Regenerate usbdevs.h and usbdevs_data.h and fix affected drivers to use new
[dragonfly/netmp.git] / sys / dev / netif / rum / if_rum.c
bloba574c0690708e6f66d75af116c2e75a8dcde6881
1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $DragonFly: src/sys/dev/netif/rum/if_rum.c,v 1.18 2007/07/27 18:07:21 hasso Exp $ */
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/rman.h>
33 #include <sys/serialize.h>
34 #include <sys/socket.h>
35 #include <sys/sockio.h>
37 #include <net/bpf.h>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
52 #include <bus/usb/usbdevs.h>
54 #include "if_rumreg.h"
55 #include "if_rumvar.h"
56 #include "rum_ucode.h"
58 #ifdef USB_DEBUG
59 #define RUM_DEBUG
60 #endif
62 #ifdef RUM_DEBUG
63 #define DPRINTF(x) do { if (rum_debug) kprintf x; } while (0)
64 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) kprintf x; } while (0)
65 int rum_debug = 0;
66 #else
67 #define DPRINTF(x)
68 #define DPRINTFN(n, x)
69 #endif
71 /* various supported device vendors/products */
72 static const struct usb_devno rum_devs[] = {
73 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
74 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
75 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
76 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
77 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
78 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
79 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G_2 },
80 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G_3 },
81 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
83 { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB54GC },
84 { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB54GR },
85 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
86 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
87 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
88 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
89 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
90 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
91 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
92 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
93 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
94 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
95 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
96 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
99 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
103 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
104 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
105 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
106 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
107 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
108 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
109 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
110 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
111 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 },
112 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
113 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
114 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
117 static int rum_alloc_tx_list(struct rum_softc *);
118 static void rum_free_tx_list(struct rum_softc *);
119 static int rum_alloc_rx_list(struct rum_softc *);
120 static void rum_free_rx_list(struct rum_softc *);
121 static int rum_media_change(struct ifnet *);
122 static void rum_next_scan(void *);
123 static void rum_task(void *);
124 static int rum_newstate(struct ieee80211com *,
125 enum ieee80211_state, int);
126 static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
127 usbd_status);
128 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
129 usbd_status);
130 static uint8_t rum_rxrate(struct rum_rx_desc *);
131 static uint8_t rum_plcp_signal(int);
132 static void rum_setup_tx_desc(struct rum_softc *,
133 struct rum_tx_desc *, uint32_t, uint16_t, int,
134 int);
135 static int rum_tx_data(struct rum_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 static void rum_start(struct ifnet *);
138 static void rum_watchdog(struct ifnet *);
139 static int rum_ioctl(struct ifnet *, u_long, caddr_t,
140 struct ucred *);
141 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
142 int);
143 static uint32_t rum_read(struct rum_softc *, uint16_t);
144 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
145 int);
146 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
147 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
148 size_t);
149 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
150 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
151 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
152 static void rum_select_antenna(struct rum_softc *);
153 static void rum_enable_mrr(struct rum_softc *);
154 static void rum_set_txpreamble(struct rum_softc *);
155 static void rum_set_basicrates(struct rum_softc *);
156 static void rum_select_band(struct rum_softc *,
157 struct ieee80211_channel *);
158 static void rum_set_chan(struct rum_softc *,
159 struct ieee80211_channel *);
160 static void rum_enable_tsf_sync(struct rum_softc *);
161 static void rum_update_slot(struct rum_softc *);
162 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
163 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
164 static void rum_update_promisc(struct rum_softc *);
165 static const char *rum_get_rf(int);
166 static void rum_read_eeprom(struct rum_softc *);
167 static int rum_bbp_init(struct rum_softc *);
168 static void rum_init(void *);
169 static void rum_stop(struct rum_softc *);
170 static int rum_load_microcode(struct rum_softc *, const uint8_t *,
171 size_t);
172 static int rum_prepare_beacon(struct rum_softc *);
174 static void rum_stats_timeout(void *);
175 static void rum_stats_update(usbd_xfer_handle, usbd_private_handle,
176 usbd_status);
177 static void rum_stats(struct ieee80211com *,
178 struct ieee80211_node *,
179 struct ieee80211_ratectl_stats *);
180 static void rum_ratectl_change(struct ieee80211com *ic, u_int,
181 u_int);
182 static int rum_get_rssi(struct rum_softc *, uint8_t);
185 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
187 static const struct ieee80211_rateset rum_rateset_11a =
188 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
190 static const struct ieee80211_rateset rum_rateset_11b =
191 { 4, { 2, 4, 11, 22 } };
193 static const struct ieee80211_rateset rum_rateset_11g =
194 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
196 static const struct {
197 uint32_t reg;
198 uint32_t val;
199 } rum_def_mac[] = {
200 RT2573_DEF_MAC
203 static const struct {
204 uint8_t reg;
205 uint8_t val;
206 } rum_def_bbp[] = {
207 RT2573_DEF_BBP
210 static const struct rfprog {
211 uint8_t chan;
212 uint32_t r1, r2, r3, r4;
213 } rum_rf5226[] = {
214 RT2573_RF5226
215 }, rum_rf5225[] = {
216 RT2573_RF5225
219 static device_probe_t rum_match;
220 static device_attach_t rum_attach;
221 static device_detach_t rum_detach;
223 static devclass_t rum_devclass;
225 static kobj_method_t rum_methods[] = {
226 DEVMETHOD(device_probe, rum_match),
227 DEVMETHOD(device_attach, rum_attach),
228 DEVMETHOD(device_detach, rum_detach),
229 {0,0}
232 static driver_t rum_driver = {
233 "rum",
234 rum_methods,
235 sizeof(struct rum_softc)
238 MODULE_DEPEND(rum, usb, 1, 1, 1);
239 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);
241 static int
242 rum_match(device_t self)
244 struct usb_attach_arg *uaa = device_get_ivars(self);
246 if (uaa->iface != NULL)
247 return UMATCH_NONE;
249 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
250 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
253 static int
254 rum_attach(device_t self)
256 struct rum_softc *sc = device_get_softc(self);
257 struct usb_attach_arg *uaa = device_get_ivars(self);
258 struct ieee80211com *ic = &sc->sc_ic;
259 struct ifnet *ifp = &ic->ic_if;
260 usb_interface_descriptor_t *id;
261 usb_endpoint_descriptor_t *ed;
262 usbd_status error;
263 char devinfo[1024];
264 int i, ntries;
265 uint32_t tmp;
267 sc->sc_udev = uaa->device;
269 usbd_devinfo(uaa->device, 0, devinfo);
270 sc->sc_dev = self;
271 device_set_desc_copy(self, devinfo);
273 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
274 kprintf("%s: could not set configuration no\n",
275 device_get_nameunit(sc->sc_dev));
276 return ENXIO;
279 /* get the first interface handle */
280 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
281 &sc->sc_iface);
282 if (error != 0) {
283 kprintf("%s: could not get interface handle\n",
284 device_get_nameunit(sc->sc_dev));
285 return ENXIO;
289 * Find endpoints.
