- Test m_pkthdr.fw_flags against DUMMYNET_MBUF_TAGGED before trying to locate
[dragonfly/netmp.git] / contrib / gcc-4.1 / gcc / loop-unroll.c
blobd441e25ffa8f4229f0ba81fb32c819c94324b864
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36 #include "varray.h"
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
46 What we do:
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
73 /* Information about induction variables to split. */
75 struct iv_to_split
77 rtx insn; /* The insn in that the induction variable occurs. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
88 DEF_VEC_P(rtx);
89 DEF_VEC_ALLOC_P(rtx,heap);
91 /* Information about accumulators to expand. */
93 struct var_to_expand
95 rtx insn; /* The insn in that the variable expansion occurs. */
96 rtx reg; /* The accumulator which is expanded. */
97 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
98 enum rtx_code op; /* The type of the accumulation - addition, subtraction
99 or multiplication. */
100 int expansion_count; /* Count the number of expansions generated so far. */
101 int reuse_expansion; /* The expansion we intend to reuse to expand
102 the accumulator. If REUSE_EXPANSION is 0 reuse
103 the original accumulator. Else use
104 var_expansions[REUSE_EXPANSION - 1]. */
107 /* Information about optimization applied in
108 the unrolled loop. */
110 struct opt_info
112 htab_t insns_to_split; /* A hashtable of insns to split. */
113 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
114 to expand. */
115 unsigned first_new_block; /* The first basic block that was
116 duplicated. */
117 basic_block loop_exit; /* The loop exit basic block. */
118 basic_block loop_preheader; /* The loop preheader basic block. */
121 static void decide_unrolling_and_peeling (struct loops *, int);
122 static void peel_loops_completely (struct loops *, int);
123 static void decide_peel_simple (struct loop *, int);
124 static void decide_peel_once_rolling (struct loop *, int);
125 static void decide_peel_completely (struct loop *, int);
126 static void decide_unroll_stupid (struct loop *, int);
127 static void decide_unroll_constant_iterations (struct loop *, int);
128 static void decide_unroll_runtime_iterations (struct loop *, int);
129 static void peel_loop_simple (struct loops *, struct loop *);
130 static void peel_loop_completely (struct loops *, struct loop *);
131 static void unroll_loop_stupid (struct loops *, struct loop *);
132 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
133 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
134 static struct opt_info *analyze_insns_in_loop (struct loop *);
135 static void opt_info_start_duplication (struct opt_info *);
136 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
137 static void free_opt_info (struct opt_info *);
138 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
139 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
140 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
141 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
142 static int insert_var_expansion_initialization (void **, void *);
143 static int combine_var_copies_in_loop_exit (void **, void *);
144 static int release_var_copies (void **, void *);
145 static rtx get_expansion (struct var_to_expand *);
147 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
148 void
149 unroll_and_peel_loops (struct loops *loops, int flags)
151 struct loop *loop, *next;
152 bool check;
154 /* First perform complete loop peeling (it is almost surely a win,
155 and affects parameters for further decision a lot). */
156 peel_loops_completely (loops, flags);
158 /* Now decide rest of unrolling and peeling. */
159 decide_unrolling_and_peeling (loops, flags);
161 loop = loops->tree_root;
162 while (loop->inner)
163 loop = loop->inner;
165 /* Scan the loops, inner ones first. */
166 while (loop != loops->tree_root)
168 if (loop->next)
170 next = loop->next;
171 while (next->inner)
172 next = next->inner;
174 else
175 next = loop->outer;
177 check = true;
178 /* And perform the appropriate transformations. */
179 switch (loop->lpt_decision.decision)
181 case LPT_PEEL_COMPLETELY:
182 /* Already done. */
183 gcc_unreachable ();
184 case LPT_PEEL_SIMPLE:
185 peel_loop_simple (loops, loop);
186 break;
187 case LPT_UNROLL_CONSTANT:
188 unroll_loop_constant_iterations (loops, loop);
189 break;
190 case LPT_UNROLL_RUNTIME:
191 unroll_loop_runtime_iterations (loops, loop);
192 break;
193 case LPT_UNROLL_STUPID:
194 unroll_loop_stupid (loops, loop);
195 break;
196 case LPT_NONE:
197 check = false;
198 break;
199 default:
200 gcc_unreachable ();
202 if (check)
204 #ifdef ENABLE_CHECKING
205 verify_dominators (CDI_DOMINATORS);
206 verify_loop_structure (loops);
207 #endif
209 loop = next;
212 iv_analysis_done ();
215 /* Check whether exit of the LOOP is at the end of loop body. */
217 static bool
218 loop_exit_at_end_p (struct loop *loop)
220 struct niter_desc *desc = get_simple_loop_desc (loop);
221 rtx insn;
223 if (desc->in_edge->dest != loop->latch)
224 return false;
226 /* Check that the latch is empty. */
227 FOR_BB_INSNS (loop->latch, insn)
229 if (INSN_P (insn))
230 return false;
233 return true;
236 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
237 static void
238 peel_loops_completely (struct loops *loops, int flags)
240 struct loop *loop;
241 unsigned i;
243 /* Scan the loops, the inner ones first. */
244 for (i = loops->num - 1; i > 0; i--)
246 loop = loops->parray[i];
247 if (!loop)
248 continue;
250 loop->lpt_decision.decision = LPT_NONE;
252 if (dump_file)
253 fprintf (dump_file,
254 "\n;; *** Considering loop %d for complete peeling ***\n",
255 loop->num);
257 loop->ninsns = num_loop_insns (loop);
259 decide_peel_once_rolling (loop, flags);
260 if (loop->lpt_decision.decision == LPT_NONE)
261 decide_peel_completely (loop, flags);
263 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
265 peel_loop_completely (loops, loop);
266 #ifdef ENABLE_CHECKING
267 verify_dominators (CDI_DOMINATORS);
268 verify_loop_structure (loops);
269 #endif
274 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
275 static void
276 decide_unrolling_and_peeling (struct loops *loops, int flags)
278 struct loop *loop = loops->tree_root, *next;
280 while (loop->inner)
281 loop = loop->inner;
283 /* Scan the loops, inner ones first. */
284 while (loop != loops->tree_root)
286 if (loop->next)
288 next = loop->next;
289 while (next->inner)
290 next = next->inner;
292 else
293 next = loop->outer;
295 loop->lpt_decision.decision = LPT_NONE;
297 if (dump_file)
298 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
300 /* Do not peel cold areas. */
301 if (!maybe_hot_bb_p (loop->header))
303 if (dump_file)
304 fprintf (dump_file, ";; Not considering loop, cold area\n");
305 loop = next;
306 continue;
309 /* Can the loop be manipulated? */
310 if (!can_duplicate_loop_p (loop))
312 if (dump_file)
313 fprintf (dump_file,
