Don't use NULL where 0 is meant.
[dragonfly/netmp.git] / sys / platform / vkernel / i386 / cpu_regs.c
blobe6958c06240c91e741315dbff2c8c045762dc0ab
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40 * $DragonFly: src/sys/platform/vkernel/i386/cpu_regs.c,v 1.29 2008/06/06 13:19:25 swildner Exp $
43 #include "use_ether.h"
44 #include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_ddb.h"
49 #include "opt_directio.h"
50 #include "opt_inet.h"
51 #include "opt_ipx.h"
52 #include "opt_msgbuf.h"
53 #include "opt_swap.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/sysproto.h>
58 #include <sys/signalvar.h>
59 #include <sys/kernel.h>
60 #include <sys/linker.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/upcall.h>
72 #include <sys/usched.h>
73 #include <sys/reg.h>
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
85 #include <sys/thread2.h>
87 #include <sys/user.h>
88 #include <sys/exec.h>
89 #include <sys/cons.h>
91 #include <ddb/ddb.h>
93 #include <machine/cpu.h>
94 #include <machine/clock.h>
95 #include <machine/specialreg.h>
96 #include <machine/md_var.h>
97 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
98 #include <machine/globaldata.h> /* CPU_prvspace */
99 #include <machine/smp.h>
100 #ifdef PERFMON
101 #include <machine/perfmon.h>
102 #endif
103 #include <machine/cputypes.h>
105 #include <bus/isa/rtc.h>
106 #include <machine/vm86.h>
107 #include <sys/random.h>
108 #include <sys/ptrace.h>
109 #include <machine/sigframe.h>
110 #include <unistd.h> /* umtx_* functions */
112 extern void dblfault_handler (void);
114 #ifndef CPU_DISABLE_SSE
115 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
116 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
117 #endif /* CPU_DISABLE_SSE */
118 #ifdef DIRECTIO
119 extern void ffs_rawread_setup(void);
120 #endif /* DIRECTIO */
122 #ifdef SMP
123 int64_t tsc_offsets[MAXCPU];
124 #else
125 int64_t tsc_offsets[1];
126 #endif
128 #if defined(SWTCH_OPTIM_STATS)
129 extern int swtch_optim_stats;
130 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
131 CTLFLAG_RD, &swtch_optim_stats, 0, "");
132 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
133 CTLFLAG_RD, &tlb_flush_count, 0, "");
134 #endif
136 static int
137 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
139 int error = sysctl_handle_int(oidp, 0, ctob((int)Maxmem), req);
140 return (error);
143 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
144 0, 0, sysctl_hw_physmem, "IU", "");
146 static int
147 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
149 int error = sysctl_handle_int(oidp, 0,
150 ctob((int)Maxmem - vmstats.v_wire_count), req);
151 return (error);
154 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
155 0, 0, sysctl_hw_usermem, "IU", "");
157 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
159 #if 0
161 static int
162 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
164 int error;
166 /* Unwind the buffer, so that it's linear (possibly starting with
167 * some initial nulls).
169 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
170 msgbufp->msg_size-msgbufp->msg_bufr,req);
171 if(error) return(error);
172 if(msgbufp->msg_bufr>0) {
173 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
174 msgbufp->msg_bufr,req);
176 return(error);
179 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
180 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
182 static int msgbuf_clear;
184 static int
185 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
187 int error;
188 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
189 req);
190 if (!error && req->newptr) {
191 /* Clear the buffer and reset write pointer */
192 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
193 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
194 msgbuf_clear=0;
196 return (error);
199 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
200 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
201 "Clear kernel message buffer");
203 #endif
206 * Send an interrupt to process.
208 * Stack is set up to allow sigcode stored
209 * at top to call routine, followed by kcall
210 * to sigreturn routine below. After sigreturn
211 * resets the signal mask, the stack, and the
212 * frame pointer, it returns to the user
213 * specified pc, psl.
