kernel - Revert part of the contig allocation work
[dragonfly.git] / sys / kern / uipc_usrreq.c
blobd9dd6e3859651afd052532917320029d9d003005
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
30 * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/domain.h>
37 #include <sys/fcntl.h>
38 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/filedesc.h>
42 #include <sys/mbuf.h>
43 #include <sys/nlookup.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/resourcevar.h>
48 #include <sys/stat.h>
49 #include <sys/mount.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <sys/unpcb.h>
53 #include <sys/vnode.h>
54 #include <sys/kern_syscall.h>
55 #include <sys/taskqueue.h>
57 #include <sys/file2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/socketvar2.h>
60 #include <sys/msgport2.h>
63 * Unix communications domain.
65 * TODO:
66 * RDM
67 * rethink name space problems
68 * need a proper out-of-band
69 * lock pushdown
72 * Unix domain sockets GC.
74 * It was originally designed to address following three cases:
75 * 1) Receiving unix domain socket can not accept the rights, e.g.
76 * when the so_rcv is full.
77 * 2) Caller of recvmsg(2) does not pass buffer to receive rights.
78 * 3) Unix domain sockets loop reference, e.g. s1 is on s2.so_rcv,
79 * while s2 on s1.so_rcv.
81 * Code under UNP_GC_ALLFILES is intended to address all above three
82 * cases. However, 1) was addressed a long time ago in uipc_send()
83 * (we inheritted the fix from FreeBSD when DragonFly forked). 2)
84 * was addressed in soreceive() by git-e62cfe62. 3) is the only
85 * case that needs GC. The new code (!UNP_GC_ALLFILES) addresses
86 * case 3) in the following way:
87 * - Record the struct file in unpcb, if the Unix domain socket is
88 * passed as one of the rights.
89 * - At GC time, only unpcbs are scanned, and only Unix domain sockets
90 * that are still used as rights are potential GC targets.
93 #define UNP_DETACHED UNP_PRIVATE1
94 #define UNP_CONNECTING UNP_PRIVATE2
95 #define UNP_DROPPED UNP_PRIVATE3
96 #define UNP_MARKER UNP_PRIVATE4
98 #define UNPGC_REF 0x1 /* unpcb has external ref. */
99 #define UNPGC_DEAD 0x2 /* unpcb might be dead. */
100 #define UNPGC_SCANNED 0x4 /* Has been scanned. */
102 #define UNP_GCFILE_MAX 256
104 /* For unp_internalize() and unp_externalize() */
105 CTASSERT(sizeof(struct file *) >= sizeof(int));
107 #define UNP_ISATTACHED(unp) \
108 ((unp) != NULL && ((unp)->unp_flags & UNP_DETACHED) == 0)
110 #ifdef INVARIANTS
111 #define UNP_ASSERT_TOKEN_HELD(unp) \
112 ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup((unp)))
113 #else /* !INVARIANTS */
114 #define UNP_ASSERT_TOKEN_HELD(unp)
115 #endif /* INVARIANTS */
117 struct unp_defdiscard {
118 SLIST_ENTRY(unp_defdiscard) next;
119 struct file *fp;
121 SLIST_HEAD(unp_defdiscard_list, unp_defdiscard);
123 TAILQ_HEAD(unpcb_qhead, unpcb);
124 struct unp_global_head {
125 struct unpcb_qhead list;
126 int count;
129 static MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
130 static unp_gen_t unp_gencnt;
132 static struct unp_global_head unp_stream_head;
133 static struct unp_global_head unp_dgram_head;
134 static struct unp_global_head unp_seqpkt_head;
136 static struct unp_global_head * const unp_heads[] =
137 { &unp_stream_head, &unp_dgram_head, &unp_seqpkt_head, NULL };
139 static struct lwkt_token unp_token = LWKT_TOKEN_INITIALIZER(unp_token);
140 static struct taskqueue *unp_taskqueue;
142 static struct unp_defdiscard_list unp_defdiscard_head;
143 static struct spinlock unp_defdiscard_spin;
144 static struct task unp_defdiscard_task;
146 static struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
147 static ino_t unp_ino = 1; /* prototype for fake inode numbers */
149 static int unp_attach (struct socket *, struct pru_attach_info *);
150 static void unp_detach (struct unpcb *);
151 static int unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
152 static int unp_connect (struct socket *,struct sockaddr *,
153 struct thread *);
154 static void unp_disconnect(struct unpcb *, int);
155 static void unp_shutdown (struct unpcb *);
156 static void unp_gc(void *, int);
157 #ifdef UNP_GC_ALLFILES
158 static int unp_gc_clearmarks(struct file *, void *);
159 static int unp_gc_checkmarks(struct file *, void *);
160 static int unp_gc_checkrefs(struct file *, void *);
161 static void unp_mark(struct file *, void *data);
162 #endif
163 static void unp_scan (struct mbuf *, void (*)(struct file *, void *),
164 void *data);
165 static void unp_discard (struct file *, void *);
166 static int unp_internalize (struct mbuf *, struct thread *);
167 static int unp_listen (struct unpcb *, struct thread *);
168 static void unp_fp_externalize(struct lwp *lp, struct file *fp, int fd,
169 int flags);
170 static int unp_find_lockref(struct sockaddr *nam, struct thread *td,
171 short type, struct unpcb **unp_ret);
172 static int unp_connect_pair(struct unpcb *unp, struct unpcb *unp2);
173 static void unp_drop(struct unpcb *unp, int error);
174 static void unp_defdiscard_taskfunc(void *, int);
176 static int unp_rights; /* file descriptors in flight */
177 static struct lwkt_token unp_rights_token =
178 LWKT_TOKEN_INITIALIZER(unp_rights_token);
179 static struct task unp_gc_task;
180 static struct unpcb *unp_gc_marker;
182 SYSCTL_DECL(_net_local);
183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184 "File descriptors in flight");
187 * SMP Considerations:
189 * Since unp_token will be automaticly released upon execution of
190 * blocking code, we need to reference unp_conn before any possible
191 * blocking code to prevent it from being ripped behind our back.
193 * Any adjustment to unp->unp_conn requires both the global unp_token
194 * AND the per-unp token (lwkt_token_pool_lookup(unp)) to be held.
196 * Any access to so_pcb to obtain unp requires the pool token for
197 * unp to be held.
200 static __inline void
201 unp_reference(struct unpcb *unp)
203 /* 0->1 transition will not work */
204 KKASSERT(unp->unp_refcnt > 0);
205 atomic_add_int(&unp->unp_refcnt, 1);
208 static __inline void
209 unp_free(struct unpcb *unp)
211 KKASSERT(unp->unp_refcnt > 0);
212 if (atomic_fetchadd_int(&unp->unp_refcnt, -1) == 1)
213 unp_detach(unp);
216 static __inline struct unpcb *
217 unp_getsocktoken(struct socket *so)
219 struct unpcb *unp;
222 * The unp pointer is invalid until we verify that it is
223 * good by re-checking so_pcb AFTER obtaining the token.