291 id = usbd_get_interface_descriptor(sc->sc_iface);
293 sc->sc_rx_no = sc->sc_tx_no = -1;
294 for (i = 0; i < id->bNumEndpoints; i++) {
295 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
296 if (ed == NULL) {
297 kprintf("%s: no endpoint descriptor for iface %d\n",
298 device_get_nameunit(sc->sc_dev), i);
299 return ENXIO;
302 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
303 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
304 sc->sc_rx_no = ed->bEndpointAddress;
305 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
306 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
307 sc->sc_tx_no = ed->bEndpointAddress;
309 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
310 kprintf("%s: missing endpoint\n", device_get_nameunit(sc->sc_dev));
311 return ENXIO;
314 usb_init_task(&sc->sc_task, rum_task, sc);
316 callout_init(&sc->scan_ch);
317 callout_init(&sc->stats_ch);
319 /* retrieve RT2573 rev. no */
320 for (ntries = 0; ntries < 1000; ntries++) {
321 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
322 break;
323 DELAY(1000);
325 if (ntries == 1000) {
326 kprintf("%s: timeout waiting for chip to settle\n",
327 device_get_nameunit(sc->sc_dev));
328 return ENXIO;
331 /* retrieve MAC address and various other things from EEPROM */
332 rum_read_eeprom(sc);
334 kprintf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %6D\n",
335 device_get_nameunit(sc->sc_dev), sc->macbbp_rev, tmp,
336 rum_get_rf(sc->rf_rev), ic->ic_myaddr, ":");
338 error = rum_load_microcode(sc, rt2573, sizeof(rt2573));
339 if (error != 0) {
340 device_printf(self, "can't load microcode\n");
341 return ENXIO;
344 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
345 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
346 ic->ic_state = IEEE80211_S_INIT;
348 /* set device capabilities */
349 ic->ic_caps =
350 IEEE80211_C_IBSS | /* IBSS mode supported */
351 IEEE80211_C_MONITOR | /* monitor mode supported */
352 IEEE80211_C_HOSTAP | /* HostAp mode supported */
353 IEEE80211_C_TXPMGT | /* tx power management */
354 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
355 IEEE80211_C_SHSLOT | /* short slot time supported */
356 IEEE80211_C_WPA; /* WPA 1+2 */
358 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
359 /* set supported .11a rates */
360 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
362 /* set supported .11a channels */
363 for (i = 34; i <= 46; i += 4) {
364 ic->ic_channels[i].ic_freq =
365 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
366 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
368 for (i = 36; i <= 64; i += 4) {
369 ic->ic_channels[i].ic_freq =
370 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
371 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
373 for (i = 100; i <= 140; i += 4) {
374 ic->ic_channels[i].ic_freq =
375 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
376 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
378 for (i = 149; i <= 165; i += 4) {
379 ic->ic_channels[i].ic_freq =
380 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
381 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
385 /* set supported .11b and .11g rates */
386 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
387 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
389 /* set supported .11b and .11g channels (1 through 14) */
390 for (i = 1; i <= 14; i++) {
391 ic->ic_channels[i].ic_freq =
392 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
393 ic->ic_channels[i].ic_flags =
394 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
395 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
398 sc->sc_sifs = IEEE80211_DUR_SIFS; /* Default SIFS */
400 if_initname(ifp, device_get_name(self), device_get_unit(self));
401 ifp->if_softc = sc;
402 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
403 ifp->if_init = rum_init;
404 ifp->if_ioctl = rum_ioctl;
405 ifp->if_start = rum_start;
406 ifp->if_watchdog = rum_watchdog;
407 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
408 ifq_set_ready(&ifp->if_snd);
410 ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
411 ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
412 ic->ic_ratectl.rc_st_valid_stats =
413 IEEE80211_RATECTL_STATS_PKT_NORETRY |
414 IEEE80211_RATECTL_STATS_PKT_OK |
415 IEEE80211_RATECTL_STATS_PKT_ERR |
416 IEEE80211_RATECTL_STATS_RETRIES;
417 ic->ic_ratectl.rc_st_stats = rum_stats;
418 ic->ic_ratectl.rc_st_change = rum_ratectl_change;
420 ieee80211_ifattach(ic);
422 /* Enable software beacon missing handling. */
423 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
425 /* override state transition machine */
426 sc->sc_newstate = ic->ic_newstate;
427 ic->ic_newstate = rum_newstate;
428 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
430 bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
431 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
432 &sc->sc_drvbpf);
434 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
435 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
436 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
438 sc->sc_txtap_len = sizeof sc->sc_txtapu;
439 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
440 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
442 if (bootverbose)
443 ieee80211_announce(ic);
445 return 0;
448 static int
449 rum_detach(device_t self)
451 struct rum_softc *sc = device_get_softc(self);
452 struct ifnet *ifp = &sc->sc_ic.ic_if;
453 #ifdef INVARIANTS
454 int i;
455 #endif
457 crit_enter();
459 callout_stop(&sc->scan_ch);
460 callout_stop(&sc->stats_ch);
462 lwkt_serialize_enter(ifp->if_serializer);
463 rum_stop(sc);
464 lwkt_serialize_exit(ifp->if_serializer);
466 usb_rem_task(sc->sc_udev, &sc->sc_task);
468 bpfdetach(ifp);
469 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
471 crit_exit();
473 KKASSERT(sc->stats_xfer == NULL);
474 KKASSERT(sc->sc_rx_pipeh == NULL);
475 KKASSERT(sc->sc_tx_pipeh == NULL);
477 #ifdef INVARIANTS
479 * Make sure TX/RX list is empty
481 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
482 struct rum_tx_data *data = &sc->tx_data[i];
484 KKASSERT(data->xfer == NULL);
485 KKASSERT(data->ni == NULL);
486 KKASSERT(data->m == NULL);
488 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
489 struct rum_rx_data *data = &sc->rx_data[i];
491 KKASSERT(data->xfer == NULL);
492 KKASSERT(data->m == NULL);
494 #endif
495 return 0;
498 static int
499 rum_alloc_tx_list(struct rum_softc *sc)
501 int i;
503 sc->tx_queued = 0;
504 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
505 struct rum_tx_data *data = &sc->tx_data[i];
507 data->sc = sc;
509 data->xfer = usbd_alloc_xfer(sc->sc_udev);
510 if (data->xfer == NULL) {
511 kprintf("%s: could not allocate tx xfer\n",
512 device_get_nameunit(sc->sc_dev));
513 return ENOMEM;
516 data->buf = usbd_alloc_buffer(data->xfer,
517 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
518 if (data->buf == NULL) {
519 kprintf("%s: could not allocate tx buffer\n",
520 device_get_nameunit(sc->sc_dev));
521 return ENOMEM;
524 /* clean Tx descriptor */
525 bzero(data->buf, RT2573_TX_DESC_SIZE);
527 return 0;
530 static void
531 rum_free_tx_list(struct rum_softc *sc)
533 int i;
535 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
536 struct rum_tx_data *data = &sc->tx_data[i];
538 if (data->xfer != NULL) {
539 usbd_free_xfer(data->xfer);
540 data->xfer = NULL;
542 if (data->ni != NULL) {
543 ieee80211_free_node(data->ni);
544 data->ni = NULL;
546 if (data->m != NULL) {
547 m_freem(data->m);
548 data->m = NULL;
551 sc->tx_queued = 0;
554 static int
555 rum_alloc_rx_list(struct rum_softc *sc)
557 int i;
559 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
560 struct rum_rx_data *data = &sc->rx_data[i];
562 data->sc = sc;
564 data->xfer = usbd_alloc_xfer(sc->sc_udev);
565 if (data->xfer == NULL) {
566 kprintf("%s: could not allocate rx xfer\n",
567 device_get_nameunit(sc->sc_dev));
568 return ENOMEM;
571 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
572 kprintf("%s: could not allocate rx buffer\n",
573 device_get_nameunit(sc->sc_dev));
574 return ENOMEM;
577 data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
579 data->buf = mtod(data->m, uint8_t *);
580 bzero(data->buf, sizeof(struct rum_rx_desc));
582 return 0;
585 static void
586 rum_free_rx_list(struct rum_softc *sc)
588 int i;
590 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
591 struct rum_rx_data *data = &sc->rx_data[i];
593 if (data->xfer != NULL) {
594 usbd_free_xfer(data->xfer);
595 data->xfer = NULL;
597 if (data->m != NULL) {
598 m_freem(data->m);
599 data->m = NULL;
604 static int
605 rum_media_change(struct ifnet *ifp)
607 int error;
609 error = ieee80211_media_change(ifp);
610 if (error != ENETRESET)
611 return error;
613 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
614 rum_init(ifp->if_softc);
616 return 0;
620 * This function is called periodically (every 200ms) during scanning to
621 * switch from one channel to another.