314 ";; Not considering loop, cannot duplicate\n");
315 loop = next;
316 continue;
319 /* Skip non-innermost loops. */
320 if (loop->inner)
322 if (dump_file)
323 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
324 loop = next;
325 continue;
328 loop->ninsns = num_loop_insns (loop);
329 loop->av_ninsns = average_num_loop_insns (loop);
331 /* Try transformations one by one in decreasing order of
332 priority. */
334 decide_unroll_constant_iterations (loop, flags);
335 if (loop->lpt_decision.decision == LPT_NONE)
336 decide_unroll_runtime_iterations (loop, flags);
337 if (loop->lpt_decision.decision == LPT_NONE)
338 decide_unroll_stupid (loop, flags);
339 if (loop->lpt_decision.decision == LPT_NONE)
340 decide_peel_simple (loop, flags);
342 loop = next;
346 /* Decide whether the LOOP is once rolling and suitable for complete
347 peeling. */
348 static void
349 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
351 struct niter_desc *desc;
353 if (dump_file)
354 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
356 /* Is the loop small enough? */
357 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
359 if (dump_file)
360 fprintf (dump_file, ";; Not considering loop, is too big\n");
361 return;
364 /* Check for simple loops. */
365 desc = get_simple_loop_desc (loop);
367 /* Check number of iterations. */
368 if (!desc->simple_p
369 || desc->assumptions
370 || desc->infinite
371 || !desc->const_iter
372 || desc->niter != 0)
374 if (dump_file)
375 fprintf (dump_file,
376 ";; Unable to prove that the loop rolls exactly once\n");
377 return;
380 /* Success. */
381 if (dump_file)
382 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
383 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
386 /* Decide whether the LOOP is suitable for complete peeling. */
387 static void
388 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
390 unsigned npeel;
391 struct niter_desc *desc;
393 if (dump_file)
394 fprintf (dump_file, "\n;; Considering peeling completely\n");
396 /* Skip non-innermost loops. */
397 if (loop->inner)
399 if (dump_file)
400 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
401 return;
404 /* Do not peel cold areas. */
405 if (!maybe_hot_bb_p (loop->header))
407 if (dump_file)
408 fprintf (dump_file, ";; Not considering loop, cold area\n");
409 return;
412 /* Can the loop be manipulated? */
413 if (!can_duplicate_loop_p (loop))
415 if (dump_file)
416 fprintf (dump_file,
417 ";; Not considering loop, cannot duplicate\n");
418 return;
421 /* npeel = number of iterations to peel. */
422 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
423 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
424 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
426 /* Is the loop small enough? */
427 if (!npeel)
429 if (dump_file)
430 fprintf (dump_file, ";; Not considering loop, is too big\n");
431 return;
434 /* Check for simple loops. */
435 desc = get_simple_loop_desc (loop);
437 /* Check number of iterations. */
438 if (!desc->simple_p
439 || desc->assumptions
440 || !desc->const_iter
441 || desc->infinite)
443 if (dump_file)
444 fprintf (dump_file,
445 ";; Unable to prove that the loop iterates constant times\n");
446 return;
449 if (desc->niter > npeel - 1)
451 if (dump_file)
453 fprintf (dump_file,
454 ";; Not peeling loop completely, rolls too much (");
455 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
456 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
458 return;
461 /* Success. */
462 if (dump_file)
463 fprintf (dump_file, ";; Decided to peel loop completely\n");
464 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
467 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
468 completely. The transformation done:
470 for (i = 0; i < 4; i++)
471 body;
475 i = 0;
476 body; i++;
477 body; i++;
478 body; i++;
479 body; i++;
481 static void
482 peel_loop_completely (struct loops *loops, struct loop *loop)
484 sbitmap wont_exit;
485 unsigned HOST_WIDE_INT npeel;
486 unsigned n_remove_edges, i;
487 edge *remove_edges, ein;
488 struct niter_desc *desc = get_simple_loop_desc (loop);
489 struct opt_info *opt_info = NULL;
491 npeel = desc->niter;
493 if (npeel)
495 bool ok;
497 wont_exit = sbitmap_alloc (npeel + 1);
498 sbitmap_ones (wont_exit);
499 RESET_BIT (wont_exit, 0);
500 if (desc->noloop_assumptions)
501 RESET_BIT (wont_exit, 1);
503 remove_edges = xcalloc (npeel, sizeof (edge));
504 n_remove_edges = 0;
506 if (flag_split_ivs_in_unroller)
507 opt_info = analyze_insns_in_loop (loop);
509 opt_info_start_duplication (opt_info);
510 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
511 loops, npeel,
512 wont_exit, desc->out_edge,
513 remove_edges, &n_remove_edges,
514 DLTHE_FLAG_UPDATE_FREQ
515 | DLTHE_FLAG_COMPLETTE_PEEL
516 | (opt_info
517 ? DLTHE_RECORD_COPY_NUMBER : 0));
518 gcc_assert (ok);
520 free (wont_exit);
522 if (opt_info)
524 apply_opt_in_copies (opt_info, npeel, false, true);
525 free_opt_info (opt_info);
528 /* Remove the exit edges. */
529 for (i = 0; i < n_remove_edges; i++)
530 remove_path (loops, remove_edges[i]);
531 free (remove_edges);
534 ein = desc->in_edge;
535 free_simple_loop_desc (loop);
537 /* Now remove the unreachable part of the last iteration and cancel
538 the loop. */
539 remove_path (loops, ein);
541 if (dump_file)
542 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
545 /* Decide whether to unroll LOOP iterating constant number of times
546 and how much. */
548 static void
549 decide_unroll_constant_iterations (struct loop *loop, int flags)
551 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
552 struct niter_desc *desc;
554 if (!(flags & UAP_UNROLL))
556 /* We were not asked to, just return back silently. */
557 return;
560 if (dump_file)
561 fprintf (dump_file,
562 "\n;; Considering unrolling loop with constant "
563 "number of iterations\n");
565 /* nunroll = total number of copies of the original loop body in
566 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
567 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
568 nunroll_by_av
569 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
570 if (nunroll > nunroll_by_av)
571 nunroll = nunroll_by_av;
572 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
573 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
575 /* Skip big loops. */
576 if (nunroll <= 1)
578 if (dump_file)
579 fprintf (dump_file, ";; Not considering loop, is too big\n");
580 return;
583 /* Check for simple loops. */
584 desc = get_simple_loop_desc (loop);
586 /* Check number of iterations. */
587 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
589 if (dump_file)
590 fprintf (dump_file,
591 ";; Unable to prove that the loop iterates constant times\n");
592 return;
595 /* Check whether the loop rolls enough to consider. */
596 if (desc->niter < 2 * nunroll)
598 if (dump_file)
599 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
600 return;
