Move ipstat.ips_reassembled updating from ip_input() into ip_reass()
[dragonfly/netmp.git] / sys / netinet / ip_input.c
blob301b67896c7028c24c58db5bdfa7c6411016f7a5
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.88 2008/08/22 11:58:49 sephe Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
97 #include <machine/stdarg.h>
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/in_pcb.h>
112 #include <netinet/ip_var.h>
113 #include <netinet/ip_icmp.h>
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 #include <net/netmsg2.h>
119 #include <sys/socketvar.h>
121 #include <net/ipfw/ip_fw.h>
122 #include <net/dummynet/ip_dummynet.h>
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #endif
129 #ifdef FAST_IPSEC
130 #include <netproto/ipsec/ipsec.h>
131 #include <netproto/ipsec/key.h>
132 #endif
134 int rsvp_on = 0;
135 static int ip_rsvp_on;
136 struct socket *ip_rsvpd;
138 int ipforwarding = 0;
139 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
140 &ipforwarding, 0, "Enable IP forwarding between interfaces");
142 static int ipsendredirects = 1; /* XXX */
143 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
144 &ipsendredirects, 0, "Enable sending IP redirects");
146 int ip_defttl = IPDEFTTL;
147 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
148 &ip_defttl, 0, "Maximum TTL on IP packets");
150 static int ip_dosourceroute = 0;
151 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
152 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
154 static int ip_acceptsourceroute = 0;
155 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
156 CTLFLAG_RW, &ip_acceptsourceroute, 0,
157 "Enable accepting source routed IP packets");
159 static int ip_keepfaith = 0;
160 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
161 &ip_keepfaith, 0,
162 "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
164 static int nipq = 0; /* total # of reass queues */
165 static int maxnipq;
166 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
167 &maxnipq, 0,
168 "Maximum number of IPv4 fragment reassembly queue entries");
170 static int maxfragsperpacket;
171 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
172 &maxfragsperpacket, 0,
173 "Maximum number of IPv4 fragments allowed per packet");
175 static int ip_sendsourcequench = 0;
176 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
177 &ip_sendsourcequench, 0,
178 "Enable the transmission of source quench packets");
180 int ip_do_randomid = 1;
181 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
182 &ip_do_randomid, 0,
183 "Assign random ip_id values");
185 * XXX - Setting ip_checkinterface mostly implements the receive side of
186 * the Strong ES model described in RFC 1122, but since the routing table
187 * and transmit implementation do not implement the Strong ES model,
188 * setting this to 1 results in an odd hybrid.
190 * XXX - ip_checkinterface currently must be disabled if you use ipnat
191 * to translate the destination address to another local interface.
193 * XXX - ip_checkinterface must be disabled if you add IP aliases
194 * to the loopback interface instead of the interface where the
195 * packets for those addresses are received.
197 static int ip_checkinterface = 0;
198 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
199 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
201 #ifdef DIAGNOSTIC
202 static int ipprintfs = 0;
203 #endif
205 extern struct domain inetdomain;
206 extern struct protosw inetsw[];
207 u_char ip_protox[IPPROTO_MAX];
208 struct in_ifaddrhead in_ifaddrheads[MAXCPU]; /* first inet address */
209 struct in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
210 /* inet addr hash table */
211 u_long in_ifaddrhmask; /* mask for hash table */
213 struct ip_stats ipstats_percpu[MAXCPU];
214 #ifdef SMP
215 static int
216 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
218 int cpu, error = 0;
220 for (cpu = 0; cpu < ncpus; ++cpu) {
221 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
222 sizeof(struct ip_stats))))
223 break;
224 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
225 sizeof(struct ip_stats))))
226 break;
229 return (error);
231 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
232 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
233 #else
234 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
235 &ipstat, ip_stats, "IP statistics");
236 #endif
238 /* Packet reassembly stuff */
239 #define IPREASS_NHASH_LOG2 6
240 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
241 #define IPREASS_HMASK (IPREASS_NHASH - 1)
242 #define IPREASS_HASH(x,y) \
243 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
245 static struct ipq ipq[IPREASS_NHASH];
247 #ifdef IPCTL_DEFMTU
248 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
249 &ip_mtu, 0, "Default MTU");
250 #endif
252 #ifdef IPSTEALTH
253 static int ipstealth = 0;
254 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
255 #else
256 static const int ipstealth = 0;
257 #endif
260 /* Firewall hooks */
261 ip_fw_chk_t *ip_fw_chk_ptr;
262 ip_fw_dn_io_t *ip_fw_dn_io_ptr;
263 int ip_fw_loaded;
264 int fw_enable = 1;
265 int fw_one_pass = 1;
267 struct pfil_head inet_pfil_hook;
270 * XXX this is ugly -- the following two global variables are
271 * used to store packet state while it travels through the stack.
272 * Note that the code even makes assumptions on the size and
273 * alignment of fields inside struct ip_srcrt so e.g. adding some
274 * fields will break the code. This needs to be fixed.
276 * We need to save the IP options in case a protocol wants to respond
277 * to an incoming packet over the same route if the packet got here
278 * using IP source routing. This allows connection establishment and
279 * maintenance when the remote end is on a network that is not known
280 * to us.
282 static int ip_nhops = 0;
284 static struct ip_srcrt {
285 struct in_addr dst; /* final destination */
286 char nop; /* one NOP to align */
287 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
288 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
289 } ip_srcrt;
291 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
292 static struct malloc_pipe ipq_mpipe;
294 static void save_rte(u_char *, struct in_addr);
295 static int ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
296 static void ip_freef(struct ipq *);
297 static void ip_input_handler(struct netmsg *);
298 static struct mbuf *ip_reass(struct mbuf *, struct ipq *, struct ipq *,
299 u_int32_t *);
302 * IP initialization: fill in IP protocol switch table.
303 * All protocols not implemented in kernel go to raw IP protocol handler.
305 void
306 ip_init(void)
308 struct protosw *pr;
309 int i;
310 #ifdef SMP
311 int cpu;
312 #endif
315 * Make sure we can handle a reasonable number of fragments but
316 * cap it at 4000 (XXX).
318 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
319 IFQ_MAXLEN, 4000, 0, NULL);
320 for (i = 0; i < ncpus; ++i) {
321 TAILQ_INIT(&in_ifaddrheads[i]);
322 in_ifaddrhashtbls[i] =
323 hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
325 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
326 if (pr == NULL)
327 panic("ip_init");
328 for (i = 0; i < IPPROTO_MAX; i++)
329 ip_protox[i] = pr - inetsw;
330 for (pr = inetdomain.dom_protosw;
331 pr < inetdomain.dom_protoswNPROTOSW; pr++)
332 if (pr->pr_domain->dom_family == PF_INET &&
333 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
334 ip_protox[pr->pr_protocol] = pr - inetsw;
336 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
337 inet_pfil_hook.ph_af = AF_INET;
338 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
339 kprintf("%s: WARNING: unable to register pfil hook, "
340 "error %d\n", __func__, i);
343 for (i = 0; i < IPREASS_NHASH; i++)
344 ipq[i].next = ipq[i].prev = &ipq[i];
346 maxnipq = nmbclusters / 32;
347 maxfragsperpacket = 16;
349 ip_id = time_second & 0xffff;
352 * Initialize IP statistics counters for each CPU.