623 static void
624 rum_next_scan(void *arg)
626 struct rum_softc *sc = arg;
627 struct ieee80211com *ic = &sc->sc_ic;
628 struct ifnet *ifp = &ic->ic_if;
630 if (sc->sc_stopped)
631 return;
633 crit_enter();
635 if (ic->ic_state == IEEE80211_S_SCAN) {
636 lwkt_serialize_enter(ifp->if_serializer);
637 ieee80211_next_scan(ic);
638 lwkt_serialize_exit(ifp->if_serializer);
641 crit_exit();
644 static void
645 rum_task(void *xarg)
647 struct rum_softc *sc = xarg;
648 struct ieee80211com *ic = &sc->sc_ic;
649 struct ifnet *ifp = &ic->ic_if;
650 enum ieee80211_state nstate;
651 struct ieee80211_node *ni;
652 int arg;
654 if (sc->sc_stopped)
655 return;
657 crit_enter();
659 nstate = sc->sc_state;
660 arg = sc->sc_arg;
662 KASSERT(nstate != IEEE80211_S_INIT,
663 ("->INIT state transition should not be defered\n"));
664 rum_set_chan(sc, ic->ic_curchan);
666 switch (nstate) {
667 case IEEE80211_S_RUN:
668 ni = ic->ic_bss;
670 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
671 rum_update_slot(sc);
672 rum_enable_mrr(sc);
673 rum_set_txpreamble(sc);
674 rum_set_basicrates(sc);
675 rum_set_bssid(sc, ni->ni_bssid);
678 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
679 ic->ic_opmode == IEEE80211_M_IBSS)
680 rum_prepare_beacon(sc);
682 if (ic->ic_opmode != IEEE80211_M_MONITOR)
683 rum_enable_tsf_sync(sc);
685 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
686 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
687 callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
688 break;
690 case IEEE80211_S_SCAN:
691 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
692 break;
694 default:
695 break;
698 lwkt_serialize_enter(ifp->if_serializer);
699 ieee80211_ratectl_newstate(ic, nstate);
700 sc->sc_newstate(ic, nstate, arg);
701 lwkt_serialize_exit(ifp->if_serializer);
703 crit_exit();
706 static int
707 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
709 struct rum_softc *sc = ic->ic_if.if_softc;
710 struct ifnet *ifp = &ic->ic_if;
712 crit_enter();
714 ASSERT_SERIALIZED(ifp->if_serializer);
716 callout_stop(&sc->scan_ch);
717 callout_stop(&sc->stats_ch);
719 /* do it in a process context */
720 sc->sc_state = nstate;
721 sc->sc_arg = arg;
723 lwkt_serialize_exit(ifp->if_serializer);
724 usb_rem_task(sc->sc_udev, &sc->sc_task);
726 if (nstate == IEEE80211_S_INIT) {
727 lwkt_serialize_enter(ifp->if_serializer);
728 ieee80211_ratectl_newstate(ic, nstate);
729 sc->sc_newstate(ic, nstate, arg);
730 } else {
731 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
732 lwkt_serialize_enter(ifp->if_serializer);
735 crit_exit();
736 return 0;
739 /* quickly determine if a given rate is CCK or OFDM */
740 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
742 #define RUM_ACK_SIZE (sizeof(struct ieee80211_frame_ack) + IEEE80211_FCS_LEN)
744 static void
745 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
747 struct rum_tx_data *data = priv;
748 struct rum_softc *sc = data->sc;
749 struct ieee80211com *ic = &sc->sc_ic;
750 struct ifnet *ifp = &ic->ic_if;
751 struct ieee80211_node *ni;
753 if (sc->sc_stopped)
754 return;
756 crit_enter();
758 if (status != USBD_NORMAL_COMPLETION) {
759 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
760 crit_exit();
761 return;
764 kprintf("%s: could not transmit buffer: %s\n",
765 device_get_nameunit(sc->sc_dev), usbd_errstr(status));
767 if (status == USBD_STALLED)
768 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
770 ifp->if_oerrors++;
771 crit_exit();
772 return;
775 m_freem(data->m);
776 data->m = NULL;
777 ni = data->ni;
778 data->ni = NULL;
780 bzero(data->buf, sizeof(struct rum_tx_data));
781 sc->tx_queued--;
782 ifp->if_opackets++; /* XXX may fail too */
784 DPRINTFN(10, ("tx done\n"));
786 sc->sc_tx_timer = 0;
787 ifp->if_flags &= ~IFF_OACTIVE;
789 lwkt_serialize_enter(ifp->if_serializer);
790 ieee80211_free_node(ni);
791 ifp->if_start(ifp);
792 lwkt_serialize_exit(ifp->if_serializer);
794 crit_exit();
797 static void
798 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
800 struct rum_rx_data *data = priv;
801 struct rum_softc *sc = data->sc;
802 struct ieee80211com *ic = &sc->sc_ic;
803 struct ifnet *ifp = &ic->ic_if;
804 struct rum_rx_desc *desc;
805 struct ieee80211_frame_min *wh;
806 struct ieee80211_node *ni;
807 struct mbuf *mnew, *m;
808 int len, rssi;
810 if (sc->sc_stopped)
811 return;
813 crit_enter();
815 if (status != USBD_NORMAL_COMPLETION) {
816 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
817 crit_exit();
818 return;
821 if (status == USBD_STALLED)
822 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
823 goto skip;
826 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
828 if (len < RT2573_RX_DESC_SIZE + sizeof(struct ieee80211_frame_min)) {
829 DPRINTF(("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev),
830 len));
831 ifp->if_ierrors++;
832 goto skip;
835 desc = (struct rum_rx_desc *)data->buf;
837 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
839 * This should not happen since we did not request to receive
840 * those frames when we filled RT2573_TXRX_CSR0.