225 while ((unp = so->so_pcb) != NULL) {
226 lwkt_getpooltoken(unp);
227 if (unp == so->so_pcb)
228 break;
229 lwkt_relpooltoken(unp);
231 return unp;
234 static __inline void
235 unp_reltoken(struct unpcb *unp)
237 if (unp != NULL)
238 lwkt_relpooltoken(unp);
241 static __inline void
242 unp_setflags(struct unpcb *unp, int flags)
244 atomic_set_int(&unp->unp_flags, flags);
247 static __inline void
248 unp_clrflags(struct unpcb *unp, int flags)
250 atomic_clear_int(&unp->unp_flags, flags);
253 static __inline struct unp_global_head *
254 unp_globalhead(short type)
256 switch (type) {
257 case SOCK_STREAM:
258 return &unp_stream_head;
259 case SOCK_DGRAM:
260 return &unp_dgram_head;
261 case SOCK_SEQPACKET:
262 return &unp_seqpkt_head;
263 default:
264 panic("unknown socket type %d", type);
268 static __inline struct unpcb *
269 unp_fp2unpcb(struct file *fp)
271 struct socket *so;
273 if (fp->f_type != DTYPE_SOCKET)
274 return NULL;
276 so = fp->f_data;
277 if (so == NULL)
278 return NULL;
280 if (so->so_proto->pr_domain != &localdomain)
281 return NULL;
283 return so->so_pcb;
286 static __inline void
287 unp_add_right(struct file *fp)
289 struct unpcb *unp;
291 ASSERT_LWKT_TOKEN_HELD(&unp_rights_token);
292 KASSERT(fp->f_count > 0, ("invalid f_count %d", fp->f_count));
294 unp = unp_fp2unpcb(fp);
295 if (unp != NULL) {
296 unp->unp_fp = fp;
297 unp->unp_msgcount++;
299 fp->f_msgcount++;
300 unp_rights++;
303 static __inline void
304 unp_del_right(struct file *fp)
306 struct unpcb *unp;
308 ASSERT_LWKT_TOKEN_HELD(&unp_rights_token);
309 KASSERT(fp->f_count > 0, ("invalid f_count %d", fp->f_count));
311 unp = unp_fp2unpcb(fp);
312 if (unp != NULL) {
313 KASSERT(unp->unp_msgcount > 0,
314 ("invalid unp msgcount %d", unp->unp_msgcount));
315 unp->unp_msgcount--;
316 if (unp->unp_msgcount == 0)
317 unp->unp_fp = NULL;
319 fp->f_msgcount--;
320 unp_rights--;
324 * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
325 * will sofree() it when we return.
327 static void
328 uipc_abort(netmsg_t msg)
330 struct unpcb *unp;
331 int error;
333 lwkt_gettoken(&unp_token);
334 unp = unp_getsocktoken(msg->base.nm_so);
336 if (UNP_ISATTACHED(unp)) {
337 unp_drop(unp, ECONNABORTED);
338 error = 0;
339 } else {
340 error = EINVAL;
343 unp_reltoken(unp);
344 lwkt_reltoken(&unp_token);
346 lwkt_replymsg(&msg->lmsg, error);
349 static void
350 uipc_accept(netmsg_t msg)
352 struct unpcb *unp;
353 int error;
355 lwkt_gettoken(&unp_token);
356 unp = unp_getsocktoken(msg->base.nm_so);
358 if (!UNP_ISATTACHED(unp)) {
359 error = EINVAL;
360 } else {
361 struct unpcb *unp2 = unp->unp_conn;
364 * Pass back name of connected socket,
365 * if it was bound and we are still connected
366 * (our peer may have closed already!).
368 if (unp2 && unp2->unp_addr) {
369 unp_reference(unp2);
370 *msg->accept.nm_nam = dup_sockaddr(
371 (struct sockaddr *)unp2->unp_addr);
372 unp_free(unp2);
373 } else {
374 *msg->accept.nm_nam = dup_sockaddr(&sun_noname);
376 error = 0;
379 unp_reltoken(unp);
380 lwkt_reltoken(&unp_token);
382 lwkt_replymsg(&msg->lmsg, error);
385 static void
386 uipc_attach(netmsg_t msg)
388 int error;
390 lwkt_gettoken(&unp_token);
392 KASSERT(msg->base.nm_so->so_pcb == NULL, ("double unp attach"));
393 error = unp_attach(msg->base.nm_so, msg->attach.nm_ai);
395 lwkt_reltoken(&unp_token);
396 lwkt_replymsg(&msg->lmsg, error);
399 static void
400 uipc_bind(netmsg_t msg)
402 struct unpcb *unp;
403 int error;
405 lwkt_gettoken(&unp_token);
406 unp = unp_getsocktoken(msg->base.nm_so);
408 if (UNP_ISATTACHED(unp))
409 error = unp_bind(unp, msg->bind.nm_nam, msg->bind.nm_td);
410 else
411 error = EINVAL;
413 unp_reltoken(unp);
414 lwkt_reltoken(&unp_token);
416 lwkt_replymsg(&msg->lmsg, error);
419 static void
420 uipc_connect(netmsg_t msg)
422 int error;
424 error = unp_connect(msg->base.nm_so, msg->connect.nm_nam,
425 msg->connect.nm_td);
426 lwkt_replymsg(&msg->lmsg, error);
429 static void
430 uipc_connect2(netmsg_t msg)
432 int error;
434 error = unp_connect2(msg->connect2.nm_so1, msg->connect2.nm_so2);
435 lwkt_replymsg(&msg->lmsg, error);
438 /* control is EOPNOTSUPP */
440 static void
441 uipc_detach(netmsg_t msg)
443 struct unpcb *unp;
444 int error;
446 lwkt_gettoken(&unp_token);
447 unp = unp_getsocktoken(msg->base.nm_so);
449 if (UNP_ISATTACHED(unp)) {
450 unp_drop(unp, 0);
451 error = 0;
452 } else {
453 error = EINVAL;
456 unp_reltoken(unp);
457 lwkt_reltoken(&unp_token);
459 lwkt_replymsg(&msg->lmsg, error);
462 static void
463 uipc_disconnect(netmsg_t msg)
465 struct unpcb *unp;
466 int error;
468 lwkt_gettoken(&unp_token);
469 unp = unp_getsocktoken(msg->base.nm_so);
471 if (UNP_ISATTACHED(unp)) {
472 unp_disconnect(unp, 0);
473 error = 0;
474 } else {
475 error = EINVAL;
478 unp_reltoken(unp);
479 lwkt_reltoken(&unp_token);
481 lwkt_replymsg(&msg->lmsg, error);
484 static void
485 uipc_listen(netmsg_t msg)
487 struct unpcb *unp;
488 int error;
490 lwkt_gettoken(&unp_token);
491 unp = unp_getsocktoken(msg->base.nm_so);
493 if (!UNP_ISATTACHED(unp) || unp->unp_vnode == NULL)
494 error = EINVAL;
495 else
496 error = unp_listen(unp, msg->listen.nm_td);
498 unp_reltoken(unp);
499 lwkt_reltoken(&unp_token);
501 lwkt_replymsg(&msg->lmsg, error);
504 static void
505 uipc_peeraddr(netmsg_t msg)
507 struct unpcb *unp;
508 int error;
510 lwkt_gettoken(&unp_token);
511 unp = unp_getsocktoken(msg->base.nm_so);
513 if (!UNP_ISATTACHED(unp)) {
514 error = EINVAL;
515 } else if (unp->unp_conn && unp->unp_conn->unp_addr) {
516 struct unpcb *unp2 = unp->unp_conn;
518 unp_reference(unp2);
519 *msg->peeraddr.nm_nam = dup_sockaddr(
520 (struct sockaddr *)unp2->unp_addr);
521 unp_free(unp2);
522 error = 0;
523 } else {
525 * XXX: It seems that this test always fails even when
526 * connection is established. So, this else clause is
527 * added as workaround to return PF_LOCAL sockaddr.
