2 * Copyright (c) 1991, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * @(#)btree.h 8.11 (Berkeley) 8/17/94
33 * $DragonFly: src/lib/libc/db/btree/btree.h,v 1.4 2005/09/19 09:20:37 asmodai Exp $
36 /* Macros to set/clear/test flags. */
37 #define F_SET(p, f) (p)->flags |= (f)
38 #define F_CLR(p, f) (p)->flags &= ~(f)
39 #define F_ISSET(p, f) ((p)->flags & (f))
43 #define DEFMINKEYPAGE (2) /* Minimum keys per page */
44 #define MINCACHE (5) /* Minimum cached pages */
45 #define MINPSIZE (512) /* Minimum page size */
48 * Page 0 of a btree file contains a copy of the meta-data. This page is also
49 * used as an out-of-band page, i.e. page pointers that point to nowhere point
50 * to page 0. Page 1 is the root of the btree.
52 #define P_INVALID 0 /* Invalid tree page number. */
53 #define P_META 0 /* Tree metadata page number. */
54 #define P_ROOT 1 /* Tree root page number. */
57 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
58 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
59 * (RLEAF) and overflow pages. All five page types have a page header (PAGE).
60 * This implementation requires that values within structures NOT be padded.
61 * (ANSI C permits random padding.) If your compiler pads randomly you'll have
62 * to do some work to get this package to run.
64 typedef struct _page
{
65 pgno_t pgno
; /* this page's page number */
66 pgno_t prevpg
; /* left sibling */
67 pgno_t nextpg
; /* right sibling */
69 #define P_BINTERNAL 0x01 /* btree internal page */
70 #define P_BLEAF 0x02 /* leaf page */
71 #define P_OVERFLOW 0x04 /* overflow page */
72 #define P_RINTERNAL 0x08 /* recno internal page */
73 #define P_RLEAF 0x10 /* leaf page */
74 #define P_TYPE 0x1f /* type mask */
75 #define P_PRESERVE 0x20 /* never delete this chain of pages */
78 indx_t lower
; /* lower bound of free space on page */
79 indx_t upper
; /* upper bound of free space on page */
80 indx_t linp
[1]; /* indx_t-aligned VAR. LENGTH DATA */
83 /* First and next index. */
85 (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
86 sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
87 #define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
90 * For pages other than overflow pages, there is an array of offsets into the
91 * rest of the page immediately following the page header. Each offset is to
92 * an item which is unique to the type of page. The h_lower offset is just
93 * past the last filled-in index. The h_upper offset is the first item on the
94 * page. Offsets are from the beginning of the page.
96 * If an item is too big to store on a single page, a flag is set and the item
97 * is a { page, size } pair such that the page is the first page of an overflow
98 * chain with size bytes of item. Overflow pages are simply bytes without any
101 * The page number and size fields in the items are pgno_t-aligned so they can
102 * be manipulated without copying. (This presumes that 32 bit items can be
103 * manipulated on this system.)
105 #define LALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
106 #define NOVFLSIZE (sizeof(pgno_t) + sizeof(u_int32_t))
109 * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
110 * pairs, such that the key compares less than or equal to all of the records
111 * on that page. For a tree without duplicate keys, an internal page with two
112 * consecutive keys, a and b, will have all records greater than or equal to a
113 * and less than b stored on the page associated with a. Duplicate keys are
114 * somewhat special and can cause duplicate internal and leaf page records and
115 * some minor modifications of the above rule.
117 typedef struct _binternal
{
118 u_int32_t ksize
; /* key size */
119 pgno_t pgno
; /* page number stored on */
120 #define P_BIGDATA 0x01 /* overflow data */
121 #define P_BIGKEY 0x02 /* overflow key */
123 char bytes
[1]; /* data */
126 /* Get the page's BINTERNAL structure at index indx. */
127 #define GETBINTERNAL(pg, indx) \
128 ((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
130 /* Get the number of bytes in the entry. */
131 #define NBINTERNAL(len) \
132 LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
134 /* Copy a BINTERNAL entry to the page. */
135 #define WR_BINTERNAL(p, size, pgno, flags) { \
136 *(u_int32_t *)p = size; \
137 p += sizeof(u_int32_t); \
138 *(pgno_t *)p = pgno; \
139 p += sizeof(pgno_t); \
140 *(u_char *)p = flags; \
141 p += sizeof(u_char); \
145 * For the recno internal pages, the item is a page number with the number of
146 * keys found on that page and below.