842 DPRINTFN(5, ("CRC error\n"));
843 ifp->if_ierrors++;
844 goto skip;
847 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
848 if (mnew == NULL) {
849 kprintf("%s: could not allocate rx mbuf\n",
850 device_get_nameunit(sc->sc_dev));
851 ifp->if_ierrors++;
852 goto skip;
855 m = data->m;
856 data->m = NULL;
857 data->buf = NULL;
859 lwkt_serialize_enter(ifp->if_serializer);
861 /* finalize mbuf */
862 m->m_pkthdr.rcvif = ifp;
863 m->m_data = (caddr_t)(desc + 1);
864 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
866 rssi = rum_get_rssi(sc, desc->rssi);
868 wh = mtod(m, struct ieee80211_frame_min *);
869 ni = ieee80211_find_rxnode(ic, wh);
871 /* Error happened during RSSI conversion. */
872 if (rssi < 0)
873 rssi = ni->ni_rssi;
875 if (sc->sc_drvbpf != NULL) {
876 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
878 tap->wr_flags = 0;
879 tap->wr_rate = rum_rxrate(desc);
880 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
881 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
882 tap->wr_antenna = sc->rx_ant;
883 tap->wr_antsignal = rssi;
885 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
888 /* send the frame to the 802.11 layer */
889 ieee80211_input(ic, m, ni, rssi, 0);
891 /* node is no longer needed */
892 ieee80211_free_node(ni);
894 if ((ifp->if_flags & IFF_OACTIVE) == 0)
895 ifp->if_start(ifp);
897 lwkt_serialize_exit(ifp->if_serializer);
899 data->m = mnew;
900 data->buf = mtod(data->m, uint8_t *);
902 DPRINTFN(15, ("rx done\n"));
904 skip: /* setup a new transfer */
905 bzero(data->buf, sizeof(struct rum_rx_desc));
906 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
907 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
908 usbd_transfer(xfer);
910 crit_exit();
914 * This function is only used by the Rx radiotap code. It returns the rate at
915 * which a given frame was received.
917 static uint8_t
918 rum_rxrate(struct rum_rx_desc *desc)
920 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
921 /* reverse function of rum_plcp_signal */
922 switch (desc->rate) {
923 case 0xb: return 12;
924 case 0xf: return 18;
925 case 0xa: return 24;
926 case 0xe: return 36;
927 case 0x9: return 48;
928 case 0xd: return 72;
929 case 0x8: return 96;
930 case 0xc: return 108;
932 } else {
933 if (desc->rate == 10)
934 return 2;
935 if (desc->rate == 20)
936 return 4;
937 if (desc->rate == 55)
938 return 11;
939 if (desc->rate == 110)
940 return 22;
942 return 2; /* should not get there */
945 static uint8_t
946 rum_plcp_signal(int rate)
948 switch (rate) {
949 /* CCK rates (returned values are device-dependent) */
950 case 2: return 0x0;
951 case 4: return 0x1;
952 case 11: return 0x2;
953 case 22: return 0x3;
955 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
956 case 12: return 0xb;
957 case 18: return 0xf;
958 case 24: return 0xa;
959 case 36: return 0xe;
960 case 48: return 0x9;
961 case 72: return 0xd;
962 case 96: return 0x8;
963 case 108: return 0xc;
965 /* unsupported rates (should not get there) */
966 default: return 0xff;
970 static void
971 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
972 uint32_t flags, uint16_t xflags, int len, int rate)
974 struct ieee80211com *ic = &sc->sc_ic;
975 uint16_t plcp_length;
976 int remainder;
978 desc->flags = htole32(flags);
979 desc->flags |= htole32(len << 16);
981 desc->xflags = htole16(xflags);
983 desc->wme = htole16(
984 RT2573_QID(0) |
985 RT2573_AIFSN(2) |
986 RT2573_LOGCWMIN(4) |
987 RT2573_LOGCWMAX(10));
989 /* setup PLCP fields */
990 desc->plcp_signal = rum_plcp_signal(rate);
991 desc->plcp_service = 4;
993 len += IEEE80211_CRC_LEN;
994 if (RUM_RATE_IS_OFDM(rate)) {
995 desc->flags |= htole32(RT2573_TX_OFDM);
997 plcp_length = len & 0xfff;
998 desc->plcp_length_hi = plcp_length >> 6;
999 desc->plcp_length_lo = plcp_length & 0x3f;
1000 } else {
1001 plcp_length = (16 * len + rate - 1) / rate;
1002 if (rate == 22) {
1003 remainder = (16 * len) % 22;
1004 if (remainder != 0 && remainder < 7)
1005 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1007 desc->plcp_length_hi = plcp_length >> 8;
1008 desc->plcp_length_lo = plcp_length & 0xff;
1010 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1011 desc->plcp_signal |= 0x08;
1013 desc->flags |= htole32(RT2573_TX_VALID);
1016 #define RUM_TX_TIMEOUT 5000
1018 static int
1019 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1021 struct ieee80211com *ic = &sc->sc_ic;
1022 struct ifnet *ifp = &ic->ic_if;
1023 struct rum_tx_desc *desc;
1024 struct rum_tx_data *data;
1025 struct ieee80211_frame *wh;
1026 uint32_t flags = 0;
1027 uint16_t dur;
1028 usbd_status error;
1029 int xferlen, rate, rateidx;
1031 wh = mtod(m0, struct ieee80211_frame *);
1033 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1034 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1035 m_freem(m0);
1036 return ENOBUFS;
1039 /* packet header may have moved, reset our local pointer */
1040 wh = mtod(m0, struct ieee80211_frame *);
1043 /* pickup a rate */
1044 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1045 IEEE80211_FC0_TYPE_MGT) {
1046 /* mgmt frames are sent at the lowest available bit-rate */
1047 rateidx = 0;
1048 } else {
1049 ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1);
1051 rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx);
1053 data = &sc->tx_data[0];
1054 desc = (struct rum_tx_desc *)data->buf;
1056 data->m = m0;
1057 data->ni = ni;
1059 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1060 flags |= RT2573_TX_ACK;
1062 dur = ieee80211_txtime(ni, RUM_ACK_SIZE,
1063 ieee80211_ack_rate(ni, rate), ic->ic_flags) +
1064 sc->sc_sifs;
1065 *(uint16_t *)wh->i_dur = htole16(dur);
1067 /* tell hardware to set timestamp in probe responses */
1068 if ((wh->i_fc[0] &
1069 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1070 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1071 flags |= RT2573_TX_TIMESTAMP;
1074 if (sc->sc_drvbpf != NULL) {
1075 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1077 tap->wt_flags = 0;
1078 tap->wt_rate = rate;
1079 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1080 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1081 tap->wt_antenna = sc->tx_ant;
1083 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1086 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1087 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1089 /* Align end on a 4-bytes boundary */
1090 xferlen = roundup(RT2573_TX_DESC_SIZE + m0->m_pkthdr.len, 4);
1093 * No space left in the last URB to store the extra 4 bytes, force
1094 * sending of another URB.
