2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26 * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.56 2008/07/31 12:09:00 sephe Exp $
33 * Implement IP packet firewall (new version)
39 #include "opt_ipdivert.h"
42 #error IPFIREWALL requires INET.
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
50 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/thread2.h>
57 #include <sys/ucred.h>
58 #include <sys/in_cksum.h>
61 #include <net/route.h>
62 #include <net/netmsg2.h>
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_icmp.h>
72 #include <net/dummynet/ip_dummynet.h>
73 #include <netinet/tcp.h>
74 #include <netinet/tcp_timer.h>
75 #include <netinet/tcp_var.h>
76 #include <netinet/tcpip.h>
77 #include <netinet/udp.h>
78 #include <netinet/udp_var.h>
80 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
83 * set_disable contains one bit per set value (0..31).
84 * If the bit is set, all rules with the corresponding set
85 * are disabled. Set 31 is reserved for the default rule
86 * and CANNOT be disabled.
88 static uint32_t set_disable
;
90 static int fw_verbose
;
91 static int verbose_limit
;
94 static int ipfw_refcnt
;
97 static struct callout ipfw_timeout_h
;
98 #define IPFW_DEFAULT_RULE 65535
101 * list of rules for layer 3
103 static struct ip_fw
*layer3_chain
;
105 MALLOC_DEFINE(M_IPFW
, "IpFw/IpAcct", "IpFw/IpAcct chain's");
107 static int fw_debug
= 1;
108 static int autoinc_step
= 100; /* bounded to 1..1000 in ipfw_add_rule() */
111 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, fw
, CTLFLAG_RW
, 0, "Firewall");
112 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, enable
, CTLFLAG_RW
,
113 &fw_enable
, 0, "Enable ipfw");
114 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, autoinc_step
, CTLFLAG_RW
,
115 &autoinc_step
, 0, "Rule number autincrement step");
116 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
,one_pass
,CTLFLAG_RW
,
118 "Only do a single pass through ipfw when using dummynet(4)");
119 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, debug
, CTLFLAG_RW
,
120 &fw_debug
, 0, "Enable printing of debug ip_fw statements");
121 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose
, CTLFLAG_RW
,
122 &fw_verbose
, 0, "Log matches to ipfw rules");
123 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose_limit
, CTLFLAG_RW
,
124 &verbose_limit
, 0, "Set upper limit of matches of ipfw rules logged");
127 * Description of dynamic rules.
129 * Dynamic rules are stored in lists accessed through a hash table
130 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
131 * be modified through the sysctl variable dyn_buckets which is
132 * updated when the table becomes empty.
134 * XXX currently there is only one list, ipfw_dyn.
136 * When a packet is received, its address fields are first masked
137 * with the mask defined for the rule, then hashed, then matched
138 * against the entries in the corresponding list.
139 * Dynamic rules can be used for different purposes:
141 * + enforcing limits on the number of sessions;
142 * + in-kernel NAT (not implemented yet)
144 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
145 * measured in seconds and depending on the flags.
147 * The total number of dynamic rules is stored in dyn_count.
148 * The max number of dynamic rules is dyn_max. When we reach
149 * the maximum number of rules we do not create anymore. This is
150 * done to avoid consuming too much memory, but also too much
151 * time when searching on each packet (ideally, we should try instead
152 * to put a limit on the length of the list on each bucket...).
154 * Each dynamic rule holds a pointer to the parent ipfw rule so
155 * we know what action to perform. Dynamic rules are removed when
156 * the parent rule is deleted. XXX we should make them survive.
158 * There are some limitations with dynamic rules -- we do not
159 * obey the 'randomized match', and we do not do multiple
160 * passes through the firewall. XXX check the latter!!!
162 static ipfw_dyn_rule
**ipfw_dyn_v
= NULL
;
163 static uint32_t dyn_buckets
= 256; /* must be power of 2 */
164 static uint32_t curr_dyn_buckets
= 256; /* must be power of 2 */
167 * Timeouts for various events in handing dynamic rules.
169 static uint32_t dyn_ack_lifetime
= 300;
170 static uint32_t dyn_syn_lifetime
= 20;
171 static uint32_t dyn_fin_lifetime
= 1;
172 static uint32_t dyn_rst_lifetime
= 1;
173 static uint32_t dyn_udp_lifetime
= 10;
174 static uint32_t dyn_short_lifetime
= 5;
177 * Keepalives are sent if dyn_keepalive is set. They are sent every
178 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
179 * seconds of lifetime of a rule.
180 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
181 * than dyn_keepalive_period.
184 static uint32_t dyn_keepalive_interval
= 20;
185 static uint32_t dyn_keepalive_period
= 5;
186 static uint32_t dyn_keepalive
= 1; /* do send keepalives */
188 static uint32_t static_count
; /* # of static rules */
189 static uint32_t static_ioc_len
; /* bytes of static rules */
190 static uint32_t dyn_count
; /* # of dynamic rules */
191 static uint32_t dyn_max
= 4096; /* max # of dynamic rules */
193 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_buckets
, CTLFLAG_RW
,
194 &dyn_buckets
, 0, "Number of dyn. buckets");
195 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, curr_dyn_buckets
, CTLFLAG_RD
,
196 &curr_dyn_buckets
, 0, "Current Number of dyn. buckets");
197 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_count
, CTLFLAG_RD
,
198 &dyn_count
, 0, "Number of dyn. rules");
199 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_max
, CTLFLAG_RW
,
200 &dyn_max
, 0, "Max number of dyn. rules");
201 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, static_count
, CTLFLAG_RD
,
202 &static_count
, 0, "Number of static rules");
203 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_ack_lifetime
, CTLFLAG_RW
,
204 &dyn_ack_lifetime
, 0, "Lifetime of dyn. rules for acks");
205 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_syn_lifetime
, CTLFLAG_RW
,
206 &dyn_syn_lifetime
, 0, "Lifetime of dyn. rules for syn");
207 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_fin_lifetime
, CTLFLAG_RW
,
208 &dyn_fin_lifetime
, 0, "Lifetime of dyn. rules for fin");
209 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_rst_lifetime
, CTLFLAG_RW
,
210 &dyn_rst_lifetime
, 0, "Lifetime of dyn. rules for rst");
211 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_udp_lifetime
, CTLFLAG_RW
,
212 &dyn_udp_lifetime
, 0, "Lifetime of dyn. rules for UDP");
213 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_short_lifetime
, CTLFLAG_RW
,
214 &dyn_short_lifetime
, 0, "Lifetime of dyn. rules for other situations");
215 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_keepalive
, CTLFLAG_RW
,
216 &dyn_keepalive
, 0, "Enable keepalives for dyn. rules");
218 #endif /* SYSCTL_NODE */
220 static struct ip_fw
*ip_fw_default_rule
;
222 static ip_fw_chk_t ipfw_chk
;
225 ipfw_free_rule(struct ip_fw
*rule
)
227 KASSERT(rule
->refcnt
> 0, ("invalid refcnt %u\n", rule
->refcnt
));
228 atomic_subtract_int(&rule
->refcnt
, 1);
229 if (atomic_cmpset_int(&rule
->refcnt
, 0, 1)) {
237 ipfw_unref_rule(void *priv
)
239 ipfw_free_rule(priv
);
241 atomic_subtract_int(&ipfw_refcnt
, 1);
246 ipfw_ref_rule(struct ip_fw
*rule
)
249 atomic_add_int(&ipfw_refcnt
, 1);
251 atomic_add_int(&rule
->refcnt
, 1);
255 * This macro maps an ip pointer into a layer3 header pointer of type T
257 #define L3HDR(T, ip) ((T *)((uint32_t *)(ip) + (ip)->ip_hl))
260 icmptype_match(struct ip
*ip
, ipfw_insn_u32
*cmd
)
262 int type
= L3HDR(struct icmp
,ip
)->icmp_type
;
264 return (type
<= ICMP_MAXTYPE
&& (cmd
->d
[0] & (1 << type
)));
267 #define TT ((1 << ICMP_ECHO) | \
268 (1 << ICMP_ROUTERSOLICIT) | \
269 (1 << ICMP_TSTAMP) | \
274 is_icmp_query(struct ip
*ip
)
276 int type
= L3HDR(struct icmp
, ip
)->icmp_type
;
278 return (type
<= ICMP_MAXTYPE
&& (TT
& (1 << type
)));
284 * The following checks use two arrays of 8 or 16 bits to store the
285 * bits that we want set or clear, respectively. They are in the
286 * low and high half of cmd->arg1 or cmd->d[0].
288 * We scan options and store the bits we find set. We succeed if
290 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
292 * The code is sometimes optimized not to store additional variables.
296 flags_match(ipfw_insn
*cmd
, uint8_t bits
)
301 if (((cmd
->arg1
& 0xff) & bits
) != 0)
302 return 0; /* some bits we want set were clear */
304 want_clear
= (cmd
->arg1
>> 8) & 0xff;
305 if ((want_clear
& bits
) != want_clear
)
306 return 0; /* some bits we want clear were set */
311 ipopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
313 int optlen
, bits
= 0;
314 u_char
*cp
= (u_char
*)(ip
+ 1);
315 int x
= (ip
->ip_hl
<< 2) - sizeof(struct ip
);
317 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
318 int opt
= cp
[IPOPT_OPTVAL
];
320 if (opt
== IPOPT_EOL
)
323 if (opt
== IPOPT_NOP
) {
326 optlen
= cp
[IPOPT_OLEN
];
327 if (optlen
<= 0 || optlen
> x
)
328 return 0; /* invalid or truncated */
333 bits
|= IP_FW_IPOPT_LSRR
;
337 bits
|= IP_FW_IPOPT_SSRR
;
341 bits
|= IP_FW_IPOPT_RR
;
345 bits
|= IP_FW_IPOPT_TS
;
352 return (flags_match(cmd
, bits
));
356 tcpopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
358 int optlen
, bits
= 0;
359 struct tcphdr
*tcp
= L3HDR(struct tcphdr
,ip
);
360 u_char
*cp
= (u_char
*)(tcp
+ 1);
361 int x
= (tcp
->th_off
<< 2) - sizeof(struct tcphdr
);
363 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
366 if (opt
== TCPOPT_EOL
)
369 if (opt
== TCPOPT_NOP
) {
379 bits
|= IP_FW_TCPOPT_MSS
;
383 bits
|= IP_FW_TCPOPT_WINDOW
;
386 case TCPOPT_SACK_PERMITTED
:
388 bits
|= IP_FW_TCPOPT_SACK
;
391 case TCPOPT_TIMESTAMP
:
392 bits
|= IP_FW_TCPOPT_TS
;
398 bits
|= IP_FW_TCPOPT_CC
;
405 return (flags_match(cmd
, bits
));
409 iface_match(struct ifnet
*ifp
, ipfw_insn_if
*cmd
)
411 if (ifp
== NULL
) /* no iface with this packet, match fails */
414 /* Check by name or by IP address */
415 if (cmd
->name
[0] != '\0') { /* match by name */
418 if (kfnmatch(cmd
->name
, ifp
->if_xname
, 0) == 0)
421 if (strncmp(ifp
->if_xname
, cmd
->name
, IFNAMSIZ
) == 0)
425 struct ifaddr_container
*ifac
;
427 TAILQ_FOREACH(ifac
, &ifp
->if_addrheads
[mycpuid
], ifa_link
) {
428 struct ifaddr
*ia
= ifac
->ifa
;
430 if (ia
->ifa_addr
== NULL
)
432 if (ia
->ifa_addr
->sa_family
!= AF_INET
)
434 if (cmd
->p
.ip
.s_addr
== ((struct sockaddr_in
*)
435 (ia
->ifa_addr
))->sin_addr
.s_addr
)
436 return(1); /* match */
439 return(0); /* no match, fail ... */
442 static uint64_t norule_counter
; /* counter for ipfw_log(NULL...) */
444 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
447 * We enter here when we have a rule with O_LOG.