215 void
216 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
218 struct lwp *lp = curthread->td_lwp;
219 struct proc *p = lp->lwp_proc;
220 struct trapframe *regs;
221 struct sigacts *psp = p->p_sigacts;
222 struct sigframe sf, *sfp;
223 int oonstack;
225 regs = lp->lwp_md.md_regs;
226 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
228 /* save user context */
229 bzero(&sf, sizeof(struct sigframe));
230 sf.sf_uc.uc_sigmask = *mask;
231 sf.sf_uc.uc_stack = lp->lwp_sigstk;
232 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
233 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe));
235 /* make the size of the saved context visible to userland */
236 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
238 /* save mailbox pending state for syscall interlock semantics */
239 if (p->p_flag & P_MAILBOX)
240 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
243 /* Allocate and validate space for the signal handler context. */
244 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
245 SIGISMEMBER(psp->ps_sigonstack, sig)) {
246 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
247 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
248 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
250 else
251 sfp = (struct sigframe *)regs->tf_esp - 1;
253 /* Translate the signal is appropriate */
254 if (p->p_sysent->sv_sigtbl) {
255 if (sig <= p->p_sysent->sv_sigsize)
256 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
259 /* Build the argument list for the signal handler. */
260 sf.sf_signum = sig;
261 sf.sf_ucontext = (register_t)&sfp->sf_uc;
262 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
263 /* Signal handler installed with SA_SIGINFO. */
264 sf.sf_siginfo = (register_t)&sfp->sf_si;
265 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
267 /* fill siginfo structure */
268 sf.sf_si.si_signo = sig;
269 sf.sf_si.si_code = code;
270 sf.sf_si.si_addr = (void*)regs->tf_err;
272 else {
273 /* Old FreeBSD-style arguments. */
274 sf.sf_siginfo = code;
275 sf.sf_addr = regs->tf_err;
276 sf.sf_ahu.sf_handler = catcher;
279 #if 0
281 * If we're a vm86 process, we want to save the segment registers.
282 * We also change eflags to be our emulated eflags, not the actual
283 * eflags.
285 if (regs->tf_eflags & PSL_VM) {
286 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
287 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
289 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
290 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
291 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
292 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
294 if (vm86->vm86_has_vme == 0)
295 sf.sf_uc.uc_mcontext.mc_eflags =
296 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
297 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
300 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
301 * syscalls made by the signal handler. This just avoids
302 * wasting time for our lazy fixup of such faults. PSL_NT
303 * does nothing in vm86 mode, but vm86 programs can set it
304 * almost legitimately in probes for old cpu types.
306 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
308 #endif
311 * Save the FPU state and reinit the FP unit
313 npxpush(&sf.sf_uc.uc_mcontext);
316 * Copy the sigframe out to the user's stack.
318 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
320 * Something is wrong with the stack pointer.
321 * ...Kill the process.
323 sigexit(lp, SIGILL);
326 regs->tf_esp = (int)sfp;
327 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
330 * i386 abi specifies that the direction flag must be cleared
331 * on function entry
333 regs->tf_eflags &= ~(PSL_T|PSL_D);
335 regs->tf_cs = _ucodesel;
336 regs->tf_ds = _udatasel;
337 regs->tf_es = _udatasel;
338 if (regs->tf_trapno == T_PROTFLT) {
339 regs->tf_fs = _udatasel;
340 regs->tf_gs = _udatasel;
342 regs->tf_ss = _udatasel;
346 * Sanitize the trapframe for a virtual kernel passing control to a custom
347 * VM context.
349 * Allow userland to set or maintain PSL_RF, the resume flag. This flag
350 * basically controls whether the return PC should skip the first instruction
351 * (as in an explicit system call) or re-execute it (as in an exception).
354 cpu_sanitize_frame(struct trapframe *frame)
356 frame->tf_cs = _ucodesel;
357 frame->tf_ds = _udatasel;
358 frame->tf_es = _udatasel;
359 #if 0
360 frame->tf_fs = _udatasel;
361 frame->tf_gs = _udatasel;
362 #endif
363 frame->tf_ss = _udatasel;
364 frame->tf_eflags &= (PSL_RF | PSL_USERCHANGE);
365 frame->tf_eflags |= PSL_RESERVED_DEFAULT | PSL_I;
366 return(0);
370 cpu_sanitize_tls(struct savetls *tls)
372 struct segment_descriptor *desc;
373 int i;
375 for (i = 0; i < NGTLS; ++i) {
376 desc = &tls->tls[i];
377 if (desc->sd_dpl == 0 && desc->sd_type == 0)
378 continue;
379 if (desc->sd_def32 == 0)
380 return(ENXIO);
381 if (desc->sd_type != SDT_MEMRWA)
382 return(ENXIO);
383 if (desc->sd_dpl != SEL_UPL)
384 return(ENXIO);
385 if (desc->sd_xx != 0 || desc->sd_p != 1)
386 return(ENXIO);
388 return(0);
392 * sigreturn(ucontext_t *sigcntxp)
394 * System call to cleanup state after a signal
395 * has been taken. Reset signal mask and
396 * stack state from context left by sendsig (above).