355 #ifdef SMP
356 for (cpu = 0; cpu < ncpus; ++cpu) {
357 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
359 #else
360 bzero(&ipstat, sizeof(struct ip_stats));
361 #endif
363 netisr_register(NETISR_IP, ip_mport_in, ip_input_handler);
367 * XXX watch out this one. It is perhaps used as a cache for
368 * the most recently used route ? it is cleared in in_addroute()
369 * when a new route is successfully created.
371 struct route ipforward_rt[MAXCPU];
373 /* Do transport protocol processing. */
374 static void
375 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
378 * Switch out to protocol's input routine.
380 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
383 static void
384 transport_processing_handler(netmsg_t netmsg)
386 struct netmsg_packet *pmsg = (struct netmsg_packet *)netmsg;
387 struct ip *ip;
388 int hlen;
390 ip = mtod(pmsg->nm_packet, struct ip *);
391 hlen = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
393 transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
394 /* netmsg was embedded in the mbuf, do not reply! */
397 static void
398 ip_input_handler(struct netmsg *msg0)
400 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
402 ip_input(m);
403 /* msg0 was embedded in the mbuf, do not reply! */
407 * IP input routine. Checksum and byte swap header. If fragmented
408 * try to reassemble. Process options. Pass to next level.
410 void
411 ip_input(struct mbuf *m)
413 struct ip *ip;
414 struct ipq *fp;
415 struct in_ifaddr *ia = NULL;
416 struct in_ifaddr_container *iac;
417 int i, hlen, checkif;
418 u_short sum;
419 struct in_addr pkt_dst;
420 u_int32_t divert_info = 0; /* packet divert/tee info */
421 struct ip_fw_args args;
422 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
423 boolean_t needredispatch = FALSE;
424 struct in_addr odst; /* original dst address(NAT) */
425 struct m_tag *mtag;
426 struct sockaddr_in *next_hop = NULL;
427 #ifdef FAST_IPSEC
428 struct tdb_ident *tdbi;
429 struct secpolicy *sp;
430 int error;
431 #endif
433 args.eh = NULL;
434 args.oif = NULL;
435 args.rule = NULL;
437 M_ASSERTPKTHDR(m);
439 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
440 /* Next hop */
441 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
442 KKASSERT(mtag != NULL);
443 next_hop = m_tag_data(mtag);
446 /* Extract info from dummynet tag */
447 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
448 if (mtag != NULL) {
449 args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
450 m_tag_delete(m, mtag);
453 if (args.rule != NULL) { /* dummynet already filtered us */
454 ip = mtod(m, struct ip *);
455 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
456 goto iphack;
459 ipstat.ips_total++;
461 /* length checks already done in ip_demux() */
462 KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
464 ip = mtod(m, struct ip *);
466 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
467 ipstat.ips_badvers++;
468 goto bad;
471 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
472 /* length checks already done in ip_demux() */
473 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
474 KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
476 /* 127/8 must not appear on wire - RFC1122 */
477 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
478 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
479 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
480 ipstat.ips_badaddr++;
481 goto bad;
485 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
486 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
487 } else {
488 if (hlen == sizeof(struct ip)) {
489 sum = in_cksum_hdr(ip);
490 } else {
491 sum = in_cksum(m, hlen);
494 if (sum != 0) {
495 ipstat.ips_badsum++;
496 goto bad;
499 #ifdef ALTQ
500 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
501 /* packet is dropped by traffic conditioner */
502 return;
504 #endif
506 * Convert fields to host representation.
508 ip->ip_len = ntohs(ip->ip_len);
509 if (ip->ip_len < hlen) {
510 ipstat.ips_badlen++;
511 goto bad;
513 ip->ip_off = ntohs(ip->ip_off);
516 * Check that the amount of data in the buffers
517 * is as at least much as the IP header would have us expect.
518 * Trim mbufs if longer than we expect.
519 * Drop packet if shorter than we expect.
521 if (m->m_pkthdr.len < ip->ip_len) {
522 ipstat.ips_tooshort++;
523 goto bad;
525 if (m->m_pkthdr.len > ip->ip_len) {
526 if (m->m_len == m->m_pkthdr.len) {
527 m->m_len = ip->ip_len;
528 m->m_pkthdr.len = ip->ip_len;
529 } else
530 m_adj(m, ip->ip_len - m->m_pkthdr.len);
532 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
534 * Bypass packet filtering for packets from a tunnel (gif).
536 if (ipsec_gethist(m, NULL))
537 goto pass;
538 #endif
541 * IpHack's section.
542 * Right now when no processing on packet has done
543 * and it is still fresh out of network we do our black
544 * deals with it.
545 * - Firewall: deny/allow/divert
546 * - Xlate: translate packet's addr/port (NAT).
547 * - Pipe: pass pkt through dummynet.
548 * - Wrap: fake packet's addr/port <unimpl.>
549 * - Encapsulate: put it in another IP and send out. <unimp.>
552 iphack:
555 * Run through list of hooks for input packets.
557 * NB: Beware of the destination address changing (e.g.
558 * by NAT rewriting). When this happens, tell
559 * ip_forward to do the right thing.
561 if (pfil_has_hooks(&inet_pfil_hook)) {
562 odst = ip->ip_dst;
563 if (pfil_run_hooks(&inet_pfil_hook, &m,
564 m->m_pkthdr.rcvif, PFIL_IN)) {
565 return;
567 if (m == NULL) /* consumed by filter */
568 return;
569 ip = mtod(m, struct ip *);
570 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
573 if (fw_enable && IPFW_LOADED) {
575 * If we've been forwarded from the output side, then
576 * skip the firewall a second time
578 if (next_hop != NULL)
579 goto ours;
581 args.m = m;
582 i = ip_fw_chk_ptr(&args);
583 m = args.m;
585 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
586 if (m != NULL)
587 m_freem(m);
588 return;
590 ip = mtod(m, struct ip *); /* just in case m changed */
592 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
593 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
594 KKASSERT(mtag != NULL);
595 next_hop = m_tag_data(mtag);
598 if (i == 0 && next_hop == NULL) /* common case */
599 goto pass;
600 if (i & IP_FW_PORT_DYNT_FLAG) {
601 /* Send packet to the appropriate pipe */
602 ip_fw_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
603 return;
605 #ifdef IPDIVERT
606 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
607 /* Divert or tee packet */
608 divert_info = i;
609 goto ours;
611 #endif
612 if (i == 0 && next_hop != NULL)
613 goto pass;
615 * if we get here, the packet must be dropped
617 m_freem(m);
618 return;
620 pass:
623 * Process options and, if not destined for us,
624 * ship it on. ip_dooptions returns 1 when an
625 * error was detected (causing an icmp message
626 * to be sent and the original packet to be freed).
628 ip_nhops = 0; /* for source routed packets */
629 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
630 return;
632 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
633 * matter if it is destined to another node, or whether it is
634 * a multicast one, RSVP wants it! and prevents it from being forwarded
635 * anywhere else. Also checks if the rsvp daemon is running before
636 * grabbing the packet.
638 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
639 goto ours;
642 * Check our list of addresses, to see if the packet is for us.
643 * If we don't have any addresses, assume any unicast packet
644 * we receive might be for us (and let the upper layers deal
645 * with it).
647 if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
648 !(m->m_flags & (M_MCAST | M_BCAST)))
649 goto ours;
652 * Cache the destination address of the packet; this may be
653 * changed by use of 'ipfw fwd'.
655 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
658 * Enable a consistency check between the destination address
659 * and the arrival interface for a unicast packet (the RFC 1122
660 * strong ES model) if IP forwarding is disabled and the packet
661 * is not locally generated and the packet is not subject to
662 * 'ipfw fwd'.
