- Test m_pkthdr.fw_flags against DUMMYNET_MBUF_TAGGED before trying to locate
[dragonfly/netmp.git] / sys / netinet / ip_output.c
blob5959fba3b17e48d0db976cd0b9e8bb5dce10072e
1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
30 * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31 * $DragonFly: src/sys/netinet/ip_output.c,v 1.50 2008/08/23 04:12:23 sephe Exp $
34 #define _IP_VHL
36 #include "opt_ipfw.h"
37 #include "opt_ipdn.h"
38 #include "opt_ipdivert.h"
39 #include "opt_ipfilter.h"
40 #include "opt_ipsec.h"
41 #include "opt_mbuf_stress_test.h"
42 #include "opt_mpls.h"
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/proc.h>
53 #include <sys/sysctl.h>
54 #include <sys/thread2.h>
55 #include <sys/in_cksum.h>
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/pfil.h>
60 #include <net/route.h>
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip_var.h>
69 #include <netproto/mpls/mpls_var.h>
71 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
73 #ifdef IPSEC
74 #include <netinet6/ipsec.h>
75 #include <netproto/key/key.h>
76 #ifdef IPSEC_DEBUG
77 #include <netproto/key/key_debug.h>
78 #else
79 #define KEYDEBUG(lev,arg)
80 #endif
81 #endif /*IPSEC*/
83 #ifdef FAST_IPSEC
84 #include <netproto/ipsec/ipsec.h>
85 #include <netproto/ipsec/xform.h>
86 #include <netproto/ipsec/key.h>
87 #endif /*FAST_IPSEC*/
89 #include <net/ipfw/ip_fw.h>
90 #include <net/dummynet/ip_dummynet.h>
92 #define print_ip(x, a, y) kprintf("%s %d.%d.%d.%d%s",\
93 x, (ntohl(a.s_addr)>>24)&0xFF,\
94 (ntohl(a.s_addr)>>16)&0xFF,\
95 (ntohl(a.s_addr)>>8)&0xFF,\
96 (ntohl(a.s_addr))&0xFF, y);
98 u_short ip_id;
100 #ifdef MBUF_STRESS_TEST
101 int mbuf_frag_size = 0;
102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
103 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
104 #endif
106 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
107 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
108 static void ip_mloopback
109 (struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
110 static int ip_getmoptions
111 (struct sockopt *, struct ip_moptions *);
112 static int ip_pcbopts(int, struct mbuf **, struct mbuf *);
113 static int ip_setmoptions
114 (struct sockopt *, struct ip_moptions **);
116 int ip_optcopy(struct ip *, struct ip *);
119 extern struct protosw inetsw[];
122 * IP output. The packet in mbuf chain m contains a skeletal IP
123 * header (with len, off, ttl, proto, tos, src, dst).
124 * The mbuf chain containing the packet will be freed.
125 * The mbuf opt, if present, will not be freed.
128 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
129 int flags, struct ip_moptions *imo, struct inpcb *inp)
131 struct ip *ip;
132 struct ifnet *ifp = NULL; /* keep compiler happy */
133 struct mbuf *m;
134 int hlen = sizeof(struct ip);
135 int len, off, error = 0;
136 struct sockaddr_in *dst = NULL; /* keep compiler happy */
137 struct in_ifaddr *ia = NULL;
138 int isbroadcast, sw_csum;
139 struct in_addr pkt_dst;
140 struct route iproute;
141 struct m_tag *dn_mtag = NULL, *mtag;
142 #ifdef IPSEC
143 struct secpolicy *sp = NULL;
144 struct socket *so = inp ? inp->inp_socket : NULL;
145 #endif
146 #ifdef FAST_IPSEC
147 struct secpolicy *sp = NULL;
148 struct tdb_ident *tdbi;
149 #endif /* FAST_IPSEC */
150 struct ip_fw_args args;
151 struct sockaddr_in *next_hop = NULL;
152 int src_was_INADDR_ANY = 0; /* as the name says... */
154 args.eh = NULL;
155 args.rule = NULL;
157 m = m0;
158 M_ASSERTPKTHDR(m);
160 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
161 /* Next hop */
162 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
163 KKASSERT(mtag != NULL);
164 next_hop = m_tag_data(mtag);
167 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
168 struct dn_pkt *dn_pkt;
170 /* Extract info from dummynet tag */
171 dn_mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
172 KKASSERT(dn_mtag != NULL);
173 dn_pkt = m_tag_data(dn_mtag);
176 * The packet was already tagged, so part of the
177 * processing was already done, and we need to go down.
178 * Get parameters from the tag.
180 args.rule = dn_pkt->dn_priv;
181 KKASSERT(args.rule != NULL);
182 opt = NULL;
183 ro = &dn_pkt->ro;
184 imo = NULL;
185 dst = dn_pkt->dn_dst;
186 ifp = dn_pkt->ifp;
187 flags = dn_pkt->flags;
190 * Don't delete the dummynet tag here, just unlink it,
191 * since some local variables (like 'ro' and 'dst') are
192 * still referencing certain parts of it.
193 * The dummynet tag will be freed at the end of the
194 * output process.
196 m_tag_unlink(m, dn_mtag);
197 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
200 if (ro == NULL) {
201 ro = &iproute;
202 bzero(ro, sizeof *ro);
205 if (args.rule != NULL) { /* dummynet already saw us */
206 ip = mtod(m, struct ip *);
207 hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
208 if (ro->ro_rt)
209 ia = ifatoia(ro->ro_rt->rt_ifa);
210 goto sendit;
213 if (opt) {
214 len = 0;
215 m = ip_insertoptions(m, opt, &len);
216 if (len != 0)
217 hlen = len;
219 ip = mtod(m, struct ip *);
220 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
223 * Fill in IP header.
225 if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
226 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
227 ip->ip_off &= IP_DF;
228 ip->ip_id = ip_newid();
229 ipstat.ips_localout++;
230 } else {
231 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
234 dst = (struct sockaddr_in *)&ro->ro_dst;
236 * If there is a cached route,
237 * check that it is to the same destination
238 * and is still up. If not, free it and try again.
239 * The address family should also be checked in case of sharing the
240 * cache with IPv6.
242 if (ro->ro_rt &&
243 (!(ro->ro_rt->rt_flags & RTF_UP) ||
244 dst->sin_family != AF_INET ||
245 dst->sin_addr.s_addr != pkt_dst.s_addr)) {
246 rtfree(ro->ro_rt);
247 ro->ro_rt = (struct rtentry *)NULL;
249 if (ro->ro_rt == NULL) {
250 bzero(dst, sizeof *dst);
251 dst->sin_family = AF_INET;
252 dst->sin_len = sizeof *dst;
253 dst->sin_addr = pkt_dst;
256 * If routing to interface only,
257 * short circuit routing lookup.
259 if (flags & IP_ROUTETOIF) {
260 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
261 (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
262 ipstat.ips_noroute++;
263 error = ENETUNREACH;
264 goto bad;
266 ifp = ia->ia_ifp;
267 ip->ip_ttl = 1;
268 isbroadcast = in_broadcast(dst->sin_addr, ifp);
269 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
270 imo != NULL && imo->imo_multicast_ifp != NULL) {
272 * Bypass the normal routing lookup for multicast
273 * packets if the interface is specified.
275 ifp = imo->imo_multicast_ifp;
276 ia = IFP_TO_IA(ifp);
277 isbroadcast = 0; /* fool gcc */
278 } else {
280 * If this is the case, we probably don't want to allocate
281 * a protocol-cloned route since we didn't get one from the
282 * ULP. This lets TCP do its thing, while not burdening
283 * forwarding or ICMP with the overhead of cloning a route.
284 * Of course, we still want to do any cloning requested by
285 * the link layer, as this is probably required in all cases
286 * for correct operation (as it is for ARP).
