If RX csum calculation with pseudo header is enabled, bge(4)'s will
[dragonfly/port-amd64.git] / sys / dev / netif / bge / if_bge.c
blob024701527092f15ae5289bcca386f16508e6545d
1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34 * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.85 2007/06/26 15:10:23 sephe Exp $
39 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
41 * Written by Bill Paul <wpaul@windriver.com>
42 * Senior Engineer, Wind River Systems
46 * The Broadcom BCM5700 is based on technology originally developed by
47 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51 * frames, highly configurable RX filtering, and 16 RX and TX queues
52 * (which, along with RX filter rules, can be used for QOS applications).
53 * Other features, such as TCP segmentation, may be available as part
54 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55 * firmware images can be stored in hardware and need not be compiled
56 * into the driver.
58 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
61 * The BCM5701 is a single-chip solution incorporating both the BCM5700
62 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63 * does not support external SSRAM.
65 * Broadcom also produces a variation of the BCM5700 under the "Altima"
66 * brand name, which is functionally similar but lacks PCI-X support.
68 * Without external SSRAM, you can only have at most 4 TX rings,
69 * and the use of the mini RX ring is disabled. This seems to imply
70 * that these features are simply not available on the BCM5701. As a
71 * result, this driver does not implement any support for the mini RX
72 * ring.
75 #include "opt_polling.h"
76 #include <sys/param.h>
77 #include <sys/bus.h>
78 #include <sys/endian.h>
79 #include <sys/kernel.h>
80 #include <sys/ktr.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
100 #include <dev/netif/mii_layer/mii.h>
101 #include <dev/netif/mii_layer/miivar.h>
102 #include <dev/netif/mii_layer/brgphyreg.h>
104 #include <bus/pci/pcidevs.h>
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
108 #include <dev/netif/bge/if_bgereg.h>
110 /* "device miibus" required. See GENERIC if you get errors here. */
111 #include "miibus_if.h"
113 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
114 #define BGE_MIN_FRAME 60
117 * Various supported device vendors/types and their names. Note: the
118 * spec seems to indicate that the hardware still has Alteon's vendor
119 * ID burned into it, though it will always be overriden by the vendor
120 * ID in the EEPROM. Just to be safe, we cover all possibilities.
122 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */
124 static struct bge_type bge_devs[] = {
125 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
126 "3COM 3C996 Gigabit Ethernet" },
128 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
129 "Alteon BCM5700 Gigabit Ethernet" },
130 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
131 "Alteon BCM5701 Gigabit Ethernet" },
133 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
134 "Altima AC1000 Gigabit Ethernet" },
135 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
136 "Altima AC1002 Gigabit Ethernet" },
137 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
138 "Altima AC9100 Gigabit Ethernet" },
140 { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
141 "Apple BCM5701 Gigabit Ethernet" },
143 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
144 "Broadcom BCM5700 Gigabit Ethernet" },
145 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
146 "Broadcom BCM5701 Gigabit Ethernet" },
147 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
148 "Broadcom BCM5702 Gigabit Ethernet" },
149 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
150 "Broadcom BCM5702X Gigabit Ethernet" },
151 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
152 "Broadcom BCM5702 Gigabit Ethernet" },
153 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
154 "Broadcom BCM5703 Gigabit Ethernet" },
155 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
156 "Broadcom BCM5703X Gigabit Ethernet" },
157 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
158 "Broadcom BCM5703 Gigabit Ethernet" },
159 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
160 "Broadcom BCM5704C Dual Gigabit Ethernet" },
161 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
162 "Broadcom BCM5704S Dual Gigabit Ethernet" },
163 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
164 "Broadcom BCM5704S Dual Gigabit Ethernet" },
165 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
166 "Broadcom BCM5705 Gigabit Ethernet" },
167 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
168 "Broadcom BCM5705F Gigabit Ethernet" },
169 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
170 "Broadcom BCM5705K Gigabit Ethernet" },
171 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
172 "Broadcom BCM5705M Gigabit Ethernet" },
173 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
174 "Broadcom BCM5705M Gigabit Ethernet" },
175 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
176 "Broadcom BCM5714C Gigabit Ethernet" },
177 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
178 "Broadcom BCM5714S Gigabit Ethernet" },
179 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
180 "Broadcom BCM5715 Gigabit Ethernet" },
181 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
182 "Broadcom BCM5715S Gigabit Ethernet" },
183 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
184 "Broadcom BCM5720 Gigabit Ethernet" },
185 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
186 "Broadcom BCM5721 Gigabit Ethernet" },
187 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
188 "Broadcom BCM5722 Gigabit Ethernet" },
189 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
190 "Broadcom BCM5750 Gigabit Ethernet" },
191 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
192 "Broadcom BCM5750M Gigabit Ethernet" },
193 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
194 "Broadcom BCM5751 Gigabit Ethernet" },
195 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
196 "Broadcom BCM5751F Gigabit Ethernet" },
197 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
198 "Broadcom BCM5751M Gigabit Ethernet" },
199 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
200 "Broadcom BCM5752 Gigabit Ethernet" },
201 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
202 "Broadcom BCM5752M Gigabit Ethernet" },
203 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
204 "Broadcom BCM5753 Gigabit Ethernet" },
205 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
206 "Broadcom BCM5753F Gigabit Ethernet" },
207 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
208 "Broadcom BCM5753M Gigabit Ethernet" },
209 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
210 "Broadcom BCM5754 Gigabit Ethernet" },
211 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
212 "Broadcom BCM5754M Gigabit Ethernet" },
213 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
214 "Broadcom BCM5755 Gigabit Ethernet" },
215 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
216 "Broadcom BCM5755M Gigabit Ethernet" },
217 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
218 "Broadcom BCM5756 Gigabit Ethernet" },
219 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
220 "Broadcom BCM5780 Gigabit Ethernet" },
221 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
222 "Broadcom BCM5780S Gigabit Ethernet" },
223 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
224 "Broadcom BCM5781 Gigabit Ethernet" },
225 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
226 "Broadcom BCM5782 Gigabit Ethernet" },
227 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
228 "Broadcom BCM5786 Gigabit Ethernet" },
229 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
230 "Broadcom BCM5787 Gigabit Ethernet" },
231 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
232 "Broadcom BCM5787F Gigabit Ethernet" },
233 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
234 "Broadcom BCM5787M Gigabit Ethernet" },
235 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
236 "Broadcom BCM5788 Gigabit Ethernet" },
237 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
238 "Broadcom BCM5789 Gigabit Ethernet" },
239 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
240 "Broadcom BCM5901 Fast Ethernet" },
241 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
242 "Broadcom BCM5901A2 Fast Ethernet" },
243 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
244 "Broadcom BCM5903M Fast Ethernet" },
246 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
247 "SysKonnect Gigabit Ethernet" },
249 { 0, 0, NULL }
252 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
253 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
254 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
255 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
256 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
258 static int bge_probe(device_t);
259 static int bge_attach(device_t);
260 static int bge_detach(device_t);
261 static void bge_txeof(struct bge_softc *);
262 static void bge_rxeof(struct bge_softc *);
264 static void bge_tick(void *);
265 static void bge_stats_update(struct bge_softc *);
266 static void bge_stats_update_regs(struct bge_softc *);
267 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
269 #ifdef DEVICE_POLLING
270 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
271 #endif
272 static void bge_intr(void *);
273 static void bge_enable_intr(struct bge_softc *);
274 static void bge_disable_intr(struct bge_softc *);
275 static void bge_start(struct ifnet *);
276 static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
277 static void bge_init(void *);
278 static void bge_stop(struct bge_softc *);
279 static void bge_watchdog(struct ifnet *);
280 static void bge_shutdown(device_t);
281 static int bge_suspend(device_t);
282 static int bge_resume(device_t);
283 static int bge_ifmedia_upd(struct ifnet *);
284 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
286 static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
287 static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
289 static void bge_setmulti(struct bge_softc *);
290 static void bge_setpromisc(struct bge_softc *);
292 static int bge_alloc_jumbo_mem(struct bge_softc *);
293 static void bge_free_jumbo_mem(struct bge_softc *);
294 static struct bge_jslot
295 *bge_jalloc(struct bge_softc *);
296 static void bge_jfree(void *);
297 static void bge_jref(void *);
298 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
299 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
300 static int bge_init_rx_ring_std(struct bge_softc *);
301 static void bge_free_rx_ring_std(struct bge_softc *);
302 static int bge_init_rx_ring_jumbo(struct bge_softc *);
303 static void bge_free_rx_ring_jumbo(struct bge_softc *);
304 static void bge_free_tx_ring(struct bge_softc *);
305 static int bge_init_tx_ring(struct bge_softc *);
307 static int bge_chipinit(struct bge_softc *);
308 static int bge_blockinit(struct bge_softc *);
310 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
311 static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
312 #ifdef notdef
313 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
314 #endif
315 static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
316 static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
318 static int bge_miibus_readreg(device_t, int, int);
319 static int bge_miibus_writereg(device_t, int, int, int);
320 static void bge_miibus_statchg(device_t);
321 static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
322 static void bge_tbi_link_upd(struct bge_softc *, uint32_t);
323 static void bge_copper_link_upd(struct bge_softc *, uint32_t);
325 static void bge_reset(struct bge_softc *);
327 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
328 static void bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
329 bus_size_t, int);
330 static int bge_dma_alloc(struct bge_softc *);
331 static void bge_dma_free(struct bge_softc *);
332 static int bge_dma_block_alloc(struct bge_softc *, bus_size_t,
333 bus_dma_tag_t *, bus_dmamap_t *,
334 void **, bus_addr_t *);
335 static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
337 static void bge_coal_change(struct bge_softc *);
338 static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
339 static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
340 static int bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
341 static int bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
342 static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
345 * Set following tunable to 1 for some IBM blade servers with the DNLK
346 * switch module. Auto negotiation is broken for those configurations.
348 static int bge_fake_autoneg = 0;
349 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
351 /* Interrupt moderation control variables. */
352 static int bge_rx_coal_ticks = 150; /* usec */
353 static int bge_tx_coal_ticks = 1000000; /* usec */
354 static int bge_rx_max_coal_bds = 16;
355 static int bge_tx_max_coal_bds = 32;
357 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
358 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
359 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
360 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
362 #if !defined(KTR_IF_BGE)
363 #define KTR_IF_BGE KTR_ALL
364 #endif
365 KTR_INFO_MASTER(if_bge);
366 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
367 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
368 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
369 #define logif(name) KTR_LOG(if_bge_ ## name)
371 static device_method_t bge_methods[] = {
372 /* Device interface */
373 DEVMETHOD(device_probe, bge_probe),
374 DEVMETHOD(device_attach, bge_attach),
375 DEVMETHOD(device_detach, bge_detach),
376 DEVMETHOD(device_shutdown, bge_shutdown),
377 DEVMETHOD(device_suspend, bge_suspend),
378 DEVMETHOD(device_resume, bge_resume),
380 /* bus interface */
381 DEVMETHOD(bus_print_child, bus_generic_print_child),
382 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
384 /* MII interface */
385 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
386 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
387 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
389 { 0, 0 }
392 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
393 static devclass_t bge_devclass;
395 DECLARE_DUMMY_MODULE(if_bge);
396 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
397 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
399 static uint32_t
400 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
402 device_t dev = sc->bge_dev;
403 uint32_t val;
405 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
406 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
407 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
408 return (val);
411 static void
412 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
414 device_t dev = sc->bge_dev;
416 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
417 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
418 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
421 #ifdef notdef
422 static uint32_t
423 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
425 device_t dev = sc->bge_dev;
427 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
428 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
430 #endif
432 static void
433 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
435 device_t dev = sc->bge_dev;
437 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
438 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
441 static void
442 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
444 CSR_WRITE_4(sc, off, val);
448 * Read a byte of data stored in the EEPROM at address 'addr.' The
449 * BCM570x supports both the traditional bitbang interface and an
450 * auto access interface for reading the EEPROM. We use the auto
451 * access method.
453 static uint8_t
454 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
456 int i;
457 uint32_t byte = 0;
460 * Enable use of auto EEPROM access so we can avoid
461 * having to use the bitbang method.