448 * XXX this function alone takes about 2Kbytes of code!
451 ipfw_log(struct ip_fw
*f
, u_int hlen
, struct ether_header
*eh
,
452 struct mbuf
*m
, struct ifnet
*oif
)
455 int limit_reached
= 0;
456 char action2
[40], proto
[48], fragment
[28];
461 if (f
== NULL
) { /* bogus pkt */
462 if (verbose_limit
!= 0 && norule_counter
>= verbose_limit
)
465 if (norule_counter
== verbose_limit
)
466 limit_reached
= verbose_limit
;
468 } else { /* O_LOG is the first action, find the real one */
469 ipfw_insn
*cmd
= ACTION_PTR(f
);
470 ipfw_insn_log
*l
= (ipfw_insn_log
*)cmd
;
472 if (l
->max_log
!= 0 && l
->log_left
== 0)
475 if (l
->log_left
== 0)
476 limit_reached
= l
->max_log
;
477 cmd
+= F_LEN(cmd
); /* point to first action */
478 if (cmd
->opcode
== O_PROB
)
482 switch (cmd
->opcode
) {
488 if (cmd
->arg1
==ICMP_REJECT_RST
) {
490 } else if (cmd
->arg1
==ICMP_UNREACH_HOST
) {
493 ksnprintf(SNPARGS(action2
, 0), "Unreach %d",
507 ksnprintf(SNPARGS(action2
, 0), "Divert %d", cmd
->arg1
);
511 ksnprintf(SNPARGS(action2
, 0), "Tee %d", cmd
->arg1
);
515 ksnprintf(SNPARGS(action2
, 0), "SkipTo %d", cmd
->arg1
);
519 ksnprintf(SNPARGS(action2
, 0), "Pipe %d", cmd
->arg1
);
523 ksnprintf(SNPARGS(action2
, 0), "Queue %d", cmd
->arg1
);
528 ipfw_insn_sa
*sa
= (ipfw_insn_sa
*)cmd
;
531 len
= ksnprintf(SNPARGS(action2
, 0),
533 inet_ntoa(sa
->sa
.sin_addr
));
534 if (sa
->sa
.sin_port
) {
535 ksnprintf(SNPARGS(action2
, len
), ":%d",
547 if (hlen
== 0) { /* non-ip */
548 ksnprintf(SNPARGS(proto
, 0), "MAC");
550 struct ip
*ip
= mtod(m
, struct ip
*);
551 /* these three are all aliases to the same thing */
552 struct icmp
*const icmp
= L3HDR(struct icmp
, ip
);
553 struct tcphdr
*const tcp
= (struct tcphdr
*)icmp
;
554 struct udphdr
*const udp
= (struct udphdr
*)icmp
;
556 int ip_off
, offset
, ip_len
;
559 if (eh
!= NULL
) { /* layer 2 packets are as on the wire */
560 ip_off
= ntohs(ip
->ip_off
);
561 ip_len
= ntohs(ip
->ip_len
);
566 offset
= ip_off
& IP_OFFMASK
;
569 len
= ksnprintf(SNPARGS(proto
, 0), "TCP %s",
570 inet_ntoa(ip
->ip_src
));
572 ksnprintf(SNPARGS(proto
, len
), ":%d %s:%d",
573 ntohs(tcp
->th_sport
),
574 inet_ntoa(ip
->ip_dst
),
575 ntohs(tcp
->th_dport
));
577 ksnprintf(SNPARGS(proto
, len
), " %s",
578 inet_ntoa(ip
->ip_dst
));
583 len
= ksnprintf(SNPARGS(proto
, 0), "UDP %s",
584 inet_ntoa(ip
->ip_src
));
586 ksnprintf(SNPARGS(proto
, len
), ":%d %s:%d",
587 ntohs(udp
->uh_sport
),
588 inet_ntoa(ip
->ip_dst
),
589 ntohs(udp
->uh_dport
));
591 ksnprintf(SNPARGS(proto
, len
), " %s",
592 inet_ntoa(ip
->ip_dst
));
598 len
= ksnprintf(SNPARGS(proto
, 0),
603 len
= ksnprintf(SNPARGS(proto
, 0), "ICMP ");
605 len
+= ksnprintf(SNPARGS(proto
, len
), "%s",
606 inet_ntoa(ip
->ip_src
));
607 ksnprintf(SNPARGS(proto
, len
), " %s",
608 inet_ntoa(ip
->ip_dst
));
612 len
= ksnprintf(SNPARGS(proto
, 0), "P:%d %s", ip
->ip_p
,
613 inet_ntoa(ip
->ip_src
));
614 ksnprintf(SNPARGS(proto
, len
), " %s",
615 inet_ntoa(ip
->ip_dst
));
619 if (ip_off
& (IP_MF
| IP_OFFMASK
)) {
620 ksnprintf(SNPARGS(fragment
, 0), " (frag %d:%d@%d%s)",
621 ntohs(ip
->ip_id
), ip_len
- (ip
->ip_hl
<< 2),
622 offset
<< 3, (ip_off
& IP_MF
) ? "+" : "");
626 if (oif
|| m
->m_pkthdr
.rcvif
) {
627 log(LOG_SECURITY
| LOG_INFO
,
628 "ipfw: %d %s %s %s via %s%s\n",
630 action
, proto
, oif
? "out" : "in",
631 oif
? oif
->if_xname
: m
->m_pkthdr
.rcvif
->if_xname
,
634 log(LOG_SECURITY
| LOG_INFO
,
635 "ipfw: %d %s %s [no if info]%s\n",
637 action
, proto
, fragment
);
641 log(LOG_SECURITY
| LOG_NOTICE
,
642 "ipfw: limit %d reached on entry %d\n",
643 limit_reached
, f
? f
->rulenum
: -1);
650 * IMPORTANT: the hash function for dynamic rules must be commutative
651 * in source and destination (ip,port), because rules are bidirectional
652 * and we want to find both in the same bucket.
655 hash_packet(struct ipfw_flow_id
*id
)
659 i
= (id
->dst_ip
) ^ (id
->src_ip
) ^ (id
->dst_port
) ^ (id
->src_port
);
660 i
&= (curr_dyn_buckets
- 1);
665 * unlink a dynamic rule from a chain. prev is a pointer to
666 * the previous one, q is a pointer to the rule to delete,
667 * head is a pointer to the head of the queue.
668 * Modifies q and potentially also head.
670 #define UNLINK_DYN_RULE(prev, head, q) \
672 ipfw_dyn_rule *old_q = q; \
674 /* remove a refcount to the parent */ \
675 if (q->dyn_type == O_LIMIT) \
676 q->parent->count--; \
677 DEB(kprintf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n", \
678 (q->id.src_ip), (q->id.src_port), \
679 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
681 prev->next = q = q->next; \
683 head = q = q->next; \
684 KASSERT(dyn_count > 0, ("invalid dyn count %u\n", dyn_count)); \
686 kfree(old_q, M_IPFW); \
689 #define TIME_LEQ(a, b) ((int)((a) - (b)) <= 0)
692 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
694 * If keep_me == NULL, rules are deleted even if not expired,
695 * otherwise only expired rules are removed.
697 * The value of the second parameter is also used to point to identify
698 * a rule we absolutely do not want to remove (e.g. because we are
699 * holding a reference to it -- this is the case with O_LIMIT_PARENT
700 * rules). The pointer is only used for comparison, so any non-null
704 remove_dyn_rule(struct ip_fw
*rule
, ipfw_dyn_rule
*keep_me
)
706 static uint32_t last_remove
= 0;
708 #define FORCE (keep_me == NULL)
710 ipfw_dyn_rule
*prev
, *q
;
711 int i
, pass
= 0, max_pass
= 0;
713 if (ipfw_dyn_v
== NULL
|| dyn_count
== 0)
715 /* do not expire more than once per second, it is useless */
716 if (!FORCE
&& last_remove
== time_second
)
718 last_remove
= time_second
;
721 * because O_LIMIT refer to parent rules, during the first pass only
722 * remove child and mark any pending LIMIT_PARENT, and remove
723 * them in a second pass.
726 for (i
= 0 ; i
< curr_dyn_buckets
; i
++) {
727 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
; ) {
729 * Logic can become complex here, so we split tests.
733 if (rule
!= NULL
&& rule
!= q
->rule
)
734 goto next
; /* not the one we are looking for */
735 if (q
->dyn_type
== O_LIMIT_PARENT
) {
737 * handle parent in the second pass,
738 * record we need one.
743 if (FORCE
&& q
->count
!= 0 ) {
744 /* XXX should not happen! */
745 kprintf( "OUCH! cannot remove rule,"
746 " count %d\n", q
->count
);
750 !TIME_LEQ( q
->expire
, time_second
))
753 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
760 if (pass
++ < max_pass
)
768 * lookup a dynamic rule.
770 static ipfw_dyn_rule
*
771 lookup_dyn_rule(struct ipfw_flow_id
*pkt
, int *match_direction
,
775 * stateful ipfw extensions.