664 * XXX - Checking also should be disabled if the destination
665 * address is ipnat'ed to a different interface.
667 * XXX - Checking is incompatible with IP aliases added
668 * to the loopback interface instead of the interface where
669 * the packets are received.
671 checkif = ip_checkinterface &&
672 !ipforwarding &&
673 m->m_pkthdr.rcvif != NULL &&
674 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
675 next_hop == NULL;
678 * Check for exact addresses in the hash bucket.
680 LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
681 ia = iac->ia;
684 * If the address matches, verify that the packet
685 * arrived via the correct interface if checking is
686 * enabled.
688 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
689 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
690 goto ours;
692 ia = NULL;
695 * Check for broadcast addresses.
697 * Only accept broadcast packets that arrive via the matching
698 * interface. Reception of forwarded directed broadcasts would
699 * be handled via ip_forward() and ether_output() with the loopback
700 * into the stack for SIMPLEX interfaces handled by ether_output().
702 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
703 struct ifaddr_container *ifac;
705 TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
706 ifa_link) {
707 struct ifaddr *ifa = ifac->ifa;
709 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
710 continue;
711 if (ifa->ifa_addr->sa_family != AF_INET)
712 continue;
713 ia = ifatoia(ifa);
714 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
715 pkt_dst.s_addr)
716 goto ours;
717 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
718 goto ours;
719 #ifdef BOOTP_COMPAT
720 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
721 goto ours;
722 #endif
725 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
726 struct in_multi *inm;
728 if (ip_mrouter != NULL) {
730 * If we are acting as a multicast router, all
731 * incoming multicast packets are passed to the
732 * kernel-level multicast forwarding function.
733 * The packet is returned (relatively) intact; if
734 * ip_mforward() returns a non-zero value, the packet
735 * must be discarded, else it may be accepted below.
737 if (ip_mforward != NULL &&
738 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
739 ipstat.ips_cantforward++;
740 m_freem(m);
741 return;
745 * The process-level routing daemon needs to receive
746 * all multicast IGMP packets, whether or not this
747 * host belongs to their destination groups.
749 if (ip->ip_p == IPPROTO_IGMP)
750 goto ours;
751 ipstat.ips_forward++;
754 * See if we belong to the destination multicast group on the
755 * arrival interface.
757 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
758 if (inm == NULL) {
759 ipstat.ips_notmember++;
760 m_freem(m);
761 return;
763 goto ours;
765 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
766 goto ours;
767 if (ip->ip_dst.s_addr == INADDR_ANY)
768 goto ours;
771 * FAITH(Firewall Aided Internet Translator)
773 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
774 if (ip_keepfaith) {
775 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
776 goto ours;
778 m_freem(m);
779 return;
783 * Not for us; forward if possible and desirable.
785 if (!ipforwarding) {
786 ipstat.ips_cantforward++;
787 m_freem(m);
788 } else {
789 #ifdef IPSEC
791 * Enforce inbound IPsec SPD.
793 if (ipsec4_in_reject(m, NULL)) {
794 ipsecstat.in_polvio++;
795 goto bad;
797 #endif
798 #ifdef FAST_IPSEC
799 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
800 crit_enter();
801 if (mtag != NULL) {
802 tdbi = (struct tdb_ident *)m_tag_data(mtag);
803 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
804 } else {
805 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
806 IP_FORWARDING, &error);
808 if (sp == NULL) { /* NB: can happen if error */
809 crit_exit();
810 /*XXX error stat???*/
811 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
812 goto bad;
816 * Check security policy against packet attributes.
818 error = ipsec_in_reject(sp, m);
819 KEY_FREESP(&sp);
820 crit_exit();
821 if (error) {
822 ipstat.ips_cantforward++;
823 goto bad;
825 #endif
826 ip_forward(m, using_srcrt, next_hop);
828 return;
830 ours:
833 * IPSTEALTH: Process non-routing options only
834 * if the packet is destined for us.
836 if (ipstealth &&
837 hlen > sizeof(struct ip) &&
838 ip_dooptions(m, 1, next_hop))
839 return;
841 /* Count the packet in the ip address stats */
842 if (ia != NULL) {
843 ia->ia_ifa.if_ipackets++;
844 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
848 * If offset or IP_MF are set, must reassemble.
849 * Otherwise, nothing need be done.
850 * (We could look in the reassembly queue to see
851 * if the packet was previously fragmented,
852 * but it's not worth the time; just let them time out.)
854 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
856 /* If maxnipq is 0, never accept fragments. */
857 if (maxnipq == 0) {
858 ipstat.ips_fragments++;
859 ipstat.ips_fragdropped++;
860 goto bad;
863 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
865 * Look for queue of fragments
866 * of this datagram.
868 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
869 if (ip->ip_id == fp->ipq_id &&
870 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
871 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
872 ip->ip_p == fp->ipq_p)
873 goto found;
875 fp = NULL;
878 * Enforce upper bound on number of fragmented packets
879 * for which we attempt reassembly;
880 * If maxnipq is -1, accept all fragments without limitation.
882 if ((nipq > maxnipq) && (maxnipq > 0)) {
884 * drop something from the tail of the current queue
885 * before proceeding further
887 if (ipq[sum].prev == &ipq[sum]) { /* gak */
888 for (i = 0; i < IPREASS_NHASH; i++) {
889 if (ipq[i].prev != &ipq[i]) {
890 ipstat.ips_fragtimeout +=
891 ipq[i].prev->ipq_nfrags;
892 ip_freef(ipq[i].prev);
893 break;
896 } else {
897 ipstat.ips_fragtimeout +=
898 ipq[sum].prev->ipq_nfrags;
899 ip_freef(ipq[sum].prev);
902 found:
904 * Adjust ip_len to not reflect header,
905 * convert offset of this to bytes.
907 ip->ip_len -= hlen;
908 if (ip->ip_off & IP_MF) {
910 * Make sure that fragments have a data length
911 * that's a non-zero multiple of 8 bytes.
913 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
914 ipstat.ips_toosmall++; /* XXX */
915 goto bad;
917 m->m_flags |= M_FRAG;
918 } else
919 m->m_flags &= ~M_FRAG;
920 ip->ip_off <<= 3;
923 * Attempt reassembly; if it succeeds, proceed.
924 * ip_reass() will return a different mbuf, and update
925 * the divert info in divert_info.
927 ipstat.ips_fragments++;
928 m->m_pkthdr.header = ip;
929 m = ip_reass(m, fp, &ipq[sum], &divert_info);
930 if (m == NULL)
931 return;
933 needredispatch = TRUE;
934 ip = mtod(m, struct ip *);
935 /* Get the header length of the reassembled packet */
936 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
937 #ifdef IPDIVERT
938 /* Restore original checksum before diverting packet */
939 if (divert_info != 0) {
940 ip->ip_len += hlen;
941 ip->ip_len = htons(ip->ip_len);
942 ip->ip_off = htons(ip->ip_off);
943 ip->ip_sum = 0;
944 if (hlen == sizeof(struct ip))
945 ip->ip_sum = in_cksum_hdr(ip);
946 else
947 ip->ip_sum = in_cksum(m, hlen);
948 ip->ip_off = ntohs(ip->ip_off);
949 ip->ip_len = ntohs(ip->ip_len);
950 ip->ip_len -= hlen;
952 #endif
953 } else {
954 ip->ip_len -= hlen;
957 #ifdef IPDIVERT
959 * Divert or tee packet to the divert protocol if required.