463 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
465 /* Reset the EEPROM, load the clock period. */
466 CSR_WRITE_4(sc, BGE_EE_ADDR,
467 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
468 DELAY(20);
470 /* Issue the read EEPROM command. */
471 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
473 /* Wait for completion */
474 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
475 DELAY(10);
476 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
477 break;
480 if (i == BGE_TIMEOUT) {
481 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
482 return(1);
485 /* Get result. */
486 byte = CSR_READ_4(sc, BGE_EE_DATA);
488 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
490 return(0);
494 * Read a sequence of bytes from the EEPROM.
496 static int
497 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
499 size_t i;
500 int err;
501 uint8_t byte;
503 for (byte = 0, err = 0, i = 0; i < len; i++) {
504 err = bge_eeprom_getbyte(sc, off + i, &byte);
505 if (err)
506 break;
507 *(dest + i) = byte;
510 return(err ? 1 : 0);
513 static int
514 bge_miibus_readreg(device_t dev, int phy, int reg)
516 struct bge_softc *sc;
517 struct ifnet *ifp;
518 uint32_t val, autopoll;
519 int i;
521 sc = device_get_softc(dev);
522 ifp = &sc->arpcom.ac_if;
525 * Broadcom's own driver always assumes the internal
526 * PHY is at GMII address 1. On some chips, the PHY responds
527 * to accesses at all addresses, which could cause us to
528 * bogusly attach the PHY 32 times at probe type. Always
529 * restricting the lookup to address 1 is simpler than
530 * trying to figure out which chips revisions should be
531 * special-cased.
533 if (phy != 1)
534 return(0);
536 /* Reading with autopolling on may trigger PCI errors */
537 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
538 if (autopoll & BGE_MIMODE_AUTOPOLL) {
539 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
540 DELAY(40);
543 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
544 BGE_MIPHY(phy)|BGE_MIREG(reg));
546 for (i = 0; i < BGE_TIMEOUT; i++) {
547 val = CSR_READ_4(sc, BGE_MI_COMM);
548 if (!(val & BGE_MICOMM_BUSY))
549 break;
552 if (i == BGE_TIMEOUT) {
553 if_printf(ifp, "PHY read timed out\n");
554 val = 0;
555 goto done;
558 val = CSR_READ_4(sc, BGE_MI_COMM);
560 done:
561 if (autopoll & BGE_MIMODE_AUTOPOLL) {
562 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
563 DELAY(40);
566 if (val & BGE_MICOMM_READFAIL)
567 return(0);
569 return(val & 0xFFFF);
572 static int
573 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
575 struct bge_softc *sc;
576 uint32_t autopoll;
577 int i;
579 sc = device_get_softc(dev);
581 /* Reading with autopolling on may trigger PCI errors */
582 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
583 if (autopoll & BGE_MIMODE_AUTOPOLL) {
584 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
585 DELAY(40);
588 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
589 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
591 for (i = 0; i < BGE_TIMEOUT; i++) {
592 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
593 break;
596 if (autopoll & BGE_MIMODE_AUTOPOLL) {
597 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
598 DELAY(40);
601 if (i == BGE_TIMEOUT) {
602 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
603 return(0);
606 return(0);
609 static void
610 bge_miibus_statchg(device_t dev)
612 struct bge_softc *sc;
613 struct mii_data *mii;
615 sc = device_get_softc(dev);
616 mii = device_get_softc(sc->bge_miibus);
618 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
619 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
620 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
621 } else {
622 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
625 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
626 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
627 } else {
628 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
633 * Memory management for jumbo frames.
635 static int
636 bge_alloc_jumbo_mem(struct bge_softc *sc)
638 struct ifnet *ifp = &sc->arpcom.ac_if;
639 struct bge_jslot *entry;
640 uint8_t *ptr;
641 bus_addr_t paddr;
642 int i, error;
645 * Create tag for jumbo mbufs.
646 * This is really a bit of a kludge. We allocate a special
647 * jumbo buffer pool which (thanks to the way our DMA
648 * memory allocation works) will consist of contiguous
649 * pages. This means that even though a jumbo buffer might
650 * be larger than a page size, we don't really need to
651 * map it into more than one DMA segment. However, the
652 * default mbuf tag will result in multi-segment mappings,
653 * so we have to create a special jumbo mbuf tag that
654 * lets us get away with mapping the jumbo buffers as
655 * a single segment. I think eventually the driver should
656 * be changed so that it uses ordinary mbufs and cluster
657 * buffers, i.e. jumbo frames can span multiple DMA
658 * descriptors. But that's a project for another day.
662 * Create DMA stuffs for jumbo RX ring.
664 error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
665 &sc->bge_cdata.bge_rx_jumbo_ring_tag,
666 &sc->bge_cdata.bge_rx_jumbo_ring_map,
667 (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
668 &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
669 if (error) {
670 if_printf(ifp, "could not create jumbo RX ring\n");
671 return error;
675 * Create DMA stuffs for jumbo buffer block.
677 error = bge_dma_block_alloc(sc, BGE_JMEM,
678 &sc->bge_cdata.bge_jumbo_tag,
679 &sc->bge_cdata.bge_jumbo_map,
680 (void **)&sc->bge_ldata.bge_jumbo_buf,
681 &paddr);
682 if (error) {
683 if_printf(ifp, "could not create jumbo buffer\n");
684 return error;
687 SLIST_INIT(&sc->bge_jfree_listhead);
690 * Now divide it up into 9K pieces and save the addresses
691 * in an array. Note that we play an evil trick here by using
692 * the first few bytes in the buffer to hold the the address
693 * of the softc structure for this interface. This is because
694 * bge_jfree() needs it, but it is called by the mbuf management
695 * code which will not pass it to us explicitly.
697 for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
698 entry = &sc->bge_cdata.bge_jslots[i];
699 entry->bge_sc = sc;
700 entry->bge_buf = ptr;
701 entry->bge_paddr = paddr;
702 entry->bge_inuse = 0;
703 entry->bge_slot = i;
704 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
706 ptr += BGE_JLEN;
707 paddr += BGE_JLEN;
709 return 0;
712 static void
713 bge_free_jumbo_mem(struct bge_softc *sc)
715 /* Destroy jumbo RX ring. */
716 bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
717 sc->bge_cdata.bge_rx_jumbo_ring_map,
718 sc->bge_ldata.bge_rx_jumbo_ring);
720 /* Destroy jumbo buffer block. */
721 bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
722 sc->bge_cdata.bge_jumbo_map,
723 sc->bge_ldata.bge_jumbo_buf);
727 * Allocate a jumbo buffer.
729 static struct bge_jslot *
730 bge_jalloc(struct bge_softc *sc)
732 struct bge_jslot *entry;
734 lwkt_serialize_enter(&sc->bge_jslot_serializer);
735 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
736 if (entry) {
737 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
738 entry->bge_inuse = 1;
739 } else {
740 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
742 lwkt_serialize_exit(&sc->bge_jslot_serializer);
743 return(entry);
747 * Adjust usage count on a jumbo buffer.
749 static void
750 bge_jref(void *arg)
752 struct bge_jslot *entry = (struct bge_jslot *)arg;
753 struct bge_softc *sc = entry->bge_sc;
755 if (sc == NULL)
756 panic("bge_jref: can't find softc pointer!");
758 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
759 panic("bge_jref: asked to reference buffer "
760 "that we don't manage!");
761 } else if (entry->bge_inuse == 0) {
762 panic("bge_jref: buffer already free!");
763 } else {
764 atomic_add_int(&entry->bge_inuse, 1);
769 * Release a jumbo buffer.
771 static void
772 bge_jfree(void *arg)
774 struct bge_jslot *entry = (struct bge_jslot *)arg;
775 struct bge_softc *sc = entry->bge_sc;
777 if (sc == NULL)
778 panic("bge_jfree: can't find softc pointer!");
780 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
781 panic("bge_jfree: asked to free buffer that we don't manage!");
782 } else if (entry->bge_inuse == 0) {
783 panic("bge_jfree: buffer already free!");
784 } else {
786 * Possible MP race to 0, use the serializer. The atomic insn
787 * is still needed for races against bge_jref().
789 lwkt_serialize_enter(&sc->bge_jslot_serializer);
790 atomic_subtract_int(&entry->bge_inuse, 1);
791 if (entry->bge_inuse == 0) {
792 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
793 entry, jslot_link);
795 lwkt_serialize_exit(&sc->bge_jslot_serializer);
801 * Intialize a standard receive ring descriptor.
803 static int
804 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
806 struct mbuf *m_new = NULL;
807 struct bge_dmamap_arg ctx;
808 bus_dma_segment_t seg;
809 struct bge_rx_bd *r;
810 int error;
812 if (m == NULL) {
813 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
814 if (m_new == NULL)
815 return ENOBUFS;
816 } else {
817 m_new = m;
818 m_new->m_data = m_new->m_ext.ext_buf;
820 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
822 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
823 m_adj(m_new, ETHER_ALIGN);
825 ctx.bge_maxsegs = 1;
826 ctx.bge_segs = &seg;
827 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
828 sc->bge_cdata.bge_rx_std_dmamap[i],
829 m_new, bge_dma_map_mbuf, &ctx,
830 BUS_DMA_NOWAIT);
831 if (error || ctx.bge_maxsegs == 0) {
832 if (m == NULL)
833 m_freem(m_new);
834 return ENOMEM;
837 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
839 r = &sc->bge_ldata.bge_rx_std_ring[i];
840 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
841 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
842 r->bge_flags = BGE_RXBDFLAG_END;
843 r->bge_len = m_new->m_len;
844 r->bge_idx = i;
846 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
847 sc->bge_cdata.bge_rx_std_dmamap[i],
848 BUS_DMASYNC_PREREAD);
849 return 0;
853 * Initialize a jumbo receive ring descriptor. This allocates
854 * a jumbo buffer from the pool managed internally by the driver.
856 static int
857 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
859 struct mbuf *m_new = NULL;
860 struct bge_jslot *buf;
861 struct bge_rx_bd *r;
862 bus_addr_t paddr;
864 if (m == NULL) {
865 /* Allocate the mbuf. */
866 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
867 if (m_new == NULL)
868 return(ENOBUFS);
870 /* Allocate the jumbo buffer */
871 buf = bge_jalloc(sc);
872 if (buf == NULL) {
873 m_freem(m_new);
874 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
875 "-- packet dropped!\n");
876 return ENOBUFS;
879 /* Attach the buffer to the mbuf. */
880 m_new->m_ext.ext_arg = buf;
881 m_new->m_ext.ext_buf = buf->bge_buf;
882 m_new->m_ext.ext_free = bge_jfree;
883 m_new->m_ext.ext_ref = bge_jref;
884 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
886 m_new->m_flags |= M_EXT;
887 } else {
888 KKASSERT(m->m_flags & M_EXT);
889 m_new = m;
890 buf = m_new->m_ext.ext_arg;
892 m_new->m_data = m_new->m_ext.ext_buf;
893 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
895 paddr = buf->bge_paddr;
896 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
897 m_adj(m_new, ETHER_ALIGN);
898 paddr += ETHER_ALIGN;
901 /* Set up the descriptor. */
902 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
904 r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
905 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
906 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
907 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
908 r->bge_len = m_new->m_len;
909 r->bge_idx = i;
911 return 0;
915 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
916 * that's 1MB or memory, which is a lot. For now, we fill only the first
917 * 256 ring entries and hope that our CPU is fast enough to keep up with
918 * the NIC.