288 if (ro->ro_rt == NULL)
289 rtalloc_ign(ro, RTF_PRCLONING);
290 if (ro->ro_rt == NULL) {
291 ipstat.ips_noroute++;
292 error = EHOSTUNREACH;
293 goto bad;
295 ia = ifatoia(ro->ro_rt->rt_ifa);
296 ifp = ro->ro_rt->rt_ifp;
297 ro->ro_rt->rt_use++;
298 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
299 dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
300 if (ro->ro_rt->rt_flags & RTF_HOST)
301 isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
302 else
303 isbroadcast = in_broadcast(dst->sin_addr, ifp);
305 if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
306 struct in_multi *inm;
308 m->m_flags |= M_MCAST;
310 * IP destination address is multicast. Make sure "dst"
311 * still points to the address in "ro". (It may have been
312 * changed to point to a gateway address, above.)
314 dst = (struct sockaddr_in *)&ro->ro_dst;
316 * See if the caller provided any multicast options
318 if (imo != NULL) {
319 ip->ip_ttl = imo->imo_multicast_ttl;
320 if (imo->imo_multicast_vif != -1)
321 ip->ip_src.s_addr =
322 ip_mcast_src ?
323 ip_mcast_src(imo->imo_multicast_vif) :
324 INADDR_ANY;
325 } else
326 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
328 * Confirm that the outgoing interface supports multicast.
330 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
331 if (!(ifp->if_flags & IFF_MULTICAST)) {
332 ipstat.ips_noroute++;
333 error = ENETUNREACH;
334 goto bad;
338 * If source address not specified yet, use address
339 * of outgoing interface.
341 if (ip->ip_src.s_addr == INADDR_ANY) {
342 /* Interface may have no addresses. */
343 if (ia != NULL)
344 ip->ip_src = IA_SIN(ia)->sin_addr;
347 IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
348 if (inm != NULL &&
349 (imo == NULL || imo->imo_multicast_loop)) {
351 * If we belong to the destination multicast group
352 * on the outgoing interface, and the caller did not
353 * forbid loopback, loop back a copy.
355 ip_mloopback(ifp, m, dst, hlen);
357 else {
359 * If we are acting as a multicast router, perform
360 * multicast forwarding as if the packet had just
361 * arrived on the interface to which we are about
362 * to send. The multicast forwarding function
363 * recursively calls this function, using the
364 * IP_FORWARDING flag to prevent infinite recursion.
366 * Multicasts that are looped back by ip_mloopback(),
367 * above, will be forwarded by the ip_input() routine,
368 * if necessary.
370 if (ip_mrouter && !(flags & IP_FORWARDING)) {
372 * If rsvp daemon is not running, do not
373 * set ip_moptions. This ensures that the packet
374 * is multicast and not just sent down one link
375 * as prescribed by rsvpd.
377 if (!rsvp_on)
378 imo = NULL;
379 if (ip_mforward &&
380 ip_mforward(ip, ifp, m, imo) != 0) {
381 m_freem(m);
382 goto done;
388 * Multicasts with a time-to-live of zero may be looped-
389 * back, above, but must not be transmitted on a network.
390 * Also, multicasts addressed to the loopback interface
391 * are not sent -- the above call to ip_mloopback() will
392 * loop back a copy if this host actually belongs to the
393 * destination group on the loopback interface.
395 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
396 m_freem(m);
397 goto done;
400 goto sendit;
402 #ifndef notdef
404 * If the source address is not specified yet, use the address
405 * of the outoing interface. In case, keep note we did that, so
406 * if the the firewall changes the next-hop causing the output
407 * interface to change, we can fix that.
409 if (ip->ip_src.s_addr == INADDR_ANY) {
410 /* Interface may have no addresses. */
411 if (ia != NULL) {
412 ip->ip_src = IA_SIN(ia)->sin_addr;
413 src_was_INADDR_ANY = 1;
416 #endif /* notdef */
417 #ifdef ALTQ
419 * Disable packet drop hack.
420 * Packetdrop should be done by queueing.
422 #else /* !ALTQ */
424 * Verify that we have any chance at all of being able to queue
425 * the packet or packet fragments
427 if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
428 ifp->if_snd.ifq_maxlen) {
429 error = ENOBUFS;
430 ipstat.ips_odropped++;
431 goto bad;
433 #endif /* !ALTQ */
436 * Look for broadcast address and
437 * verify user is allowed to send
438 * such a packet.
440 if (isbroadcast) {
441 if (!(ifp->if_flags & IFF_BROADCAST)) {
442 error = EADDRNOTAVAIL;
443 goto bad;
445 if (!(flags & IP_ALLOWBROADCAST)) {
446 error = EACCES;
447 goto bad;
449 /* don't allow broadcast messages to be fragmented */
450 if (ip->ip_len > ifp->if_mtu) {
451 error = EMSGSIZE;
452 goto bad;
454 m->m_flags |= M_BCAST;
455 } else {
456 m->m_flags &= ~M_BCAST;
459 sendit:
460 #ifdef IPSEC
461 /* get SP for this packet */
462 if (so == NULL)
463 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
464 else
465 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
467 if (sp == NULL) {
468 ipsecstat.out_inval++;
469 goto bad;
472 error = 0;
474 /* check policy */
475 switch (sp->policy) {
476 case IPSEC_POLICY_DISCARD:
478 * This packet is just discarded.
480 ipsecstat.out_polvio++;
481 goto bad;
483 case IPSEC_POLICY_BYPASS:
484 case IPSEC_POLICY_NONE:
485 /* no need to do IPsec. */
486 goto skip_ipsec;
488 case IPSEC_POLICY_IPSEC:
489 if (sp->req == NULL) {
490 /* acquire a policy */
491 error = key_spdacquire(sp);
492 goto bad;
494 break;
496 case IPSEC_POLICY_ENTRUST:
497 default:
498 kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
501 struct ipsec_output_state state;
502 bzero(&state, sizeof state);
503 state.m = m;
504 if (flags & IP_ROUTETOIF) {
505 state.ro = &iproute;
506 bzero(&iproute, sizeof iproute);
507 } else
508 state.ro = ro;
509 state.dst = (struct sockaddr *)dst;
511 ip->ip_sum = 0;
514 * XXX
515 * delayed checksums are not currently compatible with IPsec
517 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
518 in_delayed_cksum(m);
519 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
522 ip->ip_len = htons(ip->ip_len);
523 ip->ip_off = htons(ip->ip_off);
525 error = ipsec4_output(&state, sp, flags);
527 m = state.m;
528 if (flags & IP_ROUTETOIF) {
530 * if we have tunnel mode SA, we may need to ignore
531 * IP_ROUTETOIF.
533 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
534 flags &= ~IP_ROUTETOIF;
535 ro = state.ro;
537 } else
538 ro = state.ro;
539 dst = (struct sockaddr_in *)state.dst;
540 if (error) {
541 /* mbuf is already reclaimed in ipsec4_output. */
542 m0 = NULL;
543 switch (error) {
544 case EHOSTUNREACH:
545 case ENETUNREACH:
546 case EMSGSIZE:
547 case ENOBUFS:
548 case ENOMEM:
549 break;
550 default:
551 kprintf("ip4_output (ipsec): error code %d\n", error);
552 /*fall through*/
553 case ENOENT:
554 /* don't show these error codes to the user */
555 error = 0;
556 break;
558 goto bad;
562 /* be sure to update variables that are affected by ipsec4_output() */
563 ip = mtod(m, struct ip *);
564 #ifdef _IP_VHL
565 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
566 #else
567 hlen = ip->ip_hl << 2;
568 #endif
569 if (ro->ro_rt == NULL) {
570 if (!(flags & IP_ROUTETOIF)) {
571 kprintf("ip_output: "
572 "can't update route after IPsec processing\n");
573 error = EHOSTUNREACH; /*XXX*/
574 goto bad;
576 } else {
577 ia = ifatoia(ro->ro_rt->rt_ifa);
578 ifp = ro->ro_rt->rt_ifp;
581 /* make it flipped, again. */
582 ip->ip_len = ntohs(ip->ip_len);
583 ip->ip_off = ntohs(ip->ip_off);
584 skip_ipsec:
585 #endif /*IPSEC*/
586 #ifdef FAST_IPSEC
588 * Check the security policy (SP) for the packet and, if
589 * required, do IPsec-related processing. There are two
590 * cases here; the first time a packet is sent through
591 * it will be untagged and handled by ipsec4_checkpolicy.