603 /* Success; now compute number of iterations to unroll. We alter
604 nunroll so that as few as possible copies of loop body are
605 necessary, while still not decreasing the number of unrollings
606 too much (at most by 1). */
607 best_copies = 2 * nunroll + 10;
609 i = 2 * nunroll + 2;
610 if (i - 1 >= desc->niter)
611 i = desc->niter - 2;
613 for (; i >= nunroll - 1; i--)
615 unsigned exit_mod = desc->niter % (i + 1);
617 if (!loop_exit_at_end_p (loop))
618 n_copies = exit_mod + i + 1;
619 else if (exit_mod != (unsigned) i
620 || desc->noloop_assumptions != NULL_RTX)
621 n_copies = exit_mod + i + 2;
622 else
623 n_copies = i + 1;
625 if (n_copies < best_copies)
627 best_copies = n_copies;
628 best_unroll = i;
632 if (dump_file)
633 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
634 best_unroll + 1, best_copies, nunroll);
636 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
637 loop->lpt_decision.times = best_unroll;
639 if (dump_file)
640 fprintf (dump_file,
641 ";; Decided to unroll the constant times rolling loop, %d times.\n",
642 loop->lpt_decision.times);
645 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
646 times. The transformation does this:
648 for (i = 0; i < 102; i++)
649 body;
653 i = 0;
654 body; i++;
655 body; i++;
656 while (i < 102)
658 body; i++;
659 body; i++;
660 body; i++;
661 body; i++;
664 static void
665 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
667 unsigned HOST_WIDE_INT niter;
668 unsigned exit_mod;
669 sbitmap wont_exit;
670 unsigned n_remove_edges, i;
671 edge *remove_edges;
672 unsigned max_unroll = loop->lpt_decision.times;
673 struct niter_desc *desc = get_simple_loop_desc (loop);
674 bool exit_at_end = loop_exit_at_end_p (loop);
675 struct opt_info *opt_info = NULL;
676 bool ok;
678 niter = desc->niter;
680 /* Should not get here (such loop should be peeled instead). */
681 gcc_assert (niter > max_unroll + 1);
683 exit_mod = niter % (max_unroll + 1);
685 wont_exit = sbitmap_alloc (max_unroll + 1);
686 sbitmap_ones (wont_exit);
688 remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
689 n_remove_edges = 0;
690 if (flag_split_ivs_in_unroller
691 || flag_variable_expansion_in_unroller)
692 opt_info = analyze_insns_in_loop (loop);
694 if (!exit_at_end)
696 /* The exit is not at the end of the loop; leave exit test
697 in the first copy, so that the loops that start with test
698 of exit condition have continuous body after unrolling. */
700 if (dump_file)
701 fprintf (dump_file, ";; Condition on beginning of loop.\n");
703 /* Peel exit_mod iterations. */
704 RESET_BIT (wont_exit, 0);
705 if (desc->noloop_assumptions)
706 RESET_BIT (wont_exit, 1);
708 if (exit_mod)
710 opt_info_start_duplication (opt_info);
711 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
712 loops, exit_mod,
713 wont_exit, desc->out_edge,
714 remove_edges, &n_remove_edges,
715 DLTHE_FLAG_UPDATE_FREQ
716 | (opt_info && exit_mod > 1
717 ? DLTHE_RECORD_COPY_NUMBER
718 : 0));
719 gcc_assert (ok);
721 if (opt_info && exit_mod > 1)
722 apply_opt_in_copies (opt_info, exit_mod, false, false);
724 desc->noloop_assumptions = NULL_RTX;
725 desc->niter -= exit_mod;
726 desc->niter_max -= exit_mod;
729 SET_BIT (wont_exit, 1);
731 else
733 /* Leave exit test in last copy, for the same reason as above if
734 the loop tests the condition at the end of loop body. */
736 if (dump_file)
737 fprintf (dump_file, ";; Condition on end of loop.\n");
739 /* We know that niter >= max_unroll + 2; so we do not need to care of
740 case when we would exit before reaching the loop. So just peel
741 exit_mod + 1 iterations. */
742 if (exit_mod != max_unroll
743 || desc->noloop_assumptions)
745 RESET_BIT (wont_exit, 0);
746 if (desc->noloop_assumptions)
747 RESET_BIT (wont_exit, 1);
749 opt_info_start_duplication (opt_info);
750 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
751 loops, exit_mod + 1,
752 wont_exit, desc->out_edge,
753 remove_edges, &n_remove_edges,
754 DLTHE_FLAG_UPDATE_FREQ
755 | (opt_info && exit_mod > 0
756 ? DLTHE_RECORD_COPY_NUMBER
757 : 0));
758 gcc_assert (ok);
760 if (opt_info && exit_mod > 0)
761 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
763 desc->niter -= exit_mod + 1;
764 desc->niter_max -= exit_mod + 1;
765 desc->noloop_assumptions = NULL_RTX;
767 SET_BIT (wont_exit, 0);
768 SET_BIT (wont_exit, 1);
771 RESET_BIT (wont_exit, max_unroll);
774 /* Now unroll the loop. */
776 opt_info_start_duplication (opt_info);
777 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
778 loops, max_unroll,
779 wont_exit, desc->out_edge,
780 remove_edges, &n_remove_edges,
781 DLTHE_FLAG_UPDATE_FREQ
782 | (opt_info
783 ? DLTHE_RECORD_COPY_NUMBER
784 : 0));
785 gcc_assert (ok);
787 if (opt_info)
789 apply_opt_in_copies (opt_info, max_unroll, true, true);
790 free_opt_info (opt_info);
793 free (wont_exit);
795 if (exit_at_end)
797 basic_block exit_block = get_bb_copy (desc->in_edge->src);
798 /* Find a new in and out edge; they are in the last copy we have made. */
800 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
802 desc->out_edge = EDGE_SUCC (exit_block, 0);
803 desc->in_edge = EDGE_SUCC (exit_block, 1);
805 else
807 desc->out_edge = EDGE_SUCC (exit_block, 1);
808 desc->in_edge = EDGE_SUCC (exit_block, 0);
812 desc->niter /= max_unroll + 1;
813 desc->niter_max /= max_unroll + 1;
814 desc->niter_expr = GEN_INT (desc->niter);
816 /* Remove the edges. */
817 for (i = 0; i < n_remove_edges; i++)
818 remove_path (loops, remove_edges[i]);
819 free (remove_edges);
821 if (dump_file)
822 fprintf (dump_file,
823 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
824 max_unroll, num_loop_insns (loop));
827 /* Decide whether to unroll LOOP iterating runtime computable number of times
828 and how much. */
829 static void
830 decide_unroll_runtime_iterations (struct loop *loop, int flags)
832 unsigned nunroll, nunroll_by_av, i;
833 struct niter_desc *desc;
835 if (!(flags & UAP_UNROLL))
837 /* We were not asked to, just return back silently. */
838 return;
841 if (dump_file)
842 fprintf (dump_file,
843 "\n;; Considering unrolling loop with runtime "
844 "computable number of iterations\n");
846 /* nunroll = total number of copies of the original loop body in
847 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
848 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
849 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
850 if (nunroll > nunroll_by_av)
851 nunroll = nunroll_by_av;
852 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
853 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
855 /* Skip big loops. */
856 if (nunroll <= 1)
858 if (dump_file)
859 fprintf (dump_file, ";; Not considering loop, is too big\n");
860 return;
863 /* Check for simple loops. */
864 desc = get_simple_loop_desc (loop);
866 /* Check simpleness. */
867 if (!desc->simple_p || desc->assumptions)
869 if (dump_file)
870 fprintf (dump_file,
871 ";; Unable to prove that the number of iterations "
