Add sradixsort(3) MLINK.
[dragonfly/netmp.git] / usr.bin / top / machine.c
blobcfad65cdfd83c9835f2c8a91d1de2cb7cd53158a
1 /*
2 * top - a top users display for Unix
4 * SYNOPSIS: For FreeBSD-2.x and later
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
16 * LIBS: -lkvm
18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
19 * Steven Wallace <swallace@freebsd.org>
20 * Wolfram Schneider <wosch@FreeBSD.org>
21 * Hiten Pandya <hmp@backplane.com>
23 * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
24 * $DragonFly: src/usr.bin/top/machine.c,v 1.25 2008/03/01 18:49:00 nant Exp $
28 #include <sys/time.h>
29 #include <sys/types.h>
30 #include <sys/signal.h>
31 #include <sys/param.h>
33 #include "os.h"
34 #include <err.h>
35 #include <kvm.h>
36 #include <stdio.h>
37 #include <math.h>
38 #include <pwd.h>
39 #include <sys/errno.h>
40 #include <sys/sysctl.h>
41 #include <sys/file.h>
42 #include <sys/time.h>
43 #include <sys/user.h>
44 #include <sys/vmmeter.h>
45 #include <sys/resource.h>
46 #include <sys/rtprio.h>
48 /* Swap */
49 #include <stdlib.h>
50 #include <sys/conf.h>
52 #include <osreldate.h> /* for changes in kernel structures */
54 #include <sys/kinfo.h>
55 #include <kinfo.h>
56 #include "top.h"
57 #include "machine.h"
59 static int check_nlist(struct nlist *);
60 static int getkval(unsigned long, int *, int, char *);
61 extern char* printable(char *);
62 int swapmode(int *retavail, int *retfree);
63 static int smpmode;
64 static int namelength;
65 static int cmdlength;
67 /*
68 * needs to be a global symbol, so wrapper can be
69 * modified accordingly.
71 static int show_threads = 0;
73 /* get_process_info passes back a handle. This is what it looks like: */
75 struct handle
77 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
78 int remaining; /* number of pointers remaining */
81 /* declarations for load_avg */
82 #include "loadavg.h"
84 #define PP(pp, field) ((pp)->kp_ ## field)
85 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
86 #define VP(pp, field) ((pp)->kp_vm_ ## field)
88 /* define what weighted cpu is. */
89 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
90 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
92 /* what we consider to be process size: */
93 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
96 * These definitions control the format of the per-process area
99 static char smp_header[] =
100 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
102 #define smp_Proc_format \
103 "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
105 static char up_header[] =
106 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
108 #define up_Proc_format \
109 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
113 /* process state names for the "STATE" column of the display */
114 /* the extra nulls in the string "run" are for adding a slash and
115 the processor number when needed */
117 char *state_abbrev[] =
119 "", "RUN\0\0\0", "STOP", "SLEEP",
123 static kvm_t *kd;
125 /* values that we stash away in _init and use in later routines */
127 static double logcpu;
129 static long lastpid;
130 static long cnt;
131 static int ccpu;
133 /* these are for calculating cpu state percentages */
135 static struct kinfo_cputime *cp_time, *cp_old;
137 /* these are for detailing the process states */
139 int process_states[6];
140 char *procstatenames[] = {
141 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
142 " zombie, ",
143 NULL
146 /* these are for detailing the cpu states */
147 #define CPU_STATES 5
148 int *cpu_states;
149 char *cpustatenames[CPU_STATES + 1] = {
150 "user", "nice", "system", "interrupt", "idle", NULL
153 /* these are for detailing the memory statistics */
155 int memory_stats[7];
156 char *memorynames[] = {
157 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
158 NULL
161 int swap_stats[7];
162 char *swapnames[] = {
163 /* 0 1 2 3 4 5 */
164 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
165 NULL
169 /* these are for keeping track of the proc array */
171 static int nproc;
172 static int onproc = -1;
173 static int pref_len;
174 static struct kinfo_proc *pbase;
175 static struct kinfo_proc **pref;
177 /* these are for getting the memory statistics */