961 if (divert_info != 0) {
962 struct mbuf *clone = NULL;
964 /* Clone packet if we're doing a 'tee' */
965 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
966 clone = m_dup(m, MB_DONTWAIT);
968 /* Restore packet header fields to original values */
969 ip->ip_len += hlen;
970 ip->ip_len = htons(ip->ip_len);
971 ip->ip_off = htons(ip->ip_off);
973 /* Deliver packet to divert input routine */
974 divert_packet(m, 1, divert_info & 0xffff);
975 ipstat.ips_delivered++;
977 /* If 'tee', continue with original packet */
978 if (clone == NULL)
979 return;
980 m = clone;
981 ip = mtod(m, struct ip *);
982 ip->ip_len += hlen;
984 * Jump backwards to complete processing of the
985 * packet. But first clear divert_info to avoid
986 * entering this block again.
987 * We do not need to clear args.divert_rule as
988 * it will not be used.
990 * XXX Better safe than sorry, remove the DIVERT tag.
992 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
993 if (mtag != NULL)
994 m_tag_delete(m, mtag);
996 divert_info = 0;
997 goto pass;
999 #endif
1001 #ifdef IPSEC
1003 * enforce IPsec policy checking if we are seeing last header.
1004 * note that we do not visit this with protocols with pcb layer
1005 * code - like udp/tcp/raw ip.
1007 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1008 ipsec4_in_reject(m, NULL)) {
1009 ipsecstat.in_polvio++;
1010 goto bad;
1012 #endif
1013 #if FAST_IPSEC
1015 * enforce IPsec policy checking if we are seeing last header.
1016 * note that we do not visit this with protocols with pcb layer
1017 * code - like udp/tcp/raw ip.
1019 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1021 * Check if the packet has already had IPsec processing
1022 * done. If so, then just pass it along. This tag gets
1023 * set during AH, ESP, etc. input handling, before the
1024 * packet is returned to the ip input queue for delivery.
1026 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1027 crit_enter();
1028 if (mtag != NULL) {
1029 tdbi = (struct tdb_ident *)m_tag_data(mtag);
1030 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1031 } else {
1032 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1033 IP_FORWARDING, &error);
1035 if (sp != NULL) {
1037 * Check security policy against packet attributes.
1039 error = ipsec_in_reject(sp, m);
1040 KEY_FREESP(&sp);
1041 } else {
1042 /* XXX error stat??? */
1043 error = EINVAL;
1044 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1045 goto bad;
1047 crit_exit();
1048 if (error)
1049 goto bad;
1051 #endif /* FAST_IPSEC */
1053 ipstat.ips_delivered++;
1054 if (needredispatch) {
1055 struct netmsg_packet *pmsg;
1056 lwkt_port_t port;
1058 ip->ip_off = htons(ip->ip_off);
1059 ip->ip_len = htons(ip->ip_len);
1060 port = ip_mport_in(&m);
1061 if (port == NULL)
1062 return;
1064 pmsg = &m->m_hdr.mh_netmsg;
1065 netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport, 0,
1066 transport_processing_handler);
1067 pmsg->nm_packet = m;
1068 pmsg->nm_netmsg.nm_lmsg.u.ms_result = hlen;
1070 ip = mtod(m, struct ip *);
1071 ip->ip_len = ntohs(ip->ip_len);
1072 ip->ip_off = ntohs(ip->ip_off);
1073 lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
1074 } else {
1075 transport_processing_oncpu(m, hlen, ip);
1077 return;
1079 bad:
1080 m_freem(m);
1084 * Take incoming datagram fragment and try to reassemble it into
1085 * whole datagram. If a chain for reassembly of this datagram already
1086 * exists, then it is given as fp; otherwise have to make a chain.
1088 * When IPDIVERT enabled, keep additional state with each packet that
1089 * tells us if we need to divert or tee the packet we're building.
1090 * In particular, *divinfo includes the port and TEE flag.
1093 static struct mbuf *
1094 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1095 u_int32_t *divinfo)
1097 struct ip *ip = mtod(m, struct ip *);
1098 struct mbuf *p = NULL, *q, *nq;
1099 struct mbuf *n;
1100 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1101 int i, next;
1102 #ifdef IPDIVERT
1103 struct m_tag *mtag;
1104 #endif
1107 * If the hardware has not done csum over this fragment
1108 * then csum_data is not valid at all.
1110 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1111 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1112 m->m_pkthdr.csum_data = 0;
1113 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1117 * Presence of header sizes in mbufs
1118 * would confuse code below.
1120 m->m_data += hlen;
1121 m->m_len -= hlen;
1124 * If first fragment to arrive, create a reassembly queue.
1126 if (fp == NULL) {
1127 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1128 goto dropfrag;
1129 insque(fp, where);
1130 nipq++;
1131 fp->ipq_nfrags = 1;
1132 fp->ipq_ttl = IPFRAGTTL;
1133 fp->ipq_p = ip->ip_p;
1134 fp->ipq_id = ip->ip_id;
1135 fp->ipq_src = ip->ip_src;
1136 fp->ipq_dst = ip->ip_dst;
1137 fp->ipq_frags = m;
1138 m->m_nextpkt = NULL;
1139 #ifdef IPDIVERT
1140 fp->ipq_div_info = 0;
1141 #endif
1142 goto inserted;
1143 } else {
1144 fp->ipq_nfrags++;
1147 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1150 * Find a segment which begins after this one does.
1152 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1153 if (GETIP(q)->ip_off > ip->ip_off)
1154 break;
1157 * If there is a preceding segment, it may provide some of
1158 * our data already. If so, drop the data from the incoming
1159 * segment. If it provides all of our data, drop us, otherwise
1160 * stick new segment in the proper place.
1162 * If some of the data is dropped from the the preceding
1163 * segment, then it's checksum is invalidated.
1165 if (p) {
1166 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1167 if (i > 0) {
1168 if (i >= ip->ip_len)
1169 goto dropfrag;
1170 m_adj(m, i);
1171 m->m_pkthdr.csum_flags = 0;
1172 ip->ip_off += i;
1173 ip->ip_len -= i;
1175 m->m_nextpkt = p->m_nextpkt;
1176 p->m_nextpkt = m;
1177 } else {
1178 m->m_nextpkt = fp->ipq_frags;
1179 fp->ipq_frags = m;
1183 * While we overlap succeeding segments trim them or,
1184 * if they are completely covered, dequeue them.
1186 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1187 q = nq) {
1188 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1189 if (i < GETIP(q)->ip_len) {
1190 GETIP(q)->ip_len -= i;
1191 GETIP(q)->ip_off += i;
1192 m_adj(q, i);
1193 q->m_pkthdr.csum_flags = 0;
1194 break;
1196 nq = q->m_nextpkt;
1197 m->m_nextpkt = nq;
1198 ipstat.ips_fragdropped++;
1199 fp->ipq_nfrags--;
1200 q->m_nextpkt = NULL;
1201 m_freem(q);
1204 inserted:
1206 #ifdef IPDIVERT
1208 * Transfer firewall instructions to the fragment structure.
1209 * Only trust info in the fragment at offset 0.
1211 if (ip->ip_off == 0) {
1212 fp->ipq_div_info = *divinfo;
1213 } else {
1214 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1215 if (mtag != NULL)
1216 m_tag_delete(m, mtag);
1218 *divinfo = 0;
1219 #endif
1222 * Check for complete reassembly and perform frag per packet
1223 * limiting.