397 * Return to previous pc and psl as specified by
398 * context left by sendsig. Check carefully to
399 * make sure that the user has not modified the
400 * state to gain improper privileges.
402 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
403 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
406 sys_sigreturn(struct sigreturn_args *uap)
408 struct lwp *lp = curthread->td_lwp;
409 struct proc *p = lp->lwp_proc;
410 struct trapframe *regs;
411 ucontext_t ucp;
412 int cs;
413 int eflags;
414 int error;
416 error = copyin(uap->sigcntxp, &ucp, sizeof(ucp));
417 if (error)
418 return (error);
420 regs = lp->lwp_md.md_regs;
421 eflags = ucp.uc_mcontext.mc_eflags;
423 #if 0
424 if (eflags & PSL_VM) {
425 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
426 struct vm86_kernel *vm86;
429 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
430 * set up the vm86 area, and we can't enter vm86 mode.
432 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
433 return (EINVAL);
434 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
435 if (vm86->vm86_inited == 0)
436 return (EINVAL);
438 /* go back to user mode if both flags are set */
439 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
440 trapsignal(lp->lwp_proc, SIGBUS, 0);
442 if (vm86->vm86_has_vme) {
443 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
444 (eflags & VME_USERCHANGE) | PSL_VM;
445 } else {
446 vm86->vm86_eflags = eflags; /* save VIF, VIP */
447 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
449 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
450 tf->tf_eflags = eflags;
451 tf->tf_vm86_ds = tf->tf_ds;
452 tf->tf_vm86_es = tf->tf_es;
453 tf->tf_vm86_fs = tf->tf_fs;
454 tf->tf_vm86_gs = tf->tf_gs;
455 tf->tf_ds = _udatasel;
456 tf->tf_es = _udatasel;
457 #if 0
458 tf->tf_fs = _udatasel;
459 tf->tf_gs = _udatasel;
460 #endif
461 } else
462 #endif
465 * Don't allow users to change privileged or reserved flags.
468 * XXX do allow users to change the privileged flag PSL_RF.
469 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
470 * should sometimes set it there too. tf_eflags is kept in
471 * the signal context during signal handling and there is no
472 * other place to remember it, so the PSL_RF bit may be
473 * corrupted by the signal handler without us knowing.
474 * Corruption of the PSL_RF bit at worst causes one more or
475 * one less debugger trap, so allowing it is fairly harmless.
477 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
478 kprintf("sigreturn: eflags = 0x%x\n", eflags);
479 return(EINVAL);
483 * Don't allow users to load a valid privileged %cs. Let the
484 * hardware check for invalid selectors, excess privilege in
485 * other selectors, invalid %eip's and invalid %esp's.
487 cs = ucp.uc_mcontext.mc_cs;
488 if (!CS_SECURE(cs)) {
489 kprintf("sigreturn: cs = 0x%x\n", cs);
490 trapsignal(lp, SIGBUS, T_PROTFLT);
491 return(EINVAL);
493 bcopy(&ucp.uc_mcontext.mc_gs, regs, sizeof(struct trapframe));
497 * Restore the FPU state from the frame
499 npxpop(&ucp.uc_mcontext);
502 * Merge saved signal mailbox pending flag to maintain interlock
503 * semantics against system calls.
505 if (ucp.uc_mcontext.mc_xflags & PGEX_MAILBOX)
506 p->p_flag |= P_MAILBOX;
508 if (ucp.uc_mcontext.mc_onstack & 1)
509 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
510 else
511 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
513 lp->lwp_sigmask = ucp.uc_sigmask;
514 SIG_CANTMASK(lp->lwp_sigmask);
515 return(EJUSTRETURN);
519 * Stack frame on entry to function. %eax will contain the function vector,
520 * %ecx will contain the function data. flags, ecx, and eax will have
521 * already been pushed on the stack.