1096 if ((xferlen % 64) == 0)
1097 xferlen += 4;
1099 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1100 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1102 lwkt_serialize_exit(ifp->if_serializer);
1104 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1105 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1107 error = usbd_transfer(data->xfer);
1108 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1109 m_freem(m0);
1110 data->m = NULL;
1111 data->ni = NULL;
1112 } else {
1113 sc->tx_queued++;
1114 error = 0;
1117 lwkt_serialize_enter(ifp->if_serializer);
1118 return error;
1121 static void
1122 rum_start(struct ifnet *ifp)
1124 struct rum_softc *sc = ifp->if_softc;
1125 struct ieee80211com *ic = &sc->sc_ic;
1127 ASSERT_SERIALIZED(ifp->if_serializer);
1129 if (sc->sc_stopped)
1130 return;
1132 crit_enter();
1134 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1135 crit_exit();
1136 return;
1139 for (;;) {
1140 struct ieee80211_node *ni;
1141 struct mbuf *m0;
1143 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1144 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1145 ifp->if_flags |= IFF_OACTIVE;
1146 break;
1148 IF_DEQUEUE(&ic->ic_mgtq, m0);
1150 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1151 m0->m_pkthdr.rcvif = NULL;
1153 BPF_MTAP(ifp, m0);
1155 if (rum_tx_data(sc, m0, ni) != 0) {
1156 ieee80211_free_node(ni);
1157 break;
1159 } else {
1160 struct ether_header *eh;
1162 if (ic->ic_state != IEEE80211_S_RUN)
1163 break;
1165 m0 = ifq_poll(&ifp->if_snd);
1166 if (m0 == NULL)
1167 break;
1168 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1169 ifp->if_flags |= IFF_OACTIVE;
1170 break;
1172 ifq_dequeue(&ifp->if_snd, m0);
1174 if (m0->m_len < sizeof(struct ether_header)) {
1175 m0 = m_pullup(m0, sizeof(struct ether_header));
1176 if (m0 == NULL) {
1177 ifp->if_oerrors++;
1178 continue;
1181 eh = mtod(m0, struct ether_header *);
1183 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1184 if (ni == NULL) {
1185 m_freem(m0);
1186 continue;
1189 BPF_MTAP(ifp, m0);
1191 m0 = ieee80211_encap(ic, m0, ni);
1192 if (m0 == NULL) {
1193 ieee80211_free_node(ni);
1194 continue;
1197 if (ic->ic_rawbpf != NULL)
1198 bpf_mtap(ic->ic_rawbpf, m0);
1200 if (rum_tx_data(sc, m0, ni) != 0) {
1201 ieee80211_free_node(ni);
1202 ifp->if_oerrors++;
1203 break;
1207 sc->sc_tx_timer = 5;
1208 ifp->if_timer = 1;
1211 crit_exit();
1214 static void
1215 rum_watchdog(struct ifnet *ifp)
1217 struct rum_softc *sc = ifp->if_softc;
1219 ASSERT_SERIALIZED(ifp->if_serializer);
1221 crit_enter();
1223 ifp->if_timer = 0;
1225 if (sc->sc_tx_timer > 0) {
1226 if (--sc->sc_tx_timer == 0) {
1227 kprintf("%s: device timeout\n", device_get_nameunit(sc->sc_dev));
1228 /*rum_init(sc); XXX needs a process context! */
1229 ifp->if_oerrors++;
1231 crit_exit();
1232 return;
1234 ifp->if_timer = 1;
1237 ieee80211_watchdog(&sc->sc_ic);
1239 crit_exit();
1242 static int
1243 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1245 struct rum_softc *sc = ifp->if_softc;
1246 struct ieee80211com *ic = &sc->sc_ic;
1247 int error = 0;
1249 ASSERT_SERIALIZED(ifp->if_serializer);
1251 crit_enter();
1253 switch (cmd) {
1254 case SIOCSIFFLAGS:
1255 if (ifp->if_flags & IFF_UP) {
1256 if (ifp->if_flags & IFF_RUNNING) {
1257 lwkt_serialize_exit(ifp->if_serializer);
1258 rum_update_promisc(sc);
1259 lwkt_serialize_enter(ifp->if_serializer);
1260 } else {
1261 rum_init(sc);
1263 } else {
1264 if (ifp->if_flags & IFF_RUNNING)
1265 rum_stop(sc);
1267 break;
1268 default:
1269 error = ieee80211_ioctl(ic, cmd, data, cr);
1270 break;
1273 if (error == ENETRESET) {
1274 struct ieee80211req *ireq = (struct ieee80211req *)data;
1276 if (cmd == SIOCS80211 &&
1277 ireq->i_type == IEEE80211_IOC_CHANNEL &&
1278 ic->ic_opmode == IEEE80211_M_MONITOR) {
1280 * This allows for fast channel switching in monitor
1281 * mode (used by kismet). In IBSS mode, we must
1282 * explicitly reset the interface to generate a new
1283 * beacon frame.
1285 lwkt_serialize_exit(ifp->if_serializer);
1286 rum_set_chan(sc, ic->ic_ibss_chan);
1287 lwkt_serialize_enter(ifp->if_serializer);
1288 } else if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1289 (IFF_UP | IFF_RUNNING)) {
1290 rum_init(sc);
1292 error = 0;
1295 crit_exit();
1296 return error;
1299 static void
1300 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1302 usb_device_request_t req;
1303 usbd_status error;
1305 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1306 req.bRequest = RT2573_READ_EEPROM;
1307 USETW(req.wValue, 0);
1308 USETW(req.wIndex, addr);
1309 USETW(req.wLength, len);
1311 error = usbd_do_request(sc->sc_udev, &req, buf);
1312 if (error != 0) {
1313 kprintf("%s: could not read EEPROM: %s\n",
1314 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1318 static uint32_t
1319 rum_read(struct rum_softc *sc, uint16_t reg)
1321 uint32_t val;
1323 rum_read_multi(sc, reg, &val, sizeof val);
1325 return le32toh(val);
1328 static void
1329 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1331 usb_device_request_t req;
1332 usbd_status error;
1334 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1335 req.bRequest = RT2573_READ_MULTI_MAC;
1336 USETW(req.wValue, 0);
1337 USETW(req.wIndex, reg);
1338 USETW(req.wLength, len);
1340 error = usbd_do_request(sc->sc_udev, &req, buf);
1341 if (error != 0) {
1342 kprintf("%s: could not multi read MAC register: %s\n",
1343 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1347 static void
1348 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1350 uint32_t tmp = htole32(val);
1352 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1355 static void
1356 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1358 usb_device_request_t req;
1359 usbd_status error;
1361 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1362 req.bRequest = RT2573_WRITE_MULTI_MAC;
1363 USETW(req.wValue, 0);
1364 USETW(req.wIndex, reg);
1365 USETW(req.wLength, len);
1367 error = usbd_do_request(sc->sc_udev, &req, buf);
1368 if (error != 0) {
1369 kprintf("%s: could not multi write MAC register: %s\n",
1370 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1374 static void
1375 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1377 uint32_t tmp;
1378 int ntries;
1380 for (ntries = 0; ntries < 5; ntries++) {
1381 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1382 break;
1384 if (ntries == 5) {
1385 kprintf("%s: could not write to BBP\n", device_get_nameunit(sc->sc_dev));
1386 return;
1389 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1390 rum_write(sc, RT2573_PHY_CSR3, tmp);
1393 static uint8_t
1394 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1396 uint32_t val;
1397 int ntries;
1399 for (ntries = 0; ntries < 5; ntries++) {
1400 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1401 break;
1403 if (ntries == 5) {
1404 kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1405 return 0;
1408 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1409 rum_write(sc, RT2573_PHY_CSR3, val);
1411 for (ntries = 0; ntries < 100; ntries++) {
1412 val = rum_read(sc, RT2573_PHY_CSR3);
1413 if (!(val & RT2573_BBP_BUSY))
1414 return val & 0xff;
1415 DELAY(1);
1418 kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1419 return 0;
1422 static void
1423 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1425 uint32_t tmp;
1426 int ntries;
1428 for (ntries = 0; ntries < 5; ntries++) {
1429 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1430 break;
1432 if (ntries == 5) {
1433 kprintf("%s: could not write to RF\n", device_get_nameunit(sc->sc_dev));
1434 return;
1437 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1438 (reg & 3);
1439 rum_write(sc, RT2573_PHY_CSR4, tmp);
1441 /* remember last written value in sc */
1442 sc->rf_regs[reg] = val;
1444 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1447 static void
1448 rum_select_antenna(struct rum_softc *sc)
1450 uint8_t bbp4, bbp77;
1451 uint32_t tmp;
1453 bbp4 = rum_bbp_read(sc, 4);
1454 bbp77 = rum_bbp_read(sc, 77);
1456 /* TBD */
1458 /* make sure Rx is disabled before switching antenna */
1459 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1460 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1462 rum_bbp_write(sc, 4, bbp4);
1463 rum_bbp_write(sc, 77, bbp77);
1465 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1469 * Enable multi-rate retries for frames sent at OFDM rates.