776 * Lookup into dynamic session queue
778 #define MATCH_REVERSE 0
779 #define MATCH_FORWARD 1
781 #define MATCH_UNKNOWN 3
782 int i
, dir
= MATCH_NONE
;
783 ipfw_dyn_rule
*prev
, *q
=NULL
;
785 if (ipfw_dyn_v
== NULL
)
786 goto done
; /* not found */
787 i
= hash_packet( pkt
);
788 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
!= NULL
; ) {
789 if (q
->dyn_type
== O_LIMIT_PARENT
)
791 if (TIME_LEQ( q
->expire
, time_second
)) { /* expire entry */
792 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
795 if ( pkt
->proto
== q
->id
.proto
) {
796 if (pkt
->src_ip
== q
->id
.src_ip
&&
797 pkt
->dst_ip
== q
->id
.dst_ip
&&
798 pkt
->src_port
== q
->id
.src_port
&&
799 pkt
->dst_port
== q
->id
.dst_port
) {
803 if (pkt
->src_ip
== q
->id
.dst_ip
&&
804 pkt
->dst_ip
== q
->id
.src_ip
&&
805 pkt
->src_port
== q
->id
.dst_port
&&
806 pkt
->dst_port
== q
->id
.src_port
) {
816 goto done
; /* q = NULL, not found */
818 if ( prev
!= NULL
) { /* found and not in front */
819 prev
->next
= q
->next
;
820 q
->next
= ipfw_dyn_v
[i
];
823 if (pkt
->proto
== IPPROTO_TCP
) { /* update state according to flags */
824 u_char flags
= pkt
->flags
& (TH_FIN
|TH_SYN
|TH_RST
);
826 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
827 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
828 q
->state
|= (dir
== MATCH_FORWARD
) ? flags
: (flags
<< 8);
830 case TH_SYN
: /* opening */
831 q
->expire
= time_second
+ dyn_syn_lifetime
;
834 case BOTH_SYN
: /* move to established */
835 case BOTH_SYN
| TH_FIN
: /* one side tries to close */
836 case BOTH_SYN
| (TH_FIN
<< 8) :
838 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
839 uint32_t ack
= ntohl(tcp
->th_ack
);
840 if (dir
== MATCH_FORWARD
) {
841 if (q
->ack_fwd
== 0 || _SEQ_GE(ack
, q
->ack_fwd
))
843 else { /* ignore out-of-sequence */
847 if (q
->ack_rev
== 0 || _SEQ_GE(ack
, q
->ack_rev
))
849 else { /* ignore out-of-sequence */
854 q
->expire
= time_second
+ dyn_ack_lifetime
;
857 case BOTH_SYN
| BOTH_FIN
: /* both sides closed */
858 if (dyn_fin_lifetime
>= dyn_keepalive_period
)
859 dyn_fin_lifetime
= dyn_keepalive_period
- 1;
860 q
->expire
= time_second
+ dyn_fin_lifetime
;
866 * reset or some invalid combination, but can also
867 * occur if we use keep-state the wrong way.
869 if ( (q
->state
& ((TH_RST
<< 8)|TH_RST
)) == 0)
870 kprintf("invalid state: 0x%x\n", q
->state
);
872 if (dyn_rst_lifetime
>= dyn_keepalive_period
)
873 dyn_rst_lifetime
= dyn_keepalive_period
- 1;
874 q
->expire
= time_second
+ dyn_rst_lifetime
;
877 } else if (pkt
->proto
== IPPROTO_UDP
) {
878 q
->expire
= time_second
+ dyn_udp_lifetime
;
880 /* other protocols */
881 q
->expire
= time_second
+ dyn_short_lifetime
;
885 *match_direction
= dir
;
890 realloc_dynamic_table(void)
893 * Try reallocation, make sure we have a power of 2 and do
894 * not allow more than 64k entries. In case of overflow,
898 if (dyn_buckets
> 65536)
900 if ((dyn_buckets
& (dyn_buckets
-1)) != 0) { /* not a power of 2 */
901 dyn_buckets
= curr_dyn_buckets
; /* reset */
904 curr_dyn_buckets
= dyn_buckets
;
905 if (ipfw_dyn_v
!= NULL
)
906 kfree(ipfw_dyn_v
, M_IPFW
);
908 ipfw_dyn_v
= kmalloc(curr_dyn_buckets
* sizeof(ipfw_dyn_rule
*),
909 M_IPFW
, M_INTWAIT
| M_NULLOK
| M_ZERO
);
910 if (ipfw_dyn_v
!= NULL
|| curr_dyn_buckets
<= 2)
912 curr_dyn_buckets
/= 2;
917 * Install state of type 'type' for a dynamic session.
918 * The hash table contains two type of rules:
919 * - regular rules (O_KEEP_STATE)
920 * - rules for sessions with limited number of sess per user
921 * (O_LIMIT). When they are created, the parent is
922 * increased by 1, and decreased on delete. In this case,
923 * the third parameter is the parent rule and not the chain.
924 * - "parent" rules for the above (O_LIMIT_PARENT).
926 static ipfw_dyn_rule
*
927 add_dyn_rule(struct ipfw_flow_id
*id
, uint8_t dyn_type
, struct ip_fw
*rule
)
932 if (ipfw_dyn_v
== NULL
||
933 (dyn_count
== 0 && dyn_buckets
!= curr_dyn_buckets
)) {
934 realloc_dynamic_table();
935 if (ipfw_dyn_v
== NULL
)
936 return NULL
; /* failed ! */
940 r
= kmalloc(sizeof *r
, M_IPFW
, M_INTWAIT
| M_NULLOK
| M_ZERO
);
942 kprintf ("sorry cannot allocate state\n");
946 /* increase refcount on parent, and set pointer */
947 if (dyn_type
== O_LIMIT
) {
948 ipfw_dyn_rule
*parent
= (ipfw_dyn_rule
*)rule
;
949 if ( parent
->dyn_type
!= O_LIMIT_PARENT
)
950 panic("invalid parent");
957 r
->expire
= time_second
+ dyn_syn_lifetime
;
959 r
->dyn_type
= dyn_type
;
960 r
->pcnt
= r
->bcnt
= 0;
964 r
->next
= ipfw_dyn_v
[i
];
967 DEB(kprintf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
969 (r
->id
.src_ip
), (r
->id
.src_port
),
970 (r
->id
.dst_ip
), (r
->id
.dst_port
),
976 * lookup dynamic parent rule using pkt and rule as search keys.
977 * If the lookup fails, then install one.
979 static ipfw_dyn_rule
*
980 lookup_dyn_parent(struct ipfw_flow_id
*pkt
, struct ip_fw
*rule
)
986 i
= hash_packet( pkt
);
987 for (q
= ipfw_dyn_v
[i
] ; q
!= NULL
; q
=q
->next
)
988 if (q
->dyn_type
== O_LIMIT_PARENT
&&
990 pkt
->proto
== q
->id
.proto
&&
991 pkt
->src_ip
== q
->id
.src_ip
&&
992 pkt
->dst_ip
== q
->id
.dst_ip
&&
993 pkt
->src_port
== q
->id
.src_port
&&
994 pkt
->dst_port
== q
->id
.dst_port
) {
995 q
->expire
= time_second
+ dyn_short_lifetime
;
996 DEB(kprintf("lookup_dyn_parent found 0x%p\n",q
);)
1000 return add_dyn_rule(pkt
, O_LIMIT_PARENT
, rule
);
1004 * Install dynamic state for rule type cmd->o.opcode
1006 * Returns 1 (failure) if state is not installed because of errors or because
1007 * session limitations are enforced.
1010 install_state(struct ip_fw
*rule
, ipfw_insn_limit
*cmd
,
1011 struct ip_fw_args
*args
)
1013 static int last_log
;
1017 DEB(kprintf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
1019 (args
->f_id
.src_ip
), (args
->f_id
.src_port
),
1020 (args
->f_id
.dst_ip
), (args
->f_id
.dst_port
) );)
1022 q
= lookup_dyn_rule(&args
->f_id
, NULL
, NULL
);
1024 if (q
!= NULL
) { /* should never occur */
1025 if (last_log
!= time_second
) {
1026 last_log
= time_second
;
1027 kprintf(" install_state: entry already present, done\n");
1032 if (dyn_count
>= dyn_max
)
1034 * Run out of slots, try to remove any expired rule.
1036 remove_dyn_rule(NULL
, (ipfw_dyn_rule
*)1);
1038 if (dyn_count
>= dyn_max
) {
1039 if (last_log
!= time_second
) {
1040 last_log
= time_second
;
1041 kprintf("install_state: Too many dynamic rules\n");
1043 return 1; /* cannot install, notify caller */
1046 switch (cmd
->o
.opcode
) {
1047 case O_KEEP_STATE
: /* bidir rule */
1048 add_dyn_rule(&args
->f_id
, O_KEEP_STATE
, rule
);
1051 case O_LIMIT
: /* limit number of sessions */
1053 uint16_t limit_mask
= cmd
->limit_mask
;
1054 struct ipfw_flow_id id
;
1055 ipfw_dyn_rule
*parent
;
1057 DEB(kprintf("installing dyn-limit rule %d\n", cmd
->conn_limit
);)
1059 id
.dst_ip
= id
.src_ip
= 0;
1060 id
.dst_port
= id
.src_port
= 0;
1061 id
.proto
= args
->f_id
.proto
;
1063 if (limit_mask
& DYN_SRC_ADDR
)
1064 id
.src_ip
= args
->f_id
.src_ip
;
1065 if (limit_mask
& DYN_DST_ADDR
)
1066 id
.dst_ip
= args
->f_id
.dst_ip
;
1067 if (limit_mask
& DYN_SRC_PORT
)
1068 id
.src_port
= args
->f_id
.src_port
;
1069 if (limit_mask
& DYN_DST_PORT
)
1070 id
.dst_port
= args
->f_id
.dst_port
;
1071 parent
= lookup_dyn_parent(&id
, rule
);
1072 if (parent
== NULL
) {
1073 kprintf("add parent failed\n");
1076 if (parent
->count
>= cmd
->conn_limit
) {
1078 * See if we can remove some expired rule.