523 struct upc_frame {
524 register_t eax;
525 register_t ecx;
526 register_t edx;
527 register_t flags;
528 register_t oldip;
531 void
532 sendupcall(struct vmupcall *vu, int morepending)
534 struct lwp *lp = curthread->td_lwp;
535 struct trapframe *regs;
536 struct upcall upcall;
537 struct upc_frame upc_frame;
538 int crit_count = 0;
541 * If we are a virtual kernel running an emulated user process
542 * context, switch back to the virtual kernel context before
543 * trying to post the signal.
545 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
546 lp->lwp_md.md_regs->tf_trapno = 0;
547 vkernel_trap(lp, lp->lwp_md.md_regs);
551 * Get the upcall data structure
553 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
554 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
556 vu->vu_pending = 0;
557 kprintf("bad upcall address\n");
558 return;
562 * If the data structure is already marked pending or has a critical
563 * section count, mark the data structure as pending and return
564 * without doing an upcall. vu_pending is left set.
566 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
567 if (upcall.upc_pending < vu->vu_pending) {
568 upcall.upc_pending = vu->vu_pending;
569 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
570 sizeof(upcall.upc_pending));
572 return;
576 * We can run this upcall now, clear vu_pending.
578 * Bump our critical section count and set or clear the
579 * user pending flag depending on whether more upcalls are
580 * pending. The user will be responsible for calling
581 * upc_dispatch(-1) to process remaining upcalls.
583 vu->vu_pending = 0;
584 upcall.upc_pending = morepending;
585 crit_count += TDPRI_CRIT;
586 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
587 sizeof(upcall.upc_pending));
588 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
589 sizeof(int));
592 * Construct a stack frame and issue the upcall
594 regs = lp->lwp_md.md_regs;
595 upc_frame.eax = regs->tf_eax;
596 upc_frame.ecx = regs->tf_ecx;
597 upc_frame.edx = regs->tf_edx;
598 upc_frame.flags = regs->tf_eflags;
599 upc_frame.oldip = regs->tf_eip;
600 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
601 sizeof(upc_frame)) != 0) {
602 kprintf("bad stack on upcall\n");
603 } else {
604 regs->tf_eax = (register_t)vu->vu_func;
605 regs->tf_ecx = (register_t)vu->vu_data;
606 regs->tf_edx = (register_t)lp->lwp_upcall;
607 regs->tf_eip = (register_t)vu->vu_ctx;
608 regs->tf_esp -= sizeof(upc_frame);
613 * fetchupcall occurs in the context of a system call, which means that
614 * we have to return EJUSTRETURN in order to prevent eax and edx from
615 * being overwritten by the syscall return value.
617 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
618 * and the function pointer in %eax.
621 fetchupcall (struct vmupcall *vu, int morepending, void *rsp)
623 struct upc_frame upc_frame;
624 struct lwp *lp = curthread->td_lwp;
625 struct trapframe *regs;
626 int error;
627 struct upcall upcall;
628 int crit_count;
630 regs = lp->lwp_md.md_regs;
632 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
633 if (error == 0) {
634 if (vu) {
636 * This jumps us to the next ready context.
638 vu->vu_pending = 0;
639 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
640 crit_count = 0;
641 if (error == 0)
642 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
643 crit_count += TDPRI_CRIT;
644 if (error == 0)
645 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
646 regs->tf_eax = (register_t)vu->vu_func;
647 regs->tf_ecx = (register_t)vu->vu_data;
648 regs->tf_edx = (register_t)lp->lwp_upcall;
649 regs->tf_eip = (register_t)vu->vu_ctx;
650 regs->tf_esp = (register_t)rsp;
651 } else {
653 * This returns us to the originally interrupted code.
655 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
656 regs->tf_eax = upc_frame.eax;
657 regs->tf_ecx = upc_frame.ecx;
658 regs->tf_edx = upc_frame.edx;
659 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
660 (upc_frame.flags & PSL_USERCHANGE);
661 regs->tf_eip = upc_frame.oldip;
662 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
665 if (error == 0)
666 error = EJUSTRETURN;
667 return(error);
671 * cpu_idle() represents the idle LWKT. You cannot return from this function
672 * (unless you want to blow things up!). Instead we look for runnable threads
673 * and loop or halt as appropriate. Giant is not held on entry to the thread.
675 * The main loop is entered with a critical section held, we must release
676 * the critical section before doing anything else. lwkt_switch() will
677 * check for pending interrupts due to entering and exiting its own
678 * critical section.