1225 * Frag limiting is performed here so that the nth frag has
1226 * a chance to complete the packet before we drop the packet.
1227 * As a result, n+1 frags are actually allowed per packet, but
1228 * only n will ever be stored. (n = maxfragsperpacket.)
1231 next = 0;
1232 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1233 if (GETIP(q)->ip_off != next) {
1234 if (fp->ipq_nfrags > maxfragsperpacket) {
1235 ipstat.ips_fragdropped += fp->ipq_nfrags;
1236 ip_freef(fp);
1238 return (NULL);
1240 next += GETIP(q)->ip_len;
1242 /* Make sure the last packet didn't have the IP_MF flag */
1243 if (p->m_flags & M_FRAG) {
1244 if (fp->ipq_nfrags > maxfragsperpacket) {
1245 ipstat.ips_fragdropped += fp->ipq_nfrags;
1246 ip_freef(fp);
1248 return (NULL);
1252 * Reassembly is complete. Make sure the packet is a sane size.
1254 q = fp->ipq_frags;
1255 ip = GETIP(q);
1256 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1257 ipstat.ips_toolong++;
1258 ipstat.ips_fragdropped += fp->ipq_nfrags;
1259 ip_freef(fp);
1260 return (NULL);
1264 * Concatenate fragments.
1266 m = q;
1267 n = m->m_next;
1268 m->m_next = NULL;
1269 m_cat(m, n);
1270 nq = q->m_nextpkt;
1271 q->m_nextpkt = NULL;
1272 for (q = nq; q != NULL; q = nq) {
1273 nq = q->m_nextpkt;
1274 q->m_nextpkt = NULL;
1275 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1276 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1277 m_cat(m, q);
1281 * Clean up the 1's complement checksum. Carry over 16 bits must
1282 * be added back. This assumes no more then 65535 packet fragments
1283 * were reassembled. A second carry can also occur (but not a third).
1285 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1286 (m->m_pkthdr.csum_data >> 16);
1287 if (m->m_pkthdr.csum_data > 0xFFFF)
1288 m->m_pkthdr.csum_data -= 0xFFFF;
1291 #ifdef IPDIVERT
1293 * Extract firewall instructions from the fragment structure.
1295 *divinfo = fp->ipq_div_info;
1296 #endif
1299 * Create header for new ip packet by
1300 * modifying header of first packet;
1301 * dequeue and discard fragment reassembly header.
1302 * Make header visible.
1304 ip->ip_len = next;
1305 ip->ip_src = fp->ipq_src;
1306 ip->ip_dst = fp->ipq_dst;
1307 remque(fp);
1308 nipq--;
1309 mpipe_free(&ipq_mpipe, fp);
1310 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1311 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1312 /* some debugging cruft by sklower, below, will go away soon */
1313 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1314 int plen = 0;
1316 for (n = m; n; n = n->m_next)
1317 plen += n->m_len;
1318 m->m_pkthdr.len = plen;
1321 ipstat.ips_reassembled++;
1322 return (m);
1324 dropfrag:
1325 #ifdef IPDIVERT
1326 *divinfo = 0;
1327 #endif
1328 ipstat.ips_fragdropped++;
1329 if (fp != NULL)
1330 fp->ipq_nfrags--;
1331 m_freem(m);
1332 return (NULL);
1334 #undef GETIP
1338 * Free a fragment reassembly header and all
1339 * associated datagrams.
1341 static void
1342 ip_freef(struct ipq *fp)
1344 struct mbuf *q;
1346 while (fp->ipq_frags) {
1347 q = fp->ipq_frags;
1348 fp->ipq_frags = q->m_nextpkt;
1349 q->m_nextpkt = NULL;
1350 m_freem(q);
1352 remque(fp);
1353 mpipe_free(&ipq_mpipe, fp);
1354 nipq--;
1358 * IP timer processing;
1359 * if a timer expires on a reassembly
1360 * queue, discard it.
1362 void
1363 ip_slowtimo(void)
1365 struct ipq *fp;
1366 int i;
1368 crit_enter();
1369 for (i = 0; i < IPREASS_NHASH; i++) {
1370 fp = ipq[i].next;
1371 if (fp == NULL)
1372 continue;
1373 while (fp != &ipq[i]) {
1374 --fp->ipq_ttl;
1375 fp = fp->next;
1376 if (fp->prev->ipq_ttl == 0) {
1377 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1378 ip_freef(fp->prev);
1383 * If we are over the maximum number of fragments
1384 * (due to the limit being lowered), drain off
1385 * enough to get down to the new limit.
1387 if (maxnipq >= 0 && nipq > maxnipq) {
1388 for (i = 0; i < IPREASS_NHASH; i++) {
1389 while (nipq > maxnipq &&
1390 (ipq[i].next != &ipq[i])) {
1391 ipstat.ips_fragdropped +=
1392 ipq[i].next->ipq_nfrags;
1393 ip_freef(ipq[i].next);
1397 ipflow_slowtimo();
1398 crit_exit();
1402 * Drain off all datagram fragments.
1404 void
1405 ip_drain(void)
1407 int i;
1409 for (i = 0; i < IPREASS_NHASH; i++) {
1410 while (ipq[i].next != &ipq[i]) {
1411 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1412 ip_freef(ipq[i].next);
1415 in_rtqdrain();
1419 * Do option processing on a datagram,
1420 * possibly discarding it if bad options are encountered,
1421 * or forwarding it if source-routed.
1422 * The pass argument is used when operating in the IPSTEALTH
1423 * mode to tell what options to process:
1424 * [LS]SRR (pass 0) or the others (pass 1).
1425 * The reason for as many as two passes is that when doing IPSTEALTH,
1426 * non-routing options should be processed only if the packet is for us.
1427 * Returns 1 if packet has been forwarded/freed,
1428 * 0 if the packet should be processed further.
1430 static int
1431 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1433 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1434 struct ip *ip = mtod(m, struct ip *);
1435 u_char *cp;
1436 struct in_ifaddr *ia;
1437 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1438 boolean_t forward = FALSE;
1439 struct in_addr *sin, dst;
1440 n_time ntime;
1442 dst = ip->ip_dst;
1443 cp = (u_char *)(ip + 1);
1444 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1445 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1446 opt = cp[IPOPT_OPTVAL];
1447 if (opt == IPOPT_EOL)
1448 break;
1449 if (opt == IPOPT_NOP)
1450 optlen = 1;
1451 else {
1452 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1453 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1454 goto bad;
1456 optlen = cp[IPOPT_OLEN];
1457 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1458 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1459 goto bad;
1462 switch (opt) {
1464 default:
1465 break;
1468 * Source routing with record.
1469 * Find interface with current destination address.
1470 * If none on this machine then drop if strictly routed,
1471 * or do nothing if loosely routed.
1472 * Record interface address and bring up next address
1473 * component. If strictly routed make sure next
1474 * address is on directly accessible net.
1476 case IPOPT_LSRR:
1477 case IPOPT_SSRR:
1478 if (ipstealth && pass > 0)
1479 break;
1480 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1481 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1482 goto bad;
1484 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1485 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1486 goto bad;
1488 ipaddr.sin_addr = ip->ip_dst;
1489 ia = (struct in_ifaddr *)
1490 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1491 if (ia == NULL) {
1492 if (opt == IPOPT_SSRR) {
1493 type = ICMP_UNREACH;
1494 code = ICMP_UNREACH_SRCFAIL;
1495 goto bad;
1497 if (!ip_dosourceroute)
1498 goto nosourcerouting;
1500 * Loose routing, and not at next destination
1501 * yet; nothing to do except forward.