529 *msg->peeraddr.nm_nam = dup_sockaddr(&sun_noname);
530 error = 0;
533 unp_reltoken(unp);
534 lwkt_reltoken(&unp_token);
536 lwkt_replymsg(&msg->lmsg, error);
539 static void
540 uipc_rcvd(netmsg_t msg)
542 struct unpcb *unp, *unp2;
543 struct socket *so;
544 struct socket *so2;
545 int error;
548 * so_pcb is only modified with both the global and the unp
549 * pool token held.
551 so = msg->base.nm_so;
552 unp = unp_getsocktoken(so);
554 if (!UNP_ISATTACHED(unp)) {
555 error = EINVAL;
556 goto done;
559 switch (so->so_type) {
560 case SOCK_DGRAM:
561 panic("uipc_rcvd DGRAM?");
562 /*NOTREACHED*/
563 case SOCK_STREAM:
564 case SOCK_SEQPACKET:
565 if (unp->unp_conn == NULL)
566 break;
567 unp2 = unp->unp_conn; /* protected by pool token */
570 * Because we are transfering mbufs directly to the
571 * peer socket we have to use SSB_STOP on the sender
572 * to prevent it from building up infinite mbufs.
574 * As in several places in this module w ehave to ref unp2
575 * to ensure that it does not get ripped out from under us
576 * if we block on the so2 token or in sowwakeup().
578 so2 = unp2->unp_socket;
579 unp_reference(unp2);
580 lwkt_gettoken(&so2->so_rcv.ssb_token);
581 if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
582 so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
584 atomic_clear_int(&so2->so_snd.ssb_flags, SSB_STOP);
586 sowwakeup(so2);
588 lwkt_reltoken(&so2->so_rcv.ssb_token);
589 unp_free(unp2);
590 break;
591 default:
592 panic("uipc_rcvd unknown socktype");
593 /*NOTREACHED*/
595 error = 0;
596 done:
597 unp_reltoken(unp);
598 lwkt_replymsg(&msg->lmsg, error);
601 /* pru_rcvoob is EOPNOTSUPP */
603 static void
604 uipc_send(netmsg_t msg)
606 struct unpcb *unp, *unp2;
607 struct socket *so;
608 struct socket *so2;
609 struct mbuf *control;
610 struct mbuf *m;
611 int error = 0;
613 so = msg->base.nm_so;
614 control = msg->send.nm_control;
615 m = msg->send.nm_m;
618 * so_pcb is only modified with both the global and the unp
619 * pool token held.
621 so = msg->base.nm_so;
622 unp = unp_getsocktoken(so);
624 if (!UNP_ISATTACHED(unp)) {
625 error = EINVAL;
626 goto release;
629 if (msg->send.nm_flags & PRUS_OOB) {
630 error = EOPNOTSUPP;
631 goto release;
634 wakeup_start_delayed();
636 if (control && (error = unp_internalize(control, msg->send.nm_td)))
637 goto release;
639 switch (so->so_type) {
640 case SOCK_DGRAM:
642 struct sockaddr *from;
644 if (msg->send.nm_addr) {
645 if (unp->unp_conn) {
646 error = EISCONN;
647 break;
649 lwkt_gettoken(&unp_token);
650 error = unp_find_lockref(msg->send.nm_addr,
651 msg->send.nm_td, so->so_type, &unp2);
652 if (error) {
653 lwkt_reltoken(&unp_token);
654 break;
657 * NOTE:
658 * unp2 is locked and referenced.
660 * We could unlock unp2 now, since it was checked
661 * and referenced.
663 unp_reltoken(unp2);
664 lwkt_reltoken(&unp_token);
665 } else {
666 if (unp->unp_conn == NULL) {
667 error = ENOTCONN;
668 break;
670 unp2 = unp->unp_conn;
671 unp_reference(unp2);
673 /* NOTE: unp2 is referenced. */
674 so2 = unp2->unp_socket;
676 if (unp->unp_addr)
677 from = (struct sockaddr *)unp->unp_addr;
678 else
679 from = &sun_noname;
681 lwkt_gettoken(&so2->so_rcv.ssb_token);
682 if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
683 sorwakeup(so2);
684 m = NULL;
685 control = NULL;
686 } else {
687 error = ENOBUFS;
689 lwkt_reltoken(&so2->so_rcv.ssb_token);
691 unp_free(unp2);
692 break;
695 case SOCK_STREAM:
696 case SOCK_SEQPACKET:
697 /* Connect if not connected yet. */
699 * Note: A better implementation would complain
700 * if not equal to the peer's address.
702 if (unp->unp_conn == NULL) {
703 if (msg->send.nm_addr) {
704 error = unp_connect(so,
705 msg->send.nm_addr,
706 msg->send.nm_td);
707 if (error)
708 break; /* XXX */
711 * NOTE:
712 * unp_conn still could be NULL, even if the
713 * above unp_connect() succeeds; since the
714 * current unp's token could be released due
715 * to blocking operations after unp_conn is
716 * assigned.
718 if (unp->unp_conn == NULL) {
719 error = ENOTCONN;
720 break;
723 if (so->so_state & SS_CANTSENDMORE) {
724 error = EPIPE;
725 break;
728 unp2 = unp->unp_conn;
729 KASSERT(unp2 != NULL, ("unp is not connected"));
730 so2 = unp2->unp_socket;
732 unp_reference(unp2);
735 * Send to paired receive port, and then reduce
736 * send buffer hiwater marks to maintain backpressure.
737 * Wake up readers.
739 lwkt_gettoken(&so2->so_rcv.ssb_token);
740 if (control) {
741 if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
742 control = NULL;
743 m = NULL;
745 } else if (so->so_type == SOCK_SEQPACKET) {
746 sbappendrecord(&so2->so_rcv.sb, m);
747 m = NULL;
748 } else {
749 sbappend(&so2->so_rcv.sb, m);
750 m = NULL;
754 * Because we are transfering mbufs directly to the
755 * peer socket we have to use SSB_STOP on the sender
756 * to prevent it from building up infinite mbufs.
