- Test m_pkthdr.fw_flags against DUMMYNET_MBUF_TAGGED before trying to locate
[dragonfly/netmp.git] / sys / sys / thread.h
blob4971519734a1e8d00c1720758ee3ed3ad63c3915
1 /*
2 * SYS/THREAD.H
4 * Implements the architecture independant portion of the LWKT
5 * subsystem.
7 * Types which must already be defined when this header is included by
8 * userland: struct md_thread
9 *
10 * $DragonFly: src/sys/sys/thread.h,v 1.94 2008/07/01 02:02:55 dillon Exp $
13 #ifndef _SYS_THREAD_H_
14 #define _SYS_THREAD_H_
16 #ifndef _SYS_STDINT_H_
17 #include <sys/stdint.h> /* __int types */
18 #endif
19 #ifndef _SYS_PARAM_H_
20 #include <sys/param.h> /* MAXCOMLEN */
21 #endif
22 #ifndef _SYS_QUEUE_H_
23 #include <sys/queue.h> /* TAILQ_* macros */
24 #endif
25 #ifndef _SYS_MSGPORT_H_
26 #include <sys/msgport.h> /* lwkt_port */
27 #endif
28 #ifndef _SYS_TIME_H_
29 #include <sys/time.h> /* struct timeval */
30 #endif
31 #ifndef _SYS_SPINLOCK_H_
32 #include <sys/spinlock.h>
33 #endif
34 #ifndef _MACHINE_THREAD_H_
35 #include <machine/thread.h>
36 #endif
38 struct globaldata;
39 struct lwp;
40 struct proc;
41 struct thread;
42 struct lwkt_queue;
43 struct lwkt_token;
44 struct lwkt_tokref;
45 struct lwkt_ipiq;
46 struct lwkt_cpu_msg;
47 struct lwkt_cpu_port;
48 struct lwkt_msg;
49 struct lwkt_port;
50 struct lwkt_cpusync;
51 union sysunion;
53 typedef struct lwkt_queue *lwkt_queue_t;
54 typedef struct lwkt_token *lwkt_token_t;
55 typedef struct lwkt_tokref *lwkt_tokref_t;
56 typedef struct lwkt_cpu_msg *lwkt_cpu_msg_t;
57 typedef struct lwkt_cpu_port *lwkt_cpu_port_t;
58 typedef struct lwkt_ipiq *lwkt_ipiq_t;
59 typedef struct lwkt_cpusync *lwkt_cpusync_t;
60 typedef struct thread *thread_t;
62 typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
65 * Differentiation between kernel threads and user threads. Userland
66 * programs which want to access to kernel structures have to define
67 * _KERNEL_STRUCTURES. This is a kinda safety valve to prevent badly
68 * written user programs from getting an LWKT thread that is neither the
69 * kernel nor the user version.
71 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
72 #ifndef _MACHINE_THREAD_H_
73 #include <machine/thread.h> /* md_thread */
74 #endif
75 #ifndef _MACHINE_FRAME_H_
76 #include <machine/frame.h>
77 #endif
78 #else
79 struct intrframe;
80 #endif
83 * Tokens are used to serialize access to information. They are 'soft'
84 * serialization entities that only stay in effect while a thread is
85 * running. If the thread blocks, other threads can run holding the same
86 * token(s). The tokens are reacquired when the original thread resumes.
88 * A thread can depend on its serialization remaining intact through a
89 * preemption. An interrupt which attempts to use the same token as the
90 * thread being preempted will reschedule itself for non-preemptive
91 * operation, so the new token code is capable of interlocking against
92 * interrupts as well as other cpus. This means that your token can only
93 * be (temporarily) lost if you *explicitly* block.
95 * Tokens are managed through a helper reference structure, lwkt_tokref,
96 * which is typically declared on the caller's stack. Multiple tokref's
97 * may reference the same token.
99 * It is possible to detect that your token was temporarily lost via
100 * lwkt_token_is_stale(), which uses the t_lastowner field. This field
101 * does NOT necessarily represent the current owner and can become stale
102 * (not point to a valid structure). It is used solely to detect
103 * whether the token was temporarily lost to another thread. The lost
104 * state is cleared by the function.