592 * If the packet is resubmitted to ip_output (e.g. after
593 * AH, ESP, etc. processing), there will be a tag to bypass
594 * the lookup and related policy checking.
596 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
597 crit_enter();
598 if (mtag != NULL) {
599 tdbi = (struct tdb_ident *)m_tag_data(mtag);
600 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
601 if (sp == NULL)
602 error = -EINVAL; /* force silent drop */
603 m_tag_delete(m, mtag);
604 } else {
605 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
606 &error, inp);
609 * There are four return cases:
610 * sp != NULL apply IPsec policy
611 * sp == NULL, error == 0 no IPsec handling needed
612 * sp == NULL, error == -EINVAL discard packet w/o error
613 * sp == NULL, error != 0 discard packet, report error
615 if (sp != NULL) {
616 /* Loop detection, check if ipsec processing already done */
617 KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
618 for (mtag = m_tag_first(m); mtag != NULL;
619 mtag = m_tag_next(m, mtag)) {
620 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
621 continue;
622 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
623 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
624 continue;
626 * Check if policy has an SA associated with it.
627 * This can happen when an SP has yet to acquire
628 * an SA; e.g. on first reference. If it occurs,
629 * then we let ipsec4_process_packet do its thing.
631 if (sp->req->sav == NULL)
632 break;
633 tdbi = (struct tdb_ident *)m_tag_data(mtag);
634 if (tdbi->spi == sp->req->sav->spi &&
635 tdbi->proto == sp->req->sav->sah->saidx.proto &&
636 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
637 sizeof(union sockaddr_union)) == 0) {
639 * No IPsec processing is needed, free
640 * reference to SP.
642 * NB: null pointer to avoid free at
643 * done: below.
645 KEY_FREESP(&sp), sp = NULL;
646 crit_exit();
647 goto spd_done;
652 * Do delayed checksums now because we send before
653 * this is done in the normal processing path.
655 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
656 in_delayed_cksum(m);
657 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
660 ip->ip_len = htons(ip->ip_len);
661 ip->ip_off = htons(ip->ip_off);
663 /* NB: callee frees mbuf */
664 error = ipsec4_process_packet(m, sp->req, flags, 0);
666 * Preserve KAME behaviour: ENOENT can be returned
667 * when an SA acquire is in progress. Don't propagate
668 * this to user-level; it confuses applications.
670 * XXX this will go away when the SADB is redone.
672 if (error == ENOENT)
673 error = 0;
674 crit_exit();
675 goto done;
676 } else {
677 crit_exit();
679 if (error != 0) {
681 * Hack: -EINVAL is used to signal that a packet
682 * should be silently discarded. This is typically
683 * because we asked key management for an SA and
684 * it was delayed (e.g. kicked up to IKE).
686 if (error == -EINVAL)
687 error = 0;
688 goto bad;
689 } else {
690 /* No IPsec processing for this packet. */
692 #ifdef notyet
694 * If deferred crypto processing is needed, check that
695 * the interface supports it.
697 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
698 if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
699 /* notify IPsec to do its own crypto */
700 ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
701 error = EHOSTUNREACH;
702 goto bad;
704 #endif
706 spd_done:
707 #endif /* FAST_IPSEC */
709 * IpHack's section.
710 * - Xlate: translate packet's addr/port (NAT).
711 * - Firewall: deny/allow/etc.
712 * - Wrap: fake packet's addr/port <unimpl.>
713 * - Encapsulate: put it in another IP and send out. <unimp.>
717 * Run through list of hooks for output packets.
719 if (pfil_has_hooks(&inet_pfil_hook)) {
720 error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
721 if (error != 0 || m == NULL)
722 goto done;
723 ip = mtod(m, struct ip *);
727 * Check with the firewall...
728 * but not if we are already being fwd'd from a firewall.
730 if (fw_enable && IPFW_LOADED && !next_hop) {
731 struct sockaddr_in *old = dst;
733 args.m = m;
734 args.oif = ifp;
735 off = ip_fw_chk_ptr(&args);
736 m = args.m;
738 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
739 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
740 KKASSERT(mtag != NULL);
741 next_hop = m_tag_data(mtag);
742 dst = next_hop;
746 * On return we must do the following:
747 * m == NULL -> drop the pkt (old interface, deprecated)
748 * (off & IP_FW_PORT_DENY_FLAG) -> drop the pkt (new interface)
749 * 1<=off<= 0xffff -> DIVERT
750 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
751 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
752 * dst != old -> IPFIREWALL_FORWARD
753 * off==0, dst==old -> accept
754 * If some of the above modules are not compiled in, then
755 * we should't have to check the corresponding condition
756 * (because the ipfw control socket should not accept
757 * unsupported rules), but better play safe and drop
758 * packets in case of doubt.
760 if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
761 if (m)
762 m_freem(m);
763 error = EACCES;
764 goto done;
766 ip = mtod(m, struct ip *);
767 if (off == 0 && dst == old) /* common case */
768 goto pass;
769 if (off & IP_FW_PORT_DYNT_FLAG) {
771 * pass the pkt to dummynet. Need to include
772 * pipe number, m, ifp, ro, dst because these are
773 * not recomputed in the next pass.
774 * All other parameters have been already used and
775 * so they are not needed anymore.
776 * XXX note: if the ifp or ro entry are deleted
777 * while a pkt is in dummynet, we are in trouble!
779 args.ro = ro;
780 args.dst = dst;
781 args.flags = flags;
783 error = 0;
784 ip_fw_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT, &args);
785 goto done;
787 #ifdef IPDIVERT
788 if (off != 0 && !(off & IP_FW_PORT_DYNT_FLAG)) {
789 struct mbuf *clone = NULL;
791 /* Clone packet if we're doing a 'tee' */
792 if ((off & IP_FW_PORT_TEE_FLAG))
793 clone = m_dup(m, MB_DONTWAIT);
796 * XXX
797 * delayed checksums are not currently compatible
798 * with divert sockets.
800 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
801 in_delayed_cksum(m);
802 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
805 /* Restore packet header fields to original values */
806 ip->ip_len = htons(ip->ip_len);
807 ip->ip_off = htons(ip->ip_off);
809 /* Deliver packet to divert input routine */
810 divert_packet(m, 0, off & 0xffff);
812 /* If 'tee', continue with original packet */
813 if (clone != NULL) {
814 m = clone;
815 ip = mtod(m, struct ip *);
816 goto pass;
818 goto done;
820 #endif
822 /* IPFIREWALL_FORWARD */
824 * Check dst to make sure it is directly reachable on the
825 * interface we previously thought it was.
826 * If it isn't (which may be likely in some situations) we have
827 * to re-route it (ie, find a route for the next-hop and the
828 * associated interface) and set them here. This is nested
829 * forwarding which in most cases is undesirable, except where
830 * such control is nigh impossible. So we do it here.
831 * And I'm babbling.
833 if (off == 0 && old != dst) { /* FORWARD, dst has changed */
834 #if 0
836 * XXX To improve readability, this block should be
837 * changed into a function call as below:
839 error = ip_ipforward(&m, &dst, &ifp);
840 if (error)
841 goto bad;
842 if (m == NULL) /* ip_input consumed the mbuf */
843 goto done;
844 #else
845 struct in_ifaddr *ia;
846 struct in_ifaddr_container *iac;
849 * XXX sro_fwd below is static, and a pointer
850 * to it gets passed to routines downstream.
851 * This could have surprisingly bad results in
852 * practice, because its content is overwritten
853 * by subsequent packets.