758 if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
759 so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
761 atomic_set_int(&so->so_snd.ssb_flags, SSB_STOP);
763 lwkt_reltoken(&so2->so_rcv.ssb_token);
764 sorwakeup(so2);
766 unp_free(unp2);
767 break;
769 default:
770 panic("uipc_send unknown socktype");
774 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
776 if (msg->send.nm_flags & PRUS_EOF) {
777 socantsendmore(so);
778 unp_shutdown(unp);
781 if (control && error != 0)
782 unp_dispose(control);
783 release:
784 unp_reltoken(unp);
785 wakeup_end_delayed();
787 if (control)
788 m_freem(control);
789 if (m)
790 m_freem(m);
791 lwkt_replymsg(&msg->lmsg, error);
795 * MPSAFE
797 static void
798 uipc_sense(netmsg_t msg)
800 struct unpcb *unp;
801 struct socket *so;
802 struct stat *sb;
803 int error;
805 so = msg->base.nm_so;
806 sb = msg->sense.nm_stat;
809 * so_pcb is only modified with both the global and the unp
810 * pool token held.
812 unp = unp_getsocktoken(so);
814 if (!UNP_ISATTACHED(unp)) {
815 error = EINVAL;
816 goto done;
819 sb->st_blksize = so->so_snd.ssb_hiwat;
820 sb->st_dev = NOUDEV;
821 if (unp->unp_ino == 0) { /* make up a non-zero inode number */
822 unp->unp_ino = atomic_fetchadd_long(&unp_ino, 1);
823 if (__predict_false(unp->unp_ino == 0))
824 unp->unp_ino = atomic_fetchadd_long(&unp_ino, 1);
826 sb->st_ino = unp->unp_ino;
827 error = 0;
828 done:
829 unp_reltoken(unp);
830 lwkt_replymsg(&msg->lmsg, error);
833 static void
834 uipc_shutdown(netmsg_t msg)
836 struct socket *so;
837 struct unpcb *unp;
838 int error;
841 * so_pcb is only modified with both the global and the unp
842 * pool token held.
844 so = msg->base.nm_so;
845 unp = unp_getsocktoken(so);
847 if (UNP_ISATTACHED(unp)) {
848 socantsendmore(so);
849 unp_shutdown(unp);
850 error = 0;
851 } else {
852 error = EINVAL;
855 unp_reltoken(unp);
856 lwkt_replymsg(&msg->lmsg, error);
859 static void
860 uipc_sockaddr(netmsg_t msg)
862 struct unpcb *unp;
863 int error;
866 * so_pcb is only modified with both the global and the unp
867 * pool token held.
869 unp = unp_getsocktoken(msg->base.nm_so);
871 if (UNP_ISATTACHED(unp)) {
872 if (unp->unp_addr) {
873 *msg->sockaddr.nm_nam =
874 dup_sockaddr((struct sockaddr *)unp->unp_addr);
876 error = 0;
877 } else {
878 error = EINVAL;
881 unp_reltoken(unp);
882 lwkt_replymsg(&msg->lmsg, error);
885 struct pr_usrreqs uipc_usrreqs = {
886 .pru_abort = uipc_abort,
887 .pru_accept = uipc_accept,
888 .pru_attach = uipc_attach,
889 .pru_bind = uipc_bind,
890 .pru_connect = uipc_connect,
891 .pru_connect2 = uipc_connect2,
892 .pru_control = pr_generic_notsupp,
893 .pru_detach = uipc_detach,
894 .pru_disconnect = uipc_disconnect,
895 .pru_listen = uipc_listen,
896 .pru_peeraddr = uipc_peeraddr,
897 .pru_rcvd = uipc_rcvd,
898 .pru_rcvoob = pr_generic_notsupp,
899 .pru_send = uipc_send,
900 .pru_sense = uipc_sense,
901 .pru_shutdown = uipc_shutdown,
902 .pru_sockaddr = uipc_sockaddr,
903 .pru_sosend = sosend,
904 .pru_soreceive = soreceive
907 void
908 uipc_ctloutput(netmsg_t msg)
910 struct socket *so;
911 struct sockopt *sopt;
912 struct unpcb *unp;
913 int error = 0;
915 so = msg->base.nm_so;
916 sopt = msg->ctloutput.nm_sopt;
918 lwkt_gettoken(&unp_token);
919 unp = unp_getsocktoken(so);
921 if (!UNP_ISATTACHED(unp)) {
922 error = EINVAL;
923 goto done;
926 switch (sopt->sopt_dir) {
927 case SOPT_GET:
928 switch (sopt->sopt_name) {
929 case LOCAL_PEERCRED:
930 if (unp->unp_flags & UNP_HAVEPC)
931 soopt_from_kbuf(sopt, &unp->unp_peercred,
932 sizeof(unp->unp_peercred));
933 else {
934 if (so->so_type == SOCK_STREAM)
935 error = ENOTCONN;
936 else if (so->so_type == SOCK_SEQPACKET)
937 error = ENOTCONN;
938 else
939 error = EINVAL;
941 break;
942 default:
943 error = EOPNOTSUPP;
944 break;
946 break;
947 case SOPT_SET:
948 default:
949 error = EOPNOTSUPP;
950 break;
953 done:
954 unp_reltoken(unp);
955 lwkt_reltoken(&unp_token);
957 lwkt_replymsg(&msg->lmsg, error);
961 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
962 * for stream sockets, although the total for sender and receiver is
963 * actually only PIPSIZ.
965 * Datagram sockets really use the sendspace as the maximum datagram size,
966 * and don't really want to reserve the sendspace. Their recvspace should
967 * be large enough for at least one max-size datagram plus address.
969 * We want the local send/recv space to be significant larger then lo0's
970 * mtu of 16384.
972 #ifndef PIPSIZ
973 #define PIPSIZ 57344
974 #endif
975 static u_long unpst_sendspace = PIPSIZ;
976 static u_long unpst_recvspace = PIPSIZ;
977 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */
978 static u_long unpdg_recvspace = 4*1024;
980 SYSCTL_DECL(_net_local_seqpacket);
981 SYSCTL_DECL(_net_local_stream);
982 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
983 &unpst_sendspace, 0, "Size of stream socket send buffer");
984 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
985 &unpst_recvspace, 0, "Size of stream socket receive buffer");
987 SYSCTL_DECL(_net_local_dgram);
988 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
989 &unpdg_sendspace, 0, "Max datagram socket size");
990 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
991 &unpdg_recvspace, 0, "Size of datagram socket receive buffer");
993 static int
994 unp_attach(struct socket *so, struct pru_attach_info *ai)
996 struct unp_global_head *head;
997 struct unpcb *unp;
998 int error;
1000 lwkt_gettoken(&unp_token);
1002 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
1003 switch (so->so_type) {
1004 case SOCK_STREAM:
1005 case SOCK_SEQPACKET:
1006 error = soreserve(so, unpst_sendspace, unpst_recvspace,
1007 ai->sb_rlimit);
1008 break;
1010 case SOCK_DGRAM:
1011 error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
1012 ai->sb_rlimit);
1013 break;
1015 default:
1016 panic("unp_attach");
1018 if (error)
1019 goto failed;
1023 * In order to support sendfile we have to set either SSB_STOPSUPP
1024 * or SSB_PREALLOC. Unix domain sockets use the SSB_STOP flow
1025 * control mechanism.