1470 * In 802.11b/g mode, allow fallback to CCK rates.
1472 static void
1473 rum_enable_mrr(struct rum_softc *sc)
1475 struct ieee80211com *ic = &sc->sc_ic;
1476 uint32_t tmp;
1478 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1480 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1481 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1482 tmp |= RT2573_MRR_CCK_FALLBACK;
1483 tmp |= RT2573_MRR_ENABLED;
1485 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1488 static void
1489 rum_set_txpreamble(struct rum_softc *sc)
1491 uint32_t tmp;
1493 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1495 tmp &= ~RT2573_SHORT_PREAMBLE;
1496 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1497 tmp |= RT2573_SHORT_PREAMBLE;
1499 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1502 static void
1503 rum_set_basicrates(struct rum_softc *sc)
1505 struct ieee80211com *ic = &sc->sc_ic;
1507 /* update basic rate set */
1508 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1509 /* 11b basic rates: 1, 2Mbps */
1510 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1511 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1512 /* 11a basic rates: 6, 12, 24Mbps */
1513 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1514 } else {
1515 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1516 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1521 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1522 * driver.
1524 static void
1525 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1527 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1528 uint32_t tmp;
1530 /* update all BBP registers that depend on the band */
1531 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1532 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1533 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1534 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1535 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1537 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1538 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1539 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1542 sc->bbp17 = bbp17;
1543 rum_bbp_write(sc, 17, bbp17);
1544 rum_bbp_write(sc, 96, bbp96);
1545 rum_bbp_write(sc, 104, bbp104);
1547 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1548 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1549 rum_bbp_write(sc, 75, 0x80);
1550 rum_bbp_write(sc, 86, 0x80);
1551 rum_bbp_write(sc, 88, 0x80);
1554 rum_bbp_write(sc, 35, bbp35);
1555 rum_bbp_write(sc, 97, bbp97);
1556 rum_bbp_write(sc, 98, bbp98);
1558 tmp = rum_read(sc, RT2573_PHY_CSR0);
1559 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1560 if (IEEE80211_IS_CHAN_2GHZ(c))
1561 tmp |= RT2573_PA_PE_2GHZ;
1562 else
1563 tmp |= RT2573_PA_PE_5GHZ;
1564 rum_write(sc, RT2573_PHY_CSR0, tmp);
1567 static void
1568 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1570 struct ieee80211com *ic = &sc->sc_ic;
1571 const struct rfprog *rfprog;
1572 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1573 int8_t power;
1574 u_int i, chan;
1576 chan = ieee80211_chan2ieee(ic, c);
1577 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1578 return;
1580 /* select the appropriate RF settings based on what EEPROM says */
1581 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1582 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1584 /* find the settings for this channel (we know it exists) */
1585 for (i = 0; rfprog[i].chan != chan; i++)
1586 ; /* EMPTY */
1588 power = sc->txpow[i];
1589 if (power < 0) {
1590 bbp94 += power;
1591 power = 0;
1592 } else if (power > 31) {
1593 bbp94 += power - 31;
1594 power = 31;
1598 * If we are switching from the 2GHz band to the 5GHz band or
1599 * vice-versa, BBP registers need to be reprogrammed.
1601 if (c->ic_flags != sc->sc_curchan->ic_flags) {
1602 rum_select_band(sc, c);
1603 rum_select_antenna(sc);
1605 sc->sc_curchan = c;
1607 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1608 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1609 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1610 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1612 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1613 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1614 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1615 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1617 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1618 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1619 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1620 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1622 DELAY(10);
1624 /* enable smart mode for MIMO-capable RFs */
1625 bbp3 = rum_bbp_read(sc, 3);
1627 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1628 bbp3 &= ~RT2573_SMART_MODE;
1629 else
1630 bbp3 |= RT2573_SMART_MODE;
1632 rum_bbp_write(sc, 3, bbp3);
1634 if (bbp94 != RT2573_BBPR94_DEFAULT)
1635 rum_bbp_write(sc, 94, bbp94);
1637 sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
1638 : IEEE80211_DUR_SIFS;
1642 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1643 * and HostAP operating modes.
1645 static void
1646 rum_enable_tsf_sync(struct rum_softc *sc)
1648 struct ieee80211com *ic = &sc->sc_ic;
1649 uint32_t tmp;
1651 if (ic->ic_opmode != IEEE80211_M_STA) {
1653 * Change default 16ms TBTT adjustment to 8ms.
1654 * Must be done before enabling beacon generation.
1656 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1659 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1661 /* set beacon interval (in 1/16ms unit) */
1662 tmp |= ic->ic_bss->ni_intval * 16;
1664 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1665 if (ic->ic_opmode == IEEE80211_M_STA)
1666 tmp |= RT2573_TSF_MODE(1);
1667 else
1668 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1670 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1673 static void
1674 rum_update_slot(struct rum_softc *sc)
1676 struct ieee80211com *ic = &sc->sc_ic;
1677 uint8_t slottime;
1678 uint32_t tmp;
1680 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1682 tmp = rum_read(sc, RT2573_MAC_CSR9);
1683 tmp = (tmp & ~0xff) | slottime;
1684 rum_write(sc, RT2573_MAC_CSR9, tmp);
1686 DPRINTF(("setting slot time to %uus\n", slottime));
1689 static void
1690 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1692 uint32_t tmp;
1694 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1695 rum_write(sc, RT2573_MAC_CSR4, tmp);
1697 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1698 rum_write(sc, RT2573_MAC_CSR5, tmp);
1701 static void
1702 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1704 uint32_t tmp;
1706 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1707 rum_write(sc, RT2573_MAC_CSR2, tmp);
1709 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1710 rum_write(sc, RT2573_MAC_CSR3, tmp);
1713 static void
1714 rum_update_promisc(struct rum_softc *sc)
1716 struct ifnet *ifp = &sc->sc_ic.ic_if;
1717 uint32_t tmp;
