We are using 4.1.2 really.
[dragonfly/netmp.git] / contrib / libpcap-0.9 / optimize.c
blobd39273b2aad3548c68222292d1b019e048c467e5
1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
23 #ifndef lint
24 static const char rcsid[] _U_ =
25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.85.2.3 2007/09/12 21:29:45 guy Exp $ (LBL)";
26 #endif
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <memory.h>
35 #include <string.h>
37 #include <errno.h>
39 #include "pcap-int.h"
41 #include "gencode.h"
43 #ifdef HAVE_OS_PROTO_H
44 #include "os-proto.h"
45 #endif
47 #ifdef BDEBUG
48 extern int dflag;
49 #endif
51 #if defined(MSDOS) && !defined(__DJGPP__)
52 extern int _w32_ffs (int mask);
53 #define ffs _w32_ffs
54 #endif
57 * Represents a deleted instruction.
59 #define NOP -1
62 * Register numbers for use-def values.
63 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
64 * location. A_ATOM is the accumulator and X_ATOM is the index
65 * register.
67 #define A_ATOM BPF_MEMWORDS
68 #define X_ATOM (BPF_MEMWORDS+1)
71 * This define is used to represent *both* the accumulator and
72 * x register in use-def computations.
73 * Currently, the use-def code assumes only one definition per instruction.
75 #define AX_ATOM N_ATOMS
78 * A flag to indicate that further optimization is needed.
79 * Iterative passes are continued until a given pass yields no
80 * branch movement.
82 static int done;
85 * A block is marked if only if its mark equals the current mark.
86 * Rather than traverse the code array, marking each item, 'cur_mark' is
87 * incremented. This automatically makes each element unmarked.
89 static int cur_mark;
90 #define isMarked(p) ((p)->mark == cur_mark)
91 #define unMarkAll() cur_mark += 1
92 #define Mark(p) ((p)->mark = cur_mark)
94 static void opt_init(struct block *);
95 static void opt_cleanup(void);
97 static void make_marks(struct block *);
98 static void mark_code(struct block *);
100 static void intern_blocks(struct block *);
102 static int eq_slist(struct slist *, struct slist *);
104 static void find_levels_r(struct block *);
106 static void find_levels(struct block *);
107 static void find_dom(struct block *);
108 static void propedom(struct edge *);
109 static void find_edom(struct block *);
110 static void find_closure(struct block *);
111 static int atomuse(struct stmt *);
112 static int atomdef(struct stmt *);
113 static void compute_local_ud(struct block *);
114 static void find_ud(struct block *);
115 static void init_val(void);
116 static int F(int, int, int);
117 static inline void vstore(struct stmt *, int *, int, int);
118 static void opt_blk(struct block *, int);
119 static int use_conflict(struct block *, struct block *);
120 static void opt_j(struct edge *);
121 static void or_pullup(struct block *);
122 static void and_pullup(struct block *);
123 static void opt_blks(struct block *, int);
124 static inline void link_inedge(struct edge *, struct block *);
125 static void find_inedges(struct block *);
126 static void opt_root(struct block **);
127 static void opt_loop(struct block *, int);
128 static void fold_op(struct stmt *, int, int);
129 static inline struct slist *this_op(struct slist *);
130 static void opt_not(struct block *);
131 static void opt_peep(struct block *);
132 static void opt_stmt(struct stmt *, int[], int);
133 static void deadstmt(struct stmt *, struct stmt *[]);
134 static void opt_deadstores(struct block *);
135 static struct block *fold_edge(struct block *, struct edge *);
136 static inline int eq_blk(struct block *, struct block *);
137 static int slength(struct slist *);
138 static int count_blocks(struct block *);
139 static void number_blks_r(struct block *);
140 static int count_stmts(struct block *);
141 static int convert_code_r(struct block *);
142 #ifdef BDEBUG
143 static void opt_dump(struct block *);
144 #endif
146 static int n_blocks;
147 struct block **blocks;
148 static int n_edges;
149 struct edge **edges;
152 * A bit vector set representation of the dominators.
153 * We round up the set size to the next power of two.
155 static int nodewords;
156 static int edgewords;
157 struct block **levels;
158 bpf_u_int32 *space;
159 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
161 * True if a is in uset {p}
163 #define SET_MEMBER(p, a) \
164 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
167 * Add 'a' to uset p.
169 #define SET_INSERT(p, a) \
170 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
173 * Delete 'a' from uset p.
175 #define SET_DELETE(p, a) \
176 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
179 * a := a intersect b
181 #define SET_INTERSECT(a, b, n)\
183 register bpf_u_int32 *_x = a, *_y = b;\
184 register int _n = n;\
185 while (--_n >= 0) *_x++ &= *_y++;\
189 * a := a - b
191 #define SET_SUBTRACT(a, b, n)\
193 register bpf_u_int32 *_x = a, *_y = b;\
194 register int _n = n;\
195 while (--_n >= 0) *_x++ &=~ *_y++;\
199 * a := a union b
201 #define SET_UNION(a, b, n)\
203 register bpf_u_int32 *_x = a, *_y = b;\
204 register int _n = n;\
205 while (--_n >= 0) *_x++ |= *_y++;\
208 static uset all_dom_sets;
209 static uset all_closure_sets;
210 static uset all_edge_sets;
212 #ifndef MAX
213 #define MAX(a,b) ((a)>(b)?(a):(b))
214 #endif
216 static void
217 find_levels_r(b)
218 struct block *b;
220 int level;
222 if (isMarked(b))
223 return;
225 Mark(b);
226 b->link = 0;
228 if (JT(b)) {
229 find_levels_r(JT(b));
230 find_levels_r(JF(b));
231 level = MAX(JT(b)->level, JF(b)->level) + 1;
232 } else
233 level = 0;
234 b->level = level;
235 b->link = levels[level];
236 levels[level] = b;
240 * Level graph. The levels go from 0 at the leaves to
241 * N_LEVELS at the root. The levels[] array points to the
242 * first node of the level list, whose elements are linked
243 * with the 'link' field of the struct block.
245 static void
246 find_levels(root)
247 struct block *root;
249 memset((char *)levels, 0, n_blocks * sizeof(*levels));
250 unMarkAll();
251 find_levels_r(root);
255 * Find dominator relationships.
256 * Assumes graph has been leveled.
258 static void
259 find_dom(root)
260 struct block *root;
262 int i;
263 struct block *b;
264 bpf_u_int32 *x;
267 * Initialize sets to contain all nodes.
269 x = all_dom_sets;
270 i = n_blocks * nodewords;
271 while (--i >= 0)
272 *x++ = ~0;
273 /* Root starts off empty. */
274 for (i = nodewords; --i >= 0;)
275 root->dom[i] = 0;
277 /* root->level is the highest level no found. */
278 for (i = root->level; i >= 0; --i) {
279 for (b = levels[i]; b; b = b->link) {
280 SET_INSERT(b->dom, b->id);
281 if (JT(b) == 0)
282 continue;
283 SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
284 SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
289 static void
290 propedom(ep)
291 struct edge *ep;
293 SET_INSERT(ep->edom, ep->id);
294 if (ep->succ) {
295 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
296 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
301 * Compute edge dominators.
302 * Assumes graph has been leveled and predecessors established.