179 static int pageshift; /* log base 2 of the pagesize */
181 /* define pagetok in terms of pageshift */
183 #define pagetok(size) ((size) << pageshift)
185 #ifdef ORDER
186 /* sorting orders. first is default */
187 char *ordernames[] = {
188 "cpu", "size", "res", "time", "pri", "thr", NULL
190 #endif
192 static void
193 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
194 struct kinfo_cputime *old)
196 struct kinfo_cputime diffs;
197 uint64_t total_change, half_total;
199 /* initialization */
200 total_change = 0;
202 diffs.cp_user = new->cp_user - old->cp_user;
203 diffs.cp_nice = new->cp_nice - old->cp_nice;
204 diffs.cp_sys = new->cp_sys - old->cp_sys;
205 diffs.cp_intr = new->cp_intr - old->cp_intr;
206 diffs.cp_idle = new->cp_idle - old->cp_idle;
207 total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
208 diffs.cp_intr + diffs.cp_idle;
209 old->cp_user = new->cp_user;
210 old->cp_nice = new->cp_nice;
211 old->cp_sys = new->cp_sys;
212 old->cp_intr = new->cp_intr;
213 old->cp_idle = new->cp_idle;
215 /* avoid divide by zero potential */
216 if (total_change == 0)
217 total_change = 1;
219 /* calculate percentages based on overall change, rounding up */
220 half_total = total_change >> 1;
222 out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
223 out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
224 out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
225 out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
226 out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
230 machine_init(struct statics *statics)
232 register int i = 0;
233 register int pagesize;
234 size_t modelen;
235 struct passwd *pw;
237 if (n_cpus < 1) {
238 if (kinfo_get_cpus(&n_cpus))
239 err(1, "kinfo_get_cpus failed");
241 modelen = sizeof(smpmode);
242 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
243 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
244 modelen != sizeof(smpmode))
245 smpmode = 0;
247 while ((pw = getpwent()) != NULL) {
248 if (strlen(pw->pw_name) > namelength)
249 namelength = strlen(pw->pw_name);
251 if (namelength < 8)
252 namelength = 8;
253 if (smpmode && namelength > 13)
254 namelength = 13;
255 else if (namelength > 15)
256 namelength = 15;
258 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
259 return -1;
261 if (kinfo_get_sched_ccpu(&ccpu)) {
262 fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
263 return(-1);
266 /* this is used in calculating WCPU -- calculate it ahead of time */
267 logcpu = log(loaddouble(ccpu));
269 pbase = NULL;
270 pref = NULL;
271 nproc = 0;
272 onproc = -1;
273 /* get the page size with "getpagesize" and calculate pageshift from it */
274 pagesize = getpagesize();
275 pageshift = 0;
276 while (pagesize > 1)
278 pageshift++;
279 pagesize >>= 1;
282 /* we only need the amount of log(2)1024 for our conversion */
283 pageshift -= LOG1024;
285 /* fill in the statics information */
286 statics->procstate_names = procstatenames;
287 statics->cpustate_names = cpustatenames;
288 statics->memory_names = memorynames;
289 statics->swap_names = swapnames;
290 #ifdef ORDER
291 statics->order_names = ordernames;
292 #endif
294 /* all done! */
295 return(0);
298 char *format_header(register char *uname_field)
300 register char *ptr;
301 static char Header[128];
303 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
304 namelength, namelength, uname_field);
306 if (screen_width <= 79)
307 cmdlength = 80;
308 else
309 cmdlength = 89;
311 cmdlength = cmdlength - strlen(Header) + 6;
313 return Header;
316 static int swappgsin = -1;
317 static int swappgsout = -1;
318 extern struct timeval timeout;
320 void
321 get_system_info(struct system_info *si)
323 long total;
324 int mib[2];
325 struct timeval boottime;
326 size_t bt_size;
327 size_t len;
328 int cpu;
330 if (cpu_states == NULL) {
331 cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
332 if (cpu_states == NULL)
333 err(1, "malloc");
334 bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
336 if (cp_time == NULL) {
337 cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
338 if (cp_time == NULL)
339 err(1, "cp_time");
340 cp_old = cp_time + n_cpus;
342 len = n_cpus * sizeof(cp_old[0]);
343 bzero(cp_time, len);