920 static int
921 bge_init_rx_ring_std(struct bge_softc *sc)
923 int i;
925 for (i = 0; i < BGE_SSLOTS; i++) {
926 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
927 return(ENOBUFS);
930 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
931 sc->bge_cdata.bge_rx_std_ring_map,
932 BUS_DMASYNC_PREWRITE);
934 sc->bge_std = i - 1;
935 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
937 return(0);
940 static void
941 bge_free_rx_ring_std(struct bge_softc *sc)
943 int i;
945 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
946 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
947 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
948 sc->bge_cdata.bge_rx_std_dmamap[i]);
949 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
950 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
952 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
953 sizeof(struct bge_rx_bd));
957 static int
958 bge_init_rx_ring_jumbo(struct bge_softc *sc)
960 int i;
961 struct bge_rcb *rcb;
963 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
964 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
965 return(ENOBUFS);
968 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
969 sc->bge_cdata.bge_rx_jumbo_ring_map,
970 BUS_DMASYNC_PREWRITE);
972 sc->bge_jumbo = i - 1;
974 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
975 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
976 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
978 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
980 return(0);
983 static void
984 bge_free_rx_ring_jumbo(struct bge_softc *sc)
986 int i;
988 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
989 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
990 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
991 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
993 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
994 sizeof(struct bge_rx_bd));
998 static void
999 bge_free_tx_ring(struct bge_softc *sc)
1001 int i;
1003 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1004 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1005 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1006 sc->bge_cdata.bge_tx_dmamap[i]);
1007 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1008 sc->bge_cdata.bge_tx_chain[i] = NULL;
1010 bzero(&sc->bge_ldata.bge_tx_ring[i],
1011 sizeof(struct bge_tx_bd));
1015 static int
1016 bge_init_tx_ring(struct bge_softc *sc)
1018 sc->bge_txcnt = 0;
1019 sc->bge_tx_saved_considx = 0;
1020 sc->bge_tx_prodidx = 0;
1022 /* Initialize transmit producer index for host-memory send ring. */
1023 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1025 /* 5700 b2 errata */
1026 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1027 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1029 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1030 /* 5700 b2 errata */
1031 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1032 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1034 return(0);
1037 static void
1038 bge_setmulti(struct bge_softc *sc)
1040 struct ifnet *ifp;
1041 struct ifmultiaddr *ifma;
1042 uint32_t hashes[4] = { 0, 0, 0, 0 };
1043 int h, i;
1045 ifp = &sc->arpcom.ac_if;
1047 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1048 for (i = 0; i < 4; i++)
1049 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1050 return;
1053 /* First, zot all the existing filters. */
1054 for (i = 0; i < 4; i++)
1055 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1057 /* Now program new ones. */
1058 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1059 if (ifma->ifma_addr->sa_family != AF_LINK)
1060 continue;
1061 h = ether_crc32_le(
1062 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1063 ETHER_ADDR_LEN) & 0x7f;
1064 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1067 for (i = 0; i < 4; i++)
1068 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1072 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1073 * self-test results.
1075 static int
1076 bge_chipinit(struct bge_softc *sc)
1078 int i;
1079 uint32_t dma_rw_ctl;
1081 /* Set endian type before we access any non-PCI registers. */
1082 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1085 * Check the 'ROM failed' bit on the RX CPU to see if
1086 * self-tests passed.
1088 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1089 if_printf(&sc->arpcom.ac_if,
1090 "RX CPU self-diagnostics failed!\n");
1091 return(ENODEV);
1094 /* Clear the MAC control register */
1095 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1098 * Clear the MAC statistics block in the NIC's
1099 * internal memory.
1101 for (i = BGE_STATS_BLOCK;
1102 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1103 BGE_MEMWIN_WRITE(sc, i, 0);
1105 for (i = BGE_STATUS_BLOCK;
1106 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1107 BGE_MEMWIN_WRITE(sc, i, 0);
1109 /* Set up the PCI DMA control register. */
1110 if (sc->bge_flags & BGE_FLAG_PCIE) {
1111 /* PCI Express */
1112 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1113 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1114 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1115 } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1116 /* PCI-X bus */
1117 if (BGE_IS_5714_FAMILY(sc)) {
1118 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1119 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1120 /* XXX magic values, Broadcom-supplied Linux driver */
1121 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1122 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1123 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1124 } else {
1125 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1127 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1129 * The 5704 uses a different encoding of read/write
1130 * watermarks.
1132 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1133 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1134 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1135 } else {
1136 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1137 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1138 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1139 (0x0F);
1143 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1144 * for hardware bugs.
1146 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1147 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1148 uint32_t tmp;
1150 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1151 if (tmp == 0x6 || tmp == 0x7)
1152 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1154 } else {
1155 /* Conventional PCI bus */
1156 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1159 (0x0F);
1162 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1163 sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1164 sc->bge_asicrev == BGE_ASICREV_BCM5705)
1165 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1166 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1169 * Set up general mode register.
1171 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1172 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1173 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1176 * Disable memory write invalidate. Apparently it is not supported
1177 * properly by these devices.
1179 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1181 /* Set the timer prescaler (always 66Mhz) */
1182 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1184 return(0);
1187 static int
1188 bge_blockinit(struct bge_softc *sc)
1190 struct bge_rcb *rcb;
1191 bus_size_t vrcb;
1192 bge_hostaddr taddr;
1193 uint32_t val;
1194 int i;
1197 * Initialize the memory window pointer register so that
1198 * we can access the first 32K of internal NIC RAM. This will
1199 * allow us to set up the TX send ring RCBs and the RX return
1200 * ring RCBs, plus other things which live in NIC memory.
1202 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1204 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1206 if (!BGE_IS_5705_PLUS(sc)) {
1207 /* Configure mbuf memory pool */
1208 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1209 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1210 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1211 else
1212 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1214 /* Configure DMA resource pool */
1215 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1216 BGE_DMA_DESCRIPTORS);
1217 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1220 /* Configure mbuf pool watermarks */
1221 if (BGE_IS_5705_PLUS(sc)) {
1222 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1223 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1224 } else {
1225 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1226 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1228 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1230 /* Configure DMA resource watermarks */
1231 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1232 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1234 /* Enable buffer manager */
1235 if (!BGE_IS_5705_PLUS(sc)) {
1236 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1237 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1239 /* Poll for buffer manager start indication */
1240 for (i = 0; i < BGE_TIMEOUT; i++) {
1241 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1242 break;
1243 DELAY(10);
1246 if (i == BGE_TIMEOUT) {
1247 if_printf(&sc->arpcom.ac_if,
1248 "buffer manager failed to start\n");
1249 return(ENXIO);
1253 /* Enable flow-through queues */
1254 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1255 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1257 /* Wait until queue initialization is complete */
1258 for (i = 0; i < BGE_TIMEOUT; i++) {
1259 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1260 break;
1261 DELAY(10);
1264 if (i == BGE_TIMEOUT) {
1265 if_printf(&sc->arpcom.ac_if,
1266 "flow-through queue init failed\n");
1267 return(ENXIO);
1270 /* Initialize the standard RX ring control block */
1271 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1272 rcb->bge_hostaddr.bge_addr_lo =
1273 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1274 rcb->bge_hostaddr.bge_addr_hi =
1275 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1276 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1277 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1278 if (BGE_IS_5705_PLUS(sc))
1279 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1280 else
1281 rcb->bge_maxlen_flags =
1282 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1283 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1284 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1285 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1286 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1287 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1290 * Initialize the jumbo RX ring control block
1291 * We set the 'ring disabled' bit in the flags
1292 * field until we're actually ready to start
1293 * using this ring (i.e. once we set the MTU
1294 * high enough to require it).
1296 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1297 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1299 rcb->bge_hostaddr.bge_addr_lo =
1300 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1301 rcb->bge_hostaddr.bge_addr_hi =
1302 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1303 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1304 sc->bge_cdata.bge_rx_jumbo_ring_map,
1305 BUS_DMASYNC_PREREAD);
1306 rcb->bge_maxlen_flags =
1307 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1308 BGE_RCB_FLAG_RING_DISABLED);
1309 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1310 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1311 rcb->bge_hostaddr.bge_addr_hi);
1312 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1313 rcb->bge_hostaddr.bge_addr_lo);
1314 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1315 rcb->bge_maxlen_flags);
1316 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1318 /* Set up dummy disabled mini ring RCB */
1319 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1320 rcb->bge_maxlen_flags =
1321 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1322 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1323 rcb->bge_maxlen_flags);
1327 * Set the BD ring replentish thresholds. The recommended
1328 * values are 1/8th the number of descriptors allocated to
1329 * each ring.
1331 if (BGE_IS_5705_PLUS(sc))
1332 val = 8;
1333 else
1334 val = BGE_STD_RX_RING_CNT / 8;
1335 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1336 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1339 * Disable all unused send rings by setting the 'ring disabled'
1340 * bit in the flags field of all the TX send ring control blocks.
1341 * These are located in NIC memory.
1343 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1344 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1345 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1346 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1347 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1348 vrcb += sizeof(struct bge_rcb);
1351 /* Configure TX RCB 0 (we use only the first ring) */
1352 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1353 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1354 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1355 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1356 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1357 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1358 if (!BGE_IS_5705_PLUS(sc)) {
1359 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1360 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1363 /* Disable all unused RX return rings */
1364 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1365 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1366 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1367 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1368 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1369 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1370 BGE_RCB_FLAG_RING_DISABLED));
1371 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1372 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1373 (i * (sizeof(uint64_t))), 0);
1374 vrcb += sizeof(struct bge_rcb);
1377 /* Initialize RX ring indexes */
1378 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1379 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1380 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1383 * Set up RX return ring 0
1384 * Note that the NIC address for RX return rings is 0x00000000.
1385 * The return rings live entirely within the host, so the
1386 * nicaddr field in the RCB isn't used.
1388 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1389 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1390 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1391 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1392 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1393 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1394 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1396 /* Set random backoff seed for TX */
1397 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1398 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1399 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1400 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1401 BGE_TX_BACKOFF_SEED_MASK);
1403 /* Set inter-packet gap */
1404 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1407 * Specify which ring to use for packets that don't match
1408 * any RX rules.
1410 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1413 * Configure number of RX lists. One interrupt distribution
1414 * list, sixteen active lists, one bad frames class.
1416 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1418 /* Inialize RX list placement stats mask. */
1419 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1420 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1422 /* Disable host coalescing until we get it set up */
1423 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1425 /* Poll to make sure it's shut down. */
1426 for (i = 0; i < BGE_TIMEOUT; i++) {
1427 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1428 break;
1429 DELAY(10);
1432 if (i == BGE_TIMEOUT) {
1433 if_printf(&sc->arpcom.ac_if,
1434 "host coalescing engine failed to idle\n");
1435 return(ENXIO);
1438 /* Set up host coalescing defaults */
1439 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1440 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1441 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1442 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1443 if (!BGE_IS_5705_PLUS(sc)) {
1444 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1445 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1447 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1448 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1450 /* Set up address of statistics block */
1451 if (!BGE_IS_5705_PLUS(sc)) {
1452 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1453 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1454 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1455 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1457 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1458 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1459 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1462 /* Set up address of status block */
1463 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1464 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1465 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1466 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1467 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1468 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1470 /* Turn on host coalescing state machine */
1471 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1473 /* Turn on RX BD completion state machine and enable attentions */
1474 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1475 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1477 /* Turn on RX list placement state machine */
1478 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1480 /* Turn on RX list selector state machine. */
1481 if (!BGE_IS_5705_PLUS(sc))
1482 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1484 /* Turn on DMA, clear stats */
1485 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1486 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1487 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1488 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1489 ((sc->bge_flags & BGE_FLAG_TBI) ?
1490 BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1492 /* Set misc. local control, enable interrupts on attentions */
1493 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1495 #ifdef notdef
1496 /* Assert GPIO pins for PHY reset */
1497 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1498 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1499 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1500 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1501 #endif
1503 /* Turn on DMA completion state machine */
1504 if (!BGE_IS_5705_PLUS(sc))
1505 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1507 /* Turn on write DMA state machine */
1508 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1509 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1510 sc->bge_asicrev == BGE_ASICREV_BCM5787)
1511 val |= (1 << 29); /* Enable host coalescing bug fix. */
1512 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1514 /* Turn on read DMA state machine */
1515 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1516 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1518 /* Turn on RX data completion state machine */
1519 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1521 /* Turn on RX BD initiator state machine */
1522 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1524 /* Turn on RX data and RX BD initiator state machine */
1525 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1527 /* Turn on Mbuf cluster free state machine */
1528 if (!BGE_IS_5705_PLUS(sc))
1529 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1531 /* Turn on send BD completion state machine */
1532 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1534 /* Turn on send data completion state machine */
1535 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1537 /* Turn on send data initiator state machine */
1538 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1540 /* Turn on send BD initiator state machine */
1541 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1543 /* Turn on send BD selector state machine */
1544 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1546 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1547 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1548 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1550 /* ack/clear link change events */
1551 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1552 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1553 BGE_MACSTAT_LINK_CHANGED);
1554 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1556 /* Enable PHY auto polling (for MII/GMII only) */
1557 if (sc->bge_flags & BGE_FLAG_TBI) {
1558 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1559 } else {
1560 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1561 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1562 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1563 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1564 BGE_EVTENB_MI_INTERRUPT);
1569 * Clear any pending link state attention.