1080 remove_dyn_rule(rule
, parent
);
1081 if (parent
->count
>= cmd
->conn_limit
) {
1082 if (fw_verbose
&& last_log
!= time_second
) {
1083 last_log
= time_second
;
1084 log(LOG_SECURITY
| LOG_DEBUG
,
1085 "drop session, too many entries\n");
1090 add_dyn_rule(&args
->f_id
, O_LIMIT
, (struct ip_fw
*)parent
);
1094 kprintf("unknown dynamic rule type %u\n", cmd
->o
.opcode
);
1097 lookup_dyn_rule(&args
->f_id
, NULL
, NULL
); /* XXX just set lifetime */
1102 * Transmit a TCP packet, containing either a RST or a keepalive.
1103 * When flags & TH_RST, we are sending a RST packet, because of a
1104 * "reset" action matched the packet.
1105 * Otherwise we are sending a keepalive, and flags & TH_
1108 send_pkt(struct ipfw_flow_id
*id
, uint32_t seq
, uint32_t ack
, int flags
)
1113 struct route sro
; /* fake route */
1115 MGETHDR(m
, MB_DONTWAIT
, MT_HEADER
);
1118 m
->m_pkthdr
.rcvif
= NULL
;
1119 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct ip
) + sizeof(struct tcphdr
);
1120 m
->m_data
+= max_linkhdr
;
1122 ip
= mtod(m
, struct ip
*);
1123 bzero(ip
, m
->m_len
);
1124 tcp
= (struct tcphdr
*)(ip
+ 1); /* no IP options */
1125 ip
->ip_p
= IPPROTO_TCP
;
1129 * Assume we are sending a RST (or a keepalive in the reverse
1130 * direction), swap src and destination addresses and ports.
1132 ip
->ip_src
.s_addr
= htonl(id
->dst_ip
);
1133 ip
->ip_dst
.s_addr
= htonl(id
->src_ip
);
1134 tcp
->th_sport
= htons(id
->dst_port
);
1135 tcp
->th_dport
= htons(id
->src_port
);
1136 if (flags
& TH_RST
) { /* we are sending a RST */
1137 if (flags
& TH_ACK
) {
1138 tcp
->th_seq
= htonl(ack
);
1139 tcp
->th_ack
= htonl(0);
1140 tcp
->th_flags
= TH_RST
;
1144 tcp
->th_seq
= htonl(0);
1145 tcp
->th_ack
= htonl(seq
);
1146 tcp
->th_flags
= TH_RST
| TH_ACK
;
1150 * We are sending a keepalive. flags & TH_SYN determines
1151 * the direction, forward if set, reverse if clear.
1152 * NOTE: seq and ack are always assumed to be correct
1153 * as set by the caller. This may be confusing...
1155 if (flags
& TH_SYN
) {
1157 * we have to rewrite the correct addresses!
1159 ip
->ip_dst
.s_addr
= htonl(id
->dst_ip
);
1160 ip
->ip_src
.s_addr
= htonl(id
->src_ip
);
1161 tcp
->th_dport
= htons(id
->dst_port
);
1162 tcp
->th_sport
= htons(id
->src_port
);
1164 tcp
->th_seq
= htonl(seq
);
1165 tcp
->th_ack
= htonl(ack
);
1166 tcp
->th_flags
= TH_ACK
;
1170 * set ip_len to the payload size so we can compute
1171 * the tcp checksum on the pseudoheader
1172 * XXX check this, could save a couple of words ?
1174 ip
->ip_len
= htons(sizeof(struct tcphdr
));
1175 tcp
->th_sum
= in_cksum(m
, m
->m_pkthdr
.len
);
1178 * now fill fields left out earlier
1180 ip
->ip_ttl
= ip_defttl
;
1181 ip
->ip_len
= m
->m_pkthdr
.len
;
1183 bzero(&sro
, sizeof(sro
));
1184 ip_rtaddr(ip
->ip_dst
, &sro
);
1186 m
->m_pkthdr
.fw_flags
|= IPFW_MBUF_GENERATED
;
1187 ip_output(m
, NULL
, &sro
, 0, NULL
, NULL
);
1193 * sends a reject message, consuming the mbuf passed as an argument.
1196 send_reject(struct ip_fw_args
*args
, int code
, int offset
, int ip_len
)
1199 if (code
!= ICMP_REJECT_RST
) { /* Send an ICMP unreach */
1200 /* We need the IP header in host order for icmp_error(). */
1201 if (args
->eh
!= NULL
) {
1202 struct ip
*ip
= mtod(args
->m
, struct ip
*);
1203 ip
->ip_len
= ntohs(ip
->ip_len
);
1204 ip
->ip_off
= ntohs(ip
->ip_off
);
1206 icmp_error(args
->m
, ICMP_UNREACH
, code
, 0L, 0);
1207 } else if (offset
== 0 && args
->f_id
.proto
== IPPROTO_TCP
) {
1208 struct tcphdr
*const tcp
=
1209 L3HDR(struct tcphdr
, mtod(args
->m
, struct ip
*));
1210 if ( (tcp
->th_flags
& TH_RST
) == 0)
1211 send_pkt(&(args
->f_id
), ntohl(tcp
->th_seq
),
1213 tcp
->th_flags
| TH_RST
);
1222 * Given an ip_fw *, lookup_next_rule will return a pointer
1223 * to the next rule, which can be either the jump
1224 * target (for skipto instructions) or the next one in the list (in
1225 * all other cases including a missing jump target).
1226 * The result is also written in the "next_rule" field of the rule.
1227 * Backward jumps are not allowed, so start looking from the next
1230 * This never returns NULL -- in case we do not have an exact match,
1231 * the next rule is returned. When the ruleset is changed,
1232 * pointers are flushed so we are always correct.
1235 static struct ip_fw
*
1236 lookup_next_rule(struct ip_fw
*me
)
1238 struct ip_fw
*rule
= NULL
;
1241 /* look for action, in case it is a skipto */
1242 cmd
= ACTION_PTR(me
);
1243 if (cmd
->opcode
== O_LOG
)
1245 if ( cmd
->opcode
== O_SKIPTO
)
1246 for (rule
= me
->next
; rule
; rule
= rule
->next
)
1247 if (rule
->rulenum
>= cmd
->arg1
)
1249 if (rule
== NULL
) /* failure or not a skipto */
1251 me
->next_rule
= rule
;
1256 * The main check routine for the firewall.
1258 * All arguments are in args so we can modify them and return them
1259 * back to the caller.
1263 * args->m (in/out) The packet; we set to NULL when/if we nuke it.
1264 * Starts with the IP header.
1265 * args->eh (in) Mac header if present, or NULL for layer3 packet.
1266 * args->oif Outgoing interface, or NULL if packet is incoming.
1267 * The incoming interface is in the mbuf. (in)
1269 * args->rule Pointer to the last matching rule (in/out)
1270 * args->next_hop Socket we are forwarding to (out).
1271 * args->f_id Addresses grabbed from the packet (out)
1275 * IP_FW_PORT_DENY_FLAG the packet must be dropped.
1276 * 0 The packet is to be accepted and routed normally OR
1277 * the packet was denied/rejected and has been dropped;
1278 * in the latter case, *m is equal to NULL upon return.
1279 * port Divert the packet to port, with these caveats:
1281 * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1282 * of diverting it (ie, 'ipfw tee').
1284 * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1285 * 16 bits as a dummynet pipe number instead of diverting
1289 ipfw_chk(struct ip_fw_args
*args
)
1292 * Local variables hold state during the processing of a packet.
1294 * IMPORTANT NOTE: to speed up the processing of rules, there
1295 * are some assumption on the values of the variables, which
1296 * are documented here. Should you change them, please check
1297 * the implementation of the various instructions to make sure
1298 * that they still work.
1300 * args->eh The MAC header. It is non-null for a layer2
1301 * packet, it is NULL for a layer-3 packet.
1303 * m | args->m Pointer to the mbuf, as received from the caller.
1304 * It may change if ipfw_chk() does an m_pullup, or if it
1305 * consumes the packet because it calls send_reject().
1306 * XXX This has to change, so that ipfw_chk() never modifies
1307 * or consumes the buffer.
1308 * ip is simply an alias of the value of m, and it is kept
1309 * in sync with it (the packet is supposed to start with
1312 struct mbuf
*m
= args
->m
;
1313 struct ip
*ip
= mtod(m
, struct ip
*);
1316 * oif | args->oif If NULL, ipfw_chk has been called on the
1317 * inbound path (ether_input, ip_input).
1318 * If non-NULL, ipfw_chk has been called on the outbound path
1319 * (ether_output, ip_output).
1321 struct ifnet
*oif
= args
->oif
;
1323 struct ip_fw
*f
= NULL
; /* matching rule */
1328 * hlen The length of the IPv4 header.
1329 * hlen >0 means we have an IPv4 packet.
1331 u_int hlen
= 0; /* hlen >0 means we have an IP pkt */
1334 * offset The offset of a fragment. offset != 0 means that
1335 * we have a fragment at this offset of an IPv4 packet.
1336 * offset == 0 means that (if this is an IPv4 packet)
1337 * this is the first or only fragment.
1342 * Local copies of addresses. They are only valid if we have
1345 * proto The protocol. Set to 0 for non-ip packets,
1346 * or to the protocol read from the packet otherwise.
1347 * proto != 0 means that we have an IPv4 packet.
1349 * src_port, dst_port port numbers, in HOST format. Only
1350 * valid for TCP and UDP packets.
1352 * src_ip, dst_ip ip addresses, in NETWORK format.
1353 * Only valid for IPv4 packets.
1356 uint16_t src_port
= 0, dst_port
= 0; /* NOTE: host format */
1357 struct in_addr src_ip
, dst_ip
; /* NOTE: network format */
1358 uint16_t ip_len
= 0;
1359 int dyn_dir
= MATCH_UNKNOWN
;
1360 ipfw_dyn_rule
*q
= NULL
;
1362 if (m
->m_pkthdr
.fw_flags
& IPFW_MBUF_GENERATED
)
1363 return 0; /* accept */
1365 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1366 * MATCH_NONE when checked and not matched (q = NULL),
1367 * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1370 if (args
->eh
== NULL
|| /* layer 3 packet */
1371 (m
->m_pkthdr
.len
>= sizeof(struct ip
) &&
1372 ntohs(args
->eh
->ether_type
) == ETHERTYPE_IP
))
1373 hlen
= ip
->ip_hl
<< 2;
1376 * Collect parameters into local variables for faster matching.