107 typedef struct lwkt_token {
108 #ifdef SMP
109 struct spinlock t_spinlock; /* Controls access */
110 #else
111 struct spinlock t_unused01;
112 #endif
113 struct thread *t_owner; /* The current owner of the token */
114 int t_count; /* Per-thread count */
115 struct thread *t_lastowner; /* Last owner that acquired token */
116 } lwkt_token;
118 typedef struct lwkt_tokref {
119 lwkt_token_t tr_tok; /* token in question */
120 lwkt_tokref_t tr_next; /* linked list */
121 int tr_state; /* 0 = don't have, 1 = have */
122 } lwkt_tokref;
124 #define LWKT_TOKREF_INIT(tok) \
125 { tok, NULL, 0 }
126 #define LWKT_TOKREF_DECLARE(name, tok) \
127 lwkt_tokref name = LWKT_TOKREF_INIT(tok)
129 #define MAXCPUFIFO 16 /* power of 2 */
130 #define MAXCPUFIFO_MASK (MAXCPUFIFO - 1)
131 #define LWKT_MAXTOKENS 16 /* max tokens beneficially held by thread */
134 * Always cast to ipifunc_t when registering an ipi. The actual ipi function
135 * is called with both the data and an interrupt frame, but the ipi function
136 * that is registered might only declare a data argument.
138 typedef void (*ipifunc1_t)(void *arg);
139 typedef void (*ipifunc2_t)(void *arg, int arg2);
140 typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
142 typedef struct lwkt_ipiq {
143 int ip_rindex; /* only written by target cpu */
144 int ip_xindex; /* written by target, indicates completion */
145 int ip_windex; /* only written by source cpu */
146 ipifunc3_t ip_func[MAXCPUFIFO];
147 void *ip_arg1[MAXCPUFIFO];
148 int ip_arg2[MAXCPUFIFO];
149 u_int ip_npoll; /* synchronization to avoid excess IPIs */
150 } lwkt_ipiq;
153 * CPU Synchronization structure. See lwkt_cpusync_start() and
154 * lwkt_cpusync_finish() for more information.
156 typedef void (*cpusync_func_t)(lwkt_cpusync_t poll);
157 typedef void (*cpusync_func2_t)(void *data);
159 struct lwkt_cpusync {
160 cpusync_func_t cs_run_func; /* run (tandem w/ acquire) */
161 cpusync_func_t cs_fin1_func; /* fin1 (synchronized) */
162 cpusync_func2_t cs_fin2_func; /* fin2 (tandem w/ release) */
163 void *cs_data;
164 int cs_maxcount;
165 volatile int cs_count;
166 cpumask_t cs_mask;
170 * The standard message and queue structure used for communications between
171 * cpus. Messages are typically queued via a machine-specific non-linked
172 * FIFO matrix allowing any cpu to send a message to any other cpu without
173 * blocking.
175 typedef struct lwkt_cpu_msg {
176 void (*cm_func)(lwkt_cpu_msg_t msg); /* primary dispatch function */
177 int cm_code; /* request code if applicable */
178 int cm_cpu; /* reply to cpu */
179 thread_t cm_originator; /* originating thread for wakeup */
180 } lwkt_cpu_msg;
183 * Thread structure. Note that ownership of a thread structure is special
184 * cased and there is no 'token'. A thread is always owned by the cpu
185 * represented by td_gd, any manipulation of the thread by some other cpu
186 * must be done through cpu_*msg() functions. e.g. you could request
187 * ownership of a thread that way, or hand a thread off to another cpu.
189 * NOTE: td_pri is bumped by TDPRI_CRIT when entering a critical section,
190 * but this does not effect how the thread is scheduled by LWKT.
192 struct md_intr_info;
193 struct caps_kinfo;
195 struct thread {
196 TAILQ_ENTRY(thread) td_threadq;
197 TAILQ_ENTRY(thread) td_allq;
198 lwkt_port td_msgport; /* built-in message port for replies */
199 struct lwp *td_lwp; /* (optional) associated lwp */
200 struct proc *td_proc; /* (optional) associated process */
201 struct pcb *td_pcb; /* points to pcb and top of kstack */
202 struct globaldata *td_gd; /* associated with this cpu */
203 const char *td_wmesg; /* string name for blockage */
204 void *td_wchan; /* waiting on channel */
205 int td_pri; /* 0-31, 31=highest priority (note 1) */
206 int td_flags; /* TDF flags */
207 int td_wdomain; /* domain for wchan address (typ 0) */
208 void (*td_preemptable)(struct thread *td, int critpri);
209 void (*td_release)(struct thread *td);
210 char *td_kstack; /* kernel stack */
211 int td_kstack_size; /* size of kernel stack */
212 char *td_sp; /* kernel stack pointer for LWKT restore */
213 void (*td_switch)(struct thread *ntd);
214 __uint64_t td_uticks; /* Statclock hits in user mode (uS) */
215 __uint64_t td_sticks; /* Statclock hits in system mode (uS) */
216 __uint64_t td_iticks; /* Statclock hits processing intr (uS) */
217 int td_locks; /* lockmgr lock debugging */
218 int td_unused01;
219 int td_refs; /* hold position in gd_tdallq / hold free */
220 int td_nest_count; /* prevent splz nesting */
221 #ifdef SMP
222 int td_mpcount; /* MP lock held (count) */
223 int td_cscount; /* cpu synchronization master */
224 #else
225 int td_mpcount_unused; /* filler so size matches */
226 int td_cscount_unused;
227 #endif
228 struct timeval td_start; /* start time for a thread/process */
229 char td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
230 struct thread *td_preempted; /* we preempted this thread */
231 struct caps_kinfo *td_caps; /* list of client and server registrations */
232 lwkt_tokref_t td_toks; /* tokens beneficially held */
233 #ifdef DEBUG_CRIT_SECTIONS
234 #define CRIT_DEBUG_ARRAY_SIZE 32
235 #define CRIT_DEBUG_ARRAY_MASK (CRIT_DEBUG_ARRAY_SIZE - 1)
236 const char *td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
237 int td_crit_debug_index;
238 int td_in_crit_report;
239 #endif
240 struct md_thread td_mach;
244 * Thread flags. Note that TDF_RUNNING is cleared on the old thread after
245 * we switch to the new one, which is necessary because LWKTs don't need
246 * to hold the BGL. This flag is used by the exit code and the managed
247 * thread migration code. Note in addition that preemption will cause
248 * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
249 * must also check TDF_PREEMPT_LOCK.