304 static void
305 find_edom(root)
306 struct block *root;
308 int i;
309 uset x;
310 struct block *b;
312 x = all_edge_sets;
313 for (i = n_edges * edgewords; --i >= 0; )
314 x[i] = ~0;
316 /* root->level is the highest level no found. */
317 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
318 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
319 for (i = root->level; i >= 0; --i) {
320 for (b = levels[i]; b != 0; b = b->link) {
321 propedom(&b->et);
322 propedom(&b->ef);
328 * Find the backwards transitive closure of the flow graph. These sets
329 * are backwards in the sense that we find the set of nodes that reach
330 * a given node, not the set of nodes that can be reached by a node.
332 * Assumes graph has been leveled.
334 static void
335 find_closure(root)
336 struct block *root;
338 int i;
339 struct block *b;
342 * Initialize sets to contain no nodes.
344 memset((char *)all_closure_sets, 0,
345 n_blocks * nodewords * sizeof(*all_closure_sets));
347 /* root->level is the highest level no found. */
348 for (i = root->level; i >= 0; --i) {
349 for (b = levels[i]; b; b = b->link) {
350 SET_INSERT(b->closure, b->id);
351 if (JT(b) == 0)
352 continue;
353 SET_UNION(JT(b)->closure, b->closure, nodewords);
354 SET_UNION(JF(b)->closure, b->closure, nodewords);
360 * Return the register number that is used by s. If A and X are both
361 * used, return AX_ATOM. If no register is used, return -1.
363 * The implementation should probably change to an array access.
365 static int
366 atomuse(s)
367 struct stmt *s;
369 register int c = s->code;
371 if (c == NOP)
372 return -1;
374 switch (BPF_CLASS(c)) {
376 case BPF_RET:
377 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
378 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
380 case BPF_LD:
381 case BPF_LDX:
382 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
383 (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
385 case BPF_ST:
386 return A_ATOM;
388 case BPF_STX:
389 return X_ATOM;
391 case BPF_JMP:
392 case BPF_ALU:
393 if (BPF_SRC(c) == BPF_X)
394 return AX_ATOM;
395 return A_ATOM;
397 case BPF_MISC:
398 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
400 abort();
401 /* NOTREACHED */
405 * Return the register number that is defined by 's'. We assume that
406 * a single stmt cannot define more than one register. If no register
407 * is defined, return -1.
409 * The implementation should probably change to an array access.
411 static int
412 atomdef(s)
413 struct stmt *s;
415 if (s->code == NOP)
416 return -1;
418 switch (BPF_CLASS(s->code)) {
420 case BPF_LD:
421 case BPF_ALU:
422 return A_ATOM;
424 case BPF_LDX:
425 return X_ATOM;
427 case BPF_ST:
428 case BPF_STX:
429 return s->k;
431 case BPF_MISC:
432 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
434 return -1;
438 * Compute the sets of registers used, defined, and killed by 'b'.
440 * "Used" means that a statement in 'b' uses the register before any
441 * statement in 'b' defines it, i.e. it uses the value left in
442 * that register by a predecessor block of this block.
443 * "Defined" means that a statement in 'b' defines it.
444 * "Killed" means that a statement in 'b' defines it before any
445 * statement in 'b' uses it, i.e. it kills the value left in that
446 * register by a predecessor block of this block.
448 static void
449 compute_local_ud(b)
450 struct block *b;
452 struct slist *s;
453 atomset def = 0, use = 0, kill = 0;
454 int atom;
456 for (s = b->stmts; s; s = s->next) {
457 if (s->s.code == NOP)
458 continue;
459 atom = atomuse(&s->s);
460 if (atom >= 0) {
461 if (atom == AX_ATOM) {
462 if (!ATOMELEM(def, X_ATOM))
463 use |= ATOMMASK(X_ATOM);
464 if (!ATOMELEM(def, A_ATOM))
465 use |= ATOMMASK(A_ATOM);
467 else if (atom < N_ATOMS) {
468 if (!ATOMELEM(def, atom))
469 use |= ATOMMASK(atom);
471 else
472 abort();
474 atom = atomdef(&s->s);
475 if (atom >= 0) {
476 if (!ATOMELEM(use, atom))
477 kill |= ATOMMASK(atom);
478 def |= ATOMMASK(atom);
481 if (BPF_CLASS(b->s.code) == BPF_JMP) {
483 * XXX - what about RET?
485 atom = atomuse(&b->s);
486 if (atom >= 0) {
487 if (atom == AX_ATOM) {
488 if (!ATOMELEM(def, X_ATOM))
489 use |= ATOMMASK(X_ATOM);
490 if (!ATOMELEM(def, A_ATOM))
491 use |= ATOMMASK(A_ATOM);
493 else if (atom < N_ATOMS) {
494 if (!ATOMELEM(def, atom))
495 use |= ATOMMASK(atom);
497 else
498 abort();
502 b->def = def;
503 b->kill = kill;
504 b->in_use = use;
508 * Assume graph is already leveled.
510 static void
511 find_ud(root)
512 struct block *root;
514 int i, maxlevel;
515 struct block *p;
518 * root->level is the highest level no found;
519 * count down from there.
521 maxlevel = root->level;
522 for (i = maxlevel; i >= 0; --i)
523 for (p = levels[i]; p; p = p->link) {
524 compute_local_ud(p);
525 p->out_use = 0;
528 for (i = 1; i <= maxlevel; ++i) {
529 for (p = levels[i]; p; p = p->link) {
530 p->out_use |= JT(p)->in_use | JF(p)->in_use;
531 p->in_use |= p->out_use &~ p->kill;
537 * These data structures are used in a Cocke and Shwarz style
538 * value numbering scheme. Since the flowgraph is acyclic,
539 * exit values can be propagated from a node's predecessors
540 * provided it is uniquely defined.
542 struct valnode {
543 int code;
544 int v0, v1;
545 int val;
546 struct valnode *next;
549 #define MODULUS 213
550 static struct valnode *hashtbl[MODULUS];
551 static int curval;
552 static int maxval;
554 /* Integer constants mapped with the load immediate opcode. */
555 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
557 struct vmapinfo {
558 int is_const;
559 bpf_int32 const_val;
562 struct vmapinfo *vmap;
563 struct valnode *vnode_base;
564 struct valnode *next_vnode;
566 static void
567 init_val()
569 curval = 0;
570 next_vnode = vnode_base;
571 memset((char *)vmap, 0, maxval * sizeof(*vmap));
572 memset((char *)hashtbl, 0, sizeof hashtbl);
575 /* Because we really don't have an IR, this stuff is a little messy. */
576 static int
577 F(code, v0, v1)
578 int code;
579 int v0, v1;
581 u_int hash;
582 int val;
583 struct valnode *p;
585 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
586 hash %= MODULUS;
588 for (p = hashtbl[hash]; p; p = p->next)
589 if (p->code == code && p->v0 == v0 && p->v1 == v1)
590 return p->val;
592 val = ++curval;
593 if (BPF_MODE(code) == BPF_IMM &&
594 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
595 vmap[val].const_val = v0;
596 vmap[val].is_const = 1;
598 p = next_vnode++;
599 p->val = val;
600 p->code = code;
601 p->v0 = v0;
602 p->v1 = v1;
603 p->next = hashtbl[hash];
604 hashtbl[hash] = p;
606 return val;
609 static inline void
610 vstore(s, valp, newval, alter)
611 struct stmt *s;
612 int *valp;
613 int newval;
614 int alter;
616 if (alter && *valp == newval)
617 s->code = NOP;
618 else
619 *valp = newval;
622 static void
623 fold_op(s, v0, v1)
624 struct stmt *s;
625 int v0, v1;
627 bpf_u_int32 a, b;
629 a = vmap[v0].const_val;
630 b = vmap[v1].const_val;
632 switch (BPF_OP(s->code)) {
633 case BPF_ADD:
634 a += b;
635 break;
637 case BPF_SUB:
638 a -= b;
639 break;
641 case BPF_MUL:
642 a *= b;
643 break;
645 case BPF_DIV:
646 if (b == 0)
647 bpf_error("division by zero");
648 a /= b;
649 break;
651 case BPF_AND:
652 a &= b;
653 break;
655 case BPF_OR:
656 a |= b;
657 break;
659 case BPF_LSH:
660 a <<= b;
661 break;
663 case BPF_RSH:
664 a >>= b;
665 break;
667 case BPF_NEG:
668 a = -a;
669 break;
671 default:
672 abort();
674 s->k = a;
675 s->code = BPF_LD|BPF_IMM;
676 done = 0;
679 static inline struct slist *
680 this_op(s)
681 struct slist *s;
683 while (s != 0 && s->s.code == NOP)
684 s = s->next;
685 return s;
688 static void
689 opt_not(b)
690 struct block *b;
692 struct block *tmp = JT(b);
694 JT(b) = JF(b);
695 JF(b) = tmp;
698 static void
699 opt_peep(b)
700 struct block *b;
702 struct slist *s;
703 struct slist *next, *last;
704 int val;
706 s = b->stmts;
707 if (s == 0)
708 return;
710 last = s;
711 for (/*empty*/; /*empty*/; s = next) {
713 * Skip over nops.