1027 if (so->so_type == SOCK_STREAM) {
1028 atomic_set_int(&so->so_rcv.ssb_flags, SSB_STOPSUPP);
1029 atomic_set_int(&so->so_snd.ssb_flags, SSB_STOPSUPP);
1032 unp = kmalloc(sizeof(*unp), M_UNPCB, M_WAITOK | M_ZERO | M_NULLOK);
1033 if (unp == NULL) {
1034 error = ENOBUFS;
1035 goto failed;
1037 unp->unp_refcnt = 1;
1038 unp->unp_gencnt = ++unp_gencnt;
1039 LIST_INIT(&unp->unp_refs);
1040 unp->unp_socket = so;
1041 unp->unp_rvnode = ai->fd_rdir; /* jail cruft XXX JH */
1042 so->so_pcb = (caddr_t)unp;
1043 soreference(so);
1045 head = unp_globalhead(so->so_type);
1046 TAILQ_INSERT_TAIL(&head->list, unp, unp_link);
1047 head->count++;
1048 error = 0;
1049 failed:
1050 lwkt_reltoken(&unp_token);
1051 return error;
1054 static void
1055 unp_detach(struct unpcb *unp)
1057 struct socket *so;
1059 lwkt_gettoken(&unp_token);
1060 lwkt_getpooltoken(unp);
1062 so = unp->unp_socket;
1064 unp->unp_gencnt = ++unp_gencnt;
1065 if (unp->unp_vnode) {
1066 unp->unp_vnode->v_socket = NULL;
1067 vrele(unp->unp_vnode);
1068 unp->unp_vnode = NULL;
1070 soisdisconnected(so);
1071 KKASSERT(so->so_pcb == unp);
1072 so->so_pcb = NULL; /* both tokens required */
1073 unp->unp_socket = NULL;
1075 lwkt_relpooltoken(unp);
1076 lwkt_reltoken(&unp_token);
1078 sofree(so);
1080 KASSERT(unp->unp_conn == NULL, ("unp is still connected"));
1081 KASSERT(LIST_EMPTY(&unp->unp_refs), ("unp still has references"));
1083 if (unp->unp_addr)
1084 kfree(unp->unp_addr, M_SONAME);
1085 kfree(unp, M_UNPCB);
1087 if (unp_rights)
1088 taskqueue_enqueue(unp_taskqueue, &unp_gc_task);
1091 static int
1092 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
1094 struct proc *p = td->td_proc;
1095 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1096 struct vnode *vp;
1097 struct vattr vattr;
1098 int error, namelen;
1099 struct nlookupdata nd;
1100 char buf[SOCK_MAXADDRLEN];
1102 ASSERT_LWKT_TOKEN_HELD(&unp_token);
1103 UNP_ASSERT_TOKEN_HELD(unp);
1105 if (unp->unp_vnode != NULL)
1106 return EINVAL;
1108 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
1109 if (namelen <= 0)
1110 return EINVAL;
1111 strncpy(buf, soun->sun_path, namelen);
1112 buf[namelen] = 0; /* null-terminate the string */
1113 error = nlookup_init(&nd, buf, UIO_SYSSPACE,
1114 NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
1115 if (error == 0)
1116 error = nlookup(&nd);
1117 if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
1118 error = EADDRINUSE;
1119 if (error)
1120 goto done;
1122 VATTR_NULL(&vattr);
1123 vattr.va_type = VSOCK;
1124 vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
1125 error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
1126 if (error == 0) {
1127 if (unp->unp_vnode == NULL) {
1128 vp->v_socket = unp->unp_socket;
1129 unp->unp_vnode = vp;
1130 unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
1131 vn_unlock(vp);
1132 } else {
1133 vput(vp); /* late race */
1134 error = EINVAL;
1137 done:
1138 nlookup_done(&nd);
1139 return (error);
1142 static int
1143 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1145 struct unpcb *unp, *unp2;
1146 int error, flags = 0;
1148 lwkt_gettoken(&unp_token);
1150 unp = unp_getsocktoken(so);
1151 if (!UNP_ISATTACHED(unp)) {
1152 error = EINVAL;
1153 goto failed;
1156 if ((unp->unp_flags & UNP_CONNECTING) || unp->unp_conn != NULL) {
1157 error = EISCONN;
1158 goto failed;
1161 flags = UNP_CONNECTING;
1162 unp_setflags(unp, flags);
1164 error = unp_find_lockref(nam, td, so->so_type, &unp2);
1165 if (error)
1166 goto failed;
1168 * NOTE:
1169 * unp2 is locked and referenced.
1172 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1173 struct socket *so2, *so3;
1174 struct unpcb *unp3;
1176 so2 = unp2->unp_socket;
1177 if (!(so2->so_options & SO_ACCEPTCONN) ||
1178 /* listen is not completed yet */
1179 !(unp2->unp_flags & UNP_HAVEPCCACHED) ||
1180 (so3 = sonewconn_faddr(so2, 0, NULL,
1181 TRUE /* keep ref */)) == NULL) {
1182 error = ECONNREFUSED;
1183 goto done;
1185 /* so3 has a socket reference. */
1187 unp3 = unp_getsocktoken(so3);
1188 if (!UNP_ISATTACHED(unp3)) {
1189 unp_reltoken(unp3);
1191 * Already aborted; we only need to drop the
1192 * socket reference held by sonewconn_faddr().
1194 sofree(so3);
1195 error = ECONNREFUSED;
1196 goto done;
1198 unp_reference(unp3);
1200 * NOTE:
1201 * unp3 is locked and referenced.
1205 * Release so3 socket reference held by sonewconn_faddr().
1206 * Since we have referenced unp3, neither unp3 nor so3 will
1207 * be destroyed here.
1209 sofree(so3);
1211 if (unp2->unp_addr != NULL) {
1212 unp3->unp_addr = (struct sockaddr_un *)
1213 dup_sockaddr((struct sockaddr *)unp2->unp_addr);
1217 * unp_peercred management:
1219 * The connecter's (client's) credentials are copied
1220 * from its process structure at the time of connect()
1221 * (which is now).
1223 cru2x(td->td_proc->p_ucred, &unp3->unp_peercred);
1224 unp_setflags(unp3, UNP_HAVEPC);
1226 * The receiver's (server's) credentials are copied
1227 * from the unp_peercred member of socket on which the
1228 * former called listen(); unp_listen() cached that
1229 * process's credentials at that time so we can use
1230 * them now.