1503 break;
1505 off--; /* 0 origin */
1506 if (off > optlen - (int)sizeof(struct in_addr)) {
1508 * End of source route. Should be for us.
1510 if (!ip_acceptsourceroute)
1511 goto nosourcerouting;
1512 save_rte(cp, ip->ip_src);
1513 break;
1515 if (ipstealth)
1516 goto dropit;
1517 if (!ip_dosourceroute) {
1518 if (ipforwarding) {
1519 char buf[sizeof "aaa.bbb.ccc.ddd"];
1522 * Acting as a router, so generate ICMP
1524 nosourcerouting:
1525 strcpy(buf, inet_ntoa(ip->ip_dst));
1526 log(LOG_WARNING,
1527 "attempted source route from %s to %s\n",
1528 inet_ntoa(ip->ip_src), buf);
1529 type = ICMP_UNREACH;
1530 code = ICMP_UNREACH_SRCFAIL;
1531 goto bad;
1532 } else {
1534 * Not acting as a router,
1535 * so silently drop.
1537 dropit:
1538 ipstat.ips_cantforward++;
1539 m_freem(m);
1540 return (1);
1545 * locate outgoing interface
1547 memcpy(&ipaddr.sin_addr, cp + off,
1548 sizeof ipaddr.sin_addr);
1550 if (opt == IPOPT_SSRR) {
1551 #define INA struct in_ifaddr *
1552 #define SA struct sockaddr *
1553 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1554 == NULL)
1555 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1556 } else
1557 ia = ip_rtaddr(ipaddr.sin_addr,
1558 &ipforward_rt[mycpuid]);
1559 if (ia == NULL) {
1560 type = ICMP_UNREACH;
1561 code = ICMP_UNREACH_SRCFAIL;
1562 goto bad;
1564 ip->ip_dst = ipaddr.sin_addr;
1565 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1566 sizeof(struct in_addr));
1567 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1569 * Let ip_intr's mcast routing check handle mcast pkts
1571 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1572 break;
1574 case IPOPT_RR:
1575 if (ipstealth && pass == 0)
1576 break;
1577 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1578 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1579 goto bad;
1581 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1582 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1583 goto bad;
1586 * If no space remains, ignore.
1588 off--; /* 0 origin */
1589 if (off > optlen - (int)sizeof(struct in_addr))
1590 break;
1591 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1592 sizeof ipaddr.sin_addr);
1594 * locate outgoing interface; if we're the destination,
1595 * use the incoming interface (should be same).
1597 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1598 (ia = ip_rtaddr(ipaddr.sin_addr,
1599 &ipforward_rt[mycpuid]))
1600 == NULL) {
1601 type = ICMP_UNREACH;
1602 code = ICMP_UNREACH_HOST;
1603 goto bad;
1605 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1606 sizeof(struct in_addr));
1607 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1608 break;
1610 case IPOPT_TS:
1611 if (ipstealth && pass == 0)
1612 break;
1613 code = cp - (u_char *)ip;
1614 if (optlen < 4 || optlen > 40) {
1615 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1616 goto bad;
1618 if ((off = cp[IPOPT_OFFSET]) < 5) {
1619 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1620 goto bad;
1622 if (off > optlen - (int)sizeof(int32_t)) {
1623 cp[IPOPT_OFFSET + 1] += (1 << 4);
1624 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1625 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1626 goto bad;
1628 break;
1630 off--; /* 0 origin */
1631 sin = (struct in_addr *)(cp + off);
1632 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1634 case IPOPT_TS_TSONLY:
1635 break;
1637 case IPOPT_TS_TSANDADDR:
1638 if (off + sizeof(n_time) +
1639 sizeof(struct in_addr) > optlen) {
1640 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1641 goto bad;
1643 ipaddr.sin_addr = dst;
1644 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1645 m->m_pkthdr.rcvif);
1646 if (ia == NULL)
1647 continue;
1648 memcpy(sin, &IA_SIN(ia)->sin_addr,
1649 sizeof(struct in_addr));
1650 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1651 off += sizeof(struct in_addr);
1652 break;
1654 case IPOPT_TS_PRESPEC:
1655 if (off + sizeof(n_time) +
1656 sizeof(struct in_addr) > optlen) {
1657 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1658 goto bad;
1660 memcpy(&ipaddr.sin_addr, sin,
1661 sizeof(struct in_addr));
1662 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1663 continue;
1664 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1665 off += sizeof(struct in_addr);
1666 break;
1668 default:
1669 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1670 goto bad;
1672 ntime = iptime();
1673 memcpy(cp + off, &ntime, sizeof(n_time));
1674 cp[IPOPT_OFFSET] += sizeof(n_time);
1677 if (forward && ipforwarding) {
1678 ip_forward(m, TRUE, next_hop);
1679 return (1);
1681 return (0);
1682 bad:
1683 icmp_error(m, type, code, 0, 0);
1684 ipstat.ips_badoptions++;
1685 return (1);
1689 * Given address of next destination (final or next hop),
1690 * return internet address info of interface to be used to get there.
1692 struct in_ifaddr *
1693 ip_rtaddr(struct in_addr dst, struct route *ro)
1695 struct sockaddr_in *sin;
1697 sin = (struct sockaddr_in *)&ro->ro_dst;
1699 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1700 if (ro->ro_rt != NULL) {
1701 RTFREE(ro->ro_rt);
1702 ro->ro_rt = NULL;
1704 sin->sin_family = AF_INET;
1705 sin->sin_len = sizeof *sin;
1706 sin->sin_addr = dst;
1707 rtalloc_ign(ro, RTF_PRCLONING);
1710 if (ro->ro_rt == NULL)
1711 return (NULL);
1713 return (ifatoia(ro->ro_rt->rt_ifa));
1717 * Save incoming source route for use in replies,
1718 * to be picked up later by ip_srcroute if the receiver is interested.
1720 void
1721 save_rte(u_char *option, struct in_addr dst)
1723 unsigned olen;
1725 olen = option[IPOPT_OLEN];
1726 #ifdef DIAGNOSTIC
1727 if (ipprintfs)
1728 kprintf("save_rte: olen %d\n", olen);
1729 #endif
1730 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1731 return;
1732 bcopy(option, ip_srcrt.srcopt, olen);
1733 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1734 ip_srcrt.dst = dst;
1738 * Retrieve incoming source route for use in replies,
1739 * in the same form used by setsockopt.
1740 * The first hop is placed before the options, will be removed later.
1742 struct mbuf *
1743 ip_srcroute(void)
1745 struct in_addr *p, *q;
1746 struct mbuf *m;
1748 if (ip_nhops == 0)
1749 return (NULL);
1750 m = m_get(MB_DONTWAIT, MT_HEADER);
1751 if (m == NULL)
1752 return (NULL);
1754 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1756 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1757 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1758 OPTSIZ;
1759 #ifdef DIAGNOSTIC
1760 if (ipprintfs)
1761 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1762 #endif
1765 * First save first hop for return route
1767 p = &ip_srcrt.route[ip_nhops - 1];
1768 *(mtod(m, struct in_addr *)) = *p--;
1769 #ifdef DIAGNOSTIC
1770 if (ipprintfs)
1771 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1772 #endif
1775 * Copy option fields and padding (nop) to mbuf.