715 s = this_op(s);
716 if (s == 0)
717 break; /* nothing left in the block */
720 * Find the next real instruction after that one
721 * (skipping nops).
723 next = this_op(s->next);
724 if (next == 0)
725 break; /* no next instruction */
726 last = next;
729 * st M[k] --> st M[k]
730 * ldx M[k] tax
732 if (s->s.code == BPF_ST &&
733 next->s.code == (BPF_LDX|BPF_MEM) &&
734 s->s.k == next->s.k) {
735 done = 0;
736 next->s.code = BPF_MISC|BPF_TAX;
739 * ld #k --> ldx #k
740 * tax txa
742 if (s->s.code == (BPF_LD|BPF_IMM) &&
743 next->s.code == (BPF_MISC|BPF_TAX)) {
744 s->s.code = BPF_LDX|BPF_IMM;
745 next->s.code = BPF_MISC|BPF_TXA;
746 done = 0;
749 * This is an ugly special case, but it happens
750 * when you say tcp[k] or udp[k] where k is a constant.
752 if (s->s.code == (BPF_LD|BPF_IMM)) {
753 struct slist *add, *tax, *ild;
756 * Check that X isn't used on exit from this
757 * block (which the optimizer might cause).
758 * We know the code generator won't generate
759 * any local dependencies.
761 if (ATOMELEM(b->out_use, X_ATOM))
762 continue;
765 * Check that the instruction following the ldi
766 * is an addx, or it's an ldxms with an addx
767 * following it (with 0 or more nops between the
768 * ldxms and addx).
770 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
771 add = next;
772 else
773 add = this_op(next->next);
774 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
775 continue;
778 * Check that a tax follows that (with 0 or more
779 * nops between them).
781 tax = this_op(add->next);
782 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
783 continue;
786 * Check that an ild follows that (with 0 or more
787 * nops between them).
789 ild = this_op(tax->next);
790 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
791 BPF_MODE(ild->s.code) != BPF_IND)
792 continue;
794 * We want to turn this sequence:
796 * (004) ldi #0x2 {s}
797 * (005) ldxms [14] {next} -- optional
798 * (006) addx {add}
799 * (007) tax {tax}
800 * (008) ild [x+0] {ild}
802 * into this sequence:
804 * (004) nop
805 * (005) ldxms [14]
806 * (006) nop
807 * (007) nop
808 * (008) ild [x+2]
810 * XXX We need to check that X is not
811 * subsequently used, because we want to change
812 * what'll be in it after this sequence.
814 * We know we can eliminate the accumulator
815 * modifications earlier in the sequence since
816 * it is defined by the last stmt of this sequence
817 * (i.e., the last statement of the sequence loads
818 * a value into the accumulator, so we can eliminate
819 * earlier operations on the accumulator).
821 ild->s.k += s->s.k;
822 s->s.code = NOP;
823 add->s.code = NOP;
824 tax->s.code = NOP;
825 done = 0;
829 * If the comparison at the end of a block is an equality
830 * comparison against a constant, and nobody uses the value
831 * we leave in the A register at the end of a block, and
832 * the operation preceding the comparison is an arithmetic
833 * operation, we can sometime optimize it away.
835 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
836 !ATOMELEM(b->out_use, A_ATOM)) {
838 * We can optimize away certain subtractions of the
839 * X register.
841 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
842 val = b->val[X_ATOM];
843 if (vmap[val].is_const) {
845 * If we have a subtract to do a comparison,
846 * and the X register is a known constant,
847 * we can merge this value into the
848 * comparison:
850 * sub x -> nop
851 * jeq #y jeq #(x+y)
853 b->s.k += vmap[val].const_val;
854 last->s.code = NOP;
855 done = 0;
856 } else if (b->s.k == 0) {
858 * If the X register isn't a constant,
859 * and the comparison in the test is
860 * against 0, we can compare with the
861 * X register, instead:
863 * sub x -> nop
864 * jeq #0 jeq x
866 last->s.code = NOP;
867 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
868 done = 0;
872 * Likewise, a constant subtract can be simplified:
874 * sub #x -> nop
875 * jeq #y -> jeq #(x+y)
877 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
878 last->s.code = NOP;
879 b->s.k += last->s.k;
880 done = 0;
883 * And, similarly, a constant AND can be simplified
884 * if we're testing against 0, i.e.:
886 * and #k nop
887 * jeq #0 -> jset #k
889 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
890 b->s.k == 0) {
891 b->s.k = last->s.k;
892 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
893 last->s.code = NOP;
894 done = 0;
895 opt_not(b);
899 * jset #0 -> never
900 * jset #ffffffff -> always
902 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
903 if (b->s.k == 0)
904 JT(b) = JF(b);
905 if (b->s.k == 0xffffffff)
906 JF(b) = JT(b);
909 * If the accumulator is a known constant, we can compute the
910 * comparison result.
912 val = b->val[A_ATOM];
913 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
914 bpf_int32 v = vmap[val].const_val;
915 switch (BPF_OP(b->s.code)) {
917 case BPF_JEQ:
918 v = v == b->s.k;
919 break;
921 case BPF_JGT:
922 v = (unsigned)v > b->s.k;
923 break;
925 case BPF_JGE:
926 v = (unsigned)v >= b->s.k;
927 break;
929 case BPF_JSET:
930 v &= b->s.k;
931 break;
933 default:
934 abort();
936 if (JF(b) != JT(b))
937 done = 0;
938 if (v)
939 JF(b) = JT(b);
940 else
941 JT(b) = JF(b);
946 * Compute the symbolic value of expression of 's', and update
947 * anything it defines in the value table 'val'. If 'alter' is true,
948 * do various optimizations. This code would be cleaner if symbolic
949 * evaluation and code transformations weren't folded together.