855 /* There must be a better way to do this next line... */
856 static struct route sro_fwd;
857 struct route *ro_fwd = &sro_fwd;
859 #if 0
860 print_ip("IPFIREWALL_FORWARD: New dst ip: ",
861 dst->sin_addr, "\n");
862 #endif
865 * We need to figure out if we have been forwarded
866 * to a local socket. If so, then we should somehow
867 * "loop back" to ip_input, and get directed to the
868 * PCB as if we had received this packet. This is
869 * because it may be dificult to identify the packets
870 * you want to forward until they are being output
871 * and have selected an interface. (e.g. locally
872 * initiated packets) If we used the loopback inteface,
873 * we would not be able to control what happens
874 * as the packet runs through ip_input() as
875 * it is done through a ISR.
877 ia = NULL;
878 LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr),
879 ia_hash) {
881 * If the addr to forward to is one
882 * of ours, we pretend to
883 * be the destination for this packet.
885 if (IA_SIN(iac->ia)->sin_addr.s_addr ==
886 dst->sin_addr.s_addr) {
887 ia = iac->ia;
888 break;
891 if (ia != NULL) { /* tell ip_input "dont filter" */
892 if (m->m_pkthdr.rcvif == NULL)
893 m->m_pkthdr.rcvif = ifunit("lo0");
894 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
895 m->m_pkthdr.csum_flags |=
896 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
897 m->m_pkthdr.csum_data = 0xffff;
899 m->m_pkthdr.csum_flags |=
900 CSUM_IP_CHECKED | CSUM_IP_VALID;
901 ip->ip_len = htons(ip->ip_len);
902 ip->ip_off = htons(ip->ip_off);
903 ip_input(m);
904 goto done;
906 /* Some of the logic for this was nicked from above.
908 * This rewrites the cached route in a local PCB.
909 * Is this what we want to do?
911 bcopy(dst, &ro_fwd->ro_dst, sizeof *dst);
912 ro_fwd->ro_rt = NULL;
914 rtalloc_ign(ro_fwd, RTF_PRCLONING);
915 if (ro_fwd->ro_rt == NULL) {
916 ipstat.ips_noroute++;
917 error = EHOSTUNREACH;
918 goto bad;
921 ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
922 ifp = ro_fwd->ro_rt->rt_ifp;
923 ro_fwd->ro_rt->rt_use++;
924 if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
925 dst = (struct sockaddr_in *)
926 ro_fwd->ro_rt->rt_gateway;
927 if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
928 isbroadcast =
929 (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
930 else
931 isbroadcast = in_broadcast(dst->sin_addr, ifp);
932 if (ro->ro_rt != NULL)
933 rtfree(ro->ro_rt);
934 ro->ro_rt = ro_fwd->ro_rt;
935 dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
937 #endif /* ... block to be put into a function */
939 * If we added a default src ip earlier,
940 * which would have been gotten from the-then
941 * interface, do it again, from the new one.
943 if (src_was_INADDR_ANY)
944 ip->ip_src = IA_SIN(ia)->sin_addr;
945 goto pass ;
949 * if we get here, none of the above matches, and
950 * we have to drop the pkt
952 m_freem(m);
953 error = EACCES; /* not sure this is the right error msg */
954 goto done;
957 pass:
958 /* 127/8 must not appear on wire - RFC1122. */
959 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
960 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
961 if (!(ifp->if_flags & IFF_LOOPBACK)) {
962 ipstat.ips_badaddr++;
963 error = EADDRNOTAVAIL;
964 goto bad;
968 m->m_pkthdr.csum_flags |= CSUM_IP;
969 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
970 if (sw_csum & CSUM_DELAY_DATA) {
971 in_delayed_cksum(m);
972 sw_csum &= ~CSUM_DELAY_DATA;
974 m->m_pkthdr.csum_flags &= ifp->if_hwassist;
977 * If small enough for interface, or the interface will take
978 * care of the fragmentation for us, can just send directly.
980 if (ip->ip_len <= ifp->if_mtu || ((ifp->if_hwassist & CSUM_FRAGMENT) &&
981 !(ip->ip_off & IP_DF))) {
982 ip->ip_len = htons(ip->ip_len);
983 ip->ip_off = htons(ip->ip_off);
984 ip->ip_sum = 0;
985 if (sw_csum & CSUM_DELAY_IP) {
986 if (ip->ip_vhl == IP_VHL_BORING) {
987 ip->ip_sum = in_cksum_hdr(ip);
988 } else {
989 ip->ip_sum = in_cksum(m, hlen);
993 /* Record statistics for this interface address. */
994 if (!(flags & IP_FORWARDING) && ia) {
995 ia->ia_ifa.if_opackets++;
996 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
999 #ifdef IPSEC
1000 /* clean ipsec history once it goes out of the node */
1001 ipsec_delaux(m);
1002 #endif
1004 #ifdef MBUF_STRESS_TEST
1005 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1006 struct mbuf *m1, *m2;
1007 int length, tmp;
1009 tmp = length = m->m_pkthdr.len;
1011 while ((length -= mbuf_frag_size) >= 1) {
1012 m1 = m_split(m, length, MB_DONTWAIT);
1013 if (m1 == NULL)
1014 break;
1015 m2 = m;
1016 while (m2->m_next != NULL)
1017 m2 = m2->m_next;
1018 m2->m_next = m1;
1020 m->m_pkthdr.len = tmp;
1022 #endif
1024 #ifdef MPLS
1025 if (!mpls_output_process(m, ro->ro_rt))
1026 goto done;
1027 #endif
1028 error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1029 ro->ro_rt);
1030 goto done;
1033 if (ip->ip_off & IP_DF) {
1034 error = EMSGSIZE;
1036 * This case can happen if the user changed the MTU
1037 * of an interface after enabling IP on it. Because
1038 * most netifs don't keep track of routes pointing to
1039 * them, there is no way for one to update all its
1040 * routes when the MTU is changed.
1042 if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1043 !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1044 (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1045 ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1047 ipstat.ips_cantfrag++;
1048 goto bad;
1052 * Too large for interface; fragment if possible. If successful,
1053 * on return, m will point to a list of packets to be sent.
1055 error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1056 if (error)
1057 goto bad;
1058 for (; m; m = m0) {
1059 m0 = m->m_nextpkt;
1060 m->m_nextpkt = NULL;
1061 #ifdef IPSEC
1062 /* clean ipsec history once it goes out of the node */
1063 ipsec_delaux(m);
1064 #endif
1065 if (error == 0) {
1066 /* Record statistics for this interface address. */
1067 if (ia != NULL) {
1068 ia->ia_ifa.if_opackets++;
1069 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1071 #ifdef MPLS
1072 if (!mpls_output_process(m, ro->ro_rt))
1073 continue;
1074 #endif
1075 error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1076 ro->ro_rt);
1077 } else {
1078 m_freem(m);
1082 if (error == 0)
1083 ipstat.ips_fragmented++;
1085 done:
1086 if (ro == &iproute && ro->ro_rt != NULL) {
1087 RTFREE(ro->ro_rt);
1088 ro->ro_rt = NULL;
1090 #ifdef IPSEC
1091 if (sp != NULL) {
1092 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1093 kprintf("DP ip_output call free SP:%p\n", sp));
1094 key_freesp(sp);
1096 #endif
1097 #ifdef FAST_IPSEC
1098 if (sp != NULL)
1099 KEY_FREESP(&sp);
1100 #endif
1101 if (dn_mtag != NULL)
1102 m_tag_free(dn_mtag);
1104 return (error);
1105 bad:
1106 m_freem(m);
1107 goto done;
1111 * Create a chain of fragments which fit the given mtu. m_frag points to the
1112 * mbuf to be fragmented; on return it points to the chain with the fragments.
1113 * Return 0 if no error. If error, m_frag may contain a partially built
1114 * chain of fragments that should be freed by the caller.