1378 if (hlen
== 0) { /* do not grab addresses for non-ip pkts */
1379 proto
= args
->f_id
.proto
= 0; /* mark f_id invalid */
1380 goto after_ip_checks
;
1383 proto
= args
->f_id
.proto
= ip
->ip_p
;
1384 src_ip
= ip
->ip_src
;
1385 dst_ip
= ip
->ip_dst
;
1386 if (args
->eh
!= NULL
) { /* layer 2 packets are as on the wire */
1387 offset
= ntohs(ip
->ip_off
) & IP_OFFMASK
;
1388 ip_len
= ntohs(ip
->ip_len
);
1390 offset
= ip
->ip_off
& IP_OFFMASK
;
1391 ip_len
= ip
->ip_len
;
1394 #define PULLUP_TO(len) \
1396 if (m->m_len < (len)) { \
1397 args->m = m = m_pullup(m, (len));\
1399 goto pullup_failed; \
1400 ip = mtod(m, struct ip *); \
1410 PULLUP_TO(hlen
+ sizeof(struct tcphdr
));
1411 tcp
= L3HDR(struct tcphdr
, ip
);
1412 dst_port
= tcp
->th_dport
;
1413 src_port
= tcp
->th_sport
;
1414 args
->f_id
.flags
= tcp
->th_flags
;
1422 PULLUP_TO(hlen
+ sizeof(struct udphdr
));
1423 udp
= L3HDR(struct udphdr
, ip
);
1424 dst_port
= udp
->uh_dport
;
1425 src_port
= udp
->uh_sport
;
1430 PULLUP_TO(hlen
+ 4); /* type, code and checksum. */
1431 args
->f_id
.flags
= L3HDR(struct icmp
, ip
)->icmp_type
;
1441 args
->f_id
.src_ip
= ntohl(src_ip
.s_addr
);
1442 args
->f_id
.dst_ip
= ntohl(dst_ip
.s_addr
);
1443 args
->f_id
.src_port
= src_port
= ntohs(src_port
);
1444 args
->f_id
.dst_port
= dst_port
= ntohs(dst_port
);
1449 * Packet has already been tagged. Look for the next rule
1450 * to restart processing.
1452 * If fw_one_pass != 0 then just accept it.
1453 * XXX should not happen here, but optimized out in
1459 /* This rule was deleted */
1460 if (args
->rule
->rule_flags
& IPFW_RULE_F_INVALID
)
1461 return IP_FW_PORT_DENY_FLAG
;
1463 f
= args
->rule
->next_rule
;
1465 f
= lookup_next_rule(args
->rule
);
1468 * Find the starting rule. It can be either the first
1469 * one, or the one after divert_rule if asked so.
1473 mtag
= m_tag_find(m
, PACKET_TAG_IPFW_DIVERT
, NULL
);
1475 skipto
= *(uint16_t *)m_tag_data(mtag
);
1480 if (args
->eh
== NULL
&& skipto
!= 0) {
1481 if (skipto
>= IPFW_DEFAULT_RULE
)
1482 return(IP_FW_PORT_DENY_FLAG
); /* invalid */
1483 while (f
&& f
->rulenum
<= skipto
)
1485 if (f
== NULL
) /* drop packet */
1486 return(IP_FW_PORT_DENY_FLAG
);
1489 if ((mtag
= m_tag_find(m
, PACKET_TAG_IPFW_DIVERT
, NULL
)) != NULL
)
1490 m_tag_delete(m
, mtag
);
1493 * Now scan the rules, and parse microinstructions for each rule.
1495 for (; f
; f
= f
->next
) {
1498 int skip_or
; /* skip rest of OR block */
1501 if (set_disable
& (1 << f
->set
))
1505 for (l
= f
->cmd_len
, cmd
= f
->cmd
; l
> 0;
1506 l
-= cmdlen
, cmd
+= cmdlen
) {
1510 * check_body is a jump target used when we find a
1511 * CHECK_STATE, and need to jump to the body of
1516 cmdlen
= F_LEN(cmd
);
1518 * An OR block (insn_1 || .. || insn_n) has the
1519 * F_OR bit set in all but the last instruction.
1520 * The first match will set "skip_or", and cause
1521 * the following instructions to be skipped until
1522 * past the one with the F_OR bit clear.
1524 if (skip_or
) { /* skip this instruction */
1525 if ((cmd
->len
& F_OR
) == 0)
1526 skip_or
= 0; /* next one is good */
1529 match
= 0; /* set to 1 if we succeed */
1531 switch (cmd
->opcode
) {
1533 * The first set of opcodes compares the packet's
1534 * fields with some pattern, setting 'match' if a
1535 * match is found. At the end of the loop there is
1536 * logic to deal with F_NOT and F_OR flags associated
1544 kprintf("ipfw: opcode %d unimplemented\n",
1551 * We only check offset == 0 && proto != 0,
1552 * as this ensures that we have an IPv4
1553 * packet with the ports info.
1558 struct inpcbinfo
*pi
;
1562 if (proto
== IPPROTO_TCP
) {
1564 pi
= &tcbinfo
[mycpu
->gd_cpuid
];
1565 } else if (proto
== IPPROTO_UDP
) {
1572 in_pcblookup_hash(pi
,
1573 dst_ip
, htons(dst_port
),
1574 src_ip
, htons(src_port
),
1576 in_pcblookup_hash(pi
,
1577 src_ip
, htons(src_port
),
1578 dst_ip
, htons(dst_port
),
1581 if (pcb
== NULL
|| pcb
->inp_socket
== NULL
)
1584 if (cmd
->opcode
== O_UID
) {
1585 #define socheckuid(a,b) ((a)->so_cred->cr_uid != (b))
1587 !socheckuid(pcb
->inp_socket
,
1588 (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0]);
1591 match
= groupmember(
1592 (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0],
1593 pcb
->inp_socket
->so_cred
);
1599 match
= iface_match(m
->m_pkthdr
.rcvif
,
1600 (ipfw_insn_if
*)cmd
);
1604 match
= iface_match(oif
, (ipfw_insn_if
*)cmd
);
1608 match
= iface_match(oif
? oif
:
1609 m
->m_pkthdr
.rcvif
, (ipfw_insn_if
*)cmd
);
1613 if (args
->eh
!= NULL
) { /* have MAC header */
1614 uint32_t *want
= (uint32_t *)
1615 ((ipfw_insn_mac
*)cmd
)->addr
;
1616 uint32_t *mask
= (uint32_t *)
1617 ((ipfw_insn_mac
*)cmd
)->mask
;
1618 uint32_t *hdr
= (uint32_t *)args
->eh
;
1621 (want
[0] == (hdr
[0] & mask
[0]) &&
1622 want
[1] == (hdr
[1] & mask
[1]) &&
1623 want
[2] == (hdr
[2] & mask
[2]));
1628 if (args
->eh
!= NULL
) {
1630 ntohs(args
->eh
->ether_type
);
1632 ((ipfw_insn_u16
*)cmd
)->ports
;
1635 /* Special vlan handling */
1636 if (m
->m_flags
& M_VLANTAG
)
1639 for (i
= cmdlen
- 1; !match
&& i
> 0;
1642 (t
>= p
[0] && t
<= p
[1]);
1648 match
= (hlen
> 0 && offset
!= 0);
1651 case O_IN
: /* "out" is "not in" */
1652 match
= (oif
== NULL
);
1656 match
= (args
->eh
!= NULL
);
1661 * We do not allow an arg of 0 so the
1662 * check of "proto" only suffices.
1664 match
= (proto
== cmd
->arg1
);
1668 match
= (hlen
> 0 &&
1669 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
1674 match
= (hlen
> 0 &&
1675 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
1677 ((ipfw_insn_ip
*)cmd
)->mask
.s_addr
));
1684 tif
= INADDR_TO_IFP(&src_ip
);
1685 match
= (tif
!= NULL
);
1692 uint32_t *d
= (uint32_t *)(cmd
+1);
1694 cmd
->opcode
== O_IP_DST_SET
?
1700 addr
-= d
[0]; /* subtract base */
1702 (addr
< cmd
->arg1
) &&
1703 (d
[1 + (addr
>> 5)] &
1704 (1 << (addr
& 0x1f)));
1709 match
= (hlen
> 0 &&
1710 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
1715 match
= (hlen
> 0) &&
1716 (((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
1718 ((ipfw_insn_ip
*)cmd
)->mask
.s_addr
));
1725 tif
= INADDR_TO_IFP(&dst_ip
);
1726 match
= (tif
!= NULL
);
1733 * offset == 0 && proto != 0 is enough
1734 * to guarantee that we have an IPv4
1735 * packet with port info.
1737 if ((proto
==IPPROTO_UDP
|| proto
==IPPROTO_TCP
)
1740 (cmd
->opcode
== O_IP_SRCPORT
) ?
1741 src_port
: dst_port
;
1743 ((ipfw_insn_u16
*)cmd
)->ports
;
1746 for (i
= cmdlen
- 1; !match
&& i
> 0;
1749 (x
>= p
[0] && x
<= p
[1]);
1755 match
= (offset
== 0 && proto
==IPPROTO_ICMP
&&
1756 icmptype_match(ip
, (ipfw_insn_u32
*)cmd
));
1760 match
= (hlen
> 0 && ipopts_match(ip
, cmd
));
1764 match
= (hlen
> 0 && cmd
->arg1
== ip
->ip_v
);
1768 match
= (hlen
> 0 && cmd
->arg1
== ip
->ip_ttl
);
1772 match
= (hlen
> 0 &&
1773 cmd
->arg1
== ntohs(ip
->ip_id
));
1777 match
= (hlen
> 0 && cmd
->arg1
== ip_len
);
1780 case O_IPPRECEDENCE
:
1781 match
= (hlen
> 0 &&
1782 (cmd
->arg1
== (ip
->ip_tos
& 0xe0)));
1786 match
= (hlen
> 0 &&
1787 flags_match(cmd
, ip
->ip_tos
));
1791 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
1793 L3HDR(struct tcphdr
,ip
)->th_flags
));
1797 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
1798 tcpopts_match(ip
, cmd
));
1802 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
1803 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
1804 L3HDR(struct tcphdr
,ip
)->th_seq
);
1808 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
1809 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
1810 L3HDR(struct tcphdr
,ip
)->th_ack
);
1814 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
1816 L3HDR(struct tcphdr
,ip
)->th_win
);
1820 /* reject packets which have SYN only */
1821 /* XXX should i also check for TH_ACK ? */
1822 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
1823 (L3HDR(struct tcphdr
,ip
)->th_flags
&
1824 (TH_RST
| TH_ACK
| TH_SYN
)) != TH_SYN
);
1829 ipfw_log(f
, hlen
, args
->eh
, m
, oif
);
1834 match
= (krandom() <
1835 ((ipfw_insn_u32
*)cmd
)->d
[0]);
1839 * The second set of opcodes represents 'actions',
1840 * i.e. the terminal part of a rule once the packet
1841 * matches all previous patterns.