1570 * Otherwise some link state change events may be lost until attention
1571 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1572 * It's not necessary on newer BCM chips - perhaps enabling link
1573 * state change attentions implies clearing pending attention.
1575 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1576 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1577 BGE_MACSTAT_LINK_CHANGED);
1579 /* Enable link state change attentions. */
1580 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1582 return(0);
1586 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1587 * against our list and return its name if we find a match. Note
1588 * that since the Broadcom controller contains VPD support, we
1589 * can get the device name string from the controller itself instead
1590 * of the compiled-in string. This is a little slow, but it guarantees
1591 * we'll always announce the right product name.
1593 static int
1594 bge_probe(device_t dev)
1596 struct bge_softc *sc;
1597 struct bge_type *t;
1598 char *descbuf;
1599 uint16_t product, vendor;
1601 product = pci_get_device(dev);
1602 vendor = pci_get_vendor(dev);
1604 for (t = bge_devs; t->bge_name != NULL; t++) {
1605 if (vendor == t->bge_vid && product == t->bge_did)
1606 break;
1609 if (t->bge_name == NULL)
1610 return(ENXIO);
1612 sc = device_get_softc(dev);
1613 descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1614 ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1615 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1616 device_set_desc_copy(dev, descbuf);
1617 if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1618 sc->bge_flags |= BGE_FLAG_NO_3LED;
1619 kfree(descbuf, M_TEMP);
1620 return(0);
1623 static int
1624 bge_attach(device_t dev)
1626 struct ifnet *ifp;
1627 struct bge_softc *sc;
1628 uint32_t hwcfg = 0;
1629 uint32_t mac_addr = 0;
1630 int error = 0, rid;
1631 uint8_t ether_addr[ETHER_ADDR_LEN];
1633 sc = device_get_softc(dev);
1634 sc->bge_dev = dev;
1635 callout_init(&sc->bge_stat_timer);
1636 lwkt_serialize_init(&sc->bge_jslot_serializer);
1639 * Map control/status registers.
1641 pci_enable_busmaster(dev);
1643 rid = BGE_PCI_BAR0;
1644 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1645 RF_ACTIVE);
1647 if (sc->bge_res == NULL) {
1648 device_printf(dev, "couldn't map memory\n");
1649 return ENXIO;
1652 sc->bge_btag = rman_get_bustag(sc->bge_res);
1653 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1655 /* Save ASIC rev. */
1656 sc->bge_chipid =
1657 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1658 BGE_PCIMISCCTL_ASICREV;
1659 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1660 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1662 /* Save chipset family. */
1663 switch (sc->bge_asicrev) {
1664 case BGE_ASICREV_BCM5700:
1665 case BGE_ASICREV_BCM5701:
1666 case BGE_ASICREV_BCM5703:
1667 case BGE_ASICREV_BCM5704:
1668 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1669 break;
1671 case BGE_ASICREV_BCM5714_A0:
1672 case BGE_ASICREV_BCM5780:
1673 case BGE_ASICREV_BCM5714:
1674 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1675 /* Fall through */
1677 case BGE_ASICREV_BCM5750:
1678 case BGE_ASICREV_BCM5752:
1679 case BGE_ASICREV_BCM5755:
1680 case BGE_ASICREV_BCM5787:
1681 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1682 /* Fall through */
1684 case BGE_ASICREV_BCM5705:
1685 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1686 break;
1690 * Set various quirk flags.
1693 sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1694 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1695 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1696 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1697 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1698 sc->bge_asicrev == BGE_ASICREV_BCM5906)
1699 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1701 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1702 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1703 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1705 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1706 sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1707 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1709 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1710 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1712 if (BGE_IS_5705_PLUS(sc)) {
1713 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1714 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1715 uint32_t product = pci_get_device(dev);
1717 if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1718 product != PCI_PRODUCT_BROADCOM_BCM5756)
1719 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1720 if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1721 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1722 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1723 sc->bge_flags |= BGE_FLAG_BER_BUG;
1727 /* Allocate interrupt */
1728 rid = 0;
1730 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1731 RF_SHAREABLE | RF_ACTIVE);
1733 if (sc->bge_irq == NULL) {
1734 device_printf(dev, "couldn't map interrupt\n");
1735 error = ENXIO;
1736 goto fail;
1740 * Check if this is a PCI-X or PCI Express device.
1742 if (BGE_IS_5705_PLUS(sc)) {
1743 uint32_t reg;
1745 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1746 if ((reg & 0xff) == BGE_PCIE_CAPID)
1747 sc->bge_flags |= BGE_FLAG_PCIE;
1748 } else {
1750 * Check if the device is in PCI-X Mode.
1751 * (This bit is not valid on PCI Express controllers.)
1753 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1754 BGE_PCISTATE_PCI_BUSMODE) == 0)
1755 sc->bge_flags |= BGE_FLAG_PCIX;
1758 ifp = &sc->arpcom.ac_if;
1759 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1761 /* Try to reset the chip. */
1762 bge_reset(sc);
1764 if (bge_chipinit(sc)) {
1765 device_printf(dev, "chip initialization failed\n");
1766 error = ENXIO;
1767 goto fail;
1771 * Get station address from the EEPROM.
1773 mac_addr = bge_readmem_ind(sc, 0x0c14);
1774 if ((mac_addr >> 16) == 0x484b) {
1775 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1776 ether_addr[1] = (uint8_t)mac_addr;
1777 mac_addr = bge_readmem_ind(sc, 0x0c18);
1778 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1779 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1780 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1781 ether_addr[5] = (uint8_t)mac_addr;
1782 } else if (bge_read_eeprom(sc, ether_addr,
1783 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1784 device_printf(dev, "failed to read station address\n");
1785 error = ENXIO;
1786 goto fail;
1789 /* 5705/5750 limits RX return ring to 512 entries. */
1790 if (BGE_IS_5705_PLUS(sc))
1791 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1792 else
1793 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1795 error = bge_dma_alloc(sc);
1796 if (error)
1797 goto fail;
1799 /* Set default tuneable values. */
1800 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1801 sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1802 sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1803 sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1804 sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1806 /* Set up ifnet structure */
1807 ifp->if_softc = sc;
1808 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1809 ifp->if_ioctl = bge_ioctl;
1810 ifp->if_start = bge_start;
1811 #ifdef DEVICE_POLLING
1812 ifp->if_poll = bge_poll;
1813 #endif
1814 ifp->if_watchdog = bge_watchdog;
1815 ifp->if_init = bge_init;
1816 ifp->if_mtu = ETHERMTU;
1817 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1818 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1819 ifq_set_ready(&ifp->if_snd);
1822 * 5700 B0 chips do not support checksumming correctly due
1823 * to hardware bugs.
1825 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1826 ifp->if_capabilities |= IFCAP_HWCSUM;
1827 ifp->if_hwassist = BGE_CSUM_FEATURES;
1829 ifp->if_capenable = ifp->if_capabilities;
1832 * Figure out what sort of media we have by checking the
1833 * hardware config word in the first 32k of NIC internal memory,
1834 * or fall back to examining the EEPROM if necessary.
1835 * Note: on some BCM5700 cards, this value appears to be unset.
1836 * If that's the case, we have to rely on identifying the NIC
1837 * by its PCI subsystem ID, as we do below for the SysKonnect
1838 * SK-9D41.
1840 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1841 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1842 else {
1843 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1844 sizeof(hwcfg))) {
1845 device_printf(dev, "failed to read EEPROM\n");
1846 error = ENXIO;
1847 goto fail;
1849 hwcfg = ntohl(hwcfg);
1852 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1853 sc->bge_flags |= BGE_FLAG_TBI;
1855 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1856 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1857 sc->bge_flags |= BGE_FLAG_TBI;
1859 if (sc->bge_flags & BGE_FLAG_TBI) {
1860 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1861 bge_ifmedia_upd, bge_ifmedia_sts);
1862 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1863 ifmedia_add(&sc->bge_ifmedia,
1864 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1865 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1866 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1867 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1868 } else {
1870 * Do transceiver setup.
1872 if (mii_phy_probe(dev, &sc->bge_miibus,
1873 bge_ifmedia_upd, bge_ifmedia_sts)) {
1874 device_printf(dev, "MII without any PHY!\n");
1875 error = ENXIO;
1876 goto fail;
1881 * When using the BCM5701 in PCI-X mode, data corruption has
1882 * been observed in the first few bytes of some received packets.
1883 * Aligning the packet buffer in memory eliminates the corruption.
1884 * Unfortunately, this misaligns the packet payloads. On platforms
1885 * which do not support unaligned accesses, we will realign the
1886 * payloads by copying the received packets.
1888 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1889 (sc->bge_flags & BGE_FLAG_PCIX))
1890 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1892 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1893 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1894 sc->bge_link_upd = bge_bcm5700_link_upd;
1895 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1896 } else if (sc->bge_flags & BGE_FLAG_TBI) {
1897 sc->bge_link_upd = bge_tbi_link_upd;
1898 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1899 } else {
1900 sc->bge_link_upd = bge_copper_link_upd;
1901 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1905 * Create sysctl nodes.
1907 sysctl_ctx_init(&sc->bge_sysctl_ctx);
1908 sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
1909 SYSCTL_STATIC_CHILDREN(_hw),
1910 OID_AUTO,
1911 device_get_nameunit(dev),
1912 CTLFLAG_RD, 0, "");
1913 if (sc->bge_sysctl_tree == NULL) {
1914 device_printf(dev, "can't add sysctl node\n");
1915 error = ENXIO;
1916 goto fail;
1919 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1920 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1921 OID_AUTO, "rx_coal_ticks",
1922 CTLTYPE_INT | CTLFLAG_RW,
1923 sc, 0, bge_sysctl_rx_coal_ticks, "I",
1924 "Receive coalescing ticks (usec).");
1925 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1926 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1927 OID_AUTO, "tx_coal_ticks",
1928 CTLTYPE_INT | CTLFLAG_RW,
1929 sc, 0, bge_sysctl_tx_coal_ticks, "I",
1930 "Transmit coalescing ticks (usec).");
1931 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1932 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1933 OID_AUTO, "rx_max_coal_bds",
1934 CTLTYPE_INT | CTLFLAG_RW,
1935 sc, 0, bge_sysctl_rx_max_coal_bds, "I",
1936 "Receive max coalesced BD count.");
1937 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1938 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1939 OID_AUTO, "tx_max_coal_bds",
1940 CTLTYPE_INT | CTLFLAG_RW,
1941 sc, 0, bge_sysctl_tx_max_coal_bds, "I",
1942 "Transmit max coalesced BD count.");
1945 * Call MI attach routine.