951 static void
952 opt_stmt(s, val, alter)
953 struct stmt *s;
954 int val[];
955 int alter;
957 int op;
958 int v;
960 switch (s->code) {
962 case BPF_LD|BPF_ABS|BPF_W:
963 case BPF_LD|BPF_ABS|BPF_H:
964 case BPF_LD|BPF_ABS|BPF_B:
965 v = F(s->code, s->k, 0L);
966 vstore(s, &val[A_ATOM], v, alter);
967 break;
969 case BPF_LD|BPF_IND|BPF_W:
970 case BPF_LD|BPF_IND|BPF_H:
971 case BPF_LD|BPF_IND|BPF_B:
972 v = val[X_ATOM];
973 if (alter && vmap[v].is_const) {
974 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
975 s->k += vmap[v].const_val;
976 v = F(s->code, s->k, 0L);
977 done = 0;
979 else
980 v = F(s->code, s->k, v);
981 vstore(s, &val[A_ATOM], v, alter);
982 break;
984 case BPF_LD|BPF_LEN:
985 v = F(s->code, 0L, 0L);
986 vstore(s, &val[A_ATOM], v, alter);
987 break;
989 case BPF_LD|BPF_IMM:
990 v = K(s->k);
991 vstore(s, &val[A_ATOM], v, alter);
992 break;
994 case BPF_LDX|BPF_IMM:
995 v = K(s->k);
996 vstore(s, &val[X_ATOM], v, alter);
997 break;
999 case BPF_LDX|BPF_MSH|BPF_B:
1000 v = F(s->code, s->k, 0L);
1001 vstore(s, &val[X_ATOM], v, alter);
1002 break;
1004 case BPF_ALU|BPF_NEG:
1005 if (alter && vmap[val[A_ATOM]].is_const) {
1006 s->code = BPF_LD|BPF_IMM;
1007 s->k = -vmap[val[A_ATOM]].const_val;
1008 val[A_ATOM] = K(s->k);
1010 else
1011 val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
1012 break;
1014 case BPF_ALU|BPF_ADD|BPF_K:
1015 case BPF_ALU|BPF_SUB|BPF_K:
1016 case BPF_ALU|BPF_MUL|BPF_K:
1017 case BPF_ALU|BPF_DIV|BPF_K:
1018 case BPF_ALU|BPF_AND|BPF_K:
1019 case BPF_ALU|BPF_OR|BPF_K:
1020 case BPF_ALU|BPF_LSH|BPF_K:
1021 case BPF_ALU|BPF_RSH|BPF_K:
1022 op = BPF_OP(s->code);
1023 if (alter) {
1024 if (s->k == 0) {
1025 /* don't optimize away "sub #0"
1026 * as it may be needed later to
1027 * fixup the generated math code */
1028 if (op == BPF_ADD ||
1029 op == BPF_LSH || op == BPF_RSH ||
1030 op == BPF_OR) {
1031 s->code = NOP;
1032 break;
1034 if (op == BPF_MUL || op == BPF_AND) {
1035 s->code = BPF_LD|BPF_IMM;
1036 val[A_ATOM] = K(s->k);
1037 break;
1040 if (vmap[val[A_ATOM]].is_const) {
1041 fold_op(s, val[A_ATOM], K(s->k));
1042 val[A_ATOM] = K(s->k);
1043 break;
1046 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1047 break;
1049 case BPF_ALU|BPF_ADD|BPF_X:
1050 case BPF_ALU|BPF_SUB|BPF_X:
1051 case BPF_ALU|BPF_MUL|BPF_X:
1052 case BPF_ALU|BPF_DIV|BPF_X:
1053 case BPF_ALU|BPF_AND|BPF_X:
1054 case BPF_ALU|BPF_OR|BPF_X:
1055 case BPF_ALU|BPF_LSH|BPF_X:
1056 case BPF_ALU|BPF_RSH|BPF_X:
1057 op = BPF_OP(s->code);
1058 if (alter && vmap[val[X_ATOM]].is_const) {
1059 if (vmap[val[A_ATOM]].is_const) {
1060 fold_op(s, val[A_ATOM], val[X_ATOM]);
1061 val[A_ATOM] = K(s->k);
1063 else {
1064 s->code = BPF_ALU|BPF_K|op;
1065 s->k = vmap[val[X_ATOM]].const_val;
1066 done = 0;
1067 val[A_ATOM] =
1068 F(s->code, val[A_ATOM], K(s->k));
1070 break;
1073 * Check if we're doing something to an accumulator
1074 * that is 0, and simplify. This may not seem like
1075 * much of a simplification but it could open up further
1076 * optimizations.
1077 * XXX We could also check for mul by 1, etc.
1079 if (alter && vmap[val[A_ATOM]].is_const
1080 && vmap[val[A_ATOM]].const_val == 0) {
1081 if (op == BPF_ADD || op == BPF_OR) {
1082 s->code = BPF_MISC|BPF_TXA;
1083 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1084 break;
1086 else if (op == BPF_MUL || op == BPF_DIV ||
1087 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1088 s->code = BPF_LD|BPF_IMM;
1089 s->k = 0;
1090 vstore(s, &val[A_ATOM], K(s->k), alter);
1091 break;
1093 else if (op == BPF_NEG) {
1094 s->code = NOP;
1095 break;
1098 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1099 break;
1101 case BPF_MISC|BPF_TXA:
1102 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1103 break;
1105 case BPF_LD|BPF_MEM:
1106 v = val[s->k];
1107 if (alter && vmap[v].is_const) {
1108 s->code = BPF_LD|BPF_IMM;
1109 s->k = vmap[v].const_val;
1110 done = 0;
1112 vstore(s, &val[A_ATOM], v, alter);
1113 break;
1115 case BPF_MISC|BPF_TAX:
1116 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1117 break;
1119 case BPF_LDX|BPF_MEM:
1120 v = val[s->k];
1121 if (alter && vmap[v].is_const) {
1122 s->code = BPF_LDX|BPF_IMM;
1123 s->k = vmap[v].const_val;
1124 done = 0;
1126 vstore(s, &val[X_ATOM], v, alter);
1127 break;
1129 case BPF_ST:
1130 vstore(s, &val[s->k], val[A_ATOM], alter);
1131 break;
1133 case BPF_STX:
1134 vstore(s, &val[s->k], val[X_ATOM], alter);
1135 break;
1139 static void
1140 deadstmt(s, last)
1141 register struct stmt *s;
1142 register struct stmt *last[];
1144 register int atom;
1146 atom = atomuse(s);
1147 if (atom >= 0) {
1148 if (atom == AX_ATOM) {
1149 last[X_ATOM] = 0;
1150 last[A_ATOM] = 0;
1152 else
1153 last[atom] = 0;
1155 atom = atomdef(s);
1156 if (atom >= 0) {
1157 if (last[atom]) {
1158 done = 0;
1159 last[atom]->code = NOP;
1161 last[atom] = s;
1165 static void
1166 opt_deadstores(b)
1167 register struct block *b;
1169 register struct slist *s;
1170 register int atom;
1171 struct stmt *last[N_ATOMS];
1173 memset((char *)last, 0, sizeof last);
1175 for (s = b->stmts; s != 0; s = s->next)
1176 deadstmt(&s->s, last);
1177 deadstmt(&b->s, last);
1179 for (atom = 0; atom < N_ATOMS; ++atom)
1180 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1181 last[atom]->code = NOP;
1182 done = 0;
1186 static void
1187 opt_blk(b, do_stmts)
1188 struct block *b;
1189 int do_stmts;
1191 struct slist *s;
1192 struct edge *p;
1193 int i;
1194 bpf_int32 aval, xval;
1196 #if 0
1197 for (s = b->stmts; s && s->next; s = s->next)
1198 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1199 do_stmts = 0;
1200 break;
1202 #endif
1205 * Initialize the atom values.