680 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
681 * to wake a HLTed cpu up. However, there are cases where the idlethread
682 * will be entered with the possibility that no IPI will occur and in such
683 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
685 static int cpu_idle_hlt = 1;
686 static int cpu_idle_hltcnt;
687 static int cpu_idle_spincnt;
688 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
689 &cpu_idle_hlt, 0, "Idle loop HLT enable");
690 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
691 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
692 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
693 &cpu_idle_spincnt, 0, "Idle loop entry spins");
695 void
696 cpu_idle(void)
698 struct thread *td = curthread;
699 struct mdglobaldata *gd = mdcpu;
701 crit_exit();
702 KKASSERT(td->td_pri < TDPRI_CRIT);
703 cpu_enable_intr();
704 for (;;) {
706 * See if there are any LWKTs ready to go.
708 lwkt_switch();
711 * The idle loop halts only if no threads are scheduleable
712 * and no signals have occured.
714 if (cpu_idle_hlt && !lwkt_runnable() &&
715 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
716 splz();
717 if (!lwkt_runnable()) {
718 #ifdef DEBUGIDLE
719 struct timeval tv1, tv2;
720 gettimeofday(&tv1, NULL);
721 #endif
722 umtx_sleep(&gd->mi.gd_runqmask, 0, 1000000);
723 #ifdef DEBUGIDLE
724 gettimeofday(&tv2, NULL);
725 if (tv2.tv_usec - tv1.tv_usec +
726 (tv2.tv_sec - tv1.tv_sec) * 1000000
727 > 500000) {
728 kprintf("cpu %d idlelock %08x %08x\n",
729 gd->mi.gd_cpuid,
730 gd->mi.gd_runqmask,
731 gd->gd_fpending);
733 #endif
735 #ifdef SMP
736 else {
737 __asm __volatile("pause");
739 #endif
740 ++cpu_idle_hltcnt;
741 } else {
742 td->td_flags &= ~TDF_IDLE_NOHLT;
743 splz();
744 #ifdef SMP
745 /*__asm __volatile("sti; pause");*/
746 __asm __volatile("pause");
747 #else
748 /*__asm __volatile("sti");*/
749 #endif
750 ++cpu_idle_spincnt;
755 #ifdef SMP
758 * Called by the LWKT switch core with a critical section held if the only
759 * schedulable thread needs the MP lock and we couldn't get it. On
760 * a real cpu we just spin in the scheduler. In the virtual kernel
761 * we sleep for a bit.
763 void
764 cpu_mplock_contested(void)
766 usleep(1000);
770 * Called by the spinlock code with or without a critical section held
771 * when a spinlock is found to be seriously constested.
773 void
774 cpu_spinlock_contested(void)
776 usleep(1000);
779 #endif
782 * Clear registers on exec
784 void
785 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
787 struct thread *td = curthread;
788 struct lwp *lp = td->td_lwp;
789 struct trapframe *regs = lp->lwp_md.md_regs;
790 struct pcb *pcb = lp->lwp_thread->td_pcb;
792 /* was i386_user_cleanup() in NetBSD */
793 user_ldt_free(pcb);
795 bzero((char *)regs, sizeof(struct trapframe));
796 regs->tf_eip = entry;
797 regs->tf_esp = stack;
798 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
799 regs->tf_ss = 0;
800 regs->tf_ds = 0;
801 regs->tf_es = 0;
802 regs->tf_fs = 0;
803 regs->tf_gs = 0;
804 regs->tf_cs = 0;
806 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
807 regs->tf_ebx = ps_strings;
810 * Reset the hardware debug registers if they were in use.
811 * They won't have any meaning for the newly exec'd process.
813 if (pcb->pcb_flags & PCB_DBREGS) {
814 pcb->pcb_dr0 = 0;
815 pcb->pcb_dr1 = 0;
816 pcb->pcb_dr2 = 0;
817 pcb->pcb_dr3 = 0;
818 pcb->pcb_dr6 = 0;
819 pcb->pcb_dr7 = 0;
820 if (pcb == td->td_pcb) {
822 * Clear the debug registers on the running
823 * CPU, otherwise they will end up affecting
824 * the next process we switch to.
826 reset_dbregs();
828 pcb->pcb_flags &= ~PCB_DBREGS;
832 * Initialize the math emulator (if any) for the current process.