1719 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1721 tmp &= ~RT2573_DROP_NOT_TO_ME;
1722 if (!(ifp->if_flags & IFF_PROMISC))
1723 tmp |= RT2573_DROP_NOT_TO_ME;
1725 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1727 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1728 "entering" : "leaving"));
1731 static const char *
1732 rum_get_rf(int rev)
1734 switch (rev) {
1735 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1736 case RT2573_RF_2528: return "RT2528";
1737 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1738 case RT2573_RF_5226: return "RT5226";
1739 default: return "unknown";
1743 static void
1744 rum_read_eeprom(struct rum_softc *sc)
1746 struct ieee80211com *ic = &sc->sc_ic;
1747 uint16_t val;
1748 #ifdef RUM_DEBUG
1749 int i;
1750 #endif
1752 /* read MAC/BBP type */
1753 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1754 sc->macbbp_rev = le16toh(val);
1756 /* read MAC address */
1757 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1759 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1760 val = le16toh(val);
1761 sc->rf_rev = (val >> 11) & 0x1f;
1762 sc->hw_radio = (val >> 10) & 0x1;
1763 sc->rx_ant = (val >> 4) & 0x3;
1764 sc->tx_ant = (val >> 2) & 0x3;
1765 sc->nb_ant = val & 0x3;
1767 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1769 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1770 val = le16toh(val);
1771 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1772 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1774 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1775 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1777 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1778 val = le16toh(val);
1779 if ((val & 0xff) != 0xff)
1780 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1782 /* Only [-10, 10] is valid */
1783 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1784 sc->rssi_2ghz_corr = 0;
1786 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1787 val = le16toh(val);
1788 if ((val & 0xff) != 0xff)
1789 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1791 /* Only [-10, 10] is valid */
1792 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1793 sc->rssi_5ghz_corr = 0;
1795 if (sc->ext_2ghz_lna)
1796 sc->rssi_2ghz_corr -= 14;
1797 if (sc->ext_5ghz_lna)
1798 sc->rssi_5ghz_corr -= 14;
1800 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1801 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1803 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1804 val = le16toh(val);
1805 if ((val & 0xff) != 0xff)
1806 sc->rffreq = val & 0xff;
1808 DPRINTF(("RF freq=%d\n", sc->rffreq));
1810 /* read Tx power for all a/b/g channels */
1811 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1812 /* XXX default Tx power for 802.11a channels */
1813 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1814 #ifdef RUM_DEBUG
1815 for (i = 0; i < 14; i++)
1816 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1817 #endif
1819 /* read default values for BBP registers */
1820 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1821 #ifdef RUM_DEBUG
1822 for (i = 0; i < 14; i++) {
1823 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1824 continue;
1825 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1826 sc->bbp_prom[i].val));
1828 #endif
1831 static int
1832 rum_bbp_init(struct rum_softc *sc)
1834 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1835 int i, ntries;
1836 uint8_t val;
1838 /* wait for BBP to be ready */
1839 for (ntries = 0; ntries < 100; ntries++) {
1840 val = rum_bbp_read(sc, 0);
1841 if (val != 0 && val != 0xff)
1842 break;
1843 DELAY(1000);
1845 if (ntries == 100) {
1846 kprintf("%s: timeout waiting for BBP\n",
1847 device_get_nameunit(sc->sc_dev));
1848 return EIO;
1851 /* initialize BBP registers to default values */
1852 for (i = 0; i < N(rum_def_bbp); i++)
1853 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1855 /* write vendor-specific BBP values (from EEPROM) */
1856 for (i = 0; i < 16; i++) {
1857 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1858 continue;
1859 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1862 return 0;
1863 #undef N
1866 static void
1867 rum_init(void *xsc)
1869 #define N(a) (sizeof(a) / sizeof((a)[0]))
1870 struct rum_softc *sc = xsc;
1871 struct ieee80211com *ic = &sc->sc_ic;
1872 struct ifnet *ifp = &ic->ic_if;
1873 struct rum_rx_data *data;
1874 uint32_t tmp;
1875 usbd_status usb_err;
1876 int i, ntries, error;
1878 ASSERT_SERIALIZED(ifp->if_serializer);
1880 crit_enter();
1882 rum_stop(sc);
1883 sc->sc_stopped = 0;
1885 lwkt_serialize_exit(ifp->if_serializer);
1887 /* initialize MAC registers to default values */
1888 for (i = 0; i < N(rum_def_mac); i++)
1889 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1891 /* set host ready */
1892 rum_write(sc, RT2573_MAC_CSR1, 3);
1893 rum_write(sc, RT2573_MAC_CSR1, 0);
1895 /* wait for BBP/RF to wakeup */
1896 for (ntries = 0; ntries < 1000; ntries++) {
1897 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1898 break;
1899 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1900 DELAY(1000);
1902 if (ntries == 1000) {
1903 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
1904 device_get_nameunit(sc->sc_dev));
1905 error = ETIMEDOUT;
1906 goto fail;
1909 error = rum_bbp_init(sc);
1910 if (error)
1911 goto fail;
1913 /* select default channel */
1914 sc->sc_curchan = ic->ic_curchan = ic->ic_ibss_chan;
1916 rum_select_band(sc, sc->sc_curchan);
1917 rum_select_antenna(sc);
1918 rum_set_chan(sc, sc->sc_curchan);
1920 /* clear STA registers */
1921 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1923 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1924 rum_set_macaddr(sc, ic->ic_myaddr);
1926 /* initialize ASIC */
1927 rum_write(sc, RT2573_MAC_CSR1, 4);
1930 * Allocate xfer for AMRR statistics requests.
1932 sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev);
1933 if (sc->stats_xfer == NULL) {
1934 kprintf("%s: could not allocate AMRR xfer\n",
1935 device_get_nameunit(sc->sc_dev));
1936 error = ENOMEM;
1937 goto fail;
1941 * Open Tx and Rx USB bulk pipes.
1943 usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1944 &sc->sc_tx_pipeh);
1945 if (usb_err != USBD_NORMAL_COMPLETION) {
1946 kprintf("%s: could not open Tx pipe: %s\n",
1947 device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
1948 error = EIO;
1949 goto fail;
1952 usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1953 &sc->sc_rx_pipeh);
1954 if (usb_err != USBD_NORMAL_COMPLETION) {
1955 kprintf("%s: could not open Rx pipe: %s\n",
1956 device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
1957 error = EIO;
1958 goto fail;
1962 * Allocate Tx and Rx xfer queues.
1964 error = rum_alloc_tx_list(sc);
1965 if (error) {
1966 kprintf("%s: could not allocate Tx list\n",
1967 device_get_nameunit(sc->sc_dev));
1968 goto fail;
1971 error = rum_alloc_rx_list(sc);
1972 if (error) {
1973 kprintf("%s: could not allocate Rx list\n",
1974 device_get_nameunit(sc->sc_dev));
1975 goto fail;
1979 * Start up the receive pipe.