1232 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1233 ("unp_connect: listener without cached peercred"));
1234 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1235 sizeof(unp->unp_peercred));
1236 unp_setflags(unp, UNP_HAVEPC);
1238 error = unp_connect_pair(unp, unp3);
1239 if (error)
1240 soabort_direct(so3);
1242 /* Done with unp3 */
1243 unp_free(unp3);
1244 unp_reltoken(unp3);
1245 } else {
1246 error = unp_connect_pair(unp, unp2);
1248 done:
1249 unp_free(unp2);
1250 unp_reltoken(unp2);
1251 failed:
1252 if (flags)
1253 unp_clrflags(unp, flags);
1254 unp_reltoken(unp);
1256 lwkt_reltoken(&unp_token);
1257 return (error);
1261 * Connect two unix domain sockets together.
1263 * NOTE: Semantics for any change to unp_conn requires that the per-unp
1264 * pool token also be held.
1267 unp_connect2(struct socket *so, struct socket *so2)
1269 struct unpcb *unp, *unp2;
1270 int error;
1272 lwkt_gettoken(&unp_token);
1273 if (so2->so_type != so->so_type) {
1274 lwkt_reltoken(&unp_token);
1275 return (EPROTOTYPE);
1277 unp = unp_getsocktoken(so);
1278 unp2 = unp_getsocktoken(so2);
1280 if (!UNP_ISATTACHED(unp)) {
1281 error = EINVAL;
1282 goto done;
1284 if (!UNP_ISATTACHED(unp2)) {
1285 error = ECONNREFUSED;
1286 goto done;
1289 if (unp->unp_conn != NULL) {
1290 error = EISCONN;
1291 goto done;
1293 if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1294 unp2->unp_conn != NULL) {
1295 error = EISCONN;
1296 goto done;
1299 error = unp_connect_pair(unp, unp2);
1300 done:
1301 unp_reltoken(unp2);
1302 unp_reltoken(unp);
1303 lwkt_reltoken(&unp_token);
1304 return (error);
1308 * Disconnect a unix domain socket pair.
1310 * NOTE: Semantics for any change to unp_conn requires that the per-unp
1311 * pool token also be held.
1313 static void
1314 unp_disconnect(struct unpcb *unp, int error)
1316 struct socket *so = unp->unp_socket;
1317 struct unpcb *unp2;
1319 ASSERT_LWKT_TOKEN_HELD(&unp_token);
1320 UNP_ASSERT_TOKEN_HELD(unp);
1322 if (error)
1323 so->so_error = error;
1325 while ((unp2 = unp->unp_conn) != NULL) {
1326 lwkt_getpooltoken(unp2);
1327 if (unp2 == unp->unp_conn)
1328 break;
1329 lwkt_relpooltoken(unp2);
1331 if (unp2 == NULL)
1332 return;
1333 /* unp2 is locked. */
1335 KASSERT((unp2->unp_flags & UNP_DROPPED) == 0, ("unp2 was dropped"));
1337 unp->unp_conn = NULL;
1339 switch (so->so_type) {
1340 case SOCK_DGRAM:
1341 LIST_REMOVE(unp, unp_reflink);
1342 soclrstate(so, SS_ISCONNECTED);
1343 break;
1345 case SOCK_STREAM:
1346 case SOCK_SEQPACKET:
1348 * Keep a reference before clearing the unp_conn
1349 * to avoid racing uipc_detach()/uipc_abort() in
1350 * other thread.
1352 unp_reference(unp2);
1353 KASSERT(unp2->unp_conn == unp, ("unp_conn mismatch"));
1354 unp2->unp_conn = NULL;
1356 soisdisconnected(so);
1357 soisdisconnected(unp2->unp_socket);
1359 unp_free(unp2);
1360 break;
1363 lwkt_relpooltoken(unp2);
1366 #ifdef notdef
1367 void
1368 unp_abort(struct unpcb *unp)
1370 lwkt_gettoken(&unp_token);
1371 unp_free(unp);
1372 lwkt_reltoken(&unp_token);
1374 #endif
1376 static int
1377 prison_unpcb(struct thread *td, struct unpcb *unp)
1379 struct proc *p;
1381 if (td == NULL)
1382 return (0);
1383 if ((p = td->td_proc) == NULL)
1384 return (0);
1385 if (!p->p_ucred->cr_prison)
1386 return (0);
1387 if (p->p_fd->fd_rdir == unp->unp_rvnode)
1388 return (0);
1389 return (1);
1392 static int
1393 unp_pcblist(SYSCTL_HANDLER_ARGS)
1395 struct unp_global_head *head = arg1;
1396 int error, i, n;
1397 struct unpcb *unp, *marker;
1399 KKASSERT(curproc != NULL);
1402 * The process of preparing the PCB list is too time-consuming and
1403 * resource-intensive to repeat twice on every request.
1405 if (req->oldptr == NULL) {
1406 n = head->count;
1407 req->oldidx = (n + n/8) * sizeof(struct xunpcb);
1408 return 0;
1411 if (req->newptr != NULL)
1412 return EPERM;
1414 marker = kmalloc(sizeof(*marker), M_UNPCB, M_WAITOK | M_ZERO);
1415 marker->unp_flags |= UNP_MARKER;
1417 lwkt_gettoken(&unp_token);
1419 n = head->count;
1420 i = 0;
1421 error = 0;
1423 TAILQ_INSERT_HEAD(&head->list, marker, unp_link);
1424 while ((unp = TAILQ_NEXT(marker, unp_link)) != NULL && i < n) {
1425 struct xunpcb xu;
1427 TAILQ_REMOVE(&head->list, marker, unp_link);
1428 TAILQ_INSERT_AFTER(&head->list, unp, marker, unp_link);
1430 if (unp->unp_flags & UNP_MARKER)
1431 continue;
1432 if (prison_unpcb(req->td, unp))
1433 continue;
1435 xu.xu_len = sizeof(xu);
1436 xu.xu_unpp = unp;
1439 * NOTE:
1440 * unp->unp_addr and unp->unp_conn are protected by
1441 * unp_token. So if we want to get rid of unp_token
1442 * or reduce the coverage of unp_token, care must be
1443 * taken.