1947 ether_ifattach(ifp, ether_addr, NULL);
1949 error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1950 bge_intr, sc, &sc->bge_intrhand,
1951 ifp->if_serializer);
1952 if (error) {
1953 ether_ifdetach(ifp);
1954 device_printf(dev, "couldn't set up irq\n");
1955 goto fail;
1957 return(0);
1958 fail:
1959 bge_detach(dev);
1960 return(error);
1963 static int
1964 bge_detach(device_t dev)
1966 struct bge_softc *sc = device_get_softc(dev);
1968 if (device_is_attached(dev)) {
1969 struct ifnet *ifp = &sc->arpcom.ac_if;
1971 lwkt_serialize_enter(ifp->if_serializer);
1972 bge_stop(sc);
1973 bge_reset(sc);
1974 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1975 lwkt_serialize_exit(ifp->if_serializer);
1977 ether_ifdetach(ifp);
1980 if (sc->bge_flags & BGE_FLAG_TBI)
1981 ifmedia_removeall(&sc->bge_ifmedia);
1982 if (sc->bge_miibus)
1983 device_delete_child(dev, sc->bge_miibus);
1984 bus_generic_detach(dev);
1986 if (sc->bge_irq != NULL)
1987 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1989 if (sc->bge_res != NULL)
1990 bus_release_resource(dev, SYS_RES_MEMORY,
1991 BGE_PCI_BAR0, sc->bge_res);
1993 if (sc->bge_sysctl_tree != NULL)
1994 sysctl_ctx_free(&sc->bge_sysctl_ctx);
1996 bge_dma_free(sc);
1998 return 0;
2001 static void
2002 bge_reset(struct bge_softc *sc)
2004 device_t dev;
2005 uint32_t cachesize, command, pcistate, reset;
2006 void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2007 int i, val = 0;
2009 dev = sc->bge_dev;
2011 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
2012 if (sc->bge_flags & BGE_FLAG_PCIE)
2013 write_op = bge_writemem_direct;
2014 else
2015 write_op = bge_writemem_ind;
2016 } else {
2017 write_op = bge_writereg_ind;
2020 /* Save some important PCI state. */
2021 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2022 command = pci_read_config(dev, BGE_PCI_CMD, 4);
2023 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2025 pci_write_config(dev, BGE_PCI_MISC_CTL,
2026 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2027 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2029 /* Disable fastboot on controllers that support it. */
2030 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2031 sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2032 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2033 if (bootverbose)
2034 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2035 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2039 * Write the magic number to SRAM at offset 0xB50.
2040 * When firmware finishes its initialization it will
2041 * write ~BGE_MAGIC_NUMBER to the same location.
2043 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2045 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2047 /* XXX: Broadcom Linux driver. */
2048 if (sc->bge_flags & BGE_FLAG_PCIE) {
2049 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
2050 CSR_WRITE_4(sc, 0x7e2c, 0x20);
2051 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2052 /* Prevent PCIE link training during global reset */
2053 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2054 reset |= (1<<29);
2059 * Set GPHY Power Down Override to leave GPHY
2060 * powered up in D0 uninitialized.
2062 if (BGE_IS_5705_PLUS(sc))
2063 reset |= 0x04000000;
2065 /* Issue global reset */
2066 write_op(sc, BGE_MISC_CFG, reset);
2068 DELAY(1000);
2070 /* XXX: Broadcom Linux driver. */
2071 if (sc->bge_flags & BGE_FLAG_PCIE) {
2072 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2073 uint32_t v;
2075 DELAY(500000); /* wait for link training to complete */
2076 v = pci_read_config(dev, 0xc4, 4);
2077 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2080 * Set PCIE max payload size to 128 bytes and
2081 * clear error status.
2083 pci_write_config(dev, 0xd8, 0xf5000, 4);
2086 /* Reset some of the PCI state that got zapped by reset */
2087 pci_write_config(dev, BGE_PCI_MISC_CTL,
2088 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2089 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2090 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2091 pci_write_config(dev, BGE_PCI_CMD, command, 4);
2092 write_op(sc, BGE_MISC_CFG, (65 << 1));
2094 /* Enable memory arbiter. */
2095 if (BGE_IS_5714_FAMILY(sc)) {
2096 uint32_t val;
2098 val = CSR_READ_4(sc, BGE_MARB_MODE);
2099 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2100 } else {
2101 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2105 * Poll until we see the 1's complement of the magic number.
2106 * This indicates that the firmware initialization
2107 * is complete.
2109 for (i = 0; i < BGE_TIMEOUT; i++) {
2110 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2111 if (val == ~BGE_MAGIC_NUMBER)
2112 break;
2113 DELAY(10);
2116 if (i == BGE_TIMEOUT) {
2117 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2118 "found 0x%08x\n", val);
2119 return;
2123 * XXX Wait for the value of the PCISTATE register to
2124 * return to its original pre-reset state. This is a
2125 * fairly good indicator of reset completion. If we don't
2126 * wait for the reset to fully complete, trying to read
2127 * from the device's non-PCI registers may yield garbage
2128 * results.
2130 for (i = 0; i < BGE_TIMEOUT; i++) {
2131 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2132 break;
2133 DELAY(10);
2136 if (sc->bge_flags & BGE_FLAG_PCIE) {
2137 reset = bge_readmem_ind(sc, 0x7c00);
2138 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2141 /* Fix up byte swapping */
2142 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2143 BGE_MODECTL_BYTESWAP_DATA);
2145 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2148 * The 5704 in TBI mode apparently needs some special
2149 * adjustment to insure the SERDES drive level is set
2150 * to 1.2V.
2152 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2153 (sc->bge_flags & BGE_FLAG_TBI)) {
2154 uint32_t serdescfg;
2156 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2157 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2158 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2161 /* XXX: Broadcom Linux driver. */
2162 if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2163 sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2164 uint32_t v;
2166 v = CSR_READ_4(sc, 0x7c00);
2167 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2170 DELAY(10000);
2174 * Frame reception handling. This is called if there's a frame
2175 * on the receive return list.
2177 * Note: we have to be able to handle two possibilities here:
2178 * 1) the frame is from the jumbo recieve ring
2179 * 2) the frame is from the standard receive ring
2182 static void
2183 bge_rxeof(struct bge_softc *sc)
2185 struct ifnet *ifp;
2186 int stdcnt = 0, jumbocnt = 0;
2188 if (sc->bge_rx_saved_considx ==
2189 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2190 return;
2192 ifp = &sc->arpcom.ac_if;
2194 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2195 sc->bge_cdata.bge_rx_return_ring_map,
2196 BUS_DMASYNC_POSTREAD);
2197 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2198 sc->bge_cdata.bge_rx_std_ring_map,
2199 BUS_DMASYNC_POSTREAD);
2200 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2201 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2202 sc->bge_cdata.bge_rx_jumbo_ring_map,
2203 BUS_DMASYNC_POSTREAD);
2206 while (sc->bge_rx_saved_considx !=
2207 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2208 struct bge_rx_bd *cur_rx;
2209 uint32_t rxidx;
2210 struct mbuf *m = NULL;
2211 uint16_t vlan_tag = 0;
2212 int have_tag = 0;
2214 cur_rx =
2215 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2217 rxidx = cur_rx->bge_idx;
2218 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2219 logif(rx_pkt);
2221 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2222 have_tag = 1;
2223 vlan_tag = cur_rx->bge_vlan_tag;
2226 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2227 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2228 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2229 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2230 jumbocnt++;
2231 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2232 ifp->if_ierrors++;
2233 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2234 continue;
2236 if (bge_newbuf_jumbo(sc,
2237 sc->bge_jumbo, NULL) == ENOBUFS) {
2238 ifp->if_ierrors++;
2239 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2240 continue;
2242 } else {
2243 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2244 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2245 sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2246 BUS_DMASYNC_POSTREAD);
2247 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2248 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2249 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2250 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2251 stdcnt++;
2252 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2253 ifp->if_ierrors++;
2254 bge_newbuf_std(sc, sc->bge_std, m);
2255 continue;
2257 if (bge_newbuf_std(sc, sc->bge_std,
2258 NULL) == ENOBUFS) {
2259 ifp->if_ierrors++;
2260 bge_newbuf_std(sc, sc->bge_std, m);
2261 continue;
2265 ifp->if_ipackets++;
2266 #ifndef __i386__
2268 * The i386 allows unaligned accesses, but for other
2269 * platforms we must make sure the payload is aligned.
2271 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2272 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2273 cur_rx->bge_len);
2274 m->m_data += ETHER_ALIGN;
2276 #endif
2277 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2278 m->m_pkthdr.rcvif = ifp;
2280 if (ifp->if_capenable & IFCAP_RXCSUM) {
2281 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2282 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2283 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2284 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2286 if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2287 m->m_pkthdr.len >= BGE_MIN_FRAME) {
2288 m->m_pkthdr.csum_data =
2289 cur_rx->bge_tcp_udp_csum;
2290 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2295 * If we received a packet with a vlan tag, pass it
2296 * to vlan_input() instead of ether_input().
2298 if (have_tag) {
2299 VLAN_INPUT_TAG(m, vlan_tag);
2300 have_tag = vlan_tag = 0;
2301 } else {
2302 ifp->if_input(ifp, m);
2306 if (stdcnt > 0) {
2307 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2308 sc->bge_cdata.bge_rx_std_ring_map,
2309 BUS_DMASYNC_PREWRITE);
2312 if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2313 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2314 sc->bge_cdata.bge_rx_jumbo_ring_map,
2315 BUS_DMASYNC_PREWRITE);
2318 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2319 if (stdcnt)
2320 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2321 if (jumbocnt)
2322 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2325 static void
2326 bge_txeof(struct bge_softc *sc)
2328 struct bge_tx_bd *cur_tx = NULL;
2329 struct ifnet *ifp;
2331 if (sc->bge_tx_saved_considx ==
2332 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2333 return;
2335 ifp = &sc->arpcom.ac_if;
2337 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2338 sc->bge_cdata.bge_tx_ring_map,
2339 BUS_DMASYNC_POSTREAD);
2342 * Go through our tx ring and free mbufs for those
2343 * frames that have been sent.
2345 while (sc->bge_tx_saved_considx !=
2346 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2347 uint32_t idx = 0;
2349 idx = sc->bge_tx_saved_considx;
2350 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2351 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2352 ifp->if_opackets++;
2353 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2354 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2355 sc->bge_cdata.bge_tx_dmamap[idx],
2356 BUS_DMASYNC_POSTWRITE);
2357 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2358 sc->bge_cdata.bge_tx_dmamap[idx]);
2359 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2360 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2362 sc->bge_txcnt--;
2363 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2364 logif(tx_pkt);
2367 if (cur_tx != NULL &&
2368 (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2369 (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2370 ifp->if_flags &= ~IFF_OACTIVE;
2372 if (sc->bge_txcnt == 0)
2373 ifp->if_timer = 0;
2375 if (!ifq_is_empty(&ifp->if_snd))
2376 ifp->if_start(ifp);
2379 #ifdef DEVICE_POLLING
2381 static void
2382 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2384 struct bge_softc *sc = ifp->if_softc;
2385 uint32_t status;
2387 switch(cmd) {
2388 case POLL_REGISTER:
2389 bge_disable_intr(sc);
2390 break;
2391 case POLL_DEREGISTER:
2392 bge_enable_intr(sc);
2393 break;
2394 case POLL_AND_CHECK_STATUS:
2395 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2396 sc->bge_cdata.bge_status_map,
2397 BUS_DMASYNC_POSTREAD);
2400 * Process link state changes.
2402 status = CSR_READ_4(sc, BGE_MAC_STS);
2403 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2404 sc->bge_link_evt = 0;
2405 sc->bge_link_upd(sc, status);
2407 /* fall through */
2408 case POLL_ONLY:
2409 if (ifp->if_flags & IFF_RUNNING) {
2410 bge_rxeof(sc);
2411 bge_txeof(sc);
2413 break;
2417 #endif
2419 static void
2420 bge_intr(void *xsc)
2422 struct bge_softc *sc = xsc;
2423 struct ifnet *ifp = &sc->arpcom.ac_if;
2424 uint32_t status;
2426 logif(intr);
2429 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
2430 * disable interrupts by writing nonzero like we used to, since with
2431 * our current organization this just gives complications and
2432 * pessimizations for re-enabling interrupts. We used to have races
2433 * instead of the necessary complications. Disabling interrupts
2434 * would just reduce the chance of a status update while we are
2435 * running (by switching to the interrupt-mode coalescence
2436 * parameters), but this chance is already very low so it is more
2437 * efficient to get another interrupt than prevent it.
2439 * We do the ack first to ensure another interrupt if there is a
2440 * status update after the ack. We don't check for the status
2441 * changing later because it is more efficient to get another
2442 * interrupt than prevent it, not quite as above (not checking is
2443 * a smaller optimization than not toggling the interrupt enable,
2444 * since checking doesn't involve PCI accesses and toggling require
2445 * the status check). So toggling would probably be a pessimization
2446 * even with MSI. It would only be needed for using a task queue.
2448 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2450 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2451 sc->bge_cdata.bge_status_map,
2452 BUS_DMASYNC_POSTREAD);
2455 * Process link state changes.