251 * LWKT threads stay on their (per-cpu) run queue while running, not to
252 * be confused with user processes which are removed from the user scheduling
253 * run queue while actually running.
255 * td_threadq can represent the thread on one of three queues... the LWKT
256 * run queue, a tsleep queue, or an lwkt blocking queue. The LWKT subsystem
257 * does not allow a thread to be scheduled if it already resides on some
258 * queue.
260 #define TDF_RUNNING 0x0001 /* thread still active */
261 #define TDF_RUNQ 0x0002 /* on an LWKT run queue */
262 #define TDF_PREEMPT_LOCK 0x0004 /* I have been preempted */
263 #define TDF_PREEMPT_DONE 0x0008 /* acknowledge preemption complete */
264 #define TDF_IDLE_NOHLT 0x0010 /* we need to spin */
265 #define TDF_MIGRATING 0x0020 /* thread is being migrated */
266 #define TDF_SINTR 0x0040 /* interruptability hint for 'ps' */
267 #define TDF_TSLEEPQ 0x0080 /* on a tsleep wait queue */
269 #define TDF_SYSTHREAD 0x0100 /* allocations may use reserve */
270 #define TDF_ALLOCATED_THREAD 0x0200 /* objcache allocated thread */
271 #define TDF_ALLOCATED_STACK 0x0400 /* objcache allocated stack */
272 #define TDF_VERBOSE 0x0800 /* verbose on exit */
273 #define TDF_DEADLKTREAT 0x1000 /* special lockmgr deadlock treatment */
274 #define TDF_STOPREQ 0x2000 /* suspend_kproc */
275 #define TDF_WAKEREQ 0x4000 /* resume_kproc */
276 #define TDF_TIMEOUT 0x8000 /* tsleep timeout */
277 #define TDF_INTTHREAD 0x00010000 /* interrupt thread */
278 #define TDF_NORESCHED 0x00020000 /* Do not reschedule on wake */
279 #define TDF_BLOCKED 0x00040000 /* Thread is blocked */
280 #define TDF_PANICWARN 0x00080000 /* panic warning in switch */
281 #define TDF_BLOCKQ 0x00100000 /* on block queue */
282 #define TDF_MPSAFE 0x00200000 /* (thread creation) */
283 #define TDF_EXITING 0x00400000 /* thread exiting */
284 #define TDF_USINGFP 0x00800000 /* thread using fp coproc */
285 #define TDF_KERNELFP 0x01000000 /* kernel using fp coproc */
288 * Thread priorities. Typically only one thread from any given
289 * user process scheduling queue is on the LWKT run queue at a time.
290 * Remember that there is one LWKT run queue per cpu.
292 * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
293 * causes interrupts to be masked as they occur. When this occurs a
294 * rollup flag will be set in mycpu->gd_reqflags.