1842 * Typically there is only one action for each rule,
1843 * and the opcode is stored at the end of the rule
1844 * (but there are exceptions -- see below).
1846 * In general, here we set retval and terminate the
1847 * outer loop (would be a 'break 3' in some language,
1848 * but we need to do a 'goto done').
1851 * O_COUNT and O_SKIPTO actions:
1852 * instead of terminating, we jump to the next rule
1853 * ('goto next_rule', equivalent to a 'break 2'),
1854 * or to the SKIPTO target ('goto again' after
1855 * having set f, cmd and l), respectively.
1857 * O_LIMIT and O_KEEP_STATE: these opcodes are
1858 * not real 'actions', and are stored right
1859 * before the 'action' part of the rule.
1860 * These opcodes try to install an entry in the
1861 * state tables; if successful, we continue with
1862 * the next opcode (match=1; break;), otherwise
1863 * the packet * must be dropped
1864 * ('goto done' after setting retval);
1866 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1867 * cause a lookup of the state table, and a jump
1868 * to the 'action' part of the parent rule
1869 * ('goto check_body') if an entry is found, or
1870 * (CHECK_STATE only) a jump to the next rule if
1871 * the entry is not found ('goto next_rule').
1872 * The result of the lookup is cached to make
1873 * further instances of these opcodes are
1878 if (install_state(f
,
1879 (ipfw_insn_limit
*)cmd
, args
)) {
1880 retval
= IP_FW_PORT_DENY_FLAG
;
1881 goto done
; /* error/limit violation */
1889 * dynamic rules are checked at the first
1890 * keep-state or check-state occurrence,
1891 * with the result being stored in dyn_dir.
1892 * The compiler introduces a PROBE_STATE
1893 * instruction for us when we have a
1894 * KEEP_STATE (because PROBE_STATE needs
1897 if (dyn_dir
== MATCH_UNKNOWN
&&
1898 (q
= lookup_dyn_rule(&args
->f_id
,
1899 &dyn_dir
, proto
== IPPROTO_TCP
?
1900 L3HDR(struct tcphdr
, ip
) : NULL
))
1903 * Found dynamic entry, update stats
1904 * and jump to the 'action' part of
1910 cmd
= ACTION_PTR(f
);
1911 l
= f
->cmd_len
- f
->act_ofs
;
1915 * Dynamic entry not found. If CHECK_STATE,
1916 * skip to next rule, if PROBE_STATE just
1917 * ignore and continue with next opcode.
1919 if (cmd
->opcode
== O_CHECK_STATE
)
1925 retval
= 0; /* accept */
1930 args
->rule
= f
; /* report matching rule */
1931 retval
= cmd
->arg1
| IP_FW_PORT_DYNT_FLAG
;
1936 if (args
->eh
) /* not on layer 2 */
1939 mtag
= m_tag_get(PACKET_TAG_IPFW_DIVERT
,
1940 sizeof(uint16_t), MB_DONTWAIT
);
1942 retval
= IP_FW_PORT_DENY_FLAG
;
1945 *(uint16_t *)m_tag_data(mtag
) = f
->rulenum
;
1946 m_tag_prepend(m
, mtag
);
1947 retval
= (cmd
->opcode
== O_DIVERT
) ?
1949 cmd
->arg1
| IP_FW_PORT_TEE_FLAG
;
1954 f
->pcnt
++; /* update stats */
1956 f
->timestamp
= time_second
;
1957 if (cmd
->opcode
== O_COUNT
)
1960 if (f
->next_rule
== NULL
)
1961 lookup_next_rule(f
);
1967 * Drop the packet and send a reject notice
1968 * if the packet is not ICMP (or is an ICMP
1969 * query), and it is not multicast/broadcast.
1972 (proto
!= IPPROTO_ICMP
||
1973 is_icmp_query(ip
)) &&
1974 !(m
->m_flags
& (M_BCAST
|M_MCAST
)) &&
1975 !IN_MULTICAST(ntohl(dst_ip
.s_addr
))) {
1976 send_reject(args
, cmd
->arg1
,
1982 retval
= IP_FW_PORT_DENY_FLAG
;
1986 if (args
->eh
) /* not valid on layer2 pkts */
1988 if (!q
|| dyn_dir
== MATCH_FORWARD
) {
1990 &((ipfw_insn_sa
*)cmd
)->sa
;
1996 panic("-- unknown opcode %d\n", cmd
->opcode
);
1997 } /* end of switch() on opcodes */
1999 if (cmd
->len
& F_NOT
)
2003 if (cmd
->len
& F_OR
)
2006 if (!(cmd
->len
& F_OR
)) /* not an OR block, */
2007 break; /* try next rule */
2010 } /* end of inner for, scan opcodes */
2012 next_rule
:; /* try next rule */
2014 } /* end of outer for, scan rules */
2015 kprintf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
2016 return(IP_FW_PORT_DENY_FLAG
);
2019 /* Update statistics */
2022 f
->timestamp
= time_second
;
2027 kprintf("pullup failed\n");
2028 return(IP_FW_PORT_DENY_FLAG
);
2032 ipfw_dummynet_io(struct mbuf
*m
, int pipe_nr
, int dir
, struct ip_fw_args
*fwa
)
2037 const struct ipfw_flow_id
*id
;
2038 struct dn_flow_id
*fid
;
2042 mtag
= m_tag_get(PACKET_TAG_DUMMYNET
, sizeof(*pkt
), MB_DONTWAIT
);
2047 m_tag_prepend(m
, mtag
);
2049 pkt
= m_tag_data(mtag
);
2050 bzero(pkt
, sizeof(*pkt
));
2052 cmd
= fwa
->rule
->cmd
+ fwa
->rule
->act_ofs
;
2053 if (cmd
->opcode
== O_LOG
)
2055 KASSERT(cmd
->opcode
== O_PIPE
|| cmd
->opcode
== O_QUEUE
,
2056 ("Rule is not PIPE or QUEUE, opcode %d\n", cmd
->opcode
));
2059 pkt
->dn_flags
= (dir
& DN_FLAGS_DIR_MASK
);
2060 pkt
->ifp
= fwa
->oif
;
2061 pkt
->cpuid
= mycpu
->gd_cpuid
;
2062 pkt
->pipe_nr
= pipe_nr
;
2066 fid
->fid_dst_ip
= id
->dst_ip
;
2067 fid
->fid_src_ip
= id
->src_ip
;
2068 fid
->fid_dst_port
= id
->dst_port
;
2069 fid
->fid_src_port
= id
->src_port
;
2070 fid
->fid_proto
= id
->proto
;
2071 fid
->fid_flags
= id
->flags
;
2073 ipfw_ref_rule(fwa
->rule
);
2074 pkt
->dn_priv
= fwa
->rule
;
2075 pkt
->dn_unref_priv
= ipfw_unref_rule
;
2077 if (cmd
->opcode
== O_PIPE
)
2078 pkt
->dn_flags
|= DN_FLAGS_IS_PIPE
;
2080 if (dir
== DN_TO_IP_OUT
) {
2082 * We need to copy *ro because for ICMP pkts (and maybe
2083 * others) the caller passed a pointer into the stack;
2084 * dst might also be a pointer into *ro so it needs to
2087 pkt
->ro
= *(fwa
->ro
);
2089 fwa
->ro
->ro_rt
->rt_refcnt
++;
2090 if (fwa
->dst
== (struct sockaddr_in
*)&fwa
->ro
->ro_dst
) {
2091 /* 'dst' points into 'ro' */
2092 fwa
->dst
= (struct sockaddr_in
*)&(pkt
->ro
.ro_dst
);
2094 pkt
->dn_dst
= fwa
->dst
;
2095 pkt
->flags
= fwa
->flags
;
2098 m
->m_pkthdr
.fw_flags
|= DUMMYNET_MBUF_TAGGED
;
2103 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2104 * These will be reconstructed on the fly as packets are matched.
2105 * Must be called at splimp().
2108 flush_rule_ptrs(void)
2112 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
2113 rule
->next_rule
= NULL
;
2116 static __inline
void
2117 ipfw_inc_static_count(struct ip_fw
*rule
)
2120 static_ioc_len
+= IOC_RULESIZE(rule
);
2123 static __inline
void
2124 ipfw_dec_static_count(struct ip_fw
*rule
)
2126 int l
= IOC_RULESIZE(rule
);
2128 KASSERT(static_count
> 0, ("invalid static count %u\n", static_count
));
2131 KASSERT(static_ioc_len
>= l
,
2132 ("invalid static len %u\n", static_ioc_len
));
2133 static_ioc_len
-= l
;
2136 static struct ip_fw
*
2137 ipfw_create_rule(const struct ipfw_ioc_rule
*ioc_rule
)
2141 rule
= kmalloc(RULESIZE(ioc_rule
), M_IPFW
, M_WAITOK
| M_ZERO
);
2143 rule
->act_ofs
= ioc_rule
->act_ofs
;
2144 rule
->cmd_len
= ioc_rule
->cmd_len
;
2145 rule
->rulenum
= ioc_rule
->rulenum
;
2146 rule
->set
= ioc_rule
->set
;
2147 rule
->usr_flags
= ioc_rule
->usr_flags
;
2149 bcopy(ioc_rule
->cmd
, rule
->cmd
, rule
->cmd_len
* 4 /* XXX */);
2157 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2158 * possibly create a rule number and add the rule to the list.
2159 * Update the rule_number in the input struct so the caller knows it as well.
2162 ipfw_add_rule(struct ip_fw
**head
, struct ipfw_ioc_rule
*ioc_rule
)
2164 struct ip_fw
*rule
, *f
, *prev
;
2166 KKASSERT(*head
!= NULL
);
2168 rule
= ipfw_create_rule(ioc_rule
);
2173 * If rulenum is 0, find highest numbered rule before the
2174 * default rule, and add autoinc_step
2176 if (autoinc_step
< 1)
2178 else if (autoinc_step
> 1000)
2179 autoinc_step
= 1000;
2180 if (rule
->rulenum
== 0) {
2182 * locate the highest numbered rule before default
2184 for (f
= *head
; f
; f
= f
->next
) {
2185 if (f
->rulenum
== IPFW_DEFAULT_RULE
)
2187 rule
->rulenum
= f
->rulenum
;
2189 if (rule
->rulenum
< IPFW_DEFAULT_RULE
- autoinc_step
)
2190 rule
->rulenum
+= autoinc_step
;
2191 ioc_rule
->rulenum
= rule
->rulenum
;
2195 * Now insert the new rule in the right place in the sorted list.