1445 if (unp->unp_addr) {
1446 bcopy(unp->unp_addr, &xu.xu_addr,
1447 unp->unp_addr->sun_len);
1449 if (unp->unp_conn && unp->unp_conn->unp_addr) {
1450 bcopy(unp->unp_conn->unp_addr,
1451 &xu.xu_caddr,
1452 unp->unp_conn->unp_addr->sun_len);
1454 bcopy(unp, &xu.xu_unp, sizeof(*unp));
1455 sotoxsocket(unp->unp_socket, &xu.xu_socket);
1457 /* NOTE: This could block and temporarily release unp_token */
1458 error = SYSCTL_OUT(req, &xu, sizeof(xu));
1459 if (error)
1460 break;
1461 ++i;
1463 TAILQ_REMOVE(&head->list, marker, unp_link);
1465 lwkt_reltoken(&unp_token);
1467 kfree(marker, M_UNPCB);
1468 return error;
1471 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1472 &unp_dgram_head, 0, unp_pcblist, "S,xunpcb",
1473 "List of active local datagram sockets");
1474 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1475 &unp_stream_head, 0, unp_pcblist, "S,xunpcb",
1476 "List of active local stream sockets");
1477 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1478 &unp_seqpkt_head, 0, unp_pcblist, "S,xunpcb",
1479 "List of active local seqpacket sockets");
1481 static void
1482 unp_shutdown(struct unpcb *unp)
1484 struct socket *so;
1486 if ((unp->unp_socket->so_type == SOCK_STREAM ||
1487 unp->unp_socket->so_type == SOCK_SEQPACKET) &&
1488 unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
1489 socantrcvmore(so);
1493 #ifdef notdef
1494 void
1495 unp_drain(void)
1497 lwkt_gettoken(&unp_token);
1498 lwkt_reltoken(&unp_token);
1500 #endif
1503 unp_externalize(struct mbuf *rights, int flags)
1505 struct thread *td = curthread;
1506 struct proc *p = td->td_proc; /* XXX */
1507 struct lwp *lp = td->td_lwp;
1508 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1509 int *fdp;
1510 int i;
1511 struct file **rp;
1512 struct file *fp;
1513 int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
1514 / sizeof(struct file *);
1515 int f;
1517 lwkt_gettoken(&unp_rights_token);
1520 * if the new FD's will not fit, then we free them all
1522 if (!fdavail(p, newfds)) {
1523 rp = (struct file **)CMSG_DATA(cm);
1524 for (i = 0; i < newfds; i++) {
1525 fp = *rp;
1527 * zero the pointer before calling unp_discard,
1528 * since it may end up in unp_gc()..
1530 *rp++ = NULL;
1531 unp_discard(fp, NULL);
1533 lwkt_reltoken(&unp_rights_token);
1534 return (EMSGSIZE);
1538 * now change each pointer to an fd in the global table to
1539 * an integer that is the index to the local fd table entry
1540 * that we set up to point to the global one we are transferring.
1541 * Since the sizeof(struct file *) is bigger than or equal to
1542 * the sizeof(int), we do it in forward order. In that case,
1543 * an integer will always come in the same place or before its
1544 * corresponding struct file pointer.
1546 * Hold revoke_token in 'shared' mode, so that we won't miss
1547 * the FREVOKED update on fps being externalized (fsetfd).
1549 lwkt_gettoken_shared(&revoke_token);
1550 fdp = (int *)CMSG_DATA(cm);
1551 rp = (struct file **)CMSG_DATA(cm);
1552 for (i = 0; i < newfds; i++) {
1553 if (fdalloc(p, 0, &f)) {
1554 int j;
1557 * Previous fdavail() can't garantee
1558 * fdalloc() success due to SMP race.
1559 * Just clean up and return the same
1560 * error value as if fdavail() failed.
1562 lwkt_reltoken(&revoke_token);
1564 /* Close externalized files */
1565 for (j = 0; j < i; j++)
1566 kern_close(fdp[j]);
1567 /* Discard the rest of internal files */
1568 for (; i < newfds; i++)
1569 unp_discard(rp[i], NULL);
1570 /* Wipe out the control message */
1571 for (i = 0; i < newfds; i++)
1572 rp[i] = NULL;
1574 lwkt_reltoken(&unp_rights_token);
1575 return (EMSGSIZE);
1577 fp = rp[i];
1578 unp_fp_externalize(lp, fp, f, flags);
1579 fdp[i] = f;
1581 lwkt_reltoken(&revoke_token);
1583 lwkt_reltoken(&unp_rights_token);
1586 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1587 * differs.
1589 cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1590 rights->m_len = cm->cmsg_len;
1592 return (0);
1595 static void
1596 unp_fp_externalize(struct lwp *lp, struct file *fp, int fd, int flags)
1598 if (lp) {
1599 struct filedesc *fdp = lp->lwp_proc->p_fd;
1601 KKASSERT(fd >= 0);
1602 if (fp->f_flag & FREVOKED) {
1603 struct file *fx;
1604 int error;
1606 kprintf("Warning: revoked fp exiting unix socket\n");
1607 error = falloc(lp, &fx, NULL);
1608 if (error == 0) {
1609 if (flags & MSG_CMSG_CLOEXEC)
1610 fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
1611 fsetfd(fdp, fx, fd);
1612 fdrop(fx);
1613 } else {
1614 fsetfd(fdp, NULL, fd);
1616 } else {
1617 if (flags & MSG_CMSG_CLOEXEC)
1618 fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
1619 fsetfd(fdp, fp, fd);
1622 unp_del_right(fp);
1623 fdrop(fp);
1626 void
1627 unp_init(void)
1629 TAILQ_INIT(&unp_stream_head.list);
1630 TAILQ_INIT(&unp_dgram_head.list);
1631 TAILQ_INIT(&unp_seqpkt_head.list);
1633 SLIST_INIT(&unp_defdiscard_head);
1634 spin_init(&unp_defdiscard_spin, "unpdisc");
1635 TASK_INIT(&unp_defdiscard_task, 0, unp_defdiscard_taskfunc, NULL);
1638 * This implies that only one gc can be in-progress at any
1639 * given moment.
1641 TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1643 unp_gc_marker = kmalloc(sizeof(*unp_gc_marker), M_UNPCB,
1644 M_WAITOK | M_ZERO);
1645 unp_gc_marker->unp_flags |= UNP_MARKER;
1648 * Create taskqueue for defered discard, and stick it to
1649 * the last CPU.
1651 unp_taskqueue = taskqueue_create("unp_taskq", M_WAITOK,
1652 taskqueue_thread_enqueue, &unp_taskqueue);
1653 taskqueue_start_threads(&unp_taskqueue, 1, TDPRI_KERN_DAEMON,
1654 ncpus - 1, "unp taskq");
1657 static int
1658 unp_internalize(struct mbuf *control, struct thread *td)
1660 struct proc *p = td->td_proc;
1661 struct filedesc *fdescp;
1662 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1663 struct file **rp;
1664 struct file *fp;
1665 int i, fd, *fdp;
1666 struct cmsgcred *cmcred;
1667 int oldfds;
1668 u_int newlen;
1669 int error;
1671 KKASSERT(p);
1673 if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1674 cm->cmsg_level != SOL_SOCKET ||
1675 CMSG_ALIGN(cm->cmsg_len) != control->m_len)
1676 return EINVAL;
1679 * Fill in credential information.
1681 if (cm->cmsg_type == SCM_CREDS) {
1682 cmcred = (struct cmsgcred *)CMSG_DATA(cm);
1683 cmcred->cmcred_pid = p->p_pid;
1684 cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1685 cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1686 cmcred->cmcred_euid = p->p_ucred->cr_uid;
1687 cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1688 CMGROUP_MAX);
1689 for (i = 0; i < cmcred->cmcred_ngroups; i++)
1690 cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1691 return 0;
1695 * cmsghdr may not be aligned, do not allow calculation(s) to
1696 * go negative.
1698 if (cm->cmsg_len < CMSG_LEN(0))
1699 return EINVAL;
1701 oldfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof(int);
1704 * Now replace the integer FDs with pointers to
1705 * the associated global file table entry..
1706 * Allocate a bigger buffer as necessary. But if an cluster is not
1707 * enough, return E2BIG.