2457 status = CSR_READ_4(sc, BGE_MAC_STS);
2458 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2459 sc->bge_link_evt = 0;
2460 sc->bge_link_upd(sc, status);
2463 if (ifp->if_flags & IFF_RUNNING) {
2464 /* Check RX return ring producer/consumer */
2465 bge_rxeof(sc);
2467 /* Check TX ring producer/consumer */
2468 bge_txeof(sc);
2471 if (sc->bge_coal_chg)
2472 bge_coal_change(sc);
2475 static void
2476 bge_tick(void *xsc)
2478 struct bge_softc *sc = xsc;
2479 struct ifnet *ifp = &sc->arpcom.ac_if;
2481 lwkt_serialize_enter(ifp->if_serializer);
2483 if (BGE_IS_5705_PLUS(sc))
2484 bge_stats_update_regs(sc);
2485 else
2486 bge_stats_update(sc);
2488 if (sc->bge_flags & BGE_FLAG_TBI) {
2490 * Since in TBI mode auto-polling can't be used we should poll
2491 * link status manually. Here we register pending link event
2492 * and trigger interrupt.
2494 sc->bge_link_evt++;
2495 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2496 } else if (!sc->bge_link) {
2497 mii_tick(device_get_softc(sc->bge_miibus));
2500 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2502 lwkt_serialize_exit(ifp->if_serializer);
2505 static void
2506 bge_stats_update_regs(struct bge_softc *sc)
2508 struct ifnet *ifp = &sc->arpcom.ac_if;
2509 struct bge_mac_stats_regs stats;
2510 uint32_t *s;
2511 int i;
2513 s = (uint32_t *)&stats;
2514 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2515 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2516 s++;
2519 ifp->if_collisions +=
2520 (stats.dot3StatsSingleCollisionFrames +
2521 stats.dot3StatsMultipleCollisionFrames +
2522 stats.dot3StatsExcessiveCollisions +
2523 stats.dot3StatsLateCollisions) -
2524 ifp->if_collisions;
2527 static void
2528 bge_stats_update(struct bge_softc *sc)
2530 struct ifnet *ifp = &sc->arpcom.ac_if;
2531 bus_size_t stats;
2533 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2535 #define READ_STAT(sc, stats, stat) \
2536 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2538 ifp->if_collisions +=
2539 (READ_STAT(sc, stats,
2540 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2541 READ_STAT(sc, stats,
2542 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2543 READ_STAT(sc, stats,
2544 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2545 READ_STAT(sc, stats,
2546 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2547 ifp->if_collisions;
2549 #undef READ_STAT
2551 #ifdef notdef
2552 ifp->if_collisions +=
2553 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2554 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2555 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2556 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2557 ifp->if_collisions;
2558 #endif
2562 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2563 * pointers to descriptors.
2565 static int
2566 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2568 struct bge_tx_bd *d = NULL;
2569 uint16_t csum_flags = 0;
2570 struct ifvlan *ifv = NULL;
2571 struct bge_dmamap_arg ctx;
2572 bus_dma_segment_t segs[BGE_NSEG_NEW];
2573 bus_dmamap_t map;
2574 int error, maxsegs, idx, i;
2576 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2577 m_head->m_pkthdr.rcvif != NULL &&
2578 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2579 ifv = m_head->m_pkthdr.rcvif->if_softc;
2581 if (m_head->m_pkthdr.csum_flags) {
2582 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2583 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2584 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2585 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2586 if (m_head->m_flags & M_LASTFRAG)
2587 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2588 else if (m_head->m_flags & M_FRAG)
2589 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2592 idx = *txidx;
2593 map = sc->bge_cdata.bge_tx_dmamap[idx];
2595 maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2596 KASSERT(maxsegs >= BGE_NSEG_SPARE,
2597 ("not enough segments %d\n", maxsegs));
2599 if (maxsegs > BGE_NSEG_NEW)
2600 maxsegs = BGE_NSEG_NEW;
2603 * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2604 * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2605 * but when such padded frames employ the bge IP/TCP checksum
2606 * offload, the hardware checksum assist gives incorrect results
2607 * (possibly from incorporating its own padding into the UDP/TCP
2608 * checksum; who knows). If we pad such runts with zeros, the
2609 * onboard checksum comes out correct. We do this by pretending
2610 * the mbuf chain has too many fragments so the coalescing code
2611 * below can assemble the packet into a single buffer that's
2612 * padded out to the mininum frame size.
2614 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2615 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2616 error = EFBIG;
2617 } else {
2618 ctx.bge_segs = segs;
2619 ctx.bge_maxsegs = maxsegs;
2620 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2621 m_head, bge_dma_map_mbuf, &ctx,
2622 BUS_DMA_NOWAIT);
2624 if (error == EFBIG || ctx.bge_maxsegs == 0) {
2625 struct mbuf *m_new;
2627 m_new = m_defrag(m_head, MB_DONTWAIT);
2628 if (m_new == NULL) {
2629 if_printf(&sc->arpcom.ac_if,
2630 "could not defrag TX mbuf\n");
2631 error = ENOBUFS;
2632 goto back;
2633 } else {
2634 m_head = m_new;
2638 * Manually pad short frames, and zero the pad space
2639 * to avoid leaking data.
2641 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2642 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2643 int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2645 bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2646 pad_len);
2647 m_head->m_pkthdr.len += pad_len;
2648 m_head->m_len = m_head->m_pkthdr.len;
2651 ctx.bge_segs = segs;
2652 ctx.bge_maxsegs = maxsegs;
2653 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2654 m_head, bge_dma_map_mbuf, &ctx,
2655 BUS_DMA_NOWAIT);
2656 if (error || ctx.bge_maxsegs == 0) {
2657 if_printf(&sc->arpcom.ac_if,
2658 "could not defrag TX mbuf\n");
2659 if (error == 0)
2660 error = EFBIG;
2661 goto back;
2663 } else if (error) {
2664 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2665 goto back;
2668 bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2670 for (i = 0; ; i++) {
2671 d = &sc->bge_ldata.bge_tx_ring[idx];
2673 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2674 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2675 d->bge_len = segs[i].ds_len;
2676 d->bge_flags = csum_flags;
2678 if (i == ctx.bge_maxsegs - 1)
2679 break;
2680 BGE_INC(idx, BGE_TX_RING_CNT);
2682 /* Mark the last segment as end of packet... */
2683 d->bge_flags |= BGE_TXBDFLAG_END;
2685 /* Set vlan tag to the first segment of the packet. */
2686 d = &sc->bge_ldata.bge_tx_ring[*txidx];
2687 if (ifv != NULL) {
2688 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2689 d->bge_vlan_tag = ifv->ifv_tag;
2690 } else {
2691 d->bge_vlan_tag = 0;
2695 * Insure that the map for this transmission is placed at
2696 * the array index of the last descriptor in this chain.
2698 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2699 sc->bge_cdata.bge_tx_dmamap[idx] = map;
2700 sc->bge_cdata.bge_tx_chain[idx] = m_head;
2701 sc->bge_txcnt += ctx.bge_maxsegs;
2703 BGE_INC(idx, BGE_TX_RING_CNT);
2704 *txidx = idx;
2705 back:
2706 if (error)
2707 m_freem(m_head);
2708 return error;
2712 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2713 * to the mbuf data regions directly in the transmit descriptors.
2715 static void
2716 bge_start(struct ifnet *ifp)
2718 struct bge_softc *sc = ifp->if_softc;
2719 struct mbuf *m_head = NULL;
2720 uint32_t prodidx;
2721 int need_trans;
2723 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2724 return;
2726 prodidx = sc->bge_tx_prodidx;
2728 need_trans = 0;
2729 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2730 m_head = ifq_poll(&ifp->if_snd);
2731 if (m_head == NULL)
2732 break;
2735 * XXX
2736 * The code inside the if() block is never reached since we
2737 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2738 * requests to checksum TCP/UDP in a fragmented packet.
2740 * XXX
2741 * safety overkill. If this is a fragmented packet chain
2742 * with delayed TCP/UDP checksums, then only encapsulate
2743 * it if we have enough descriptors to handle the entire
2744 * chain at once.
2745 * (paranoia -- may not actually be needed)
2747 if (m_head->m_flags & M_FIRSTFRAG &&
2748 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2749 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2750 m_head->m_pkthdr.csum_data + 16) {
2751 ifp->if_flags |= IFF_OACTIVE;
2752 break;
2757 * Sanity check: avoid coming within BGE_NSEG_RSVD
2758 * descriptors of the end of the ring. Also make
2759 * sure there are BGE_NSEG_SPARE descriptors for
2760 * jumbo buffers' defragmentation.
2762 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2763 (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2764 ifp->if_flags |= IFF_OACTIVE;
2765 break;
2769 * Dequeue the packet before encapsulation, since
2770 * bge_encap() may free the packet if error happens.
2772 ifq_dequeue(&ifp->if_snd, m_head);
2775 * Pack the data into the transmit ring. If we
2776 * don't have room, set the OACTIVE flag and wait
2777 * for the NIC to drain the ring.
2779 if (bge_encap(sc, m_head, &prodidx)) {
2780 ifp->if_flags |= IFF_OACTIVE;
2781 break;
2783 need_trans = 1;
2785 BPF_MTAP(ifp, m_head);
2788 if (!need_trans)
2789 return;
2791 /* Transmit */
2792 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2793 /* 5700 b2 errata */
2794 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2795 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2797 sc->bge_tx_prodidx = prodidx;
2800 * Set a timeout in case the chip goes out to lunch.
2802 ifp->if_timer = 5;
2805 static void
2806 bge_init(void *xsc)
2808 struct bge_softc *sc = xsc;
2809 struct ifnet *ifp = &sc->arpcom.ac_if;
2810 uint16_t *m;
2812 ASSERT_SERIALIZED(ifp->if_serializer);
2814 if (ifp->if_flags & IFF_RUNNING)
2815 return;
2817 /* Cancel pending I/O and flush buffers. */
2818 bge_stop(sc);
2819 bge_reset(sc);
2820 bge_chipinit(sc);
2823 * Init the various state machines, ring
2824 * control blocks and firmware.
2826 if (bge_blockinit(sc)) {
2827 if_printf(ifp, "initialization failure\n");
2828 return;
2831 /* Specify MTU. */
2832 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2833 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2835 /* Load our MAC address. */
2836 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2837 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2838 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2840 /* Enable or disable promiscuous mode as needed. */
2841 bge_setpromisc(sc);
2843 /* Program multicast filter. */
2844 bge_setmulti(sc);
2846 /* Init RX ring. */
2847 bge_init_rx_ring_std(sc);
2850 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2851 * memory to insure that the chip has in fact read the first
2852 * entry of the ring.
2854 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2855 uint32_t v, i;
2856 for (i = 0; i < 10; i++) {
2857 DELAY(20);
2858 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2859 if (v == (MCLBYTES - ETHER_ALIGN))
2860 break;
2862 if (i == 10)
2863 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2866 /* Init jumbo RX ring. */
2867 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2868 bge_init_rx_ring_jumbo(sc);
2870 /* Init our RX return ring index */
2871 sc->bge_rx_saved_considx = 0;
2873 /* Init TX ring. */
2874 bge_init_tx_ring(sc);
2876 /* Turn on transmitter */
2877 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2879 /* Turn on receiver */
2880 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2882 /* Tell firmware we're alive. */
2883 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2885 /* Enable host interrupts if polling(4) is not enabled. */
2886 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2887 #ifdef DEVICE_POLLING
2888 if (ifp->if_flags & IFF_POLLING)
2889 bge_disable_intr(sc);
2890 else
2891 #endif
2892 bge_enable_intr(sc);
2894 bge_ifmedia_upd(ifp);
2896 ifp->if_flags |= IFF_RUNNING;
2897 ifp->if_flags &= ~IFF_OACTIVE;
2899 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2903 * Set media options.
2905 static int
2906 bge_ifmedia_upd(struct ifnet *ifp)
2908 struct bge_softc *sc = ifp->if_softc;
2910 /* If this is a 1000baseX NIC, enable the TBI port. */
2911 if (sc->bge_flags & BGE_FLAG_TBI) {
2912 struct ifmedia *ifm = &sc->bge_ifmedia;
2914 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2915 return(EINVAL);
2917 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2918 case IFM_AUTO:
2920 * The BCM5704 ASIC appears to have a special
2921 * mechanism for programming the autoneg
2922 * advertisement registers in TBI mode.