148 typedef struct _rinternal
{
149 recno_t nrecs
; /* number of records */
150 pgno_t pgno
; /* page number stored below */
153 /* Get the page's RINTERNAL structure at index indx. */
154 #define GETRINTERNAL(pg, indx) \
155 ((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
157 /* Get the number of bytes in the entry. */
159 LALIGN(sizeof(recno_t) + sizeof(pgno_t))
161 /* Copy a RINTERAL entry to the page. */
162 #define WR_RINTERNAL(p, nrecs, pgno) { \
163 *(recno_t *)p = nrecs; \
164 p += sizeof(recno_t); \
165 *(pgno_t *)p = pgno; \
168 /* For the btree leaf pages, the item is a key and data pair. */
169 typedef struct _bleaf
{
170 u_int32_t ksize
; /* size of key */
171 u_int32_t dsize
; /* size of data */
172 u_char flags
; /* P_BIGDATA, P_BIGKEY */
173 char bytes
[1]; /* data */
176 /* Get the page's BLEAF structure at index indx. */
177 #define GETBLEAF(pg, indx) \
178 ((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
180 /* Get the number of bytes in the entry. */
181 #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
183 /* Get the number of bytes in the user's key/data pair. */
184 #define NBLEAFDBT(ksize, dsize) \
185 LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
188 /* Copy a BLEAF entry to the page. */
189 #define WR_BLEAF(p, key, data, flags) { \
190 *(u_int32_t *)p = key->size; \
191 p += sizeof(u_int32_t); \
192 *(u_int32_t *)p = data->size; \
193 p += sizeof(u_int32_t); \
194 *(u_char *)p = flags; \
195 p += sizeof(u_char); \
196 memmove(p, key->data, key->size); \
198 memmove(p, data->data, data->size); \
201 /* For the recno leaf pages, the item is a data entry. */
202 typedef struct _rleaf
{
203 u_int32_t dsize
; /* size of data */
204 u_char flags
; /* P_BIGDATA */
208 /* Get the page's RLEAF structure at index indx. */
209 #define GETRLEAF(pg, indx) \
210 ((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
212 /* Get the number of bytes in the entry. */
213 #define NRLEAF(p) NRLEAFDBT((p)->dsize)
215 /* Get the number of bytes from the user's data. */
216 #define NRLEAFDBT(dsize) \
217 LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
219 /* Copy a RLEAF entry to the page. */
220 #define WR_RLEAF(p, data, flags) { \
221 *(u_int32_t *)p = data->size; \
222 p += sizeof(u_int32_t); \
223 *(u_char *)p = flags; \
224 p += sizeof(u_char); \
225 memmove(p, data->data, data->size); \
229 * A record in the tree is either a pointer to a page and an index in the page
230 * or a page number and an index. These structures are used as a cursor, stack
231 * entry and search returns as well as to pass records to other routines.
233 * One comment about searches. Internal page searches must find the largest
234 * record less than key in the tree so that descents work. Leaf page searches
235 * must find the smallest record greater than key so that the returned index
236 * is the record's correct position for insertion.
238 typedef struct _epgno
{
239 pgno_t pgno
; /* the page number */
240 indx_t index
; /* the index on the page */
243 typedef struct _epg
{
244 PAGE
*page
; /* the (pinned) page */
245 indx_t index
; /* the index on the page */
249 * About cursors. The cursor (and the page that contained the key/data pair
250 * that it referenced) can be deleted, which makes things a bit tricky. If
251 * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
252 * or there simply aren't any duplicates of the key) we copy the key that it
253 * referenced when it's deleted, and reacquire a new cursor key if the cursor
254 * is used again. If there are duplicates keys, we move to the next/previous
255 * key, and set a flag so that we know what happened. NOTE: if duplicate (to
256 * the cursor) keys are added to the tree during this process, it is undefined
257 * if they will be returned or not in a cursor scan.
259 * The flags determine the possible states of the cursor:
261 * CURS_INIT The cursor references *something*.
262 * CURS_ACQUIRE The cursor was deleted, and a key has been saved so that
263 * we can reacquire the right position in the tree.
264 * CURS_AFTER, CURS_BEFORE
265 * The cursor was deleted, and now references a key/data pair
266 * that has not yet been returned, either before or after the
267 * deleted key/data pair.