344 if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
345 err(1, "kern.cputime");
348 len = n_cpus * sizeof(cp_time[0]);
349 bzero(cp_time, len);
350 if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
351 err(1, "kern.cputime");
353 getloadavg(si->load_avg, 3);
355 lastpid = 0;
357 /* convert cp_time counts to percentages */
358 for (cpu = 0; cpu < n_cpus; ++cpu) {
359 cputime_percentages(cpu_states + cpu * CPU_STATES,
360 &cp_time[cpu], &cp_old[cpu]);
363 /* sum memory & swap statistics */
365 struct vmmeter vmm;
366 struct vmstats vms;
367 int vms_size = sizeof(vms);
368 int vmm_size = sizeof(vmm);
369 static unsigned int swap_delay = 0;
370 static int swapavail = 0;
371 static int swapfree = 0;
372 static int bufspace = 0;
374 if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
375 err(1, "sysctlbyname: vm.vmstats");
377 if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
378 err(1, "sysctlbyname: vm.vmmeter");
380 if (kinfo_get_vfs_bufspace(&bufspace))
381 err(1, "kinfo_get_vfs_bufspace");
383 /* convert memory stats to Kbytes */
384 memory_stats[0] = pagetok(vms.v_active_count);
385 memory_stats[1] = pagetok(vms.v_inactive_count);
386 memory_stats[2] = pagetok(vms.v_wire_count);
387 memory_stats[3] = pagetok(vms.v_cache_count);
388 memory_stats[4] = bufspace / 1024;
389 memory_stats[5] = pagetok(vms.v_free_count);
390 memory_stats[6] = -1;
392 /* first interval */
393 if (swappgsin < 0) {
394 swap_stats[4] = 0;
395 swap_stats[5] = 0;
398 /* compute differences between old and new swap statistic */
399 else {
400 swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
401 swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
404 swappgsin = vmm.v_swappgsin;
405 swappgsout = vmm.v_swappgsout;
407 /* call CPU heavy swapmode() only for changes */
408 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
409 swap_stats[3] = swapmode(&swapavail, &swapfree);
410 swap_stats[0] = swapavail;
411 swap_stats[1] = swapavail - swapfree;
412 swap_stats[2] = swapfree;
414 swap_delay = 1;
415 swap_stats[6] = -1;
418 /* set arrays and strings */
419 si->cpustates = cpu_states;
420 si->memory = memory_stats;
421 si->swap = swap_stats;
424 if(lastpid > 0) {
425 si->last_pid = lastpid;
426 } else {
427 si->last_pid = -1;
431 * Print how long system has been up.
432 * (Found by looking getting "boottime" from the kernel)
434 mib[0] = CTL_KERN;
435 mib[1] = KERN_BOOTTIME;
436 bt_size = sizeof(boottime);
437 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
438 boottime.tv_sec != 0) {
439 si->boottime = boottime;
440 } else {
441 si->boottime.tv_sec = -1;
445 static struct handle handle;
447 caddr_t get_process_info(struct system_info *si, struct process_select *sel,
448 int (*compare)())
450 register int i;
451 register int total_procs;
452 register int active_procs;
453 register struct kinfo_proc **prefp;
454 register struct kinfo_proc *pp;
456 /* these are copied out of sel for speed */
457 int show_idle;
458 int show_self;
459 int show_system;
460 int show_only_threads;
461 int show_uid;
462 int show_command;
465 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
466 if (nproc > onproc)
467 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
468 * (onproc = nproc));
469 if (pref == NULL || pbase == NULL) {
470 (void) fprintf(stderr, "top: Out of memory.\n");
471 quit(23);
473 /* get a pointer to the states summary array */
474 si->procstates = process_states;
476 /* set up flags which define what we are going to select */
477 show_idle = sel->idle;
478 show_self = sel->self;
479 show_system = sel->system;
480 show_threads = sel->threads || sel->only_threads;
481 show_only_threads = sel->only_threads;
482 show_uid = sel->uid != -1;
483 show_command = sel->command != NULL;
485 /* count up process states and get pointers to interesting procs */
486 total_procs = 0;
487 active_procs = 0;
488 memset((char *)process_states, 0, sizeof(process_states));
489 prefp = pref;
490 for (pp = pbase, i = 0; i < nproc; pp++, i++)
493 * Place pointers to each valid proc structure in pref[].
494 * Process slots that are actually in use have a non-zero
495 * status field. Processes with P_SYSTEM set are system
496 * processes---these get ignored unless show_sysprocs is set.