1981 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1982 data = &sc->rx_data[i];
1984 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
1985 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1986 usbd_transfer(data->xfer);
1989 /* update Rx filter */
1990 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
1992 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
1993 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1994 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
1995 RT2573_DROP_ACKCTS;
1996 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1997 tmp |= RT2573_DROP_TODS;
1998 if (!(ifp->if_flags & IFF_PROMISC))
1999 tmp |= RT2573_DROP_NOT_TO_ME;
2001 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2002 fail:
2003 lwkt_serialize_enter(ifp->if_serializer);
2005 if (error) {
2006 rum_stop(sc);
2007 } else {
2008 ifp->if_flags &= ~IFF_OACTIVE;
2009 ifp->if_flags |= IFF_RUNNING;
2011 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2012 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2013 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2014 } else {
2015 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2019 crit_exit();
2020 #undef N
2023 static void
2024 rum_stop(struct rum_softc *sc)
2026 struct ieee80211com *ic = &sc->sc_ic;
2027 struct ifnet *ifp = &ic->ic_if;
2028 uint32_t tmp;
2030 ASSERT_SERIALIZED(ifp->if_serializer);
2032 crit_enter();
2034 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2035 sc->sc_stopped = 1;
2037 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2039 sc->sc_tx_timer = 0;
2040 ifp->if_timer = 0;
2042 lwkt_serialize_exit(ifp->if_serializer);
2044 /* disable Rx */
2045 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2046 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2048 /* reset ASIC */
2049 rum_write(sc, RT2573_MAC_CSR1, 3);
2050 rum_write(sc, RT2573_MAC_CSR1, 0);
2052 if (sc->stats_xfer != NULL) {
2053 usbd_free_xfer(sc->stats_xfer);
2054 sc->stats_xfer = NULL;
2057 if (sc->sc_rx_pipeh != NULL) {
2058 usbd_abort_pipe(sc->sc_rx_pipeh);
2059 usbd_close_pipe(sc->sc_rx_pipeh);
2060 sc->sc_rx_pipeh = NULL;
2063 if (sc->sc_tx_pipeh != NULL) {
2064 usbd_abort_pipe(sc->sc_tx_pipeh);
2065 usbd_close_pipe(sc->sc_tx_pipeh);
2066 sc->sc_tx_pipeh = NULL;
2069 lwkt_serialize_enter(ifp->if_serializer);
2071 rum_free_rx_list(sc);
2072 rum_free_tx_list(sc);
2074 crit_exit();
2077 static int
2078 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2080 usb_device_request_t req;
2081 uint16_t reg = RT2573_MCU_CODE_BASE;
2082 usbd_status error;
2084 /* copy firmware image into NIC */
2085 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2086 rum_write(sc, reg, UGETDW(ucode));
2088 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2089 req.bRequest = RT2573_MCU_CNTL;
2090 USETW(req.wValue, RT2573_MCU_RUN);
2091 USETW(req.wIndex, 0);
2092 USETW(req.wLength, 0);
2094 error = usbd_do_request(sc->sc_udev, &req, NULL);
2095 if (error != 0) {
2096 kprintf("%s: could not run firmware: %s\n",
2097 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2099 return error;
2102 static int
2103 rum_prepare_beacon(struct rum_softc *sc)
2105 struct ieee80211com *ic = &sc->sc_ic;
2106 struct ifnet *ifp = &ic->ic_if;
2107 struct ieee80211_beacon_offsets bo;
2108 struct rum_tx_desc desc;
2109 struct mbuf *m0;
2110 int rate;
2112 lwkt_serialize_enter(ifp->if_serializer);
2113 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2114 lwkt_serialize_exit(ifp->if_serializer);
2116 if (m0 == NULL) {
2117 if_printf(&ic->ic_if, "could not allocate beacon frame\n");
2118 return ENOBUFS;
2121 /* send beacons at the lowest available rate */
2122 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2124 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2125 m0->m_pkthdr.len, rate);
2127 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2128 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2130 /* copy beacon header and payload into NIC memory */
2131 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2132 m0->m_pkthdr.len);
2134 m_freem(m0);
2136 return 0;
2139 static void
2140 rum_stats_timeout(void *arg)
2142 struct rum_softc *sc = arg;
2143 usb_device_request_t req;
2145 if (sc->sc_stopped)
2146 return;
2148 crit_enter();
2151 * Asynchronously read statistic registers (cleared by read).
2153 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2154 req.bRequest = RT2573_READ_MULTI_MAC;
2155 USETW(req.wValue, 0);
2156 USETW(req.wIndex, RT2573_STA_CSR0);
2157 USETW(req.wLength, sizeof(sc->sta));
2159 usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc,
2160 USBD_DEFAULT_TIMEOUT, &req,
2161 sc->sta, sizeof(sc->sta), 0,
2162 rum_stats_update);
2163 usbd_transfer(sc->stats_xfer);
2165 crit_exit();
2168 static void
2169 rum_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2170 usbd_status status)
2172 struct rum_softc *sc = (struct rum_softc *)priv;
2173 struct ifnet *ifp = &sc->sc_ic.ic_if;
2174 struct ieee80211_ratectl_stats *stats = &sc->sc_stats;
2176 if (status != USBD_NORMAL_COMPLETION) {
2177 kprintf("%s: could not retrieve Tx statistics - cancelling "
2178 "automatic rate control\n", device_get_nameunit(sc->sc_dev));
2179 return;
2182 crit_enter();
2184 /* count TX retry-fail as Tx errors */
2185 ifp->if_oerrors += RUM_TX_PKT_FAIL(sc);
2187 stats->stats_pkt_noretry += RUM_TX_PKT_NO_RETRY(sc);
2188 stats->stats_pkt_ok += RUM_TX_PKT_NO_RETRY(sc) +
2189 RUM_TX_PKT_ONE_RETRY(sc) +
2190 RUM_TX_PKT_MULTI_RETRY(sc);
2191 stats->stats_pkt_err += RUM_TX_PKT_FAIL(sc);
2193 stats->stats_retries += RUM_TX_PKT_ONE_RETRY(sc);
2194 #if 1
2196 * XXX Estimated average:
2197 * Actual number of retries for each packet should belong to
2198 * [2, RUM_TX_SHORT_RETRY_MAX]
2200 stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc) *
2201 ((2 + RUM_TX_SHORT_RETRY_MAX) / 2);
2202 #else
2203 stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc);
2204 #endif
2205 stats->stats_retries += RUM_TX_PKT_FAIL(sc) * RUM_TX_SHORT_RETRY_MAX;
2207 callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
2209 crit_exit();
2212 static void
2213 rum_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused,
2214 struct ieee80211_ratectl_stats *stats)
2216 struct ifnet *ifp = &ic->ic_if;
2217 struct rum_softc *sc = ifp->if_softc;
2219 ASSERT_SERIALIZED(ifp->if_serializer);
2221 bcopy(&sc->sc_stats, stats, sizeof(*stats));
2222 bzero(&sc->sc_stats, sizeof(sc->sc_stats));
2225 static void
2226 rum_ratectl_change(struct ieee80211com *ic, u_int orc __unused, u_int nrc)
2228 struct ieee80211_ratectl_state *st = &ic->ic_ratectl;
2229 struct ieee80211_onoe_param *oparam;
2231 if (st->rc_st_param != NULL) {
2232 kfree(st->rc_st_param, M_DEVBUF);
2233 st->rc_st_param = NULL;
2236 switch (nrc) {
2237 case IEEE80211_RATECTL_ONOE:
2238 oparam = kmalloc(sizeof(*oparam), M_DEVBUF, M_INTWAIT);
2240 IEEE80211_ONOE_PARAM_SETUP(oparam);
2241 oparam->onoe_raise = 15;
2243 st->rc_st_param = oparam;
2244 break;
2245 case IEEE80211_RATECTL_NONE:
2246 /* This could only happen during detaching */
2247 break;
2248 default:
2249 panic("unknown rate control algo %u\n", nrc);
2253 static int
2254 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2256 int lna, agc, rssi;
2258 lna = (raw >> 5) & 0x3;
2259 agc = raw & 0x1f;
2261 if (lna == 0) {
2263 * No RSSI mapping
2265 * NB: Since RSSI is relative to noise floor, -1 is
2266 * adequate for caller to know error happened.
2268 return -1;
2271 rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2273 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2274 rssi += sc->rssi_2ghz_corr;
2276 if (lna == 1)
2277 rssi -= 64;
2278 else if (lna == 2)
2279 rssi -= 74;
2280 else if (lna == 3)
2281 rssi -= 90;
2282 } else {
2283 rssi += sc->rssi_5ghz_corr;
2285 if (!sc->ext_5ghz_lna && lna != 1)
2286 rssi += 4;
2288 if (lna == 1)
2289 rssi -= 64;
2290 else if (lna == 2)
2291 rssi -= 86;
2292 else if (lna == 3)
2293 rssi -= 100;
2295 return rssi;