1116 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1117 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1120 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1121 u_long if_hwassist_flags, int sw_csum)
1123 int error = 0;
1124 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1125 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
1126 int off;
1127 struct mbuf *m0 = *m_frag; /* the original packet */
1128 int firstlen;
1129 struct mbuf **mnext;
1130 int nfrags;
1132 if (ip->ip_off & IP_DF) { /* Fragmentation not allowed */
1133 ipstat.ips_cantfrag++;
1134 return EMSGSIZE;
1138 * Must be able to put at least 8 bytes per fragment.
1140 if (len < 8)
1141 return EMSGSIZE;
1144 * If the interface will not calculate checksums on
1145 * fragmented packets, then do it here.
1147 if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1148 !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1149 in_delayed_cksum(m0);
1150 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1153 if (len > PAGE_SIZE) {
1155 * Fragment large datagrams such that each segment
1156 * contains a multiple of PAGE_SIZE amount of data,
1157 * plus headers. This enables a receiver to perform
1158 * page-flipping zero-copy optimizations.
1160 * XXX When does this help given that sender and receiver
1161 * could have different page sizes, and also mtu could
1162 * be less than the receiver's page size ?
1164 int newlen;
1165 struct mbuf *m;
1167 for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1168 off += m->m_len;
1171 * firstlen (off - hlen) must be aligned on an
1172 * 8-byte boundary
1174 if (off < hlen)
1175 goto smart_frag_failure;
1176 off = ((off - hlen) & ~7) + hlen;
1177 newlen = (~PAGE_MASK) & mtu;
1178 if ((newlen + sizeof(struct ip)) > mtu) {
1179 /* we failed, go back the default */
1180 smart_frag_failure:
1181 newlen = len;
1182 off = hlen + len;
1184 len = newlen;
1186 } else {
1187 off = hlen + len;
1190 firstlen = off - hlen;
1191 mnext = &m0->m_nextpkt; /* pointer to next packet */
1194 * Loop through length of segment after first fragment,
1195 * make new header and copy data of each part and link onto chain.
1196 * Here, m0 is the original packet, m is the fragment being created.
1197 * The fragments are linked off the m_nextpkt of the original
1198 * packet, which after processing serves as the first fragment.
1200 for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1201 struct ip *mhip; /* ip header on the fragment */
1202 struct mbuf *m;
1203 int mhlen = sizeof(struct ip);
1205 MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1206 if (m == NULL) {
1207 error = ENOBUFS;
1208 ipstat.ips_odropped++;
1209 goto done;
1211 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1213 * In the first mbuf, leave room for the link header, then
1214 * copy the original IP header including options. The payload
1215 * goes into an additional mbuf chain returned by m_copy().
1217 m->m_data += max_linkhdr;
1218 mhip = mtod(m, struct ip *);
1219 *mhip = *ip;
1220 if (hlen > sizeof(struct ip)) {
1221 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1222 mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1224 m->m_len = mhlen;
1225 /* XXX do we need to add ip->ip_off below ? */
1226 mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1227 if (off + len >= ip->ip_len) { /* last fragment */
1228 len = ip->ip_len - off;
1229 m->m_flags |= M_LASTFRAG;
1230 } else
1231 mhip->ip_off |= IP_MF;
1232 mhip->ip_len = htons((u_short)(len + mhlen));
1233 m->m_next = m_copy(m0, off, len);
1234 if (m->m_next == NULL) { /* copy failed */
1235 m_free(m);
1236 error = ENOBUFS; /* ??? */
1237 ipstat.ips_odropped++;
1238 goto done;
1240 m->m_pkthdr.len = mhlen + len;
1241 m->m_pkthdr.rcvif = (struct ifnet *)NULL;
1242 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1243 mhip->ip_off = htons(mhip->ip_off);
1244 mhip->ip_sum = 0;
1245 if (sw_csum & CSUM_DELAY_IP)
1246 mhip->ip_sum = in_cksum(m, mhlen);
1247 *mnext = m;
1248 mnext = &m->m_nextpkt;
1250 ipstat.ips_ofragments += nfrags;
1252 /* set first marker for fragment chain */
1253 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1254 m0->m_pkthdr.csum_data = nfrags;
1257 * Update first fragment by trimming what's been copied out
1258 * and updating header.
1260 m_adj(m0, hlen + firstlen - ip->ip_len);
1261 m0->m_pkthdr.len = hlen + firstlen;
1262 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1263 ip->ip_off |= IP_MF;
1264 ip->ip_off = htons(ip->ip_off);
1265 ip->ip_sum = 0;
1266 if (sw_csum & CSUM_DELAY_IP)
1267 ip->ip_sum = in_cksum(m0, hlen);
1269 done:
1270 *m_frag = m0;
1271 return error;
1274 void
1275 in_delayed_cksum(struct mbuf *m)
1277 struct ip *ip;
1278 u_short csum, offset;
1280 ip = mtod(m, struct ip *);
1281 offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1282 csum = in_cksum_skip(m, ip->ip_len, offset);
1283 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1284 csum = 0xffff;
1285 offset += m->m_pkthdr.csum_data; /* checksum offset */
1287 if (offset + sizeof(u_short) > m->m_len) {
1288 kprintf("delayed m_pullup, m->len: %d off: %d p: %d\n",
1289 m->m_len, offset, ip->ip_p);
1291 * XXX
1292 * this shouldn't happen, but if it does, the
1293 * correct behavior may be to insert the checksum
1294 * in the existing chain instead of rearranging it.
1296 m = m_pullup(m, offset + sizeof(u_short));
1298 *(u_short *)(m->m_data + offset) = csum;
1302 * Insert IP options into preformed packet.
1303 * Adjust IP destination as required for IP source routing,
1304 * as indicated by a non-zero in_addr at the start of the options.
1306 * XXX This routine assumes that the packet has no options in place.
1308 static struct mbuf *
1309 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1311 struct ipoption *p = mtod(opt, struct ipoption *);
1312 struct mbuf *n;
1313 struct ip *ip = mtod(m, struct ip *);
1314 unsigned optlen;
1316 optlen = opt->m_len - sizeof p->ipopt_dst;
1317 if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1318 *phlen = 0;
1319 return (m); /* XXX should fail */
1321 if (p->ipopt_dst.s_addr)
1322 ip->ip_dst = p->ipopt_dst;
1323 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1324 MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1325 if (n == NULL) {
1326 *phlen = 0;
1327 return (m);
1329 n->m_pkthdr.rcvif = (struct ifnet *)NULL;
1330 n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1331 m->m_len -= sizeof(struct ip);
1332 m->m_data += sizeof(struct ip);
1333 n->m_next = m;
1334 m = n;
1335 m->m_len = optlen + sizeof(struct ip);
1336 m->m_data += max_linkhdr;
1337 memcpy(mtod(m, void *), ip, sizeof(struct ip));
1338 } else {
1339 m->m_data -= optlen;
1340 m->m_len += optlen;
1341 m->m_pkthdr.len += optlen;
1342 ovbcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1344 ip = mtod(m, struct ip *);
1345 bcopy(p->ipopt_list, ip + 1, optlen);
1346 *phlen = sizeof(struct ip) + optlen;
1347 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1348 ip->ip_len += optlen;
1349 return (m);
1353 * Copy options from ip to jp,
1354 * omitting those not copied during fragmentation.
1357 ip_optcopy(struct ip *ip, struct ip *jp)
1359 u_char *cp, *dp;
1360 int opt, optlen, cnt;
1362 cp = (u_char *)(ip + 1);
1363 dp = (u_char *)(jp + 1);
1364 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1365 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1366 opt = cp[0];
1367 if (opt == IPOPT_EOL)
1368 break;
1369 if (opt == IPOPT_NOP) {
1370 /* Preserve for IP mcast tunnel's LSRR alignment. */
1371 *dp++ = IPOPT_NOP;
1372 optlen = 1;
1373 continue;
1376 KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1377 ("ip_optcopy: malformed ipv4 option"));
1378 optlen = cp[IPOPT_OLEN];
1379 KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1380 ("ip_optcopy: malformed ipv4 option"));
1382 /* bogus lengths should have been caught by ip_dooptions */
1383 if (optlen > cnt)
1384 optlen = cnt;
1385 if (IPOPT_COPIED(opt)) {
1386 bcopy(cp, dp, optlen);
1387 dp += optlen;
1390 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1391 *dp++ = IPOPT_EOL;
1392 return (optlen);
1396 * IP socket option processing.