498 if ((show_threads && (LP(pp, pid) == -1)) ||
499 (!show_only_threads && (PP(pp, stat) != 0 &&
500 (show_self != PP(pp, pid)) &&
501 (show_system || ((PP(pp, flags) & P_SYSTEM) == 0)))))
503 total_procs++;
504 process_states[(unsigned char) PP(pp, stat)]++;
505 if ((show_threads && (LP(pp, pid) == -1)) ||
506 (!show_only_threads && PP(pp, stat) != SZOMB &&
507 (show_idle || (LP(pp, pctcpu) != 0) ||
508 (LP(pp, stat) == LSRUN)) &&
509 (!show_uid || PP(pp, ruid) == (uid_t)sel->uid)))
511 *prefp++ = pp;
512 active_procs++;
517 /* if requested, sort the "interesting" processes */
518 if (compare != NULL)
520 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
523 /* remember active and total counts */
524 si->p_total = total_procs;
525 si->p_active = pref_len = active_procs;
527 /* pass back a handle */
528 handle.next_proc = pref;
529 handle.remaining = active_procs;
530 return((caddr_t)&handle);
533 char fmt[128]; /* static area where result is built */
535 char *format_next_process(caddr_t handle, char *(*get_userid)())
537 struct kinfo_proc *pp;
538 long cputime;
539 double pct;
540 struct handle *hp;
541 char status[16];
542 char const *wrapper;
543 int state;
544 int nice;
546 /* find and remember the next proc structure */
547 hp = (struct handle *)handle;
548 pp = *(hp->next_proc++);
549 hp->remaining--;
551 /* set the wrapper for the process/thread name */
552 if ((PP(pp, flags) & P_SWAPPEDOUT))
553 wrapper = "[]"; /* swapped process [pname] */
554 else if (((PP(pp, flags) & P_SYSTEM) != 0) && (LP(pp, pid) > 0))
555 wrapper = "()"; /* system process (pname) */
556 else if (show_threads && (LP(pp, pid) == -1))
557 wrapper = "<>"; /* pure kernel threads <thread> */
558 else
559 wrapper = NULL;
561 /* get the process's command name */
562 if (wrapper != NULL) {
563 char *comm = PP(pp, comm);
564 #define COMSIZ sizeof(PP(pp, comm))
565 char buf[COMSIZ];
566 (void) strncpy(buf, comm, COMSIZ);
567 comm[0] = wrapper[0];
568 (void) strncpy(&comm[1], buf, COMSIZ - 2);
569 comm[COMSIZ - 2] = '\0';
570 (void) strncat(comm, &wrapper[1], COMSIZ - 1);
571 comm[COMSIZ - 1] = '\0';
575 * Convert the process's runtime from microseconds to seconds. This
576 * time includes the interrupt time although that is not wanted here.
577 * ps(1) is similarly sloppy.
579 cputime = (LP(pp, uticks) + LP(pp, sticks)) / 1000000;
581 /* calculate the base for cpu percentages */
582 pct = pctdouble(LP(pp, pctcpu));
584 /* generate "STATE" field */
585 switch (state = LP(pp, stat)) {
586 case LSRUN:
587 if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
588 sprintf(status, "CPU%d", LP(pp, cpuid));
589 else
590 strcpy(status, "RUN");
591 break;
592 case LSSLEEP:
593 if (LP(pp, wmesg) != NULL) {
594 sprintf(status, "%.6s", LP(pp, wmesg));
595 break;
597 /* fall through */
598 default:
600 if (state >= 0 &&
601 state < sizeof(state_abbrev) / sizeof(*state_abbrev))
602 sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
603 else
604 sprintf(status, "?%5d", state);
605 break;
608 if (PP(pp, stat) == SZOMB)
609 strcpy(status, "ZOMB");
612 * idle time 0 - 31 -> nice value +21 - +52
613 * normal time -> nice value -20 - +20
614 * real time 0 - 31 -> nice value -52 - -21
615 * thread 0 - 31 -> nice value -53 -
617 switch(LP(pp, rtprio.type)) {
618 case RTP_PRIO_REALTIME:
619 nice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
620 break;
621 case RTP_PRIO_IDLE:
622 nice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
623 break;
624 case RTP_PRIO_THREAD:
625 nice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
626 break;
627 default:
628 nice = PP(pp, nice);
629 break;
633 /* format this entry */
634 snprintf(fmt, sizeof(fmt),
635 smpmode ? smp_Proc_format : up_Proc_format,
636 PP(pp, pid),
637 namelength, namelength,
638 (*get_userid)(PP(pp, ruid)),
639 (show_threads && (LP(pp, pid) == -1)) ? LP(pp, tdprio) :
640 LP(pp, prio),
641 nice,
642 format_k2(PROCSIZE(pp)),
643 format_k2(pagetok(VP(pp, rssize))),
644 status,
645 smpmode ? LP(pp, cpuid) : 0,
646 format_time(cputime),
647 100.0 * weighted_cpu(pct, pp),
648 100.0 * pct,
649 cmdlength,
650 printable(PP(pp, comm)));
652 /* return the result */
653 return(fmt);
658 * check_nlist(nlst) - checks the nlist to see if any symbols were not
659 * found. For every symbol that was not found, a one-line
660 * message is printed to stderr. The routine returns the
661 * number of symbols NOT found.
