dev, "link up\n");
1395 /* Turn interrupts on. */
1396 CSR_WRITE_4(gx, GX_INT_MASK_SET, GX_INT_WANTED);
1398 if (ifp->if_flags & IFF_RUNNING && !ifq_is_empty(&ifp->if_snd))
1399 gx_start(ifp);
1403 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
1404 * pointers to descriptors.
1406 static int
1407 gx_encap(struct gx_softc *gx, struct mbuf *m_head)
1409 struct gx_tx_desc_data *tx = NULL;
1410 struct gx_tx_desc_ctx *tctx;
1411 struct mbuf *m;
1412 int idx, cnt, csumopts, txcontext;
1413 struct ifvlan *ifv = NULL;
1415 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1416 m_head->m_pkthdr.rcvif != NULL &&
1417 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1418 ifv = m_head->m_pkthdr.rcvif->if_softc;
1420 cnt = gx->gx_txcnt;
1421 idx = gx->gx_tx_tail_idx;
1422 txcontext = gx->gx_txcontext;
1425 * Insure we have at least 4 descriptors pre-allocated.
1427 if (cnt >= GX_TX_RING_CNT - 4)
1428 return (ENOBUFS);
1431 * Set up the appropriate offload context if necessary.
1433 csumopts = 0;
1434 if (m_head->m_pkthdr.csum_flags) {
1435 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1436 csumopts |= GX_TXTCP_OPT_IP_CSUM;
1437 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) {
1438 csumopts |= GX_TXTCP_OPT_TCP_CSUM;
1439 txcontext = GX_TXCONTEXT_TCPIP;
1440 } else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) {
1441 csumopts |= GX_TXTCP_OPT_TCP_CSUM;
1442 txcontext = GX_TXCONTEXT_UDPIP;
1443 } else if (txcontext == GX_TXCONTEXT_NONE)
1444 txcontext = GX_TXCONTEXT_TCPIP;
1445 if (txcontext == gx->gx_txcontext)
1446 goto context_done;
1448 tctx = (struct gx_tx_desc_ctx *)&gx->gx_rdata->gx_tx_ring[idx];
1449 tctx->tx_ip_csum_start = ETHER_HDR_LEN;
1450 tctx->tx_ip_csum_end = ETHER_HDR_LEN + sizeof(struct ip) - 1;
1451 tctx->tx_ip_csum_offset =
1452 ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
1453 tctx->tx_tcp_csum_start = ETHER_HDR_LEN + sizeof(struct ip);
1454 tctx->tx_tcp_csum_end = 0;
1455 if (txcontext == GX_TXCONTEXT_TCPIP)
1456 tctx->tx_tcp_csum_offset = ETHER_HDR_LEN +
1457 sizeof(struct ip) + offsetof(struct tcphdr, th_sum);
1458 else
1459 tctx->tx_tcp_csum_offset = ETHER_HDR_LEN +
1460 sizeof(struct ip) + offsetof(struct udphdr, uh_sum);
1461 tctx->tx_command = GX_TXCTX_EXTENSION | GX_TXCTX_INT_DELAY;
1462 tctx->tx_type = 0;
1463 tctx->tx_status = 0;
1464 GX_INC(idx, GX_TX_RING_CNT);
1465 cnt++;
1467 context_done:
1470 * Start packing the mbufs in this chain into the transmit
1471 * descriptors. Stop when we run out of descriptors or hit
1472 * the end of the mbuf chain.
1474 for (m = m_head; m != NULL; m = m->m_next) {
1475 if (m->m_len == 0)
1476 continue;
1478 if (cnt == GX_TX_RING_CNT) {
1479 kprintf("overflow(2): %d, %d\n", cnt, GX_TX_RING_CNT);
1480 return (ENOBUFS);
1483 tx = (struct gx_tx_desc_data *)&gx->gx_rdata->gx_tx_ring[idx];
1484 tx->tx_addr = vtophys(mtod(m, vm_offset_t));
1485 tx->tx_status = 0;
1486 tx->tx_len = m->m_len;
1487 if (gx->arpcom.ac_if.if_hwassist) {
1488 tx->tx_type = 1;
1489 tx->tx_command = GX_TXTCP_EXTENSION;
1490 tx->tx_options = csumopts;
1491 } else {
1493 * This is really a struct gx_tx_desc_old.
1495 tx->tx_command = 0;
1497 GX_INC(idx, GX_TX_RING_CNT);
1498 cnt++;
1501 if (tx != NULL) {
1502 tx->tx_command |= GX_TXTCP_REPORT_STATUS | GX_TXTCP_INT_DELAY |
1503 GX_TXTCP_ETHER_CRC | GX_TXTCP_END_OF_PKT;
1504 if (ifv != NULL) {
1505 tx->tx_command |= GX_TXTCP_VLAN_ENABLE;
1506 tx->tx_vlan = ifv->ifv_tag;
1508 gx->gx_txcnt = cnt;
1509 gx->gx_tx_tail_idx = idx;
1510 gx->gx_txcontext = txcontext;
1511 idx = GX_PREV(idx, GX_TX_RING_CNT);
1512 gx->gx_cdata.gx_tx_chain[idx] = m_head;
1514 CSR_WRITE_4(gx, gx->gx_reg.r_tx_tail, gx->gx_tx_tail_idx);
1517 return (0);
1521 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1522 * to the mbuf data regions directly in the transmit descriptors.
1524 static void
1525 gx_start(struct ifnet *ifp)
1527 struct gx_softc *gx = ifp->if_softc;
1528 struct mbuf *m_head;
1530 for (;;) {
1531 m_head = ifq_poll(&ifp->if_snd);
1532 if (m_head == NULL)
1533 break;
1536 * Pack the data into the transmit ring. If we
1537 * don't have room, set the OACTIVE flag and wait
1538 * for the NIC to drain the ring.
1540 if (gx_encap(gx, m_head) != 0) {
1541 ifp->if_flags |= IFF_OACTIVE;
1542 break;
1544 ifq_dequeue(&ifp->if_snd, m_head);
1546 BPF_MTAP(ifp, m_head);
1549 * Set a timeout in case the chip goes out to lunch.
1551 ifp->if_timer = 5;