1399 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1401 struct inpcb *inp = so->so_pcb;
1402 int error, optval;
1404 error = optval = 0;
1405 if (sopt->sopt_level != IPPROTO_IP) {
1406 return (EINVAL);
1409 switch (sopt->sopt_dir) {
1410 case SOPT_SET:
1411 switch (sopt->sopt_name) {
1412 case IP_OPTIONS:
1413 #ifdef notyet
1414 case IP_RETOPTS:
1415 #endif
1417 struct mbuf *m;
1418 if (sopt->sopt_valsize > MLEN) {
1419 error = EMSGSIZE;
1420 break;
1422 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1423 if (m == NULL) {
1424 error = ENOBUFS;
1425 break;
1427 m->m_len = sopt->sopt_valsize;
1428 error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1429 m->m_len);
1430 return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1431 m));
1434 case IP_TOS:
1435 case IP_TTL:
1436 case IP_MINTTL:
1437 case IP_RECVOPTS:
1438 case IP_RECVRETOPTS:
1439 case IP_RECVDSTADDR:
1440 case IP_RECVIF:
1441 case IP_RECVTTL:
1442 case IP_FAITH:
1443 error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1444 sizeof optval);
1445 if (error)
1446 break;
1447 switch (sopt->sopt_name) {
1448 case IP_TOS:
1449 inp->inp_ip_tos = optval;
1450 break;
1452 case IP_TTL:
1453 inp->inp_ip_ttl = optval;
1454 break;
1455 case IP_MINTTL:
1456 if (optval > 0 && optval <= MAXTTL)
1457 inp->inp_ip_minttl = optval;
1458 else
1459 error = EINVAL;
1460 break;
1461 #define OPTSET(bit) \
1462 if (optval) \
1463 inp->inp_flags |= bit; \
1464 else \
1465 inp->inp_flags &= ~bit;
1467 case IP_RECVOPTS:
1468 OPTSET(INP_RECVOPTS);
1469 break;
1471 case IP_RECVRETOPTS:
1472 OPTSET(INP_RECVRETOPTS);
1473 break;
1475 case IP_RECVDSTADDR:
1476 OPTSET(INP_RECVDSTADDR);
1477 break;
1479 case IP_RECVIF:
1480 OPTSET(INP_RECVIF);
1481 break;
1483 case IP_RECVTTL:
1484 OPTSET(INP_RECVTTL);
1485 break;
1487 case IP_FAITH:
1488 OPTSET(INP_FAITH);
1489 break;
1491 break;
1492 #undef OPTSET
1494 case IP_MULTICAST_IF:
1495 case IP_MULTICAST_VIF:
1496 case IP_MULTICAST_TTL:
1497 case IP_MULTICAST_LOOP:
1498 case IP_ADD_MEMBERSHIP:
1499 case IP_DROP_MEMBERSHIP:
1500 error = ip_setmoptions(sopt, &inp->inp_moptions);
1501 break;
1503 case IP_PORTRANGE:
1504 error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1505 sizeof optval);
1506 if (error)
1507 break;
1509 switch (optval) {
1510 case IP_PORTRANGE_DEFAULT:
1511 inp->inp_flags &= ~(INP_LOWPORT);
1512 inp->inp_flags &= ~(INP_HIGHPORT);
1513 break;
1515 case IP_PORTRANGE_HIGH:
1516 inp->inp_flags &= ~(INP_LOWPORT);
1517 inp->inp_flags |= INP_HIGHPORT;
1518 break;
1520 case IP_PORTRANGE_LOW:
1521 inp->inp_flags &= ~(INP_HIGHPORT);
1522 inp->inp_flags |= INP_LOWPORT;
1523 break;
1525 default:
1526 error = EINVAL;
1527 break;
1529 break;
1531 #if defined(IPSEC) || defined(FAST_IPSEC)
1532 case IP_IPSEC_POLICY:
1534 caddr_t req;
1535 size_t len = 0;
1536 int priv;
1537 struct mbuf *m;
1538 int optname;
1540 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1541 break;
1542 soopt_to_mbuf(sopt, m);
1543 priv = (sopt->sopt_td != NULL &&
1544 suser(sopt->sopt_td) != 0) ? 0 : 1;
1545 req = mtod(m, caddr_t);
1546 len = m->m_len;
1547 optname = sopt->sopt_name;
1548 error = ipsec4_set_policy(inp, optname, req, len, priv);
1549 m_freem(m);
1550 break;
1552 #endif /*IPSEC*/
1554 default:
1555 error = ENOPROTOOPT;
1556 break;
1558 break;
1560 case SOPT_GET:
1561 switch (sopt->sopt_name) {
1562 case IP_OPTIONS:
1563 case IP_RETOPTS:
1564 if (inp->inp_options)
1565 soopt_from_kbuf(sopt, mtod(inp->inp_options,
1566 char *),
1567 inp->inp_options->m_len);
1568 else
1569 sopt->sopt_valsize = 0;
1570 break;
1572 case IP_TOS:
1573 case IP_TTL:
1574 case IP_MINTTL:
1575 case IP_RECVOPTS:
1576 case IP_RECVRETOPTS:
1577 case IP_RECVDSTADDR:
1578 case IP_RECVTTL:
1579 case IP_RECVIF:
1580 case IP_PORTRANGE:
1581 case IP_FAITH:
1582 switch (sopt->sopt_name) {
1584 case IP_TOS:
1585 optval = inp->inp_ip_tos;
1586 break;
1588 case IP_TTL:
1589 optval = inp->inp_ip_ttl;
1590 break;
1591 case IP_MINTTL:
1592 optval = inp->inp_ip_minttl;
1593 break;
1595 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1597 case IP_RECVOPTS:
1598 optval = OPTBIT(INP_RECVOPTS);
1599 break;
1601 case IP_RECVRETOPTS:
1602 optval = OPTBIT(INP_RECVRETOPTS);
1603 break;
1605 case IP_RECVDSTADDR:
1606 optval = OPTBIT(INP_RECVDSTADDR);
1607 break;
1609 case IP_RECVTTL:
1610 optval = OPTBIT(INP_RECVTTL);
1611 break;
1613 case IP_RECVIF:
1614 optval = OPTBIT(INP_RECVIF);
1615 break;
1617 case IP_PORTRANGE:
1618 if (inp->inp_flags & INP_HIGHPORT)
1619 optval = IP_PORTRANGE_HIGH;
1620 else if (inp->inp_flags & INP_LOWPORT)
1621 optval = IP_PORTRANGE_LOW;
1622 else
1623 optval = 0;
1624 break;
1626 case IP_FAITH:
1627 optval = OPTBIT(INP_FAITH);
1628 break;
1630 soopt_from_kbuf(sopt, &optval, sizeof optval);
1631 break;
1633 case IP_MULTICAST_IF:
1634 case IP_MULTICAST_VIF:
1635 case IP_MULTICAST_TTL:
1636 case IP_MULTICAST_LOOP:
1637 case IP_ADD_MEMBERSHIP:
1638 case IP_DROP_MEMBERSHIP:
1639 error = ip_getmoptions(sopt, inp->inp_moptions);
1640 break;
1642 #if defined(IPSEC) || defined(FAST_IPSEC)
1643 case IP_IPSEC_POLICY:
1645 struct mbuf *m = NULL;
1646 caddr_t req = NULL;
1647 size_t len = 0;
1649 if (m != NULL) {
1650 req = mtod(m, caddr_t);
1651 len = m->m_len;
1653 error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1654 if (error == 0)
1655 error = soopt_from_mbuf(sopt, m); /* XXX */
1656 if (error == 0)
1657 m_freem(m);
1658 break;
1660 #endif /*IPSEC*/
1662 default:
1663 error = ENOPROTOOPT;
1664 break;
1666 break;
1668 return (error);
1672 * Set up IP options in pcb for insertion in output packets.