872 "can be counted in runtime\n");
873 return;
876 if (desc->const_iter)
878 if (dump_file)
879 fprintf (dump_file, ";; Loop iterates constant times\n");
880 return;
883 /* If we have profile feedback, check whether the loop rolls. */
884 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
886 if (dump_file)
887 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
888 return;
891 /* Success; now force nunroll to be power of 2, as we are unable to
892 cope with overflows in computation of number of iterations. */
893 for (i = 1; 2 * i <= nunroll; i *= 2)
894 continue;
896 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
897 loop->lpt_decision.times = i - 1;
899 if (dump_file)
900 fprintf (dump_file,
901 ";; Decided to unroll the runtime computable "
902 "times rolling loop, %d times.\n",
903 loop->lpt_decision.times);
906 /* Unroll LOOP for that we are able to count number of iterations in runtime
907 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
908 extra care for case n < 0):
910 for (i = 0; i < n; i++)
911 body;
915 i = 0;
916 mod = n % 4;
918 switch (mod)
920 case 3:
921 body; i++;
922 case 2:
923 body; i++;
924 case 1:
925 body; i++;
926 case 0: ;
929 while (i < n)
931 body; i++;
932 body; i++;
933 body; i++;
934 body; i++;
937 static void
938 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
940 rtx old_niter, niter, init_code, branch_code, tmp;
941 unsigned i, j, p;
942 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
943 unsigned n_dom_bbs;
944 sbitmap wont_exit;
945 int may_exit_copy;
946 unsigned n_peel, n_remove_edges;
947 edge *remove_edges, e;
948 bool extra_zero_check, last_may_exit;
949 unsigned max_unroll = loop->lpt_decision.times;
950 struct niter_desc *desc = get_simple_loop_desc (loop);
951 bool exit_at_end = loop_exit_at_end_p (loop);
952 struct opt_info *opt_info = NULL;
953 bool ok;
955 if (flag_split_ivs_in_unroller
956 || flag_variable_expansion_in_unroller)
957 opt_info = analyze_insns_in_loop (loop);
959 /* Remember blocks whose dominators will have to be updated. */
960 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
961 n_dom_bbs = 0;
963 body = get_loop_body (loop);
964 for (i = 0; i < loop->num_nodes; i++)
966 unsigned nldom;
967 basic_block *ldom;
969 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
970 for (j = 0; j < nldom; j++)
971 if (!flow_bb_inside_loop_p (loop, ldom[j]))
972 dom_bbs[n_dom_bbs++] = ldom[j];
974 free (ldom);
976 free (body);
978 if (!exit_at_end)
980 /* Leave exit in first copy (for explanation why see comment in
981 unroll_loop_constant_iterations). */
982 may_exit_copy = 0;
983 n_peel = max_unroll - 1;
984 extra_zero_check = true;
985 last_may_exit = false;
987 else
989 /* Leave exit in last copy (for explanation why see comment in
990 unroll_loop_constant_iterations). */
991 may_exit_copy = max_unroll;
992 n_peel = max_unroll;
993 extra_zero_check = false;
994 last_may_exit = true;
997 /* Get expression for number of iterations. */
998 start_sequence ();
999 old_niter = niter = gen_reg_rtx (desc->mode);
1000 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1001 if (tmp != niter)
1002 emit_move_insn (niter, tmp);
1004 /* Count modulo by ANDing it with max_unroll; we use the fact that
1005 the number of unrollings is a power of two, and thus this is correct
1006 even if there is overflow in the computation. */
1007 niter = expand_simple_binop (desc->mode, AND,
1008 niter,
1009 GEN_INT (max_unroll),
1010 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1012 init_code = get_insns ();
1013 end_sequence ();
1015 /* Precondition the loop. */
1016 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1018 remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
1019 n_remove_edges = 0;
1021 wont_exit = sbitmap_alloc (max_unroll + 2);
1023 /* Peel the first copy of loop body (almost always we must leave exit test
1024 here; the only exception is when we have extra zero check and the number
1025 of iterations is reliable. Also record the place of (possible) extra
1026 zero check. */
1027 sbitmap_zero (wont_exit);
1028 if (extra_zero_check
1029 && !desc->noloop_assumptions)
1030 SET_BIT (wont_exit, 1);
1031 ezc_swtch = loop_preheader_edge (loop)->src;
1032 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1033 loops, 1,
1034 wont_exit, desc->out_edge,
1035 remove_edges, &n_remove_edges,
1036 DLTHE_FLAG_UPDATE_FREQ);
1037 gcc_assert (ok);
1039 /* Record the place where switch will be built for preconditioning. */
1040 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1041 NULL_RTX);
1043 for (i = 0; i < n_peel; i++)
1045 /* Peel the copy. */
1046 sbitmap_zero (wont_exit);
1047 if (i != n_peel - 1 || !last_may_exit)
1048 SET_BIT (wont_exit, 1);
1049 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1050 loops, 1,
1051 wont_exit, desc->out_edge,
1052 remove_edges, &n_remove_edges,
1053 DLTHE_FLAG_UPDATE_FREQ);
1054 gcc_assert (ok);
1056 /* Create item for switch. */
1057 j = n_peel - i - (extra_zero_check ? 0 : 1);
1058 p = REG_BR_PROB_BASE / (i + 2);
1060 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1061 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1062 block_label (preheader), p,
1063 NULL_RTX);
1065 swtch = loop_split_edge_with (single_pred_edge (swtch), branch_code);
1066 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1067 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1068 e = make_edge (swtch, preheader,
1069 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1070 e->probability = p;
1073 if (extra_zero_check)
1075 /* Add branch for zero iterations. */
1076 p = REG_BR_PROB_BASE / (max_unroll + 1);
1077 swtch = ezc_swtch;
1078 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1079 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1080 block_label (preheader), p,
1081 NULL_RTX);
1083 swtch = loop_split_edge_with (single_succ_edge (swtch), branch_code);
1084 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1085 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1086 e = make_edge (swtch, preheader,
1087 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1088 e->probability = p;
1091 /* Recount dominators for outer blocks. */
1092 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1094 /* And unroll loop. */
1096 sbitmap_ones (wont_exit);
1097 RESET_BIT (wont_exit, may_exit_copy);
1098 opt_info_start_duplication (opt_info);
1100 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1101 loops, max_unroll,
1102 wont_exit, desc->out_edge,
1103 remove_edges, &n_remove_edges,
1104 DLTHE_FLAG_UPDATE_FREQ
1105 | (opt_info
1106 ? DLTHE_RECORD_COPY_NUMBER
1107 : 0));
1108 gcc_assert (ok);
1110 if (opt_info)
1112 apply_opt_in_copies (opt_info, max_unroll, true, true);
1113 free_opt_info (opt_info);
1116 free (wont_exit);
1118 if (exit_at_end)
1120 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1121 /* Find a new in and out edge; they are in the last copy we have