1777 ip_srcrt.nop = IPOPT_NOP;
1778 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1779 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1780 OPTSIZ);
1781 q = (struct in_addr *)(mtod(m, caddr_t) +
1782 sizeof(struct in_addr) + OPTSIZ);
1783 #undef OPTSIZ
1785 * Record return path as an IP source route,
1786 * reversing the path (pointers are now aligned).
1788 while (p >= ip_srcrt.route) {
1789 #ifdef DIAGNOSTIC
1790 if (ipprintfs)
1791 kprintf(" %x", ntohl(q->s_addr));
1792 #endif
1793 *q++ = *p--;
1796 * Last hop goes to final destination.
1798 *q = ip_srcrt.dst;
1799 #ifdef DIAGNOSTIC
1800 if (ipprintfs)
1801 kprintf(" %x\n", ntohl(q->s_addr));
1802 #endif
1803 return (m);
1807 * Strip out IP options.
1809 void
1810 ip_stripoptions(struct mbuf *m)
1812 int datalen;
1813 struct ip *ip = mtod(m, struct ip *);
1814 caddr_t opts;
1815 int optlen;
1817 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1818 opts = (caddr_t)(ip + 1);
1819 datalen = m->m_len - (sizeof(struct ip) + optlen);
1820 bcopy(opts + optlen, opts, datalen);
1821 m->m_len -= optlen;
1822 if (m->m_flags & M_PKTHDR)
1823 m->m_pkthdr.len -= optlen;
1824 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1827 u_char inetctlerrmap[PRC_NCMDS] = {
1828 0, 0, 0, 0,
1829 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1830 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1831 EMSGSIZE, EHOSTUNREACH, 0, 0,
1832 0, 0, 0, 0,
1833 ENOPROTOOPT, ECONNREFUSED
1837 * Forward a packet. If some error occurs return the sender
1838 * an icmp packet. Note we can't always generate a meaningful
1839 * icmp message because icmp doesn't have a large enough repertoire
1840 * of codes and types.
1842 * If not forwarding, just drop the packet. This could be confusing
1843 * if ipforwarding was zero but some routing protocol was advancing
1844 * us as a gateway to somewhere. However, we must let the routing
1845 * protocol deal with that.
1847 * The using_srcrt parameter indicates whether the packet is being forwarded
1848 * via a source route.
1850 void
1851 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1853 struct ip *ip = mtod(m, struct ip *);
1854 struct sockaddr_in *ipforward_rtaddr;
1855 struct rtentry *rt;
1856 int error, type = 0, code = 0, destmtu = 0;
1857 struct mbuf *mcopy;
1858 n_long dest;
1859 struct in_addr pkt_dst;
1860 struct route *cache_rt = &ipforward_rt[mycpuid];
1862 dest = INADDR_ANY;
1864 * Cache the destination address of the packet; this may be
1865 * changed by use of 'ipfw fwd'.
1867 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1869 #ifdef DIAGNOSTIC
1870 if (ipprintfs)
1871 kprintf("forward: src %x dst %x ttl %x\n",
1872 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1873 #endif
1875 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1876 ipstat.ips_cantforward++;
1877 m_freem(m);
1878 return;
1880 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1881 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1882 return;
1885 ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1886 if (cache_rt->ro_rt == NULL ||
1887 ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1888 if (cache_rt->ro_rt != NULL) {
1889 RTFREE(cache_rt->ro_rt);
1890 cache_rt->ro_rt = NULL;
1892 ipforward_rtaddr->sin_family = AF_INET;
1893 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1894 ipforward_rtaddr->sin_addr = pkt_dst;
1895 rtalloc_ign(cache_rt, RTF_PRCLONING);
1896 if (cache_rt->ro_rt == NULL) {
1897 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1898 return;
1901 rt = cache_rt->ro_rt;
1904 * Save the IP header and at most 8 bytes of the payload,
1905 * in case we need to generate an ICMP message to the src.
1907 * XXX this can be optimized a lot by saving the data in a local
1908 * buffer on the stack (72 bytes at most), and only allocating the
1909 * mbuf if really necessary. The vast majority of the packets
1910 * are forwarded without having to send an ICMP back (either
1911 * because unnecessary, or because rate limited), so we are
1912 * really we are wasting a lot of work here.
1914 * We don't use m_copy() because it might return a reference
1915 * to a shared cluster. Both this function and ip_output()
1916 * assume exclusive access to the IP header in `m', so any
1917 * data in a cluster may change before we reach icmp_error().
1919 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1920 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1922 * It's probably ok if the pkthdr dup fails (because
1923 * the deep copy of the tag chain failed), but for now
1924 * be conservative and just discard the copy since
1925 * code below may some day want the tags.
1927 m_free(mcopy);
1928 mcopy = NULL;
1930 if (mcopy != NULL) {
1931 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1932 (int)ip->ip_len);
1933 mcopy->m_pkthdr.len = mcopy->m_len;
1934 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1937 if (!ipstealth)
1938 ip->ip_ttl -= IPTTLDEC;
1941 * If forwarding packet using same interface that it came in on,
1942 * perhaps should send a redirect to sender to shortcut a hop.
1943 * Only send redirect if source is sending directly to us,
1944 * and if packet was not source routed (or has any options).
1945 * Also, don't send redirect if forwarding using a default route
1946 * or a route modified by a redirect.
1948 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1949 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1950 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1951 ipsendredirects && !using_srcrt && next_hop == NULL) {
1952 u_long src = ntohl(ip->ip_src.s_addr);
1953 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1955 if (rt_ifa != NULL &&
1956 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1957 if (rt->rt_flags & RTF_GATEWAY)
1958 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1959 else
1960 dest = pkt_dst.s_addr;
1962 * Router requirements says to only send
1963 * host redirects.
1965 type = ICMP_REDIRECT;
1966 code = ICMP_REDIRECT_HOST;
1967 #ifdef DIAGNOSTIC
1968 if (ipprintfs)
1969 kprintf("redirect (%d) to %x\n", code, dest);
1970 #endif
1974 error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL, NULL);
1975 if (error == 0) {
1976 ipstat.ips_forward++;
1977 if (type == 0) {
1978 if (mcopy) {
1979 ipflow_create(cache_rt, mcopy);
1980 m_freem(mcopy);
1982 return; /* most common case */
1983 } else {
1984 ipstat.ips_redirectsent++;
1986 } else {
1987 ipstat.ips_cantforward++;
1990 if (mcopy == NULL)
1991 return;
1994 * Send ICMP message.
1997 switch (error) {
1999 case 0: /* forwarded, but need redirect */
2000 /* type, code set above */
2001 break;
2003 case ENETUNREACH: /* shouldn't happen, checked above */
2004 case EHOSTUNREACH:
2005 case ENETDOWN:
2006 case EHOSTDOWN:
2007 default:
2008 type = ICMP_UNREACH;
2009 code = ICMP_UNREACH_HOST;
2010 break;
2012 case EMSGSIZE:
2013 type = ICMP_UNREACH;
2014 code = ICMP_UNREACH_NEEDFRAG;
2015 #ifdef IPSEC
2017 * If the packet is routed over IPsec tunnel, tell the
2018 * originator the tunnel MTU.
2019 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2020 * XXX quickhack!!!