296 #define TDPRI_IDLE_THREAD 0 /* the idle thread */
297 #define TDPRI_USER_SCHEDULER 2 /* user scheduler helper */
298 #define TDPRI_USER_IDLE 4 /* user scheduler idle */
299 #define TDPRI_USER_NORM 6 /* user scheduler normal */
300 #define TDPRI_USER_REAL 8 /* user scheduler real time */
301 #define TDPRI_KERN_LPSCHED 9 /* scheduler helper for userland sch */
302 #define TDPRI_KERN_USER 10 /* kernel / block in syscall */
303 #define TDPRI_KERN_DAEMON 12 /* kernel daemon (pageout, etc) */
304 #define TDPRI_SOFT_NORM 14 /* kernel / normal */
305 #define TDPRI_SOFT_TIMER 16 /* kernel / timer */
306 #define TDPRI_EXITING 19 /* exiting thread */
307 #define TDPRI_INT_SUPPORT 20 /* kernel / high priority support */
308 #define TDPRI_INT_LOW 27 /* low priority interrupt */
309 #define TDPRI_INT_MED 28 /* medium priority interrupt */
310 #define TDPRI_INT_HIGH 29 /* high priority interrupt */
311 #define TDPRI_MAX 31
313 #define TDPRI_MASK 31
314 #define TDPRI_CRIT 32 /* high bits of td_pri used for crit */
316 #ifdef _KERNEL
317 #define LWKT_THREAD_STACK (UPAGES * PAGE_SIZE)
318 #endif
320 #define CACHE_NTHREADS 6
322 #define IN_CRITICAL_SECT(td) ((td)->td_pri >= TDPRI_CRIT)
324 extern void lwkt_init(void);
325 extern struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
326 extern void lwkt_init_thread(struct thread *, void *, int, int,
327 struct globaldata *);
328 extern void lwkt_set_comm(thread_t, const char *, ...);
329 extern void lwkt_wait_free(struct thread *);
330 extern void lwkt_free_thread(struct thread *);
331 extern void lwkt_gdinit(struct globaldata *);
332 extern void lwkt_switch(void);
333 extern void lwkt_preempt(thread_t, int);
334 extern void lwkt_schedule(thread_t);
335 extern void lwkt_schedule_self(thread_t);
336 extern void lwkt_deschedule(thread_t);
337 extern void lwkt_deschedule_self(thread_t);
338 extern void lwkt_yield(void);
339 extern void lwkt_yield_quick(void);
340 extern void lwkt_token_wait(void);
341 extern void lwkt_hold(thread_t);
342 extern void lwkt_rele(thread_t);
344 extern void lwkt_gettoken(lwkt_tokref_t, lwkt_token_t);
345 extern int lwkt_trytoken(lwkt_tokref_t, lwkt_token_t);
346 extern void lwkt_gettokref(lwkt_tokref_t);
347 extern int lwkt_trytokref(lwkt_tokref_t);
348 extern void lwkt_reltoken(lwkt_tokref_t);
349 extern int lwkt_getalltokens(thread_t);
350 extern void lwkt_relalltokens(thread_t);
351 extern void lwkt_drain_token_requests(void);
352 extern void lwkt_token_init(lwkt_token_t);
353 extern void lwkt_token_uninit(lwkt_token_t);
354 extern int lwkt_token_is_stale(lwkt_tokref_t);
356 extern void lwkt_token_pool_init(void);
357 extern lwkt_token_t lwkt_token_pool_get(void *);
359 extern void lwkt_setpri(thread_t, int);
360 extern void lwkt_setpri_self(int);
361 extern int lwkt_checkpri_self(void);
362 extern void lwkt_setcpu_self(struct globaldata *);
363 extern void lwkt_migratecpu(int);
365 #ifdef SMP
367 extern void lwkt_giveaway(struct thread *);
368 extern void lwkt_acquire(struct thread *);
369 extern int lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
370 extern int lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t,
371 void *, int);
372 extern int lwkt_send_ipiq3_nowait(struct globaldata *, ipifunc3_t,
373 void *, int);
374 extern int lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
375 extern int lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
376 extern void lwkt_wait_ipiq(struct globaldata *, int);
377 extern int lwkt_seq_ipiq(struct globaldata *);
378 extern void lwkt_process_ipiq(void);
379 #ifdef _KERNEL
380 extern void lwkt_process_ipiq_frame(struct intrframe *);
381 #endif
382 extern void lwkt_smp_stopped(void);
383 extern void lwkt_synchronize_ipiqs(const char *);
385 #endif /* SMP */
387 extern void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
388 extern void lwkt_cpusync_fastdata(cpumask_t, cpusync_func2_t, void *);
389 extern void lwkt_cpusync_start(cpumask_t, lwkt_cpusync_t);
390 extern void lwkt_cpusync_add(cpumask_t, lwkt_cpusync_t);
391 extern void lwkt_cpusync_finish(lwkt_cpusync_t);
393 extern void crit_panic(void);
394 extern struct lwp *lwkt_preempted_proc(void);
396 extern int lwkt_create (void (*func)(void *), void *, struct thread **,
397 struct thread *, int, int, const char *, ...);
398 extern void lwkt_exit (void) __dead2;
399 extern void lwkt_remove_tdallq (struct thread *);
400 extern void lwkt_mp_lock_contested(void);
402 #endif