1122 made. */
1124 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1126 desc->out_edge = EDGE_SUCC (exit_block, 0);
1127 desc->in_edge = EDGE_SUCC (exit_block, 1);
1129 else
1131 desc->out_edge = EDGE_SUCC (exit_block, 1);
1132 desc->in_edge = EDGE_SUCC (exit_block, 0);
1136 /* Remove the edges. */
1137 for (i = 0; i < n_remove_edges; i++)
1138 remove_path (loops, remove_edges[i]);
1139 free (remove_edges);
1141 /* We must be careful when updating the number of iterations due to
1142 preconditioning and the fact that the value must be valid at entry
1143 of the loop. After passing through the above code, we see that
1144 the correct new number of iterations is this: */
1145 gcc_assert (!desc->const_iter);
1146 desc->niter_expr =
1147 simplify_gen_binary (UDIV, desc->mode, old_niter,
1148 GEN_INT (max_unroll + 1));
1149 desc->niter_max /= max_unroll + 1;
1150 if (exit_at_end)
1152 desc->niter_expr =
1153 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1154 desc->noloop_assumptions = NULL_RTX;
1155 desc->niter_max--;
1158 if (dump_file)
1159 fprintf (dump_file,
1160 ";; Unrolled loop %d times, counting # of iterations "
1161 "in runtime, %i insns\n",
1162 max_unroll, num_loop_insns (loop));
1165 /* Decide whether to simply peel LOOP and how much. */
1166 static void
1167 decide_peel_simple (struct loop *loop, int flags)
1169 unsigned npeel;
1170 struct niter_desc *desc;
1172 if (!(flags & UAP_PEEL))
1174 /* We were not asked to, just return back silently. */
1175 return;
1178 if (dump_file)
1179 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1181 /* npeel = number of iterations to peel. */
1182 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1183 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1184 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1186 /* Skip big loops. */
1187 if (!npeel)
1189 if (dump_file)
1190 fprintf (dump_file, ";; Not considering loop, is too big\n");
1191 return;
1194 /* Check for simple loops. */
1195 desc = get_simple_loop_desc (loop);
1197 /* Check number of iterations. */
1198 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1200 if (dump_file)
1201 fprintf (dump_file, ";; Loop iterates constant times\n");
1202 return;
1205 /* Do not simply peel loops with branches inside -- it increases number
1206 of mispredicts. */
1207 if (num_loop_branches (loop) > 1)
1209 if (dump_file)
1210 fprintf (dump_file, ";; Not peeling, contains branches\n");
1211 return;
1214 if (loop->header->count)
1216 unsigned niter = expected_loop_iterations (loop);
1217 if (niter + 1 > npeel)
1219 if (dump_file)
1221 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1222 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1223 (HOST_WIDEST_INT) (niter + 1));
1224 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1225 npeel);
1227 return;
1229 npeel = niter + 1;
1231 else
1233 /* For now we have no good heuristics to decide whether loop peeling
1234 will be effective, so disable it. */
1235 if (dump_file)
1236 fprintf (dump_file,
1237 ";; Not peeling loop, no evidence it will be profitable\n");
1238 return;
1241 /* Success. */
1242 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1243 loop->lpt_decision.times = npeel;
1245 if (dump_file)
1246 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1247 loop->lpt_decision.times);
1250 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1251 while (cond)
1252 body;
1256 if (!cond) goto end;
1257 body;
1258 if (!cond) goto end;
1259 body;
1260 while (cond)
1261 body;
1262 end: ;
1264 static void
1265 peel_loop_simple (struct loops *loops, struct loop *loop)
1267 sbitmap wont_exit;
1268 unsigned npeel = loop->lpt_decision.times;
1269 struct niter_desc *desc = get_simple_loop_desc (loop);
1270 struct opt_info *opt_info = NULL;
1271 bool ok;
1273 if (flag_split_ivs_in_unroller && npeel > 1)
1274 opt_info = analyze_insns_in_loop (loop);
1276 wont_exit = sbitmap_alloc (npeel + 1);
1277 sbitmap_zero (wont_exit);
1279 opt_info_start_duplication (opt_info);
1281 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1282 loops, npeel, wont_exit,
1283 NULL, NULL,
1284 NULL, DLTHE_FLAG_UPDATE_FREQ
1285 | (opt_info
1286 ? DLTHE_RECORD_COPY_NUMBER
1287 : 0));
1288 gcc_assert (ok);
1290 free (wont_exit);
1292 if (opt_info)
1294 apply_opt_in_copies (opt_info, npeel, false, false);
1295 free_opt_info (opt_info);
1298 if (desc->simple_p)
1300 if (desc->const_iter)
1302 desc->niter -= npeel;
1303 desc->niter_expr = GEN_INT (desc->niter);
1304 desc->noloop_assumptions = NULL_RTX;
1306 else
1308 /* We cannot just update niter_expr, as its value might be clobbered
1309 inside loop. We could handle this by counting the number into
1310 temporary just like we do in runtime unrolling, but it does not
1311 seem worthwhile. */
1312 free_simple_loop_desc (loop);
1315 if (dump_file)
1316 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1319 /* Decide whether to unroll LOOP stupidly and how much. */
1320 static void
1321 decide_unroll_stupid (struct loop *loop, int flags)
1323 unsigned nunroll, nunroll_by_av, i;
1324 struct niter_desc *desc;
1326 if (!(flags & UAP_UNROLL_ALL))
1328 /* We were not asked to, just return back silently. */
1329 return;
1332 if (dump_file)
1333 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1335 /* nunroll = total number of copies of the original loop body in
1336 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1337 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1338 nunroll_by_av
1339 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1340 if (nunroll > nunroll_by_av)
1341 nunroll = nunroll_by_av;
1342 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1343 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1345 /* Skip big loops. */
1346 if (nunroll <= 1)
1348 if (dump_file)
1349 fprintf (dump_file, ";; Not considering loop, is too big\n");
1350 return;
1353 /* Check for simple loops. */
1354 desc = get_simple_loop_desc (loop);
1356 /* Check simpleness. */
1357 if (desc->simple_p && !desc->assumptions)
1359 if (dump_file)
1360 fprintf (dump_file, ";; The loop is simple\n");
1361 return;
1364 /* Do not unroll loops with branches inside -- it increases number
1365 of mispredicts. */
1366 if (num_loop_branches (loop) > 1)
1368 if (dump_file)
1369 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1370 return;
1373 /* If we have profile feedback, check whether the loop rolls. */
1374 if (loop->header->count
1375 && expected_loop_iterations (loop) < 2 * nunroll)
1377 if (dump_file)
1378 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1379 return;
1382 /* Success. Now force nunroll to be power of 2, as it seems that this
1383 improves results (partially because of better alignments, partially
1384 because of some dark magic). */
1385 for (i = 1; 2 * i <= nunroll; i *= 2)
1386 continue;
1388 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1389 loop->lpt_decision.times = i - 1;