664 static int check_nlist(register struct nlist *nlst)
666 register int i;
668 /* check to see if we got ALL the symbols we requested */
669 /* this will write one line to stderr for every symbol not found */
671 i = 0;
672 while (nlst->n_name != NULL)
674 if (nlst->n_type == 0)
676 /* this one wasn't found */
677 (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
678 nlst->n_name);
679 i = 1;
681 nlst++;
684 return(i);
687 /* comparison routines for qsort */
690 * proc_compare - comparison function for "qsort"
691 * Compares the resource consumption of two processes using five
692 * distinct keys. The keys (in descending order of importance) are:
693 * percent cpu, cpu ticks, state, resident set size, total virtual
694 * memory usage. The process states are ordered as follows (from least
695 * to most important): WAIT, zombie, sleep, stop, start, run. The
696 * array declaration below maps a process state index into a number
697 * that reflects this ordering.
700 static unsigned char sorted_state[] =
702 0, /* not used */
703 3, /* sleep */
704 1, /* ABANDONED (WAIT) */
705 6, /* run */
706 5, /* start */
707 2, /* zombie */
708 4 /* stop */
712 #define ORDERKEY_PCTCPU \
713 if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
714 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
716 #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks))
718 #define ORDERKEY_CPTICKS \
719 if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
720 CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
722 #define ORDERKEY_STATE \
723 if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
724 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
726 #define ORDERKEY_PRIO \
727 if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
729 #define ORDERKEY_KTHREADS \
730 if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
732 #define ORDERKEY_KTHREADS_PRIO \
733 if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
735 #define ORDERKEY_RSSIZE \
736 if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
738 #define ORDERKEY_MEM \
739 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
741 /* compare_cpu - the comparison function for sorting by cpu percentage */
744 #ifdef ORDER
745 compare_cpu(struct proc **pp1, struct proc **pp2)
746 #else
747 proc_compare(struct proc **pp1, struct proc **pp2)
748 #endif
750 register struct kinfo_proc *p1;
751 register struct kinfo_proc *p2;
752 register int result;
753 register pctcpu lresult;
755 /* remove one level of indirection */
756 p1 = *(struct kinfo_proc **) pp1;
757 p2 = *(struct kinfo_proc **) pp2;
759 ORDERKEY_PCTCPU
760 ORDERKEY_CPTICKS
761 ORDERKEY_STATE
762 ORDERKEY_PRIO
763 ORDERKEY_RSSIZE
764 ORDERKEY_MEM
767 return(result);
770 #ifdef ORDER
771 /* compare routines */
772 int compare_size(), compare_res(), compare_time(), compare_prio(), compare_thr();
774 int (*proc_compares[])() = {
775 compare_cpu,
776 compare_size,
777 compare_res,
778 compare_time,
779 compare_prio,
780 compare_thr,
781 NULL
784 /* compare_size - the comparison function for sorting by total memory usage */
787 compare_size(struct proc **pp1, struct proc **pp2)
789 register struct kinfo_proc *p1;
790 register struct kinfo_proc *p2;
791 register int result;
792 register pctcpu lresult;
794 /* remove one level of indirection */
795 p1 = *(struct kinfo_proc **) pp1;
796 p2 = *(struct kinfo_proc **) pp2;
798 ORDERKEY_MEM
799 ORDERKEY_RSSIZE
800 ORDERKEY_PCTCPU
801 ORDERKEY_CPTICKS