1673 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1674 * with destination address if source routed.
1676 static int
1677 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1679 int cnt, optlen;
1680 u_char *cp;
1681 u_char opt;
1683 /* turn off any old options */
1684 if (*pcbopt)
1685 m_free(*pcbopt);
1686 *pcbopt = 0;
1687 if (m == NULL || m->m_len == 0) {
1689 * Only turning off any previous options.
1691 if (m != NULL)
1692 m_free(m);
1693 return (0);
1696 if (m->m_len % sizeof(int32_t))
1697 goto bad;
1699 * IP first-hop destination address will be stored before
1700 * actual options; move other options back
1701 * and clear it when none present.
1703 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1704 goto bad;
1705 cnt = m->m_len;
1706 m->m_len += sizeof(struct in_addr);
1707 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1708 ovbcopy(mtod(m, caddr_t), cp, cnt);
1709 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1711 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1712 opt = cp[IPOPT_OPTVAL];
1713 if (opt == IPOPT_EOL)
1714 break;
1715 if (opt == IPOPT_NOP)
1716 optlen = 1;
1717 else {
1718 if (cnt < IPOPT_OLEN + sizeof *cp)
1719 goto bad;
1720 optlen = cp[IPOPT_OLEN];
1721 if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1722 goto bad;
1724 switch (opt) {
1726 default:
1727 break;
1729 case IPOPT_LSRR:
1730 case IPOPT_SSRR:
1732 * user process specifies route as:
1733 * ->A->B->C->D
1734 * D must be our final destination (but we can't
1735 * check that since we may not have connected yet).
1736 * A is first hop destination, which doesn't appear in
1737 * actual IP option, but is stored before the options.
1739 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1740 goto bad;
1741 m->m_len -= sizeof(struct in_addr);
1742 cnt -= sizeof(struct in_addr);
1743 optlen -= sizeof(struct in_addr);
1744 cp[IPOPT_OLEN] = optlen;
1746 * Move first hop before start of options.
1748 bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1749 sizeof(struct in_addr));
1751 * Then copy rest of options back
1752 * to close up the deleted entry.
1754 ovbcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1755 &cp[IPOPT_OFFSET+1],
1756 cnt - (IPOPT_MINOFF - 1));
1757 break;
1760 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1761 goto bad;
1762 *pcbopt = m;
1763 return (0);
1765 bad:
1766 m_free(m);
1767 return (EINVAL);
1771 * XXX
1772 * The whole multicast option thing needs to be re-thought.
1773 * Several of these options are equally applicable to non-multicast
1774 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1775 * standard option (IP_TTL).
1779 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1781 static struct ifnet *
1782 ip_multicast_if(struct in_addr *a, int *ifindexp)
1784 int ifindex;
1785 struct ifnet *ifp;
1787 if (ifindexp)
1788 *ifindexp = 0;
1789 if (ntohl(a->s_addr) >> 24 == 0) {
1790 ifindex = ntohl(a->s_addr) & 0xffffff;
1791 if (ifindex < 0 || if_index < ifindex)
1792 return NULL;
1793 ifp = ifindex2ifnet[ifindex];
1794 if (ifindexp)
1795 *ifindexp = ifindex;
1796 } else {
1797 ifp = INADDR_TO_IFP(a);
1799 return ifp;
1803 * Set the IP multicast options in response to user setsockopt().
1805 static int
1806 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1808 int error = 0;
1809 int i;
1810 struct in_addr addr;
1811 struct ip_mreq mreq;
1812 struct ifnet *ifp;
1813 struct ip_moptions *imo = *imop;
1814 int ifindex;
1816 if (imo == NULL) {
1818 * No multicast option buffer attached to the pcb;
1819 * allocate one and initialize to default values.
1821 imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1823 *imop = imo;
1824 imo->imo_multicast_ifp = NULL;
1825 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1826 imo->imo_multicast_vif = -1;
1827 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1828 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1829 imo->imo_num_memberships = 0;
1831 switch (sopt->sopt_name) {
1832 /* store an index number for the vif you wanna use in the send */
1833 case IP_MULTICAST_VIF:
1834 if (legal_vif_num == 0) {
1835 error = EOPNOTSUPP;
1836 break;
1838 error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1839 if (error)
1840 break;
1841 if (!legal_vif_num(i) && (i != -1)) {
1842 error = EINVAL;
1843 break;
1845 imo->imo_multicast_vif = i;
1846 break;
1848 case IP_MULTICAST_IF:
1850 * Select the interface for outgoing multicast packets.
1852 error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1853 if (error)
1854 break;
1857 * INADDR_ANY is used to remove a previous selection.
1858 * When no interface is selected, a default one is
1859 * chosen every time a multicast packet is sent.
1861 if (addr.s_addr == INADDR_ANY) {
1862 imo->imo_multicast_ifp = NULL;
1863 break;
1866 * The selected interface is identified by its local
1867 * IP address. Find the interface and confirm that
1868 * it supports multicasting.
1870 crit_enter();
1871 ifp = ip_multicast_if(&addr, &ifindex);
1872 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1873 crit_exit();
1874 error = EADDRNOTAVAIL;
1875 break;
1877 imo->imo_multicast_ifp = ifp;
1878 if (ifindex)
1879 imo->imo_multicast_addr = addr;
1880 else
1881 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1882 crit_exit();
1883 break;
1885 case IP_MULTICAST_TTL:
1887 * Set the IP time-to-live for outgoing multicast packets.
1888 * The original multicast API required a char argument,
1889 * which is inconsistent with the rest of the socket API.
1890 * We allow either a char or an int.
1892 if (sopt->sopt_valsize == 1) {
1893 u_char ttl;
1894 error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1895 if (error)
1896 break;
1897 imo->imo_multicast_ttl = ttl;
1898 } else {
1899 u_int ttl;
1900 error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1901 if (error)
1902 break;
1903 if (ttl > 255)
1904 error = EINVAL;
1905 else
1906 imo->imo_multicast_ttl = ttl;
1908 break;
1910 case IP_MULTICAST_LOOP:
1912 * Set the loopback flag for outgoing multicast packets.
1913 * Must be zero or one. The original multicast API required a
1914 * char argument, which is inconsistent with the rest
1915 * of the socket API. We allow either a char or an int.
1917 if (sopt->sopt_valsize == 1) {
1918 u_char loop;
1920 error = soopt_to_kbuf(sopt, &loop, 1, 1);
1921 if (error)
1922 break;
1923 imo->imo_multicast_loop = !!loop;
1924 } else {
1925 u_int loop;
1927 error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1928 sizeof loop);
1929 if (error)
1930 break;
1931 imo->imo_multicast_loop = !!loop;
1933 break;
1935 case IP_ADD_MEMBERSHIP:
1937 * Add a multicast group membership.
1938 * Group must be a valid IP multicast address.
1940 error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1941 if (error)
1942 break;
1944 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1945 error = EINVAL;
1946 break;
1948 crit_enter();
1950 * If no interface address was provided, use the interface of
1951 * the route to the given multicast address.
1953 if (mreq.imr_interface.s_addr == INADDR_ANY) {
1954 struct sockaddr_in dst;
1955 struct rtentry *rt;
1957 bzero(&dst, sizeof(struct sockaddr_in));
1958 dst.sin_len = sizeof(struct sockaddr_in);
1959 dst.sin_family = AF_INET;
1960 dst.sin_addr = mreq.imr_multiaddr;
1961 rt = rtlookup((struct sockaddr *)&dst);
1962 if (rt == NULL) {
1963 error = EADDRNOTAVAIL;
1964 crit_exit();
1965 break;
1967 --rt->rt_refcnt;
1968 ifp = rt->rt_ifp;
1969 } else {
1970 ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1974 * See if we found an interface, and confirm that it
1975 * supports multicast.