1207 p = b->in_edges;
1208 if (p == 0) {
1210 * We have no predecessors, so everything is undefined
1211 * upon entry to this block.
1213 memset((char *)b->val, 0, sizeof(b->val));
1214 } else {
1216 * Inherit values from our predecessors.
1218 * First, get the values from the predecessor along the
1219 * first edge leading to this node.
1221 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1223 * Now look at all the other nodes leading to this node.
1224 * If, for the predecessor along that edge, a register
1225 * has a different value from the one we have (i.e.,
1226 * control paths are merging, and the merging paths
1227 * assign different values to that register), give the
1228 * register the undefined value of 0.
1230 while ((p = p->next) != NULL) {
1231 for (i = 0; i < N_ATOMS; ++i)
1232 if (b->val[i] != p->pred->val[i])
1233 b->val[i] = 0;
1236 aval = b->val[A_ATOM];
1237 xval = b->val[X_ATOM];
1238 for (s = b->stmts; s; s = s->next)
1239 opt_stmt(&s->s, b->val, do_stmts);
1242 * This is a special case: if we don't use anything from this
1243 * block, and we load the accumulator or index register with a
1244 * value that is already there, or if this block is a return,
1245 * eliminate all the statements.
1247 * XXX - what if it does a store?
1249 * XXX - why does it matter whether we use anything from this
1250 * block? If the accumulator or index register doesn't change
1251 * its value, isn't that OK even if we use that value?
1253 * XXX - if we load the accumulator with a different value,
1254 * and the block ends with a conditional branch, we obviously
1255 * can't eliminate it, as the branch depends on that value.
1256 * For the index register, the conditional branch only depends
1257 * on the index register value if the test is against the index
1258 * register value rather than a constant; if nothing uses the
1259 * value we put into the index register, and we're not testing
1260 * against the index register's value, and there aren't any
1261 * other problems that would keep us from eliminating this
1262 * block, can we eliminate it?
1264 if (do_stmts &&
1265 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1266 xval != 0 && b->val[X_ATOM] == xval) ||
1267 BPF_CLASS(b->s.code) == BPF_RET)) {
1268 if (b->stmts != 0) {
1269 b->stmts = 0;
1270 done = 0;
1272 } else {
1273 opt_peep(b);
1274 opt_deadstores(b);
1277 * Set up values for branch optimizer.
1279 if (BPF_SRC(b->s.code) == BPF_K)
1280 b->oval = K(b->s.k);
1281 else
1282 b->oval = b->val[X_ATOM];
1283 b->et.code = b->s.code;
1284 b->ef.code = -b->s.code;
1288 * Return true if any register that is used on exit from 'succ', has
1289 * an exit value that is different from the corresponding exit value
1290 * from 'b'.
1292 static int
1293 use_conflict(b, succ)
1294 struct block *b, *succ;
1296 int atom;
1297 atomset use = succ->out_use;
1299 if (use == 0)
1300 return 0;
1302 for (atom = 0; atom < N_ATOMS; ++atom)
1303 if (ATOMELEM(use, atom))
1304 if (b->val[atom] != succ->val[atom])
1305 return 1;
1306 return 0;
1309 static struct block *
1310 fold_edge(child, ep)
1311 struct block *child;
1312 struct edge *ep;
1314 int sense;
1315 int aval0, aval1, oval0, oval1;
1316 int code = ep->code;
1318 if (code < 0) {
1319 code = -code;
1320 sense = 0;
1321 } else
1322 sense = 1;
1324 if (child->s.code != code)
1325 return 0;
1327 aval0 = child->val[A_ATOM];
1328 oval0 = child->oval;
1329 aval1 = ep->pred->val[A_ATOM];
1330 oval1 = ep->pred->oval;
1332 if (aval0 != aval1)
1333 return 0;
1335 if (oval0 == oval1)
1337 * The operands of the branch instructions are
1338 * identical, so the result is true if a true
1339 * branch was taken to get here, otherwise false.
1341 return sense ? JT(child) : JF(child);
1343 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1345 * At this point, we only know the comparison if we
1346 * came down the true branch, and it was an equality
1347 * comparison with a constant.
1349 * I.e., if we came down the true branch, and the branch
1350 * was an equality comparison with a constant, we know the
1351 * accumulator contains that constant. If we came down
1352 * the false branch, or the comparison wasn't with a
1353 * constant, we don't know what was in the accumulator.
1355 * We rely on the fact that distinct constants have distinct
1356 * value numbers.
1358 return JF(child);
1360 return 0;
1363 static void
1364 opt_j(ep)
1365 struct edge *ep;
1367 register int i, k;
1368 register struct block *target;
1370 if (JT(ep->succ) == 0)
1371 return;
1373 if (JT(ep->succ) == JF(ep->succ)) {
1375 * Common branch targets can be eliminated, provided
1376 * there is no data dependency.
1378 if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1379 done = 0;
1380 ep->succ = JT(ep->succ);
1384 * For each edge dominator that matches the successor of this
1385 * edge, promote the edge successor to the its grandchild.
1387 * XXX We violate the set abstraction here in favor a reasonably
1388 * efficient loop.
1390 top:
1391 for (i = 0; i < edgewords; ++i) {
1392 register bpf_u_int32 x = ep->edom[i];
1394 while (x != 0) {
1395 k = ffs(x) - 1;
1396 x &=~ (1 << k);
1397 k += i * BITS_PER_WORD;
1399 target = fold_edge(ep->succ, edges[k]);
1401 * Check that there is no data dependency between
1402 * nodes that will be violated if we move the edge.
1404 if (target != 0 && !use_conflict(ep->pred, target)) {
1405 done = 0;
1406 ep->succ = target;
1407 if (JT(target) != 0)
1409 * Start over unless we hit a leaf.
1411 goto top;
1412 return;
1419 static void
1420 or_pullup(b)
1421 struct block *b;
1423 int val, at_top;
1424 struct block *pull;
1425 struct block **diffp, **samep;
1426 struct edge *ep;
1428 ep = b->in_edges;
1429 if (ep == 0)
1430 return;
1433 * Make sure each predecessor loads the same value.
1434 * XXX why?