833 * Actually, just clear the bit that says that the emulator has
834 * been initialized. Initialization is delayed until the process
835 * traps to the emulator (if it is done at all) mainly because
836 * emulators don't provide an entry point for initialization.
838 pcb->pcb_flags &= ~FP_SOFTFP;
841 * note: do not set CR0_TS here. npxinit() must do it after clearing
842 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
843 * in npxdna().
845 crit_enter();
846 #if 0
847 load_cr0(rcr0() | CR0_MP);
848 #endif
850 #if NNPX > 0
851 /* Initialize the npx (if any) for the current process. */
852 npxinit(__INITIAL_NPXCW__);
853 #endif
854 crit_exit();
857 * note: linux emulator needs edx to be 0x0 on entry, which is
858 * handled in execve simply by setting the 64 bit syscall
859 * return value to 0.
863 void
864 cpu_setregs(void)
866 #if 0
867 unsigned int cr0;
869 cr0 = rcr0();
870 cr0 |= CR0_NE; /* Done by npxinit() */
871 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
872 cr0 |= CR0_WP | CR0_AM;
873 load_cr0(cr0);
874 load_gs(_udatasel);
875 #endif
878 static int
879 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
881 int error;
882 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
883 req);
884 if (!error && req->newptr)
885 resettodr();
886 return (error);
889 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
890 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
892 extern u_long bootdev; /* not a cdev_t - encoding is different */
893 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
894 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
897 * Initialize 386 and configure to run kernel
901 * Initialize segments & interrupt table
904 extern struct user *proc0paddr;
906 #if 0
908 extern inthand_t
909 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
910 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
911 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
912 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
913 IDTVEC(xmm), IDTVEC(syscall),
914 IDTVEC(rsvd0);
915 extern inthand_t
916 IDTVEC(int0x80_syscall);
918 #endif
920 #ifdef DEBUG_INTERRUPTS
921 extern inthand_t *Xrsvdary[256];
922 #endif
925 ptrace_set_pc(struct lwp *lp, unsigned long addr)
927 lp->lwp_md.md_regs->tf_eip = addr;
928 return (0);
932 ptrace_single_step(struct lwp *lp)
934 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
935 return (0);
939 fill_regs(struct lwp *lp, struct reg *regs)
941 struct trapframe *tp;
943 tp = lp->lwp_md.md_regs;
944 regs->r_gs = tp->tf_gs;
945 regs->r_fs = tp->tf_fs;
946 regs->r_es = tp->tf_es;
947 regs->r_ds = tp->tf_ds;
948 regs->r_edi = tp->tf_edi;
949 regs->r_esi = tp->tf_esi;
950 regs->r_ebp = tp->tf_ebp;
951 regs->r_ebx = tp->tf_ebx;
952 regs->r_edx = tp->tf_edx;
953 regs->r_ecx = tp->tf_ecx;
954 regs->r_eax = tp->tf_eax;
955 regs->r_eip = tp->tf_eip;
956 regs->r_cs = tp->tf_cs;
957 regs->r_eflags = tp->tf_eflags;
958 regs->r_esp = tp->tf_esp;
959 regs->r_ss = tp->tf_ss;
960 return (0);
964 set_regs(struct lwp *lp, struct reg *regs)
966 struct trapframe *tp;
968 tp = lp->lwp_md.md_regs;
969 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
970 !CS_SECURE(regs->r_cs))
971 return (EINVAL);
972 tp->tf_gs = regs->r_gs;
973 tp->tf_fs = regs->r_fs;
974 tp->tf_es = regs->r_es;
975 tp->tf_ds = regs->r_ds;
976 tp->tf_edi = regs->r_edi;
977 tp->tf_esi = regs->r_esi;
978 tp->tf_ebp = regs->r_ebp;
979 tp->tf_ebx = regs->r_ebx;
980 tp->tf_edx = regs->r_edx;
981 tp->tf_ecx = regs->r_ecx;
982 tp->tf_eax = regs->r_eax;
983 tp->tf_eip = regs->r_eip;
984 tp->tf_cs = regs->r_cs;
985 tp->tf_eflags = regs->r_eflags;
986 tp->tf_esp = regs->r_esp;
987 tp->tf_ss = regs->r_ss;
988 return (0);
991 #ifndef CPU_DISABLE_SSE
992 static void
993 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