2022 if (cache_rt->ro_rt != NULL) {
2023 struct secpolicy *sp = NULL;
2024 int ipsecerror;
2025 int ipsechdr;
2026 struct route *ro;
2028 sp = ipsec4_getpolicybyaddr(mcopy,
2029 IPSEC_DIR_OUTBOUND,
2030 IP_FORWARDING,
2031 &ipsecerror);
2033 if (sp == NULL)
2034 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2035 else {
2036 /* count IPsec header size */
2037 ipsechdr = ipsec4_hdrsiz(mcopy,
2038 IPSEC_DIR_OUTBOUND,
2039 NULL);
2042 * find the correct route for outer IPv4
2043 * header, compute tunnel MTU.
2046 if (sp->req != NULL && sp->req->sav != NULL &&
2047 sp->req->sav->sah != NULL) {
2048 ro = &sp->req->sav->sah->sa_route;
2049 if (ro->ro_rt != NULL &&
2050 ro->ro_rt->rt_ifp != NULL) {
2051 destmtu =
2052 ro->ro_rt->rt_ifp->if_mtu;
2053 destmtu -= ipsechdr;
2057 key_freesp(sp);
2060 #elif FAST_IPSEC
2062 * If the packet is routed over IPsec tunnel, tell the
2063 * originator the tunnel MTU.
2064 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2065 * XXX quickhack!!!
2067 if (cache_rt->ro_rt != NULL) {
2068 struct secpolicy *sp = NULL;
2069 int ipsecerror;
2070 int ipsechdr;
2071 struct route *ro;
2073 sp = ipsec_getpolicybyaddr(mcopy,
2074 IPSEC_DIR_OUTBOUND,
2075 IP_FORWARDING,
2076 &ipsecerror);
2078 if (sp == NULL)
2079 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2080 else {
2081 /* count IPsec header size */
2082 ipsechdr = ipsec4_hdrsiz(mcopy,
2083 IPSEC_DIR_OUTBOUND,
2084 NULL);
2087 * find the correct route for outer IPv4
2088 * header, compute tunnel MTU.
2091 if (sp->req != NULL &&
2092 sp->req->sav != NULL &&
2093 sp->req->sav->sah != NULL) {
2094 ro = &sp->req->sav->sah->sa_route;
2095 if (ro->ro_rt != NULL &&
2096 ro->ro_rt->rt_ifp != NULL) {
2097 destmtu =
2098 ro->ro_rt->rt_ifp->if_mtu;
2099 destmtu -= ipsechdr;
2103 KEY_FREESP(&sp);
2106 #else /* !IPSEC && !FAST_IPSEC */
2107 if (cache_rt->ro_rt != NULL)
2108 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2109 #endif /*IPSEC*/
2110 ipstat.ips_cantfrag++;
2111 break;
2113 case ENOBUFS:
2115 * A router should not generate ICMP_SOURCEQUENCH as
2116 * required in RFC1812 Requirements for IP Version 4 Routers.
2117 * Source quench could be a big problem under DoS attacks,
2118 * or if the underlying interface is rate-limited.
2119 * Those who need source quench packets may re-enable them
2120 * via the net.inet.ip.sendsourcequench sysctl.
2122 if (!ip_sendsourcequench) {
2123 m_freem(mcopy);
2124 return;
2125 } else {
2126 type = ICMP_SOURCEQUENCH;
2127 code = 0;
2129 break;
2131 case EACCES: /* ipfw denied packet */
2132 m_freem(mcopy);
2133 return;
2135 icmp_error(mcopy, type, code, dest, destmtu);
2138 void
2139 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2140 struct mbuf *m)
2142 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2143 struct timeval tv;
2145 microtime(&tv);
2146 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2147 SCM_TIMESTAMP, SOL_SOCKET);
2148 if (*mp)
2149 mp = &(*mp)->m_next;
2151 if (inp->inp_flags & INP_RECVDSTADDR) {
2152 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2153 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2154 if (*mp)
2155 mp = &(*mp)->m_next;
2157 if (inp->inp_flags & INP_RECVTTL) {
2158 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2159 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2160 if (*mp)
2161 mp = &(*mp)->m_next;
2163 #ifdef notyet
2164 /* XXX
2165 * Moving these out of udp_input() made them even more broken
2166 * than they already were.
2168 /* options were tossed already */
2169 if (inp->inp_flags & INP_RECVOPTS) {
2170 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2171 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2172 if (*mp)
2173 mp = &(*mp)->m_next;
2175 /* ip_srcroute doesn't do what we want here, need to fix */
2176 if (inp->inp_flags & INP_RECVRETOPTS) {
2177 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2178 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2179 if (*mp)
2180 mp = &(*mp)->m_next;
2182 #endif
2183 if (inp->inp_flags & INP_RECVIF) {
2184 struct ifnet *ifp;
2185 struct sdlbuf {
2186 struct sockaddr_dl sdl;
2187 u_char pad[32];
2188 } sdlbuf;
2189 struct sockaddr_dl *sdp;
2190 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2192 if (((ifp = m->m_pkthdr.rcvif)) &&
2193 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2194 sdp = IF_LLSOCKADDR(ifp);
2196 * Change our mind and don't try copy.
2198 if ((sdp->sdl_family != AF_LINK) ||
2199 (sdp->sdl_len > sizeof(sdlbuf))) {
2200 goto makedummy;
2202 bcopy(sdp, sdl2, sdp->sdl_len);
2203 } else {
2204 makedummy:
2205 sdl2->sdl_len =
2206 offsetof(struct sockaddr_dl, sdl_data[0]);
2207 sdl2->sdl_family = AF_LINK;
2208 sdl2->sdl_index = 0;
2209 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2211 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2212 IP_RECVIF, IPPROTO_IP);
2213 if (*mp)
2214 mp = &(*mp)->m_next;
2219 * XXX these routines are called from the upper part of the kernel.
2221 * They could also be moved to ip_mroute.c, since all the RSVP
2222 * handling is done there already.
2225 ip_rsvp_init(struct socket *so)
2227 if (so->so_type != SOCK_RAW ||
2228 so->so_proto->pr_protocol != IPPROTO_RSVP)
2229 return EOPNOTSUPP;
2231 if (ip_rsvpd != NULL)
2232 return EADDRINUSE;
2234 ip_rsvpd = so;
2236 * This may seem silly, but we need to be sure we don't over-increment
2237 * the RSVP counter, in case something slips up.
2239 if (!ip_rsvp_on) {
2240 ip_rsvp_on = 1;
2241 rsvp_on++;
2244 return 0;
2248 ip_rsvp_done(void)
2250 ip_rsvpd = NULL;
2252 * This may seem silly, but we need to be sure we don't over-decrement
2253 * the RSVP counter, in case something slips up.
2255 if (ip_rsvp_on) {
2256 ip_rsvp_on = 0;
2257 rsvp_on--;
2259 return 0;
2262 void
2263 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2265 int off, proto;
2266 __va_list ap;
2268 __va_start(ap, m);
2269 off = __va_arg(ap, int);
2270 proto = __va_arg(ap, int);
2271 __va_end(ap);
2273 if (rsvp_input_p) { /* call the real one if loaded */
2274 rsvp_input_p(m, off, proto);
2275 return;
2278 /* Can still get packets with rsvp_on = 0 if there is a local member
2279 * of the group to which the RSVP packet is addressed. But in this
2280 * case we want to throw the packet away.
2283 if (!rsvp_on) {
2284 m_freem(m);
2285 return;
2288 if (ip_rsvpd != NULL) {
2289 rip_input(m, off, proto);
2290 return;
2292 /* Drop the packet */
2293 m_freem(m);