1391 if (dump_file)
1392 fprintf (dump_file,
1393 ";; Decided to unroll the loop stupidly, %d times.\n",
1394 loop->lpt_decision.times);
1397 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1398 while (cond)
1399 body;
1403 while (cond)
1405 body;
1406 if (!cond) break;
1407 body;
1408 if (!cond) break;
1409 body;
1410 if (!cond) break;
1411 body;
1414 static void
1415 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1417 sbitmap wont_exit;
1418 unsigned nunroll = loop->lpt_decision.times;
1419 struct niter_desc *desc = get_simple_loop_desc (loop);
1420 struct opt_info *opt_info = NULL;
1421 bool ok;
1423 if (flag_split_ivs_in_unroller
1424 || flag_variable_expansion_in_unroller)
1425 opt_info = analyze_insns_in_loop (loop);
1428 wont_exit = sbitmap_alloc (nunroll + 1);
1429 sbitmap_zero (wont_exit);
1430 opt_info_start_duplication (opt_info);
1432 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1433 loops, nunroll, wont_exit,
1434 NULL, NULL, NULL,
1435 DLTHE_FLAG_UPDATE_FREQ
1436 | (opt_info
1437 ? DLTHE_RECORD_COPY_NUMBER
1438 : 0));
1439 gcc_assert (ok);
1441 if (opt_info)
1443 apply_opt_in_copies (opt_info, nunroll, true, true);
1444 free_opt_info (opt_info);
1447 free (wont_exit);
1449 if (desc->simple_p)
1451 /* We indeed may get here provided that there are nontrivial assumptions
1452 for a loop to be really simple. We could update the counts, but the
1453 problem is that we are unable to decide which exit will be taken
1454 (not really true in case the number of iterations is constant,
1455 but noone will do anything with this information, so we do not
1456 worry about it). */
1457 desc->simple_p = false;
1460 if (dump_file)
1461 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1462 nunroll, num_loop_insns (loop));
1465 /* A hash function for information about insns to split. */
1467 static hashval_t
1468 si_info_hash (const void *ivts)
1470 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1473 /* An equality functions for information about insns to split. */
1475 static int
1476 si_info_eq (const void *ivts1, const void *ivts2)
1478 const struct iv_to_split *i1 = ivts1;
1479 const struct iv_to_split *i2 = ivts2;
1481 return i1->insn == i2->insn;
1484 /* Return a hash for VES, which is really a "var_to_expand *". */
1486 static hashval_t
1487 ve_info_hash (const void *ves)
1489 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1492 /* Return true if IVTS1 and IVTS2 (which are really both of type
1493 "var_to_expand *") refer to the same instruction. */
1495 static int
1496 ve_info_eq (const void *ivts1, const void *ivts2)
1498 const struct var_to_expand *i1 = ivts1;
1499 const struct var_to_expand *i2 = ivts2;
1501 return i1->insn == i2->insn;
1504 /* Returns true if REG is referenced in one insn in LOOP. */
1506 bool
1507 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1509 basic_block *body, bb;
1510 unsigned i;
1511 int count_ref = 0;
1512 rtx insn;
1514 body = get_loop_body (loop);
1515 for (i = 0; i < loop->num_nodes; i++)
1517 bb = body[i];
1519 FOR_BB_INSNS (bb, insn)
1521 if (rtx_referenced_p (reg, insn))
1522 count_ref++;
1525 return (count_ref == 1);
1528 /* Determine whether INSN contains an accumulator
1529 which can be expanded into separate copies,
1530 one for each copy of the LOOP body.
1532 for (i = 0 ; i < n; i++)
1533 sum += a[i];
1537 sum += a[i]
1538 ....
1539 i = i+1;
1540 sum1 += a[i]
1541 ....
1542 i = i+1
1543 sum2 += a[i];
1544 ....
1546 Return NULL if INSN contains no opportunity for expansion of accumulator.
1547 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1548 information and return a pointer to it.
1551 static struct var_to_expand *
1552 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1554 rtx set, dest, src, op1;
1555 struct var_to_expand *ves;
1556 enum machine_mode mode1, mode2;
1558 set = single_set (insn);
1559 if (!set)
1560 return NULL;
1562 dest = SET_DEST (set);
1563 src = SET_SRC (set);
1565 if (GET_CODE (src) != PLUS
1566 && GET_CODE (src) != MINUS
1567 && GET_CODE (src) != MULT)
1568 return NULL;
1570 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1571 in MD. But if there is no optab to generate the insn, we can not
1572 perform the variable expansion. This can happen if an MD provides
1573 an insn but not a named pattern to generate it, for example to avoid
1574 producing code that needs additional mode switches like for x87/mmx.
1576 So we check have_insn_for which looks for an optab for the operation
1577 in SRC. If it doesn't exist, we can't perform the expansion even
1578 though INSN is valid. */
1579 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1580 return NULL;
1582 if (!XEXP (src, 0))
1583 return NULL;
1585 op1 = XEXP (src, 0);
1587 if (!REG_P (dest)
1588 && !(GET_CODE (dest) == SUBREG
1589 && REG_P (SUBREG_REG (dest))))
1590 return NULL;
1592 if (!rtx_equal_p (dest, op1))
1593 return NULL;
1595 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1596 return NULL;
1598 if (rtx_referenced_p (dest, XEXP (src, 1)))
1599 return NULL;
1601 mode1 = GET_MODE (dest);
1602 mode2 = GET_MODE (XEXP (src, 1));
1603 if ((FLOAT_MODE_P (mode1)
1604 || FLOAT_MODE_P (mode2))
1605 && !flag_unsafe_math_optimizations)
1606 return NULL;
1608 /* Record the accumulator to expand. */
1609 ves = xmalloc (sizeof (struct var_to_expand));
1610 ves->insn = insn;
1611 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1612 ves->reg = copy_rtx (dest);
1613 ves->op = GET_CODE (src);
1614 ves->expansion_count = 0;
1615 ves->reuse_expansion = 0;
1616 return ves;
1619 /* Determine whether there is an induction variable in INSN that
1620 we would like to split during unrolling.
1622 I.e. replace
1624 i = i + 1;
1626 i = i + 1;
1628 i = i + 1;
1631 type chains by
1633 i0 = i + 1
1635 i = i0 + 1
1637 i = i0 + 2
1640 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1641 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1642 pointer to it. */
1644 static struct iv_to_split *
1645 analyze_iv_to_split_insn (rtx insn)
1647 rtx set, dest;
1648 struct rtx_iv iv;
1649 struct iv_to_split *ivts;
1650 bool ok;
1652 /* For now we just split the basic induction variables. Later this may be
1653 extended for example by selecting also addresses of memory references. */
1654 set = single_set (insn);
1655 if (!set)
1656 return NULL;
1658 dest = SET_DEST (set);
1659 if (!REG_P (dest))
1660 return NULL;
1662 if (!biv_p (insn, dest))
1663 return NULL;
1665 ok = iv_analyze (insn, dest, &iv);
1666 gcc_assert (ok);
1668 if (iv.step == const0_rtx
1669 || iv.mode != iv.extend_mode)
1670 return NULL;
1672 /* Record the insn to split. */
1673 ivts = xmalloc (sizeof (struct iv_to_split));
1674 ivts->insn = insn;
1675 ivts->base_var = NULL_RTX;
1676 ivts->step = iv.step;
1677 ivts->n_loc = 1;
1678 ivts->loc[0] = 1;
1680 return ivts;
1683 /* Determines which of insns in LOOP can be optimized.