2924 if (!bge_fake_autoneg &&
2925 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2926 uint32_t sgdig;
2928 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2929 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2930 sgdig |= BGE_SGDIGCFG_AUTO |
2931 BGE_SGDIGCFG_PAUSE_CAP |
2932 BGE_SGDIGCFG_ASYM_PAUSE;
2933 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2934 sgdig | BGE_SGDIGCFG_SEND);
2935 DELAY(5);
2936 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2938 break;
2939 case IFM_1000_SX:
2940 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2941 BGE_CLRBIT(sc, BGE_MAC_MODE,
2942 BGE_MACMODE_HALF_DUPLEX);
2943 } else {
2944 BGE_SETBIT(sc, BGE_MAC_MODE,
2945 BGE_MACMODE_HALF_DUPLEX);
2947 break;
2948 default:
2949 return(EINVAL);
2951 } else {
2952 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2954 sc->bge_link_evt++;
2955 sc->bge_link = 0;
2956 if (mii->mii_instance) {
2957 struct mii_softc *miisc;
2959 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2960 mii_phy_reset(miisc);
2962 mii_mediachg(mii);
2964 return(0);
2968 * Report current media status.
2970 static void
2971 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2973 struct bge_softc *sc = ifp->if_softc;
2975 if (sc->bge_flags & BGE_FLAG_TBI) {
2976 ifmr->ifm_status = IFM_AVALID;
2977 ifmr->ifm_active = IFM_ETHER;
2978 if (CSR_READ_4(sc, BGE_MAC_STS) &
2979 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2980 ifmr->ifm_status |= IFM_ACTIVE;
2981 } else {
2982 ifmr->ifm_active |= IFM_NONE;
2983 return;
2986 ifmr->ifm_active |= IFM_1000_SX;
2987 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2988 ifmr->ifm_active |= IFM_HDX;
2989 else
2990 ifmr->ifm_active |= IFM_FDX;
2991 } else {
2992 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2994 mii_pollstat(mii);
2995 ifmr->ifm_active = mii->mii_media_active;
2996 ifmr->ifm_status = mii->mii_media_status;
3000 static int
3001 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3003 struct bge_softc *sc = ifp->if_softc;
3004 struct ifreq *ifr = (struct ifreq *)data;
3005 int mask, error = 0;
3007 ASSERT_SERIALIZED(ifp->if_serializer);
3009 switch (command) {
3010 case SIOCSIFMTU:
3011 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3012 (BGE_IS_JUMBO_CAPABLE(sc) &&
3013 ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3014 error = EINVAL;
3015 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3016 ifp->if_mtu = ifr->ifr_mtu;
3017 ifp->if_flags &= ~IFF_RUNNING;
3018 bge_init(sc);
3020 break;
3021 case SIOCSIFFLAGS:
3022 if (ifp->if_flags & IFF_UP) {
3023 if (ifp->if_flags & IFF_RUNNING) {
3024 mask = ifp->if_flags ^ sc->bge_if_flags;
3027 * If only the state of the PROMISC flag
3028 * changed, then just use the 'set promisc
3029 * mode' command instead of reinitializing
3030 * the entire NIC. Doing a full re-init
3031 * means reloading the firmware and waiting
3032 * for it to start up, which may take a
3033 * second or two. Similarly for ALLMULTI.
3035 if (mask & IFF_PROMISC)
3036 bge_setpromisc(sc);
3037 if (mask & IFF_ALLMULTI)
3038 bge_setmulti(sc);
3039 } else {
3040 bge_init(sc);
3042 } else {
3043 if (ifp->if_flags & IFF_RUNNING)
3044 bge_stop(sc);
3046 sc->bge_if_flags = ifp->if_flags;
3047 break;
3048 case SIOCADDMULTI:
3049 case SIOCDELMULTI:
3050 if (ifp->if_flags & IFF_RUNNING)
3051 bge_setmulti(sc);
3052 break;
3053 case SIOCSIFMEDIA:
3054 case SIOCGIFMEDIA:
3055 if (sc->bge_flags & BGE_FLAG_TBI) {
3056 error = ifmedia_ioctl(ifp, ifr,
3057 &sc->bge_ifmedia, command);
3058 } else {
3059 struct mii_data *mii;
3061 mii = device_get_softc(sc->bge_miibus);
3062 error = ifmedia_ioctl(ifp, ifr,
3063 &mii->mii_media, command);
3065 break;
3066 case SIOCSIFCAP:
3067 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3068 if (mask & IFCAP_HWCSUM) {
3069 ifp->if_capenable ^= IFCAP_HWCSUM;
3070 if (IFCAP_HWCSUM & ifp->if_capenable)
3071 ifp->if_hwassist = BGE_CSUM_FEATURES;
3072 else
3073 ifp->if_hwassist = 0;
3075 break;
3076 default:
3077 error = ether_ioctl(ifp, command, data);
3078 break;
3080 return error;
3083 static void
3084 bge_watchdog(struct ifnet *ifp)
3086 struct bge_softc *sc = ifp->if_softc;
3088 if_printf(ifp, "watchdog timeout -- resetting\n");
3090 ifp->if_flags &= ~IFF_RUNNING;
3091 bge_init(sc);
3093 ifp->if_oerrors++;
3095 if (!ifq_is_empty(&ifp->if_snd))
3096 ifp->if_start(ifp);
3100 * Stop the adapter and free any mbufs allocated to the
3101 * RX and TX lists.
3103 static void
3104 bge_stop(struct bge_softc *sc)
3106 struct ifnet *ifp = &sc->arpcom.ac_if;
3107 struct ifmedia_entry *ifm;
3108 struct mii_data *mii = NULL;
3109 int mtmp, itmp;
3111 ASSERT_SERIALIZED(ifp->if_serializer);
3113 if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3114 mii = device_get_softc(sc->bge_miibus);
3116 callout_stop(&sc->bge_stat_timer);
3119 * Disable all of the receiver blocks
3121 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3122 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3123 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3124 if (!BGE_IS_5705_PLUS(sc))
3125 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3126 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3127 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3128 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3131 * Disable all of the transmit blocks
3133 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3134 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3135 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3136 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3137 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3138 if (!BGE_IS_5705_PLUS(sc))
3139 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3140 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3143 * Shut down all of the memory managers and related
3144 * state machines.
3146 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3147 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3148 if (!BGE_IS_5705_PLUS(sc))
3149 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3150 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3151 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3152 if (!BGE_IS_5705_PLUS(sc)) {
3153 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3154 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3157 /* Disable host interrupts. */
3158 bge_disable_intr(sc);
3161 * Tell firmware we're shutting down.
3163 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3165 /* Free the RX lists. */
3166 bge_free_rx_ring_std(sc);
3168 /* Free jumbo RX list. */
3169 if (BGE_IS_JUMBO_CAPABLE(sc))
3170 bge_free_rx_ring_jumbo(sc);
3172 /* Free TX buffers. */
3173 bge_free_tx_ring(sc);
3176 * Isolate/power down the PHY, but leave the media selection
3177 * unchanged so that things will be put back to normal when
3178 * we bring the interface back up.
3180 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3181 itmp = ifp->if_flags;
3182 ifp->if_flags |= IFF_UP;
3183 ifm = mii->mii_media.ifm_cur;
3184 mtmp = ifm->ifm_media;
3185 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3186 mii_mediachg(mii);
3187 ifm->ifm_media = mtmp;
3188 ifp->if_flags = itmp;
3191 sc->bge_link = 0;
3192 sc->bge_coal_chg = 0;
3194 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3196 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3197 ifp->if_timer = 0;
3201 * Stop all chip I/O so that the kernel's probe routines don't
3202 * get confused by errant DMAs when rebooting.
3204 static void
3205 bge_shutdown(device_t dev)
3207 struct bge_softc *sc = device_get_softc(dev);
3208 struct ifnet *ifp = &sc->arpcom.ac_if;
3210 lwkt_serialize_enter(ifp->if_serializer);
3211 bge_stop(sc);
3212 bge_reset(sc);
3213 lwkt_serialize_exit(ifp->if_serializer);
3216 static int
3217 bge_suspend(device_t dev)
3219 struct bge_softc *sc = device_get_softc(dev);
3220 struct ifnet *ifp = &sc->arpcom.ac_if;
3222 lwkt_serialize_enter(ifp->if_serializer);
3223 bge_stop(sc);
3224 lwkt_serialize_exit(ifp->if_serializer);
3226 return 0;
3229 static int
3230 bge_resume(device_t dev)
3232 struct bge_softc *sc = device_get_softc(dev);
3233 struct ifnet *ifp = &sc->arpcom.ac_if;
3235 lwkt_serialize_enter(ifp->if_serializer);
3237 if (ifp->if_flags & IFF_UP) {
3238 bge_init(sc);
3240 if (!ifq_is_empty(&ifp->if_snd))
3241 ifp->if_start(ifp);
3244 lwkt_serialize_exit(ifp->if_serializer);
3246 return 0;
3249 static void
3250 bge_setpromisc(struct bge_softc *sc)
3252 struct ifnet *ifp = &sc->arpcom.ac_if;
3254 if (ifp->if_flags & IFF_PROMISC)
3255 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3256 else
3257 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3260 static void
3261 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3263 struct bge_dmamap_arg *ctx = arg;
3265 if (error)
3266 return;
3268 KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3269 ("only one segment is allowed\n"));
3271 ctx->bge_segs[0] = *segs;
3274 static void
3275 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3276 bus_size_t mapsz __unused, int error)
3278 struct bge_dmamap_arg *ctx = arg;
3279 int i;
3281 if (error)
3282 return;
3284 if (nsegs > ctx->bge_maxsegs) {
3285 ctx->bge_maxsegs = 0;
3286 return;
3289 ctx->bge_maxsegs = nsegs;
3290 for (i = 0; i < nsegs; ++i)
3291 ctx->bge_segs[i] = segs[i];
3294 static void
3295 bge_dma_free(struct bge_softc *sc)
3297 int i;
3299 /* Destroy RX/TX mbuf DMA stuffs. */
3300 if (sc->bge_cdata.bge_mtag != NULL) {
3301 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3302 if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3303 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3304 sc->bge_cdata.bge_rx_std_dmamap[i]);
3308 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3309 if (sc->bge_cdata.bge_tx_dmamap[i]) {
3310 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3311 sc->bge_cdata.bge_tx_dmamap[i]);
3314 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3317 /* Destroy standard RX ring */
3318 bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3319 sc->bge_cdata.bge_rx_std_ring_map,
3320 sc->bge_ldata.bge_rx_std_ring);
3322 if (BGE_IS_JUMBO_CAPABLE(sc))
3323 bge_free_jumbo_mem(sc);
3325 /* Destroy RX return ring */
3326 bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3327 sc->bge_cdata.bge_rx_return_ring_map,
3328 sc->bge_ldata.bge_rx_return_ring);
3330 /* Destroy TX ring */
3331 bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3332 sc->bge_cdata.bge_tx_ring_map,
3333 sc->bge_ldata.bge_tx_ring);
3335 /* Destroy status block */
3336 bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3337 sc->bge_cdata.bge_status_map,
3338 sc->bge_ldata.bge_status_block);
3340 /* Destroy statistics block */
3341 bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3342 sc->bge_cdata.bge_stats_map,
3343 sc->bge_ldata.bge_stats);
3345 /* Destroy the parent tag */
3346 if (sc->bge_cdata.bge_parent_tag != NULL)
3347 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3350 static int
3351 bge_dma_alloc(struct bge_softc *sc)
3353 struct ifnet *ifp = &sc->arpcom.ac_if;
3354 int nseg, i, error;
3357 * Allocate the parent bus DMA tag appropriate for PCI.
3359 error = bus_dma_tag_create(NULL, 1, 0,
3360 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3361 NULL, NULL,
3362 MAXBSIZE, BGE_NSEG_NEW,
3363 BUS_SPACE_MAXSIZE_32BIT,
3364 0, &sc->bge_cdata.bge_parent_tag);
3365 if (error) {
3366 if_printf(ifp, "could not allocate parent dma tag\n");
3367 return error;
3371 * Create DMA tag for mbufs.