2197 for (prev
= NULL
, f
= *head
; f
; prev
= f
, f
= f
->next
) {
2198 if (f
->rulenum
> rule
->rulenum
) { /* found the location */
2202 } else { /* head insert */
2211 ipfw_inc_static_count(rule
);
2215 DEB(kprintf("++ installed rule %d, static count now %d\n",
2216 rule
->rulenum
, static_count
);)
2221 * Free storage associated with a static rule (including derived
2223 * The caller is in charge of clearing rule pointers to avoid
2224 * dangling pointers.
2225 * @return a pointer to the next entry.
2226 * Arguments are not checked, so they better be correct.
2227 * Must be called at splimp().
2229 static struct ip_fw
*
2230 delete_rule(struct ip_fw
**head
, struct ip_fw
*prev
, struct ip_fw
*rule
)
2235 remove_dyn_rule(rule
, NULL
/* force removal */);
2240 ipfw_dec_static_count(rule
);
2242 /* Mark the rule as invalid */
2243 rule
->rule_flags
|= IPFW_RULE_F_INVALID
;
2244 rule
->next_rule
= NULL
;
2246 /* Try to free this rule */
2247 ipfw_free_rule(rule
);
2253 * Deletes all rules from a chain (including the default rule
2254 * if the second argument is set).
2255 * Must be called at splimp().
2258 free_chain(struct ip_fw
**chain
, int kill_default
)
2262 flush_rule_ptrs(); /* more efficient to do outside the loop */
2264 while ((rule
= *chain
) != NULL
&&
2265 (kill_default
|| rule
->rulenum
!= IPFW_DEFAULT_RULE
))
2266 delete_rule(chain
, NULL
, rule
);
2268 KASSERT(dyn_count
== 0, ("%u dyn rule remains\n", dyn_count
));
2271 ip_fw_default_rule
= NULL
; /* Reset default rule */
2273 if (ipfw_dyn_v
!= NULL
) {
2275 * Free dynamic rules(state) hash table
2277 kfree(ipfw_dyn_v
, M_IPFW
);
2281 KASSERT(static_count
== 0,
2282 ("%u static rules remains\n", static_count
));
2283 KASSERT(static_ioc_len
== 0,
2284 ("%u bytes of static rules remains\n", static_ioc_len
));
2286 KASSERT(static_count
== 1,
2287 ("%u static rules remains\n", static_count
));
2288 KASSERT(static_ioc_len
== IOC_RULESIZE(ip_fw_default_rule
),
2289 ("%u bytes of static rules remains, should be %u\n",
2290 static_ioc_len
, IOC_RULESIZE(ip_fw_default_rule
)));
2295 * Remove all rules with given number, and also do set manipulation.
2297 * The argument is an uint32_t. The low 16 bit are the rule or set number,
2298 * the next 8 bits are the new set, the top 8 bits are the command:
2300 * 0 delete rules with given number
2301 * 1 delete rules with given set number
2302 * 2 move rules with given number to new set
2303 * 3 move rules with given set number to new set
2304 * 4 swap sets with given numbers
2307 del_entry(struct ip_fw
**chain
, uint32_t arg
)
2309 struct ip_fw
*prev
, *rule
;
2311 uint8_t cmd
, new_set
;
2313 rulenum
= arg
& 0xffff;
2314 cmd
= (arg
>> 24) & 0xff;
2315 new_set
= (arg
>> 16) & 0xff;
2321 if (cmd
== 0 || cmd
== 2) {
2322 if (rulenum
== IPFW_DEFAULT_RULE
)
2330 case 0: /* delete rules with given number */
2332 * locate first rule to delete
2334 for (prev
= NULL
, rule
= *chain
;
2335 rule
&& rule
->rulenum
< rulenum
;
2336 prev
= rule
, rule
= rule
->next
)
2338 if (rule
->rulenum
!= rulenum
)
2341 crit_enter(); /* no access to rules while removing */
2343 * flush pointers outside the loop, then delete all matching
2344 * rules. prev remains the same throughout the cycle.
2347 while (rule
&& rule
->rulenum
== rulenum
)
2348 rule
= delete_rule(chain
, prev
, rule
);
2352 case 1: /* delete all rules with given set number */
2355 for (prev
= NULL
, rule
= *chain
; rule
;) {
2356 if (rule
->set
== rulenum
) {
2357 rule
= delete_rule(chain
, prev
, rule
);
2366 case 2: /* move rules with given number to new set */
2368 for (rule
= *chain
; rule
; rule
= rule
->next
) {
2369 if (rule
->rulenum
== rulenum
)
2370 rule
->set
= new_set
;
2375 case 3: /* move rules with given set number to new set */
2377 for (rule
= *chain
; rule
; rule
= rule
->next
) {
2378 if (rule
->set
== rulenum
)
2379 rule
->set
= new_set
;
2384 case 4: /* swap two sets */
2386 for (rule
= *chain
; rule
; rule
= rule
->next
) {
2387 if (rule
->set
== rulenum
)
2388 rule
->set
= new_set
;
2389 else if (rule
->set
== new_set
)
2390 rule
->set
= rulenum
;
2399 * Clear counters for a specific rule.
2402 clear_counters(struct ip_fw
*rule
, int log_only
)
2404 ipfw_insn_log
*l
= (ipfw_insn_log
*)ACTION_PTR(rule
);
2406 if (log_only
== 0) {
2407 rule
->bcnt
= rule
->pcnt
= 0;
2408 rule
->timestamp
= 0;
2410 if (l
->o
.opcode
== O_LOG
)
2411 l
->log_left
= l
->max_log
;
2415 * Reset some or all counters on firewall rules.
2416 * @arg frwl is null to clear all entries, or contains a specific
2418 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
2421 zero_entry(int rulenum
, int log_only
)
2429 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
2430 clear_counters(rule
, log_only
);
2432 msg
= log_only
? "ipfw: All logging counts reset.\n"
2433 : "ipfw: Accounting cleared.\n";
2438 * We can have multiple rules with the same number, so we
2439 * need to clear them all.
2441 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
2442 if (rule
->rulenum
== rulenum
) {
2444 while (rule
&& rule
->rulenum
== rulenum
) {
2445 clear_counters(rule
, log_only
);
2453 if (!cleared
) /* we did not find any matching rules */
2455 msg
= log_only
? "ipfw: Entry %d logging count reset.\n"
2456 : "ipfw: Entry %d cleared.\n";
2459 log(LOG_SECURITY
| LOG_NOTICE
, msg
, rulenum
);
2464 * Check validity of the structure before insert.
2465 * Fortunately rules are simple, so this mostly need to check rule sizes.
2468 ipfw_ctl_check_rule(struct ipfw_ioc_rule
*rule
, int size
)
2471 int have_action
= 0;
2474 /* Check for valid size */
2475 if (size
< sizeof(*rule
)) {
2476 kprintf("ipfw: rule too short\n");
2479 l
= IOC_RULESIZE(rule
);
2481 kprintf("ipfw: size mismatch (have %d want %d)\n", size
, l
);
2486 * Now go for the individual checks. Very simple ones, basically only
2487 * instruction sizes.
2489 for (l
= rule
->cmd_len
, cmd
= rule
->cmd
; l
> 0;
2490 l
-= cmdlen
, cmd
+= cmdlen
) {
2491 cmdlen
= F_LEN(cmd
);
2493 kprintf("ipfw: opcode %d size truncated\n",
2497 DEB(kprintf("ipfw: opcode %d\n", cmd
->opcode
);)
2498 switch (cmd
->opcode
) {
2512 case O_IPPRECEDENCE
:
2519 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
2531 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
))
2536 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_limit
))
2541 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_log
))
2544 ((ipfw_insn_log
*)cmd
)->log_left
=
2545 ((ipfw_insn_log
*)cmd
)->max_log
;
2551 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_ip
))
2553 if (((ipfw_insn_ip
*)cmd
)->mask
.s_addr
== 0) {
2554 kprintf("ipfw: opcode %d, useless rule\n",
2562 if (cmd
->arg1
== 0 || cmd
->arg1
> 256) {
2563 kprintf("ipfw: invalid set size %d\n",
2567 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
) +
2573 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_mac
))
2579 case O_IP_DSTPORT
: /* XXX artificial limit, 30 port pairs */
2580 if (cmdlen
< 2 || cmdlen
> 31)
2587 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_if
))
2593 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_pipe
))
2598 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_sa
))
2602 case O_FORWARD_MAC
: /* XXX not implemented yet */
2611 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
2615 kprintf("ipfw: opcode %d, multiple actions"
2622 kprintf("ipfw: opcode %d, action must be"
2629 kprintf("ipfw: opcode %d, unknown opcode\n",
2634 if (have_action
== 0) {
2635 kprintf("ipfw: missing action\n");
2641 kprintf("ipfw: opcode %d size %d wrong\n",
2642 cmd
->opcode
, cmdlen
);
2647 ipfw_ctl_add_rule(struct sockopt
*sopt
)
2649 struct ipfw_ioc_rule
*ioc_rule
;
2653 size
= sopt
->sopt_valsize
;
2654 if (size
> (sizeof(uint32_t) * IPFW_RULE_SIZE_MAX
) ||
2655 size
< sizeof(*ioc_rule
)) {
2658 if (size
!= (sizeof(uint32_t) * IPFW_RULE_SIZE_MAX
)) {
2659 sopt
->sopt_val
= krealloc(sopt
->sopt_val
, sizeof(uint32_t) *
2660 IPFW_RULE_SIZE_MAX
, M_TEMP
, M_WAITOK
);
2662 ioc_rule
= sopt
->sopt_val
;
2664 error
= ipfw_ctl_check_rule(ioc_rule
, size
);
2668 error
= ipfw_add_rule(&layer3_chain
, ioc_rule
);
2672 if (sopt
->sopt_dir
== SOPT_GET
)
2673 sopt
->sopt_valsize
= IOC_RULESIZE(ioc_rule
);
2678 ipfw_copy_rule(const struct ip_fw
*rule
, struct ipfw_ioc_rule
*ioc_rule
)
2680 ioc_rule
->act_ofs
= rule
->act_ofs
;
2681 ioc_rule
->cmd_len
= rule
->cmd_len
;
2682 ioc_rule
->rulenum
= rule
->rulenum
;
2683 ioc_rule
->set
= rule
->set
;
2684 ioc_rule
->usr_flags
= rule
->usr_flags
;
2686 ioc_rule
->set_disable
= set_disable
;
2687 ioc_rule
->static_count
= static_count
;
2688 ioc_rule
->static_len
= static_ioc_len
;
2690 ioc_rule
->pcnt
= rule
->pcnt
;
2691 ioc_rule
->bcnt
= rule
->bcnt
;
2692 ioc_rule
->timestamp
= rule
->timestamp
;
2694 bcopy(rule
->cmd
, ioc_rule
->cmd
, ioc_rule
->cmd_len
* 4 /* XXX */);
2696 return ((uint8_t *)ioc_rule
+ IOC_RULESIZE(ioc_rule
));
2700 ipfw_copy_state(const ipfw_dyn_rule
*dyn_rule
,
2701 struct ipfw_ioc_state
*ioc_state
)
2703 const struct ipfw_flow_id
*id
;
2704 struct ipfw_ioc_flowid
*ioc_id
;
2706 ioc_state
->expire
= TIME_LEQ(dyn_rule
->expire
, time_second
) ?