1684 Return a OPT_INFO struct with the relevant hash tables filled
1685 with all insns to be optimized. The FIRST_NEW_BLOCK field
1686 is undefined for the return value. */
1688 static struct opt_info *
1689 analyze_insns_in_loop (struct loop *loop)
1691 basic_block *body, bb;
1692 unsigned i, num_edges = 0;
1693 struct opt_info *opt_info = xcalloc (1, sizeof (struct opt_info));
1694 rtx insn;
1695 struct iv_to_split *ivts = NULL;
1696 struct var_to_expand *ves = NULL;
1697 PTR *slot1;
1698 PTR *slot2;
1699 edge *edges = get_loop_exit_edges (loop, &num_edges);
1700 bool can_apply = false;
1702 iv_analysis_loop_init (loop);
1704 body = get_loop_body (loop);
1706 if (flag_split_ivs_in_unroller)
1707 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1708 si_info_hash, si_info_eq, free);
1710 /* Record the loop exit bb and loop preheader before the unrolling. */
1711 if (!loop_preheader_edge (loop)->src)
1713 loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1714 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1716 else
1717 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1719 if (num_edges == 1
1720 && !(edges[0]->flags & EDGE_COMPLEX))
1722 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1723 can_apply = true;
1726 if (flag_variable_expansion_in_unroller
1727 && can_apply)
1728 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1729 ve_info_hash, ve_info_eq, free);
1731 for (i = 0; i < loop->num_nodes; i++)
1733 bb = body[i];
1734 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1735 continue;
1737 FOR_BB_INSNS (bb, insn)
1739 if (!INSN_P (insn))
1740 continue;
1742 if (opt_info->insns_to_split)
1743 ivts = analyze_iv_to_split_insn (insn);
1745 if (ivts)
1747 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1748 *slot1 = ivts;
1749 continue;
1752 if (opt_info->insns_with_var_to_expand)
1753 ves = analyze_insn_to_expand_var (loop, insn);
1755 if (ves)
1757 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1758 *slot2 = ves;
1763 free (edges);
1764 free (body);
1765 return opt_info;
1768 /* Called just before loop duplication. Records start of duplicated area
1769 to OPT_INFO. */
1771 static void
1772 opt_info_start_duplication (struct opt_info *opt_info)
1774 if (opt_info)
1775 opt_info->first_new_block = last_basic_block;
1778 /* Determine the number of iterations between initialization of the base
1779 variable and the current copy (N_COPY). N_COPIES is the total number
1780 of newly created copies. UNROLLING is true if we are unrolling
1781 (not peeling) the loop. */
1783 static unsigned
1784 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1786 if (unrolling)
1788 /* If we are unrolling, initialization is done in the original loop
1789 body (number 0). */
1790 return n_copy;
1792 else
1794 /* If we are peeling, the copy in that the initialization occurs has
1795 number 1. The original loop (number 0) is the last. */
1796 if (n_copy)
1797 return n_copy - 1;
1798 else
1799 return n_copies;
1803 /* Locate in EXPR the expression corresponding to the location recorded
1804 in IVTS, and return a pointer to the RTX for this location. */
1806 static rtx *
1807 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1809 unsigned i;
1810 rtx *ret = &expr;
1812 for (i = 0; i < ivts->n_loc; i++)
1813 ret = &XEXP (*ret, ivts->loc[i]);
1815 return ret;
1818 /* Allocate basic variable for the induction variable chain. Callback for
1819 htab_traverse. */
1821 static int
1822 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1824 struct iv_to_split *ivts = *slot;
1825 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1827 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1829 return 1;
1832 /* Insert initialization of basic variable of IVTS before INSN, taking
1833 the initial value from INSN. */
1835 static void
1836 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1838 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1839 rtx seq;
1841 start_sequence ();
1842 expr = force_operand (expr, ivts->base_var);
1843 if (expr != ivts->base_var)
1844 emit_move_insn (ivts->base_var, expr);
1845 seq = get_insns ();
1846 end_sequence ();
1848 emit_insn_before (seq, insn);
1851 /* Replace the use of induction variable described in IVTS in INSN
1852 by base variable + DELTA * step. */
1854 static void
1855 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1857 rtx expr, *loc, seq, incr, var;
1858 enum machine_mode mode = GET_MODE (ivts->base_var);
1859 rtx src, dest, set;
1861 /* Construct base + DELTA * step. */
1862 if (!delta)
1863 expr = ivts->base_var;
1864 else
1866 incr = simplify_gen_binary (MULT, mode,
1867 ivts->step, gen_int_mode (delta, mode));
1868 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1869 ivts->base_var, incr);
1872 /* Figure out where to do the replacement. */
1873 loc = get_ivts_expr (single_set (insn), ivts);
1875 /* If we can make the replacement right away, we're done. */
1876 if (validate_change (insn, loc, expr, 0))
1877 return;
1879 /* Otherwise, force EXPR into a register and try again. */
1880 start_sequence ();
1881 var = gen_reg_rtx (mode);
1882 expr = force_operand (expr, var);
1883 if (expr != var)
1884 emit_move_insn (var, expr);
1885 seq = get_insns ();
1886 end_sequence ();
1887 emit_insn_before (seq, insn);
1889 if (validate_change (insn, loc, var, 0))
1890 return;
1892 /* The last chance. Try recreating the assignment in insn
1893 completely from scratch. */
1894 set = single_set (insn);
1895 gcc_assert (set);
1897 start_sequence ();
1898 *loc = var;
1899 src = copy_rtx (SET_SRC (set));
1900 dest = copy_rtx (SET_DEST (set));
1901 src = force_operand (src, dest);
1902 if (src != dest)
1903 emit_move_insn (dest, src);
1904 seq = get_insns ();
1905 end_sequence ();
1907 emit_insn_before (seq, insn);
1908 delete_insn (insn);
1912 /* Return one expansion of the accumulator recorded in struct VE. */
1914 static rtx
1915 get_expansion (struct var_to_expand *ve)
1917 rtx reg;
1919 if (ve->reuse_expansion == 0)
1920 reg = ve->reg;
1921 else
1922 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1924 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1925 ve->reuse_expansion = 0;
1926 else
1927 ve->reuse_expansion++;
1929 return reg;
1933 /* Given INSN replace the uses of the accumulator recorded in VE
1934 with a new register. */
1936 static void
1937 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1939 rtx new_reg, set;
1940 bool really_new_expansion = false;
1942 set = single_set (insn);
1943 gcc_assert (set);
1945 /* Generate a new register only if the expansion limit has not been
1946 reached. Else reuse an already existing expansion. */
1947 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1949 really_new_expansion = true;
1950 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1952 else
1953 new_reg = get_expansion (ve);
1955 validate_change (insn, &SET_DEST (set), new_reg, 1);
1956 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1958 if (apply_change_group ())
1959 if (really_new_expansion)
1961 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1962 ve->expansion_count++;
1966 /* Initialize the variable expansions in loop preheader.