1436 val = ep->pred->val[A_ATOM];
1437 for (ep = ep->next; ep != 0; ep = ep->next)
1438 if (val != ep->pred->val[A_ATOM])
1439 return;
1441 if (JT(b->in_edges->pred) == b)
1442 diffp = &JT(b->in_edges->pred);
1443 else
1444 diffp = &JF(b->in_edges->pred);
1446 at_top = 1;
1447 while (1) {
1448 if (*diffp == 0)
1449 return;
1451 if (JT(*diffp) != JT(b))
1452 return;
1454 if (!SET_MEMBER((*diffp)->dom, b->id))
1455 return;
1457 if ((*diffp)->val[A_ATOM] != val)
1458 break;
1460 diffp = &JF(*diffp);
1461 at_top = 0;
1463 samep = &JF(*diffp);
1464 while (1) {
1465 if (*samep == 0)
1466 return;
1468 if (JT(*samep) != JT(b))
1469 return;
1471 if (!SET_MEMBER((*samep)->dom, b->id))
1472 return;
1474 if ((*samep)->val[A_ATOM] == val)
1475 break;
1477 /* XXX Need to check that there are no data dependencies
1478 between dp0 and dp1. Currently, the code generator
1479 will not produce such dependencies. */
1480 samep = &JF(*samep);
1482 #ifdef notdef
1483 /* XXX This doesn't cover everything. */
1484 for (i = 0; i < N_ATOMS; ++i)
1485 if ((*samep)->val[i] != pred->val[i])
1486 return;
1487 #endif
1488 /* Pull up the node. */
1489 pull = *samep;
1490 *samep = JF(pull);
1491 JF(pull) = *diffp;
1494 * At the top of the chain, each predecessor needs to point at the
1495 * pulled up node. Inside the chain, there is only one predecessor
1496 * to worry about.
1498 if (at_top) {
1499 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1500 if (JT(ep->pred) == b)
1501 JT(ep->pred) = pull;
1502 else
1503 JF(ep->pred) = pull;
1506 else
1507 *diffp = pull;
1509 done = 0;
1512 static void
1513 and_pullup(b)
1514 struct block *b;
1516 int val, at_top;
1517 struct block *pull;
1518 struct block **diffp, **samep;
1519 struct edge *ep;
1521 ep = b->in_edges;
1522 if (ep == 0)
1523 return;
1526 * Make sure each predecessor loads the same value.
1528 val = ep->pred->val[A_ATOM];
1529 for (ep = ep->next; ep != 0; ep = ep->next)
1530 if (val != ep->pred->val[A_ATOM])
1531 return;
1533 if (JT(b->in_edges->pred) == b)
1534 diffp = &JT(b->in_edges->pred);
1535 else
1536 diffp = &JF(b->in_edges->pred);
1538 at_top = 1;
1539 while (1) {
1540 if (*diffp == 0)
1541 return;
1543 if (JF(*diffp) != JF(b))
1544 return;
1546 if (!SET_MEMBER((*diffp)->dom, b->id))
1547 return;
1549 if ((*diffp)->val[A_ATOM] != val)
1550 break;
1552 diffp = &JT(*diffp);
1553 at_top = 0;
1555 samep = &JT(*diffp);
1556 while (1) {
1557 if (*samep == 0)
1558 return;
1560 if (JF(*samep) != JF(b))
1561 return;
1563 if (!SET_MEMBER((*samep)->dom, b->id))
1564 return;
1566 if ((*samep)->val[A_ATOM] == val)
1567 break;
1569 /* XXX Need to check that there are no data dependencies
1570 between diffp and samep. Currently, the code generator
1571 will not produce such dependencies. */
1572 samep = &JT(*samep);
1574 #ifdef notdef
1575 /* XXX This doesn't cover everything. */
1576 for (i = 0; i < N_ATOMS; ++i)
1577 if ((*samep)->val[i] != pred->val[i])
1578 return;
1579 #endif
1580 /* Pull up the node. */
1581 pull = *samep;
1582 *samep = JT(pull);
1583 JT(pull) = *diffp;
1586 * At the top of the chain, each predecessor needs to point at the
1587 * pulled up node. Inside the chain, there is only one predecessor
1588 * to worry about.
1590 if (at_top) {
1591 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1592 if (JT(ep->pred) == b)
1593 JT(ep->pred) = pull;
1594 else
1595 JF(ep->pred) = pull;
1598 else
1599 *diffp = pull;
1601 done = 0;
1604 static void
1605 opt_blks(root, do_stmts)
1606 struct block *root;
1607 int do_stmts;
1609 int i, maxlevel;
1610 struct block *p;
1612 init_val();
1613 maxlevel = root->level;
1615 find_inedges(root);
1616 for (i = maxlevel; i >= 0; --i)
1617 for (p = levels[i]; p; p = p->link)
1618 opt_blk(p, do_stmts);
1620 if (do_stmts)
1622 * No point trying to move branches; it can't possibly
1623 * make a difference at this point.
1625 return;
1627 for (i = 1; i <= maxlevel; ++i) {
1628 for (p = levels[i]; p; p = p->link) {
1629 opt_j(&p->et);
1630 opt_j(&p->ef);
1634 find_inedges(root);
1635 for (i = 1; i <= maxlevel; ++i) {
1636 for (p = levels[i]; p; p = p->link) {
1637 or_pullup(p);
1638 and_pullup(p);
1643 static inline void
1644 link_inedge(parent, child)
1645 struct edge *parent;
1646 struct block *child;
1648 parent->next = child->in_edges;
1649 child->in_edges = parent;
1652 static void
1653 find_inedges(root)
1654 struct block *root;
1656 int i;
1657 struct block *b;
1659 for (i = 0; i < n_blocks; ++i)
1660 blocks[i]->in_edges = 0;
1663 * Traverse the graph, adding each edge to the predecessor
1664 * list of its successors. Skip the leaves (i.e. level 0).
1666 for (i = root->level; i > 0; --i) {
1667 for (b = levels[i]; b != 0; b = b->link) {
1668 link_inedge(&b->et, JT(b));
1669 link_inedge(&b->ef, JF(b));
1674 static void
1675 opt_root(b)
1676 struct block **b;
1678 struct slist *tmp, *s;
1680 s = (*b)->stmts;
1681 (*b)->stmts = 0;
1682 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1683 *b = JT(*b);
1685 tmp = (*b)->stmts;
1686 if (tmp != 0)
1687 sappend(s, tmp);
1688 (*b)->stmts = s;
1691 * If the root node is a return, then there is no
1692 * point executing any statements (since the bpf machine
1693 * has no side effects).
1695 if (BPF_CLASS((*b)->s.code) == BPF_RET)
1696 (*b)->stmts = 0;
1699 static void
1700 opt_loop(root, do_stmts)
1701 struct block *root;
1702 int do_stmts;
1705 #ifdef BDEBUG
1706 if (dflag > 1) {
1707 printf("opt_loop(root, %d) begin\n", do_stmts);
1708 opt_dump(root);
1710 #endif
1711 do {
1712 done = 1;
1713 find_levels(root);
1714 find_dom(root);
1715 find_closure(root);
1716 find_ud(root);
1717 find_edom(root);
1718 opt_blks(root, do_stmts);
1719 #ifdef BDEBUG
1720 if (dflag > 1) {
1721 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1722 opt_dump(root);
1724 #endif
1725 } while (!done);
1729 * Optimize the filter code in its dag representation.
1731 void
1732 bpf_optimize(rootp)
1733 struct block **rootp;
1735 struct block *root;
1737 root = *rootp;
1739 opt_init(root);
1740 opt_loop(root, 0);
1741 opt_loop(root, 1);
1742 intern_blocks(root);
1743 #ifdef BDEBUG
1744 if (dflag > 1) {
1745 printf("after intern_blocks()\n");
1746 opt_dump(root);
1748 #endif
1749 opt_root(rootp);
1750 #ifdef BDEBUG
1751 if (dflag > 1) {
1752 printf("after opt_root()\n");
1753 opt_dump(root);
1755 #endif
1756 opt_cleanup();
1759 static void
1760 make_marks(p)
1761 struct block *p;
1763 if (!isMarked(p)) {
1764 Mark(p);
1765 if (BPF_CLASS(p->s.code) != BPF_RET) {
1766 make_marks(JT(p));
1767 make_marks(JF(p));
1773 * Mark code array such that isMarked(i) is true
1774 * only for nodes that are alive.