2707 0 : dyn_rule
->expire
- time_second
;
2708 ioc_state
->pcnt
= dyn_rule
->pcnt
;
2709 ioc_state
->bcnt
= dyn_rule
->bcnt
;
2711 ioc_state
->dyn_type
= dyn_rule
->dyn_type
;
2712 ioc_state
->count
= dyn_rule
->count
;
2714 ioc_state
->rulenum
= dyn_rule
->rule
->rulenum
;
2717 ioc_id
= &ioc_state
->id
;
2719 ioc_id
->type
= ETHERTYPE_IP
;
2720 ioc_id
->u
.ip
.dst_ip
= id
->dst_ip
;
2721 ioc_id
->u
.ip
.src_ip
= id
->src_ip
;
2722 ioc_id
->u
.ip
.dst_port
= id
->dst_port
;
2723 ioc_id
->u
.ip
.src_port
= id
->src_port
;
2724 ioc_id
->u
.ip
.proto
= id
->proto
;
2728 ipfw_ctl_get_rules(struct sockopt
*sopt
)
2735 * pass up a copy of the current rules. Static rules
2736 * come first (the last of which has number IPFW_DEFAULT_RULE),
2737 * followed by a possibly empty list of dynamic rule.
2741 size
= static_ioc_len
; /* size of static rules */
2742 if (ipfw_dyn_v
) /* add size of dyn.rules */
2743 size
+= (dyn_count
* sizeof(struct ipfw_ioc_state
));
2745 if (sopt
->sopt_valsize
< size
) {
2746 /* short length, no need to return incomplete rules */
2747 /* XXX: if superuser, no need to zero buffer */
2748 bzero(sopt
->sopt_val
, sopt
->sopt_valsize
);
2751 bp
= sopt
->sopt_val
;
2753 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
2754 bp
= ipfw_copy_rule(rule
, bp
);
2757 struct ipfw_ioc_state
*ioc_state
;
2761 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
2764 for (p
= ipfw_dyn_v
[i
]; p
!= NULL
;
2765 p
= p
->next
, ioc_state
++)
2766 ipfw_copy_state(p
, ioc_state
);
2772 sopt
->sopt_valsize
= size
;
2777 * {set|get}sockopt parser.
2780 ipfw_ctl(struct sockopt
*sopt
)
2788 switch (sopt
->sopt_name
) {
2790 error
= ipfw_ctl_get_rules(sopt
);
2795 * Normally we cannot release the lock on each iteration.
2796 * We could do it here only because we start from the head all
2797 * the times so there is no risk of missing some entries.
2798 * On the other hand, the risk is that we end up with
2799 * a very inconsistent ruleset, so better keep the lock
2800 * around the whole cycle.
2802 * XXX this code can be improved by resetting the head of
2803 * the list to point to the default rule, and then freeing
2804 * the old list without the need for a lock.
2808 free_chain(&layer3_chain
, 0 /* keep default rule */);
2813 error
= ipfw_ctl_add_rule(sopt
);
2818 * IP_FW_DEL is used for deleting single rules or sets,
2819 * and (ab)used to atomically manipulate sets. Argument size
2820 * is used to distinguish between the two:
2822 * delete single rule or set of rules,
2823 * or reassign rules (or sets) to a different set.
2824 * 2*sizeof(uint32_t)
2825 * atomic disable/enable sets.
2826 * first uint32_t contains sets to be disabled,
2827 * second uint32_t contains sets to be enabled.
2829 masks
= sopt
->sopt_val
;
2830 size
= sopt
->sopt_valsize
;
2831 if (size
== sizeof(*masks
)) {
2833 * Delete or reassign static rule
2835 error
= del_entry(&layer3_chain
, masks
[0]);
2836 } else if (size
== (2 * sizeof(*masks
))) {
2838 * Set enable/disable
2843 (set_disable
| masks
[0]) & ~masks
[1] &
2844 ~(1 << 31); /* set 31 always enabled */
2853 case IP_FW_RESETLOG
: /* argument is an int, the rule number */
2856 if (sopt
->sopt_val
!= 0) {
2857 error
= soopt_to_kbuf(sopt
, &rulenum
,
2858 sizeof(int), sizeof(int));
2862 error
= zero_entry(rulenum
, sopt
->sopt_name
== IP_FW_RESETLOG
);
2866 kprintf("ipfw_ctl invalid option %d\n", sopt
->sopt_name
);
2873 * This procedure is only used to handle keepalives. It is invoked
2874 * every dyn_keepalive_period
2877 ipfw_tick(void *unused __unused
)
2882 if (dyn_keepalive
== 0 || ipfw_dyn_v
== NULL
|| dyn_count
== 0)
2886 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
2887 for (q
= ipfw_dyn_v
[i
]; q
; q
= q
->next
) {
2888 if (q
->dyn_type
== O_LIMIT_PARENT
)
2890 if (q
->id
.proto
!= IPPROTO_TCP
)
2892 if ((q
->state
& BOTH_SYN
) != BOTH_SYN
)
2894 if (TIME_LEQ(time_second
+ dyn_keepalive_interval
,
2896 continue; /* too early */
2897 if (TIME_LEQ(q
->expire
, time_second
))
2898 continue; /* too late, rule expired */
2900 send_pkt(&q
->id
, q
->ack_rev
- 1, q
->ack_fwd
, TH_SYN
);
2901 send_pkt(&q
->id
, q
->ack_fwd
- 1, q
->ack_rev
, 0);
2906 callout_reset(&ipfw_timeout_h
, dyn_keepalive_period
* hz
,
2911 ipfw_init_default_rule(struct ip_fw
**head
)
2913 struct ip_fw
*def_rule
;
2915 KKASSERT(*head
== NULL
);
2917 def_rule
= kmalloc(sizeof(*def_rule
), M_IPFW
, M_WAITOK
| M_ZERO
);
2919 def_rule
->act_ofs
= 0;
2920 def_rule
->rulenum
= IPFW_DEFAULT_RULE
;
2921 def_rule
->cmd_len
= 1;
2924 def_rule
->cmd
[0].len
= 1;
2925 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2926 def_rule
->cmd
[0].opcode
= O_ACCEPT
;
2928 def_rule
->cmd
[0].opcode
= O_DENY
;
2931 def_rule
->refcnt
= 1;
2934 ipfw_inc_static_count(def_rule
);
2936 /* Install the default rule */
2937 ip_fw_default_rule
= def_rule
;
2941 ipfw_init_dispatch(struct netmsg
*nmsg
)
2948 kprintf("IP firewall already loaded\n");
2953 ip_fw_chk_ptr
= ipfw_chk
;
2954 ip_fw_ctl_ptr
= ipfw_ctl
;
2955 ip_fw_dn_io_ptr
= ipfw_dummynet_io
;
2957 layer3_chain
= NULL
;
2958 ipfw_init_default_rule(&layer3_chain
);
2960 kprintf("ipfw2 initialized, divert %s, "
2961 "rule-based forwarding enabled, default to %s, logging ",
2967 ip_fw_default_rule
->cmd
[0].opcode
== O_ACCEPT
?
2970 #ifdef IPFIREWALL_VERBOSE
2973 #ifdef IPFIREWALL_VERBOSE_LIMIT
2974 verbose_limit
= IPFIREWALL_VERBOSE_LIMIT
;
2976 if (fw_verbose
== 0) {
2977 kprintf("disabled\n");
2978 } else if (verbose_limit
== 0) {
2979 kprintf("unlimited\n");
2981 kprintf("limited to %d packets/entry by default\n",
2984 callout_init(&ipfw_timeout_h
);
2987 callout_reset(&ipfw_timeout_h
, hz
, ipfw_tick
, NULL
);
2990 lwkt_replymsg(&nmsg
->nm_lmsg
, error
);
2998 netmsg_init(&smsg
, &curthread
->td_msgport
, 0, ipfw_init_dispatch
);
2999 return lwkt_domsg(cpu_portfn(0), &smsg
.nm_lmsg
, 0);
3005 ipfw_fini_dispatch(struct netmsg
*nmsg
)
3011 if (ipfw_refcnt
!= 0) {
3016 callout_stop(&ipfw_timeout_h
);
3019 netmsg_service_sync();
3021 ip_fw_chk_ptr
= NULL
;
3022 ip_fw_ctl_ptr
= NULL
;
3023 ip_fw_dn_io_ptr
= NULL
;
3024 free_chain(&layer3_chain
, 1 /* kill default rule */);
3026 kprintf("IP firewall unloaded\n");
3029 lwkt_replymsg(&nmsg
->nm_lmsg
, error
);
3037 netmsg_init(&smsg
, &curthread
->td_msgport
, 0, ipfw_fini_dispatch
);
3038 return lwkt_domsg(cpu_portfn(0), &smsg
.nm_lmsg
, 0);
3041 #endif /* KLD_MODULE */
3044 ipfw_modevent(module_t mod
, int type
, void *unused
)
3055 kprintf("ipfw statically compiled, cannot unload\n");
3067 static moduledata_t ipfwmod
= {
3072 DECLARE_MODULE(ipfw
, ipfwmod
, SI_SUB_PROTO_END
, SI_ORDER_ANY
);
3073 MODULE_VERSION(ipfw
, 1);