802 ORDERKEY_STATE
803 ORDERKEY_PRIO
806 return(result);
809 /* compare_res - the comparison function for sorting by resident set size */
812 compare_res(struct proc **pp1, struct proc **pp2)
814 register struct kinfo_proc *p1;
815 register struct kinfo_proc *p2;
816 register int result;
817 register pctcpu lresult;
819 /* remove one level of indirection */
820 p1 = *(struct kinfo_proc **) pp1;
821 p2 = *(struct kinfo_proc **) pp2;
823 ORDERKEY_RSSIZE
824 ORDERKEY_MEM
825 ORDERKEY_PCTCPU
826 ORDERKEY_CPTICKS
827 ORDERKEY_STATE
828 ORDERKEY_PRIO
831 return(result);
834 /* compare_time - the comparison function for sorting by total cpu time */
837 compare_time(struct proc **pp1, struct proc **pp2)
839 register struct kinfo_proc *p1;
840 register struct kinfo_proc *p2;
841 register int result;
842 register pctcpu lresult;
844 /* remove one level of indirection */
845 p1 = *(struct kinfo_proc **) pp1;
846 p2 = *(struct kinfo_proc **) pp2;
848 ORDERKEY_CPTICKS
849 ORDERKEY_PCTCPU
850 ORDERKEY_KTHREADS
851 ORDERKEY_KTHREADS_PRIO
852 ORDERKEY_STATE
853 ORDERKEY_PRIO
854 ORDERKEY_RSSIZE
855 ORDERKEY_MEM
858 return(result);
861 /* compare_prio - the comparison function for sorting by cpu percentage */
864 compare_prio(struct proc **pp1, struct proc **pp2)
866 register struct kinfo_proc *p1;
867 register struct kinfo_proc *p2;
868 register int result;
869 register pctcpu lresult;
871 /* remove one level of indirection */
872 p1 = *(struct kinfo_proc **) pp1;
873 p2 = *(struct kinfo_proc **) pp2;
875 ORDERKEY_KTHREADS
876 ORDERKEY_KTHREADS_PRIO
877 ORDERKEY_PRIO
878 ORDERKEY_CPTICKS
879 ORDERKEY_PCTCPU
880 ORDERKEY_STATE
881 ORDERKEY_RSSIZE
882 ORDERKEY_MEM
885 return(result);
889 compare_thr(struct proc **pp1, struct proc **pp2)
891 register struct kinfo_proc *p1;
892 register struct kinfo_proc *p2;
893 register int result;
894 register pctcpu lresult;
896 /* remove one level of indirection */
897 p1 = *(struct kinfo_proc **) pp1;
898 p2 = *(struct kinfo_proc **) pp2;
900 ORDERKEY_KTHREADS
901 ORDERKEY_KTHREADS_PRIO
902 ORDERKEY_CPTICKS
903 ORDERKEY_PCTCPU
904 ORDERKEY_STATE
905 ORDERKEY_RSSIZE
906 ORDERKEY_MEM
909 return(result);
913 #endif
916 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
917 * the process does not exist.
918 * It is EXTREMLY IMPORTANT that this function work correctly.
919 * If top runs setuid root (as in SVR4), then this function
920 * is the only thing that stands in the way of a serious
921 * security problem. It validates requests for the "kill"
922 * and "renice" commands.
925 int proc_owner(int pid)
927 register int cnt;
928 register struct kinfo_proc **prefp;
929 register struct kinfo_proc *pp;
931 prefp = pref;
932 cnt = pref_len;
933 while (--cnt >= 0)
935 pp = *prefp++;
936 if (PP(pp, pid) == (pid_t)pid)
938 return((int)PP(pp, ruid));
941 return(-1);
946 * swapmode is based on a program called swapinfo written
947 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
950 swapmode(int *retavail, int *retfree)
952 int n;
953 int pagesize = getpagesize();
954 struct kvm_swap swapary[1];
956 *retavail = 0;
957 *retfree = 0;
959 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
961 n = kvm_getswapinfo(kd, swapary, 1, 0);
962 if (n < 0 || swapary[0].ksw_total == 0)
963 return(0);
965 *retavail = CONVERT(swapary[0].ksw_total);
966 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
968 n = (int)((double)swapary[0].ksw_used * 100.0 /
969 (double)swapary[0].ksw_total);
970 return(n);