3373 nseg = BGE_NSEG_NEW;
3374 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3375 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3376 NULL, NULL,
3377 MCLBYTES * nseg, nseg, MCLBYTES,
3378 BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3379 if (error) {
3380 if_printf(ifp, "could not allocate mbuf dma tag\n");
3381 return error;
3385 * Create DMA maps for TX/RX mbufs.
3387 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3388 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3389 &sc->bge_cdata.bge_rx_std_dmamap[i]);
3390 if (error) {
3391 int j;
3393 for (j = 0; j < i; ++j) {
3394 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3395 sc->bge_cdata.bge_rx_std_dmamap[j]);
3397 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3398 sc->bge_cdata.bge_mtag = NULL;
3400 if_printf(ifp, "could not create DMA map for RX\n");
3401 return error;
3405 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3406 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3407 &sc->bge_cdata.bge_tx_dmamap[i]);
3408 if (error) {
3409 int j;
3411 for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3412 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3413 sc->bge_cdata.bge_rx_std_dmamap[j]);
3415 for (j = 0; j < i; ++j) {
3416 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3417 sc->bge_cdata.bge_tx_dmamap[j]);
3419 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3420 sc->bge_cdata.bge_mtag = NULL;
3422 if_printf(ifp, "could not create DMA map for TX\n");
3423 return error;
3428 * Create DMA stuffs for standard RX ring.
3430 error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3431 &sc->bge_cdata.bge_rx_std_ring_tag,
3432 &sc->bge_cdata.bge_rx_std_ring_map,
3433 (void **)&sc->bge_ldata.bge_rx_std_ring,
3434 &sc->bge_ldata.bge_rx_std_ring_paddr);
3435 if (error) {
3436 if_printf(ifp, "could not create std RX ring\n");
3437 return error;
3441 * Create jumbo buffer pool.
3443 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3444 error = bge_alloc_jumbo_mem(sc);
3445 if (error) {
3446 if_printf(ifp, "could not create jumbo buffer pool\n");
3447 return error;
3452 * Create DMA stuffs for RX return ring.
3454 error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3455 &sc->bge_cdata.bge_rx_return_ring_tag,
3456 &sc->bge_cdata.bge_rx_return_ring_map,
3457 (void **)&sc->bge_ldata.bge_rx_return_ring,
3458 &sc->bge_ldata.bge_rx_return_ring_paddr);
3459 if (error) {
3460 if_printf(ifp, "could not create RX ret ring\n");
3461 return error;
3465 * Create DMA stuffs for TX ring.
3467 error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3468 &sc->bge_cdata.bge_tx_ring_tag,
3469 &sc->bge_cdata.bge_tx_ring_map,
3470 (void **)&sc->bge_ldata.bge_tx_ring,
3471 &sc->bge_ldata.bge_tx_ring_paddr);
3472 if (error) {
3473 if_printf(ifp, "could not create TX ring\n");
3474 return error;
3478 * Create DMA stuffs for status block.
3480 error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3481 &sc->bge_cdata.bge_status_tag,
3482 &sc->bge_cdata.bge_status_map,
3483 (void **)&sc->bge_ldata.bge_status_block,
3484 &sc->bge_ldata.bge_status_block_paddr);
3485 if (error) {
3486 if_printf(ifp, "could not create status block\n");
3487 return error;
3491 * Create DMA stuffs for statistics block.
3493 error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3494 &sc->bge_cdata.bge_stats_tag,
3495 &sc->bge_cdata.bge_stats_map,
3496 (void **)&sc->bge_ldata.bge_stats,
3497 &sc->bge_ldata.bge_stats_paddr);
3498 if (error) {
3499 if_printf(ifp, "could not create stats block\n");
3500 return error;
3502 return 0;
3505 static int
3506 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3507 bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3509 struct ifnet *ifp = &sc->arpcom.ac_if;
3510 struct bge_dmamap_arg ctx;
3511 bus_dma_segment_t seg;
3512 int error;
3515 * Create DMA tag
3517 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3518 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3519 NULL, NULL, size, 1, size, 0, tag);
3520 if (error) {
3521 if_printf(ifp, "could not allocate dma tag\n");
3522 return error;
3526 * Allocate DMA'able memory
3528 error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3529 map);
3530 if (error) {
3531 if_printf(ifp, "could not allocate dma memory\n");
3532 bus_dma_tag_destroy(*tag);
3533 *tag = NULL;
3534 return error;
3538 * Load the DMA'able memory
3540 ctx.bge_maxsegs = 1;
3541 ctx.bge_segs = &seg;
3542 error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3543 BUS_DMA_WAITOK);
3544 if (error) {
3545 if_printf(ifp, "could not load dma memory\n");
3546 bus_dmamem_free(*tag, *addr, *map);
3547 bus_dma_tag_destroy(*tag);
3548 *tag = NULL;
3549 return error;
3551 *paddr = ctx.bge_segs[0].ds_addr;
3553 return 0;
3556 static void
3557 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3559 if (tag != NULL) {
3560 bus_dmamap_unload(tag, map);
3561 bus_dmamem_free(tag, addr, map);
3562 bus_dma_tag_destroy(tag);
3567 * Grrr. The link status word in the status block does
3568 * not work correctly on the BCM5700 rev AX and BX chips,
3569 * according to all available information. Hence, we have
3570 * to enable MII interrupts in order to properly obtain
3571 * async link changes. Unfortunately, this also means that
3572 * we have to read the MAC status register to detect link
3573 * changes, thereby adding an additional register access to
3574 * the interrupt handler.
3576 * XXX: perhaps link state detection procedure used for
3577 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3579 static void
3580 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3582 struct ifnet *ifp = &sc->arpcom.ac_if;
3583 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3585 mii_pollstat(mii);
3587 if (!sc->bge_link &&
3588 (mii->mii_media_status & IFM_ACTIVE) &&
3589 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3590 sc->bge_link++;
3591 if (bootverbose)
3592 if_printf(ifp, "link UP\n");
3593 } else if (sc->bge_link &&
3594 (!(mii->mii_media_status & IFM_ACTIVE) ||
3595 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3596 sc->bge_link = 0;
3597 if (bootverbose)
3598 if_printf(ifp, "link DOWN\n");
3601 /* Clear the interrupt. */
3602 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3603 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3604 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3607 static void
3608 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3610 struct ifnet *ifp = &sc->arpcom.ac_if;
3612 #define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3615 * Sometimes PCS encoding errors are detected in
3616 * TBI mode (on fiber NICs), and for some reason
3617 * the chip will signal them as link changes.
3618 * If we get a link change event, but the 'PCS
3619 * encoding error' bit in the MAC status register
3620 * is set, don't bother doing a link check.
3621 * This avoids spurious "gigabit link up" messages
3622 * that sometimes appear on fiber NICs during
3623 * periods of heavy traffic.
3625 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3626 if (!sc->bge_link) {
3627 sc->bge_link++;
3628 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3629 BGE_CLRBIT(sc, BGE_MAC_MODE,
3630 BGE_MACMODE_TBI_SEND_CFGS);
3632 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3634 if (bootverbose)
3635 if_printf(ifp, "link UP\n");
3637 ifp->if_link_state = LINK_STATE_UP;
3638 if_link_state_change(ifp);
3640 } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3641 if (sc->bge_link) {
3642 sc->bge_link = 0;
3644 if (bootverbose)
3645 if_printf(ifp, "link DOWN\n");
3647 ifp->if_link_state = LINK_STATE_DOWN;
3648 if_link_state_change(ifp);
3652 #undef PCS_ENCODE_ERR
3654 /* Clear the attention. */
3655 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3656 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3657 BGE_MACSTAT_LINK_CHANGED);
3660 static void
3661 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3664 * Check that the AUTOPOLL bit is set before
3665 * processing the event as a real link change.
3666 * Turning AUTOPOLL on and off in the MII read/write
3667 * functions will often trigger a link status
3668 * interrupt for no reason.
3670 if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3671 struct ifnet *ifp = &sc->arpcom.ac_if;
3672 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3674 mii_pollstat(mii);
3676 if (!sc->bge_link &&
3677 (mii->mii_media_status & IFM_ACTIVE) &&
3678 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3679 sc->bge_link++;
3680 if (bootverbose)
3681 if_printf(ifp, "link UP\n");
3682 } else if (sc->bge_link &&
3683 (!(mii->mii_media_status & IFM_ACTIVE) ||
3684 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3685 sc->bge_link = 0;
3686 if (bootverbose)
3687 if_printf(ifp, "link DOWN\n");
3691 /* Clear the attention. */
3692 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3693 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3694 BGE_MACSTAT_LINK_CHANGED);
3697 static int
3698 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3700 struct bge_softc *sc = arg1;
3702 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3703 &sc->bge_rx_coal_ticks,
3704 BGE_RX_COAL_TICKS_CHG);
3707 static int
3708 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3710 struct bge_softc *sc = arg1;
3712 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3713 &sc->bge_tx_coal_ticks,
3714 BGE_TX_COAL_TICKS_CHG);
3717 static int
3718 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3720 struct bge_softc *sc = arg1;
3722 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3723 &sc->bge_rx_max_coal_bds,
3724 BGE_RX_MAX_COAL_BDS_CHG);
3727 static int
3728 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3730 struct bge_softc *sc = arg1;
3732 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3733 &sc->bge_tx_max_coal_bds,
3734 BGE_TX_MAX_COAL_BDS_CHG);
3737 static int
3738 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3739 uint32_t coal_chg_mask)
3741 struct bge_softc *sc = arg1;
3742 struct ifnet *ifp = &sc->arpcom.ac_if;
3743 int error = 0, v;
3745 lwkt_serialize_enter(ifp->if_serializer);
3747 v = *coal;
3748 error = sysctl_handle_int(oidp, &v, 0, req);
3749 if (!error && req->newptr != NULL) {
3750 if (v < 0) {
3751 error = EINVAL;
3752 } else {
3753 *coal = v;
3754 sc->bge_coal_chg |= coal_chg_mask;
3758 lwkt_serialize_exit(ifp->if_serializer);
3759 return error;
3762 static void
3763 bge_coal_change(struct bge_softc *sc)
3765 struct ifnet *ifp = &sc->arpcom.ac_if;
3766 uint32_t val;
3768 ASSERT_SERIALIZED(ifp->if_serializer);
3770 if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3771 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3772 sc->bge_rx_coal_ticks);
3773 DELAY(10);
3774 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3776 if (bootverbose) {
3777 if_printf(ifp, "rx_coal_ticks -> %u\n",
3778 sc->bge_rx_coal_ticks);
3782 if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3783 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3784 sc->bge_tx_coal_ticks);
3785 DELAY(10);
3786 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3788 if (bootverbose) {
3789 if_printf(ifp, "tx_coal_ticks -> %u\n",
3790 sc->bge_tx_coal_ticks);
3794 if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3795 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3796 sc->bge_rx_max_coal_bds);
3797 DELAY(10);
3798 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3800 if (bootverbose) {
3801 if_printf(ifp, "rx_max_coal_bds -> %u\n",
3802 sc->bge_rx_max_coal_bds);
3806 if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3807 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3808 sc->bge_tx_max_coal_bds);
3809 DELAY(10);
3810 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3812 if (bootverbose) {
3813 if_printf(ifp, "tx_max_coal_bds -> %u\n",
3814 sc->bge_tx_max_coal_bds);
3818 sc->bge_coal_chg = 0;
3821 static void
3822 bge_enable_intr(struct bge_softc *sc)
3824 struct ifnet *ifp = &sc->arpcom.ac_if;
3826 lwkt_serialize_handler_enable(ifp->if_serializer);
3829 * Enable interrupt.
3831 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3834 * Unmask the interrupt when we stop polling.
3836 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3839 * Trigger another interrupt, since above writing
3840 * to interrupt mailbox0 may acknowledge pending
3841 * interrupt.
3843 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3846 static void
3847 bge_disable_intr(struct bge_softc *sc)
3849 struct ifnet *ifp = &sc->arpcom.ac_if;
3852 * Mask the interrupt when we start polling.
3854 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3857 * Acknowledge possible asserted interrupt.
3859 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3861 lwkt_serialize_handler_disable(ifp->if_serializer);