1977 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1978 error = EADDRNOTAVAIL;
1979 crit_exit();
1980 break;
1983 * See if the membership already exists or if all the
1984 * membership slots are full.
1986 for (i = 0; i < imo->imo_num_memberships; ++i) {
1987 if (imo->imo_membership[i]->inm_ifp == ifp &&
1988 imo->imo_membership[i]->inm_addr.s_addr
1989 == mreq.imr_multiaddr.s_addr)
1990 break;
1992 if (i < imo->imo_num_memberships) {
1993 error = EADDRINUSE;
1994 crit_exit();
1995 break;
1997 if (i == IP_MAX_MEMBERSHIPS) {
1998 error = ETOOMANYREFS;
1999 crit_exit();
2000 break;
2003 * Everything looks good; add a new record to the multicast
2004 * address list for the given interface.
2006 if ((imo->imo_membership[i] =
2007 in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2008 error = ENOBUFS;
2009 crit_exit();
2010 break;
2012 ++imo->imo_num_memberships;
2013 crit_exit();
2014 break;
2016 case IP_DROP_MEMBERSHIP:
2018 * Drop a multicast group membership.
2019 * Group must be a valid IP multicast address.
2021 error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
2022 if (error)
2023 break;
2025 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2026 error = EINVAL;
2027 break;
2030 crit_enter();
2032 * If an interface address was specified, get a pointer
2033 * to its ifnet structure.
2035 if (mreq.imr_interface.s_addr == INADDR_ANY)
2036 ifp = NULL;
2037 else {
2038 ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2039 if (ifp == NULL) {
2040 error = EADDRNOTAVAIL;
2041 crit_exit();
2042 break;
2046 * Find the membership in the membership array.
2048 for (i = 0; i < imo->imo_num_memberships; ++i) {
2049 if ((ifp == NULL ||
2050 imo->imo_membership[i]->inm_ifp == ifp) &&
2051 imo->imo_membership[i]->inm_addr.s_addr ==
2052 mreq.imr_multiaddr.s_addr)
2053 break;
2055 if (i == imo->imo_num_memberships) {
2056 error = EADDRNOTAVAIL;
2057 crit_exit();
2058 break;
2061 * Give up the multicast address record to which the
2062 * membership points.
2064 in_delmulti(imo->imo_membership[i]);
2066 * Remove the gap in the membership array.
2068 for (++i; i < imo->imo_num_memberships; ++i)
2069 imo->imo_membership[i-1] = imo->imo_membership[i];
2070 --imo->imo_num_memberships;
2071 crit_exit();
2072 break;
2074 default:
2075 error = EOPNOTSUPP;
2076 break;
2080 * If all options have default values, no need to keep the mbuf.
2082 if (imo->imo_multicast_ifp == NULL &&
2083 imo->imo_multicast_vif == -1 &&
2084 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2085 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2086 imo->imo_num_memberships == 0) {
2087 kfree(*imop, M_IPMOPTS);
2088 *imop = NULL;
2091 return (error);
2095 * Return the IP multicast options in response to user getsockopt().
2097 static int
2098 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2100 struct in_addr addr;
2101 struct in_ifaddr *ia;
2102 int error, optval;
2103 u_char coptval;
2105 error = 0;
2106 switch (sopt->sopt_name) {
2107 case IP_MULTICAST_VIF:
2108 if (imo != NULL)
2109 optval = imo->imo_multicast_vif;
2110 else
2111 optval = -1;
2112 soopt_from_kbuf(sopt, &optval, sizeof optval);
2113 break;
2115 case IP_MULTICAST_IF:
2116 if (imo == NULL || imo->imo_multicast_ifp == NULL)
2117 addr.s_addr = INADDR_ANY;
2118 else if (imo->imo_multicast_addr.s_addr) {
2119 /* return the value user has set */
2120 addr = imo->imo_multicast_addr;
2121 } else {
2122 ia = IFP_TO_IA(imo->imo_multicast_ifp);
2123 addr.s_addr = (ia == NULL) ? INADDR_ANY
2124 : IA_SIN(ia)->sin_addr.s_addr;
2126 soopt_from_kbuf(sopt, &addr, sizeof addr);
2127 break;
2129 case IP_MULTICAST_TTL:
2130 if (imo == NULL)
2131 optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2132 else
2133 optval = coptval = imo->imo_multicast_ttl;
2134 if (sopt->sopt_valsize == 1)
2135 soopt_from_kbuf(sopt, &coptval, 1);
2136 else
2137 soopt_from_kbuf(sopt, &optval, sizeof optval);
2138 break;
2140 case IP_MULTICAST_LOOP:
2141 if (imo == NULL)
2142 optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2143 else
2144 optval = coptval = imo->imo_multicast_loop;
2145 if (sopt->sopt_valsize == 1)
2146 soopt_from_kbuf(sopt, &coptval, 1);
2147 else
2148 soopt_from_kbuf(sopt, &optval, sizeof optval);
2149 break;
2151 default:
2152 error = ENOPROTOOPT;
2153 break;
2155 return (error);
2159 * Discard the IP multicast options.
2161 void
2162 ip_freemoptions(struct ip_moptions *imo)
2164 int i;
2166 if (imo != NULL) {
2167 for (i = 0; i < imo->imo_num_memberships; ++i)
2168 in_delmulti(imo->imo_membership[i]);
2169 kfree(imo, M_IPMOPTS);
2174 * Routine called from ip_output() to loop back a copy of an IP multicast
2175 * packet to the input queue of a specified interface. Note that this
2176 * calls the output routine of the loopback "driver", but with an interface
2177 * pointer that might NOT be a loopback interface -- evil, but easier than
2178 * replicating that code here.
2180 static void
2181 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2182 int hlen)
2184 struct ip *ip;
2185 struct mbuf *copym;
2187 copym = m_copypacket(m, MB_DONTWAIT);
2188 if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2189 copym = m_pullup(copym, hlen);
2190 if (copym != NULL) {
2192 * if the checksum hasn't been computed, mark it as valid
2194 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2195 in_delayed_cksum(copym);
2196 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2197 copym->m_pkthdr.csum_flags |=
2198 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2199 copym->m_pkthdr.csum_data = 0xffff;
2202 * We don't bother to fragment if the IP length is greater
2203 * than the interface's MTU. Can this possibly matter?
2205 ip = mtod(copym, struct ip *);
2206 ip->ip_len = htons(ip->ip_len);
2207 ip->ip_off = htons(ip->ip_off);
2208 ip->ip_sum = 0;
2209 if (ip->ip_vhl == IP_VHL_BORING) {
2210 ip->ip_sum = in_cksum_hdr(ip);
2211 } else {
2212 ip->ip_sum = in_cksum(copym, hlen);
2215 * NB:
2216 * It's not clear whether there are any lingering
2217 * reentrancy problems in other areas which might
2218 * be exposed by using ip_input directly (in
2219 * particular, everything which modifies the packet
2220 * in-place). Yet another option is using the
2221 * protosw directly to deliver the looped back
2222 * packet. For the moment, we'll err on the side
2223 * of safety by using if_simloop().
2225 #if 1 /* XXX */
2226 if (dst->sin_family != AF_INET) {
2227 kprintf("ip_mloopback: bad address family %d\n",
2228 dst->sin_family);
2229 dst->sin_family = AF_INET;
2231 #endif
2233 #ifdef notdef
2234 copym->m_pkthdr.rcvif = ifp;
2235 ip_input(copym);
2236 #else
2237 if_simloop(ifp, copym, dst->sin_family, 0);
2238 #endif