1776 static void
1777 mark_code(p)
1778 struct block *p;
1780 cur_mark += 1;
1781 make_marks(p);
1785 * True iff the two stmt lists load the same value from the packet into
1786 * the accumulator.
1788 static int
1789 eq_slist(x, y)
1790 struct slist *x, *y;
1792 while (1) {
1793 while (x && x->s.code == NOP)
1794 x = x->next;
1795 while (y && y->s.code == NOP)
1796 y = y->next;
1797 if (x == 0)
1798 return y == 0;
1799 if (y == 0)
1800 return x == 0;
1801 if (x->s.code != y->s.code || x->s.k != y->s.k)
1802 return 0;
1803 x = x->next;
1804 y = y->next;
1808 static inline int
1809 eq_blk(b0, b1)
1810 struct block *b0, *b1;
1812 if (b0->s.code == b1->s.code &&
1813 b0->s.k == b1->s.k &&
1814 b0->et.succ == b1->et.succ &&
1815 b0->ef.succ == b1->ef.succ)
1816 return eq_slist(b0->stmts, b1->stmts);
1817 return 0;
1820 static void
1821 intern_blocks(root)
1822 struct block *root;
1824 struct block *p;
1825 int i, j;
1826 int done1; /* don't shadow global */
1827 top:
1828 done1 = 1;
1829 for (i = 0; i < n_blocks; ++i)
1830 blocks[i]->link = 0;
1832 mark_code(root);
1834 for (i = n_blocks - 1; --i >= 0; ) {
1835 if (!isMarked(blocks[i]))
1836 continue;
1837 for (j = i + 1; j < n_blocks; ++j) {
1838 if (!isMarked(blocks[j]))
1839 continue;
1840 if (eq_blk(blocks[i], blocks[j])) {
1841 blocks[i]->link = blocks[j]->link ?
1842 blocks[j]->link : blocks[j];
1843 break;
1847 for (i = 0; i < n_blocks; ++i) {
1848 p = blocks[i];
1849 if (JT(p) == 0)
1850 continue;
1851 if (JT(p)->link) {
1852 done1 = 0;
1853 JT(p) = JT(p)->link;
1855 if (JF(p)->link) {
1856 done1 = 0;
1857 JF(p) = JF(p)->link;
1860 if (!done1)
1861 goto top;
1864 static void
1865 opt_cleanup()
1867 free((void *)vnode_base);
1868 free((void *)vmap);
1869 free((void *)edges);
1870 free((void *)space);
1871 free((void *)levels);
1872 free((void *)blocks);
1876 * Return the number of stmts in 's'.
1878 static int
1879 slength(s)
1880 struct slist *s;
1882 int n = 0;
1884 for (; s; s = s->next)
1885 if (s->s.code != NOP)
1886 ++n;
1887 return n;
1891 * Return the number of nodes reachable by 'p'.
1892 * All nodes should be initially unmarked.
1894 static int
1895 count_blocks(p)
1896 struct block *p;
1898 if (p == 0 || isMarked(p))
1899 return 0;
1900 Mark(p);
1901 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1905 * Do a depth first search on the flow graph, numbering the
1906 * the basic blocks, and entering them into the 'blocks' array.`
1908 static void
1909 number_blks_r(p)
1910 struct block *p;
1912 int n;
1914 if (p == 0 || isMarked(p))
1915 return;
1917 Mark(p);
1918 n = n_blocks++;
1919 p->id = n;
1920 blocks[n] = p;
1922 number_blks_r(JT(p));
1923 number_blks_r(JF(p));
1927 * Return the number of stmts in the flowgraph reachable by 'p'.
1928 * The nodes should be unmarked before calling.
1930 * Note that "stmts" means "instructions", and that this includes
1932 * side-effect statements in 'p' (slength(p->stmts));
1934 * statements in the true branch from 'p' (count_stmts(JT(p)));
1936 * statements in the false branch from 'p' (count_stmts(JF(p)));
1938 * the conditional jump itself (1);
1940 * an extra long jump if the true branch requires it (p->longjt);
1942 * an extra long jump if the false branch requires it (p->longjf).
1944 static int
1945 count_stmts(p)
1946 struct block *p;
1948 int n;
1950 if (p == 0 || isMarked(p))
1951 return 0;
1952 Mark(p);
1953 n = count_stmts(JT(p)) + count_stmts(JF(p));
1954 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1958 * Allocate memory. All allocation is done before optimization
1959 * is begun. A linear bound on the size of all data structures is computed
1960 * from the total number of blocks and/or statements.
1962 static void
1963 opt_init(root)
1964 struct block *root;
1966 bpf_u_int32 *p;
1967 int i, n, max_stmts;
1970 * First, count the blocks, so we can malloc an array to map
1971 * block number to block. Then, put the blocks into the array.
1973 unMarkAll();
1974 n = count_blocks(root);
1975 blocks = (struct block **)calloc(n, sizeof(*blocks));
1976 if (blocks == NULL)
1977 bpf_error("malloc");
1978 unMarkAll();
1979 n_blocks = 0;
1980 number_blks_r(root);
1982 n_edges = 2 * n_blocks;
1983 edges = (struct edge **)calloc(n_edges, sizeof(*edges));
1984 if (edges == NULL)
1985 bpf_error("malloc");
1988 * The number of levels is bounded by the number of nodes.
1990 levels = (struct block **)calloc(n_blocks, sizeof(*levels));
1991 if (levels == NULL)
1992 bpf_error("malloc");
1994 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1995 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1997 /* XXX */
1998 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1999 + n_edges * edgewords * sizeof(*space));
2000 if (space == NULL)
2001 bpf_error("malloc");
2002 p = space;
2003 all_dom_sets = p;
2004 for (i = 0; i < n; ++i) {
2005 blocks[i]->dom = p;
2006 p += nodewords;
2008 all_closure_sets = p;
2009 for (i = 0; i < n; ++i) {
2010 blocks[i]->closure = p;
2011 p += nodewords;
2013 all_edge_sets = p;
2014 for (i = 0; i < n; ++i) {
2015 register struct block *b = blocks[i];
2017 b->et.edom = p;
2018 p += edgewords;
2019 b->ef.edom = p;
2020 p += edgewords;
2021 b->et.id = i;
2022 edges[i] = &b->et;
2023 b->ef.id = n_blocks + i;
2024 edges[n_blocks + i] = &b->ef;
2025 b->et.pred = b;
2026 b->ef.pred = b;
2028 max_stmts = 0;
2029 for (i = 0; i < n; ++i)
2030 max_stmts += slength(blocks[i]->stmts) + 1;
2032 * We allocate at most 3 value numbers per statement,
2033 * so this is an upper bound on the number of valnodes
2034 * we'll need.
2036 maxval = 3 * max_stmts;
2037 vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
2038 vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
2039 if (vmap == NULL || vnode_base == NULL)
2040 bpf_error("malloc");
2044 * Some pointers used to convert the basic block form of the code,
2045 * into the array form that BPF requires. 'fstart' will point to
2046 * the malloc'd array while 'ftail' is used during the recursive traversal.