269 * This structure is broken out so that we can eventually offer multiple
270 * cursors as part of the DB interface.
272 typedef struct _cursor
{
273 EPGNO pg
; /* B: Saved tree reference. */
274 DBT key
; /* B: Saved key, or key.data == NULL. */
275 recno_t rcursor
; /* R: recno cursor (1-based) */
277 #define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */
278 #define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */
279 #define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */
280 #define CURS_INIT 0x08 /* RB: Cursor initialized. */
285 * The metadata of the tree. The nrecs field is used only by the RECNO code.
286 * This is because the btree doesn't really need it and it requires that every
287 * put or delete call modify the metadata.
289 typedef struct _btmeta
{
290 u_int32_t magic
; /* magic number */
291 u_int32_t version
; /* version */
292 u_int32_t psize
; /* page size */
293 u_int32_t free
; /* page number of first free page */
294 u_int32_t nrecs
; /* R: number of records */
296 #define SAVEMETA (B_NODUPS | R_RECNO)
297 u_int32_t flags
; /* bt_flags & SAVEMETA */
300 /* The in-memory btree/recno data structure. */
301 typedef struct _btree
{
302 MPOOL
*bt_mp
; /* memory pool cookie */
304 DB
*bt_dbp
; /* pointer to enclosing DB */
306 EPG bt_cur
; /* current (pinned) page */
307 PAGE
*bt_pinned
; /* page pinned across calls */
309 CURSOR bt_cursor
; /* cursor */
311 #define BT_PUSH(t, p, i) { \
312 t->bt_sp->pgno = p; \
313 t->bt_sp->index = i; \
316 #define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
317 #define BT_CLR(t) (t->bt_sp = t->bt_stack)
318 EPGNO bt_stack
[50]; /* stack of parent pages */
319 EPGNO
*bt_sp
; /* current stack pointer */
321 DBT bt_rkey
; /* returned key */
322 DBT bt_rdata
; /* returned data */
324 int bt_fd
; /* tree file descriptor */
326 pgno_t bt_free
; /* next free page */
327 u_int32_t bt_psize
; /* page size */
328 indx_t bt_ovflsize
; /* cut-off for key/data overflow */
329 int bt_lorder
; /* byte order */
331 enum { NOT
, BACK
, FORWARD
} bt_order
;
332 EPGNO bt_last
; /* last insert */
334 /* B: key comparison function */
335 int (*bt_cmp
) (const DBT
*, const DBT
*);
336 /* B: prefix comparison function */
337 size_t (*bt_pfx
) (const DBT
*, const DBT
*);
338 /* R: recno input function */
339 int (*bt_irec
) (struct _btree
*, recno_t
);
341 FILE *bt_rfp
; /* R: record FILE pointer */
342 int bt_rfd
; /* R: record file descriptor */
344 caddr_t bt_cmap
; /* R: current point in mapped space */
345 caddr_t bt_smap
; /* R: start of mapped space */
346 caddr_t bt_emap
; /* R: end of mapped space */
347 size_t bt_msize
; /* R: size of mapped region. */
349 recno_t bt_nrecs
; /* R: number of records */
350 size_t bt_reclen
; /* R: fixed record length */
351 u_char bt_bval
; /* R: delimiting byte/pad character */
355 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
357 #define B_INMEM 0x00001 /* in-memory tree */
358 #define B_METADIRTY 0x00002 /* need to write metadata */
359 #define B_MODIFIED 0x00004 /* tree modified */
360 #define B_NEEDSWAP 0x00008 /* if byte order requires swapping */
361 #define B_RDONLY 0x00010 /* read-only tree */
363 #define B_NODUPS 0x00020 /* no duplicate keys permitted */
364 #define R_RECNO 0x00080 /* record oriented tree */
366 #define R_CLOSEFP 0x00040 /* opened a file pointer */
367 #define R_EOF 0x00100 /* end of input file reached. */
368 #define R_FIXLEN 0x00200 /* fixed length records */
369 #define R_MEMMAPPED 0x00400 /* memory mapped file. */
370 #define R_INMEM 0x00800 /* in-memory file */
371 #define R_MODIFIED 0x01000 /* modified file */
372 #define R_RDONLY 0x02000 /* read-only file */
374 #define B_DB_LOCK 0x04000 /* DB_LOCK specified. */
375 #define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */
376 #define B_DB_TXN 0x10000 /* DB_TXN specified. */