1967 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1968 basic block where the initialization of the expansions
1969 should take place. */
1971 static int
1972 insert_var_expansion_initialization (void **slot, void *place_p)
1974 struct var_to_expand *ve = *slot;
1975 basic_block place = (basic_block)place_p;
1976 rtx seq, var, zero_init, insn;
1977 unsigned i;
1979 if (VEC_length (rtx, ve->var_expansions) == 0)
1980 return 1;
1982 start_sequence ();
1983 if (ve->op == PLUS || ve->op == MINUS)
1984 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1986 zero_init = CONST0_RTX (GET_MODE (var));
1987 emit_move_insn (var, zero_init);
1989 else if (ve->op == MULT)
1990 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1992 zero_init = CONST1_RTX (GET_MODE (var));
1993 emit_move_insn (var, zero_init);
1996 seq = get_insns ();
1997 end_sequence ();
1999 insn = BB_HEAD (place);
2000 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2001 insn = NEXT_INSN (insn);
2003 emit_insn_after (seq, insn);
2004 /* Continue traversing the hash table. */
2005 return 1;
2008 /* Combine the variable expansions at the loop exit.
2009 Callbacks for htab_traverse. PLACE_P is the loop exit
2010 basic block where the summation of the expansions should
2011 take place. */
2013 static int
2014 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2016 struct var_to_expand *ve = *slot;
2017 basic_block place = (basic_block)place_p;
2018 rtx sum = ve->reg;
2019 rtx expr, seq, var, insn;
2020 unsigned i;
2022 if (VEC_length (rtx, ve->var_expansions) == 0)
2023 return 1;
2025 start_sequence ();
2026 if (ve->op == PLUS || ve->op == MINUS)
2027 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2029 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2030 var, sum);
2032 else if (ve->op == MULT)
2033 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2035 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2036 var, sum);
2039 expr = force_operand (sum, ve->reg);
2040 if (expr != ve->reg)
2041 emit_move_insn (ve->reg, expr);
2042 seq = get_insns ();
2043 end_sequence ();
2045 insn = BB_HEAD (place);
2046 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2047 insn = NEXT_INSN (insn);
2049 emit_insn_after (seq, insn);
2051 /* Continue traversing the hash table. */
2052 return 1;
2055 /* Apply loop optimizations in loop copies using the
2056 data which gathered during the unrolling. Structure
2057 OPT_INFO record that data.
2059 UNROLLING is true if we unrolled (not peeled) the loop.
2060 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2061 the loop (as it should happen in complete unrolling, but not in ordinary
2062 peeling of the loop). */
2064 static void
2065 apply_opt_in_copies (struct opt_info *opt_info,
2066 unsigned n_copies, bool unrolling,
2067 bool rewrite_original_loop)
2069 unsigned i, delta;
2070 basic_block bb, orig_bb;
2071 rtx insn, orig_insn, next;
2072 struct iv_to_split ivts_templ, *ivts;
2073 struct var_to_expand ve_templ, *ves;
2075 /* Sanity check -- we need to put initialization in the original loop
2076 body. */
2077 gcc_assert (!unrolling || rewrite_original_loop);
2079 /* Allocate the basic variables (i0). */
2080 if (opt_info->insns_to_split)
2081 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2083 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2085 bb = BASIC_BLOCK (i);
2086 orig_bb = get_bb_original (bb);
2088 /* bb->aux holds position in copy sequence initialized by
2089 duplicate_loop_to_header_edge. */
2090 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2091 unrolling);
2092 bb->aux = 0;
2093 orig_insn = BB_HEAD (orig_bb);
2094 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2096 next = NEXT_INSN (insn);
2097 if (!INSN_P (insn))
2098 continue;
2100 while (!INSN_P (orig_insn))
2101 orig_insn = NEXT_INSN (orig_insn);
2103 ivts_templ.insn = orig_insn;
2104 ve_templ.insn = orig_insn;
2106 /* Apply splitting iv optimization. */
2107 if (opt_info->insns_to_split)
2109 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2111 if (ivts)
2113 gcc_assert (GET_CODE (PATTERN (insn))
2114 == GET_CODE (PATTERN (orig_insn)));
2116 if (!delta)
2117 insert_base_initialization (ivts, insn);
2118 split_iv (ivts, insn, delta);
2121 /* Apply variable expansion optimization. */
2122 if (unrolling && opt_info->insns_with_var_to_expand)
2124 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2125 if (ves)
2127 gcc_assert (GET_CODE (PATTERN (insn))
2128 == GET_CODE (PATTERN (orig_insn)));
2129 expand_var_during_unrolling (ves, insn);
2132 orig_insn = NEXT_INSN (orig_insn);
2136 if (!rewrite_original_loop)
2137 return;
2139 /* Initialize the variable expansions in the loop preheader
2140 and take care of combining them at the loop exit. */
2141 if (opt_info->insns_with_var_to_expand)
2143 htab_traverse (opt_info->insns_with_var_to_expand,
2144 insert_var_expansion_initialization,
2145 opt_info->loop_preheader);
2146 htab_traverse (opt_info->insns_with_var_to_expand,
2147 combine_var_copies_in_loop_exit,
2148 opt_info->loop_exit);
2151 /* Rewrite also the original loop body. Find them as originals of the blocks
2152 in the last copied iteration, i.e. those that have
2153 get_bb_copy (get_bb_original (bb)) == bb. */
2154 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2156 bb = BASIC_BLOCK (i);
2157 orig_bb = get_bb_original (bb);
2158 if (get_bb_copy (orig_bb) != bb)
2159 continue;
2161 delta = determine_split_iv_delta (0, n_copies, unrolling);
2162 for (orig_insn = BB_HEAD (orig_bb);
2163 orig_insn != NEXT_INSN (BB_END (bb));
2164 orig_insn = next)
2166 next = NEXT_INSN (orig_insn);
2168 if (!INSN_P (orig_insn))
2169 continue;
2171 ivts_templ.insn = orig_insn;
2172 if (opt_info->insns_to_split)
2174 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2175 if (ivts)
2177 if (!delta)
2178 insert_base_initialization (ivts, orig_insn);
2179 split_iv (ivts, orig_insn, delta);
2180 continue;
2188 /* Release the data structures used for the variable expansion
2189 optimization. Callbacks for htab_traverse. */
2191 static int
2192 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2194 struct var_to_expand *ve = *slot;
2196 VEC_free (rtx, heap, ve->var_expansions);
2198 /* Continue traversing the hash table. */
2199 return 1;
2202 /* Release OPT_INFO. */
2204 static void
2205 free_opt_info (struct opt_info *opt_info)
2207 if (opt_info->insns_to_split)
2208 htab_delete (opt_info->insns_to_split);
2209 if (opt_info->insns_with_var_to_expand)
2211 htab_traverse (opt_info->insns_with_var_to_expand,
2212 release_var_copies, NULL);
2213 htab_delete (opt_info->insns_with_var_to_expand);
2215 free (opt_info);