2048 static struct bpf_insn *fstart;
2049 static struct bpf_insn *ftail;
2051 #ifdef BDEBUG
2052 int bids[1000];
2053 #endif
2056 * Returns true if successful. Returns false if a branch has
2057 * an offset that is too large. If so, we have marked that
2058 * branch so that on a subsequent iteration, it will be treated
2059 * properly.
2061 static int
2062 convert_code_r(p)
2063 struct block *p;
2065 struct bpf_insn *dst;
2066 struct slist *src;
2067 int slen;
2068 u_int off;
2069 int extrajmps; /* number of extra jumps inserted */
2070 struct slist **offset = NULL;
2072 if (p == 0 || isMarked(p))
2073 return (1);
2074 Mark(p);
2076 if (convert_code_r(JF(p)) == 0)
2077 return (0);
2078 if (convert_code_r(JT(p)) == 0)
2079 return (0);
2081 slen = slength(p->stmts);
2082 dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2083 /* inflate length by any extra jumps */
2085 p->offset = dst - fstart;
2087 /* generate offset[] for convenience */
2088 if (slen) {
2089 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2090 if (!offset) {
2091 bpf_error("not enough core");
2092 /*NOTREACHED*/
2095 src = p->stmts;
2096 for (off = 0; off < slen && src; off++) {
2097 #if 0
2098 printf("off=%d src=%x\n", off, src);
2099 #endif
2100 offset[off] = src;
2101 src = src->next;
2104 off = 0;
2105 for (src = p->stmts; src; src = src->next) {
2106 if (src->s.code == NOP)
2107 continue;
2108 dst->code = (u_short)src->s.code;
2109 dst->k = src->s.k;
2111 /* fill block-local relative jump */
2112 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2113 #if 0
2114 if (src->s.jt || src->s.jf) {
2115 bpf_error("illegal jmp destination");
2116 /*NOTREACHED*/
2118 #endif
2119 goto filled;
2121 if (off == slen - 2) /*???*/
2122 goto filled;
2125 int i;
2126 int jt, jf;
2127 const char *ljerr = "%s for block-local relative jump: off=%d";
2129 #if 0
2130 printf("code=%x off=%d %x %x\n", src->s.code,
2131 off, src->s.jt, src->s.jf);
2132 #endif
2134 if (!src->s.jt || !src->s.jf) {
2135 bpf_error(ljerr, "no jmp destination", off);
2136 /*NOTREACHED*/
2139 jt = jf = 0;
2140 for (i = 0; i < slen; i++) {
2141 if (offset[i] == src->s.jt) {
2142 if (jt) {
2143 bpf_error(ljerr, "multiple matches", off);
2144 /*NOTREACHED*/
2147 dst->jt = i - off - 1;
2148 jt++;
2150 if (offset[i] == src->s.jf) {
2151 if (jf) {
2152 bpf_error(ljerr, "multiple matches", off);
2153 /*NOTREACHED*/
2155 dst->jf = i - off - 1;
2156 jf++;
2159 if (!jt || !jf) {
2160 bpf_error(ljerr, "no destination found", off);
2161 /*NOTREACHED*/
2164 filled:
2165 ++dst;
2166 ++off;
2168 if (offset)
2169 free(offset);
2171 #ifdef BDEBUG
2172 bids[dst - fstart] = p->id + 1;
2173 #endif
2174 dst->code = (u_short)p->s.code;
2175 dst->k = p->s.k;
2176 if (JT(p)) {
2177 extrajmps = 0;
2178 off = JT(p)->offset - (p->offset + slen) - 1;
2179 if (off >= 256) {
2180 /* offset too large for branch, must add a jump */
2181 if (p->longjt == 0) {
2182 /* mark this instruction and retry */
2183 p->longjt++;
2184 return(0);
2186 /* branch if T to following jump */
2187 dst->jt = extrajmps;
2188 extrajmps++;
2189 dst[extrajmps].code = BPF_JMP|BPF_JA;
2190 dst[extrajmps].k = off - extrajmps;
2192 else
2193 dst->jt = off;
2194 off = JF(p)->offset - (p->offset + slen) - 1;
2195 if (off >= 256) {
2196 /* offset too large for branch, must add a jump */
2197 if (p->longjf == 0) {
2198 /* mark this instruction and retry */
2199 p->longjf++;
2200 return(0);
2202 /* branch if F to following jump */
2203 /* if two jumps are inserted, F goes to second one */
2204 dst->jf = extrajmps;
2205 extrajmps++;
2206 dst[extrajmps].code = BPF_JMP|BPF_JA;
2207 dst[extrajmps].k = off - extrajmps;
2209 else
2210 dst->jf = off;
2212 return (1);
2217 * Convert flowgraph intermediate representation to the
2218 * BPF array representation. Set *lenp to the number of instructions.
2220 * This routine does *NOT* leak the memory pointed to by fp. It *must
2221 * not* do free(fp) before returning fp; doing so would make no sense,
2222 * as the BPF array pointed to by the return value of icode_to_fcode()
2223 * must be valid - it's being returned for use in a bpf_program structure.
2225 * If it appears that icode_to_fcode() is leaking, the problem is that
2226 * the program using pcap_compile() is failing to free the memory in
2227 * the BPF program when it's done - the leak is in the program, not in
2228 * the routine that happens to be allocating the memory. (By analogy, if
2229 * a program calls fopen() without ever calling fclose() on the FILE *,
2230 * it will leak the FILE structure; the leak is not in fopen(), it's in
2231 * the program.) Change the program to use pcap_freecode() when it's
2232 * done with the filter program. See the pcap man page.
2234 struct bpf_insn *
2235 icode_to_fcode(root, lenp)
2236 struct block *root;
2237 int *lenp;
2239 int n;
2240 struct bpf_insn *fp;
2243 * Loop doing convert_code_r() until no branches remain
2244 * with too-large offsets.
2246 while (1) {
2247 unMarkAll();
2248 n = *lenp = count_stmts(root);
2250 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2251 if (fp == NULL)
2252 bpf_error("malloc");
2253 memset((char *)fp, 0, sizeof(*fp) * n);
2254 fstart = fp;
2255 ftail = fp + n;
2257 unMarkAll();
2258 if (convert_code_r(root))
2259 break;
2260 free(fp);
2263 return fp;
2267 * Make a copy of a BPF program and put it in the "fcode" member of
2268 * a "pcap_t".
2270 * If we fail to allocate memory for the copy, fill in the "errbuf"
2271 * member of the "pcap_t" with an error message, and return -1;
2272 * otherwise, return 0.
2275 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2277 size_t prog_size;
2280 * Free up any already installed program.
2282 pcap_freecode(&p->fcode);
2284 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2285 p->fcode.bf_len = fp->bf_len;
2286 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2287 if (p->fcode.bf_insns == NULL) {
2288 snprintf(p->errbuf, sizeof(p->errbuf),
2289 "malloc: %s", pcap_strerror(errno));
2290 return (-1);
2292 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2293 return (0);
2296 #ifdef BDEBUG
2297 static void
2298 opt_dump(root)
2299 struct block *root;
2301 struct bpf_program f;
2303 memset(bids, 0, sizeof bids);
2304 f.bf_insns = icode_to_fcode(root, &f.bf_len);
2305 bpf_dump(&f, 1);
2306 putchar('\n');
2307 free((char *)f.bf_insns);
2309 #endif