995 struct env87 *penv_87 = &sv_87->sv_env;
996 struct envxmm *penv_xmm = &sv_xmm->sv_env;
997 int i;
999 /* FPU control/status */
1000 penv_87->en_cw = penv_xmm->en_cw;
1001 penv_87->en_sw = penv_xmm->en_sw;
1002 penv_87->en_tw = penv_xmm->en_tw;
1003 penv_87->en_fip = penv_xmm->en_fip;
1004 penv_87->en_fcs = penv_xmm->en_fcs;
1005 penv_87->en_opcode = penv_xmm->en_opcode;
1006 penv_87->en_foo = penv_xmm->en_foo;
1007 penv_87->en_fos = penv_xmm->en_fos;
1009 /* FPU registers */
1010 for (i = 0; i < 8; ++i)
1011 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1013 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
1016 static void
1017 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1019 struct env87 *penv_87 = &sv_87->sv_env;
1020 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1021 int i;
1023 /* FPU control/status */
1024 penv_xmm->en_cw = penv_87->en_cw;
1025 penv_xmm->en_sw = penv_87->en_sw;
1026 penv_xmm->en_tw = penv_87->en_tw;
1027 penv_xmm->en_fip = penv_87->en_fip;
1028 penv_xmm->en_fcs = penv_87->en_fcs;
1029 penv_xmm->en_opcode = penv_87->en_opcode;
1030 penv_xmm->en_foo = penv_87->en_foo;
1031 penv_xmm->en_fos = penv_87->en_fos;
1033 /* FPU registers */
1034 for (i = 0; i < 8; ++i)
1035 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1037 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
1039 #endif /* CPU_DISABLE_SSE */
1042 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
1044 #ifndef CPU_DISABLE_SSE
1045 if (cpu_fxsr) {
1046 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
1047 (struct save87 *)fpregs);
1048 return (0);
1050 #endif /* CPU_DISABLE_SSE */
1051 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
1052 return (0);
1056 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
1058 #ifndef CPU_DISABLE_SSE
1059 if (cpu_fxsr) {
1060 set_fpregs_xmm((struct save87 *)fpregs,
1061 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
1062 return (0);
1064 #endif /* CPU_DISABLE_SSE */
1065 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
1066 return (0);
1070 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
1072 return (ENOSYS);
1076 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
1078 return (ENOSYS);
1081 #if 0
1083 * Return > 0 if a hardware breakpoint has been hit, and the
1084 * breakpoint was in user space. Return 0, otherwise.
1087 user_dbreg_trap(void)
1089 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
1090 u_int32_t bp; /* breakpoint bits extracted from dr6 */
1091 int nbp; /* number of breakpoints that triggered */
1092 caddr_t addr[4]; /* breakpoint addresses */
1093 int i;
1095 dr7 = rdr7();
1096 if ((dr7 & 0x000000ff) == 0) {
1098 * all GE and LE bits in the dr7 register are zero,
1099 * thus the trap couldn't have been caused by the
1100 * hardware debug registers
1102 return 0;
1105 nbp = 0;
1106 dr6 = rdr6();
1107 bp = dr6 & 0x0000000f;
1109 if (!bp) {
1111 * None of the breakpoint bits are set meaning this
1112 * trap was not caused by any of the debug registers
1114 return 0;
1118 * at least one of the breakpoints were hit, check to see
1119 * which ones and if any of them are user space addresses
1122 if (bp & 0x01) {
1123 addr[nbp++] = (caddr_t)rdr0();
1125 if (bp & 0x02) {
1126 addr[nbp++] = (caddr_t)rdr1();
1128 if (bp & 0x04) {
1129 addr[nbp++] = (caddr_t)rdr2();
1131 if (bp & 0x08) {
1132 addr[nbp++] = (caddr_t)rdr3();
1135 for (i=0; i<nbp; i++) {
1136 if (addr[i] <
1137 (caddr_t)VM_MAX_USER_ADDRESS) {
1139 * addr[i] is in user space
1141 return nbp;
1146 * None of the breakpoints are in user space.
1148 return 0;
1151 #endif
1153 void
1154 identcpu(void)
1156 int regs[4];
1158 do_cpuid(1, regs);
1159 cpu_feature = regs[3];
1163 #ifndef DDB
1164 void
1165 Debugger(const char *msg)
1167 kprintf("Debugger(\"%s\") called.\n", msg);
1169 #endif /* no DDB */