1709 newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1710 if (newlen > MCLBYTES)
1711 return E2BIG;
1712 if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1713 if (control->m_flags & M_EXT)
1714 return E2BIG;
1715 MCLGET(control, M_WAITOK);
1716 if (!(control->m_flags & M_EXT))
1717 return ENOBUFS;
1719 /* copy the data to the cluster */
1720 memcpy(mtod(control, char *), cm, cm->cmsg_len);
1721 cm = mtod(control, struct cmsghdr *);
1724 lwkt_gettoken(&unp_rights_token);
1726 fdescp = p->p_fd;
1727 spin_lock_shared(&fdescp->fd_spin);
1730 * check that all the FDs passed in refer to legal OPEN files
1731 * If not, reject the entire operation.
1733 fdp = (int *)CMSG_DATA(cm);
1734 for (i = 0; i < oldfds; i++) {
1735 fd = *fdp++;
1736 if ((unsigned)fd >= fdescp->fd_nfiles ||
1737 fdescp->fd_files[fd].fp == NULL) {
1738 error = EBADF;
1739 goto done;
1741 if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) {
1742 error = EOPNOTSUPP;
1743 goto done;
1748 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1749 * differs.
1751 cm->cmsg_len = newlen;
1752 control->m_len = CMSG_ALIGN(newlen);
1755 * Transform the file descriptors into struct file pointers.
1756 * Since the sizeof(struct file *) is bigger than or equal to
1757 * the sizeof(int), we do it in reverse order so that the int
1758 * won't get trashed until we're done.
1760 fdp = (int *)CMSG_DATA(cm) + oldfds - 1;
1761 rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1762 for (i = 0; i < oldfds; i++) {
1763 fp = fdescp->fd_files[*fdp--].fp;
1764 *rp-- = fp;
1765 fhold(fp);
1766 unp_add_right(fp);
1768 error = 0;
1769 done:
1770 spin_unlock_shared(&fdescp->fd_spin);
1771 lwkt_reltoken(&unp_rights_token);
1772 return error;
1775 #ifdef UNP_GC_ALLFILES
1778 * Garbage collect in-transit file descriptors that get lost due to
1779 * loops (i.e. when a socket is sent to another process over itself,
1780 * and more complex situations).
1782 * NOT MPSAFE - TODO socket flush code and maybe fdrop. Rest is MPSAFE.
1785 struct unp_gc_info {
1786 struct file **extra_ref;
1787 struct file *locked_fp;
1788 int defer;
1789 int index;
1790 int maxindex;
1793 static void
1794 unp_gc(void *arg __unused, int pending __unused)
1796 struct unp_gc_info info;
1797 struct file **fpp;
1798 int i;
1800 lwkt_gettoken(&unp_rights_token);
1803 * Before going through all this, set all FDs to be NOT defered
1804 * and NOT externally accessible (not marked). During the scan
1805 * a fd can be marked externally accessible but we may or may not
1806 * be able to immediately process it (controlled by FDEFER).
1808 * If we loop sleep a bit. The complexity of the topology can cause
1809 * multiple loops. Also failure to acquire the socket's so_rcv
1810 * token can cause us to loop.
1812 allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1813 do {
1814 info.defer = 0;
1815 allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1816 if (info.defer)
1817 tsleep(&info, 0, "gcagain", 1);
1818 } while (info.defer);
1821 * We grab an extra reference to each of the file table entries
1822 * that are not otherwise accessible and then free the rights
1823 * that are stored in messages on them.
1825 * The bug in the orginal code is a little tricky, so I'll describe
1826 * what's wrong with it here.
1828 * It is incorrect to simply unp_discard each entry for f_msgcount
1829 * times -- consider the case of sockets A and B that contain
1830 * references to each other. On a last close of some other socket,
1831 * we trigger a gc since the number of outstanding rights (unp_rights)
1832 * is non-zero. If during the sweep phase the gc code unp_discards,
1833 * we end up doing a (full) fdrop on the descriptor. A fdrop on A
1834 * results in the following chain. Closef calls soo_close, which
1835 * calls soclose. Soclose calls first (through the switch
1836 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1837 * returns because the previous instance had set unp_gcing, and
1838 * we return all the way back to soclose, which marks the socket
1839 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1840 * to free up the rights that are queued in messages on the socket A,
1841 * i.e., the reference on B. The sorflush calls via the dom_dispose
1842 * switch unp_dispose, which unp_scans with unp_discard. This second
1843 * instance of unp_discard just calls fdrop on B.
1845 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1846 * which results in another fdrop on A. Unfortunately, A is already
1847 * being closed, and the descriptor has already been marked with
1848 * SS_NOFDREF, and soclose panics at this point.
1850 * Here, we first take an extra reference to each inaccessible
1851 * descriptor. Then, we call sorflush ourself, since we know
1852 * it is a Unix domain socket anyhow. After we destroy all the
1853 * rights carried in messages, we do a last fdrop to get rid
1854 * of our extra reference. This is the last close, and the
1855 * unp_detach etc will shut down the socket.
1857 * 91/09/19, bsy@cs.cmu.edu
1859 info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1860 info.maxindex = 256;
1862 do {
1864 * Look for matches
1866 info.index = 0;
1867 allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1870 * For each FD on our hit list, do the following two things
1872 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1873 struct file *tfp = *fpp;
1874 if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1875 sorflush((struct socket *)(tfp->f_data));
1877 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1878 fdrop(*fpp);
1879 } while (info.index == info.maxindex);
1881 kfree((caddr_t)info.extra_ref, M_FILE);
1883 lwkt_reltoken(&unp_rights_token);
1887 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1889 static int
1890 unp_gc_checkrefs(struct file *fp, void *data)
1892 struct unp_gc_info *info = data;
1894 if (fp->f_count == 0)
1895 return(0);
1896 if (info->index == info->maxindex)
1897 return(-1);
1900 * If all refs are from msgs, and it's not marked accessible
1901 * then it must be referenced from some unreachable cycle
1902 * of (shut-down) FDs, so include it in our
1903 * list of FDs to remove
1905 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1906 info->extra_ref[info->index++] = fp;
1907 fhold(fp);
1909 return(0);
1913 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1915 static int
1916 unp_gc_clearmarks(struct file *fp, void *data __unused)
1918 atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1919 return(0);
1923 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1925 static int
1926 unp_gc_checkmarks(struct file *fp, void *data)
1928 struct unp_gc_info *info = data;
1929 struct socket *so;
1932 * If the file is not open, skip it. Make sure it isn't marked
1933 * defered or we could loop forever, in case we somehow race
1934 * something.
1936 if (fp->f_count == 0) {
1937 if (fp->f_flag & FDEFER)
1938 atomic_clear_int(&fp->f_flag, FDEFER);
1939 return(0);
1942 * If we already marked it as 'defer' in a
1943 * previous pass, then try process it this time
1944 * and un-mark it
1946 if (fp->f_flag & FDEFER) {
1947 atomic_clear_int(&fp->f_flag, FDEFER);
1948 } else {
1950 * if it's not defered, then check if it's
1951 * already marked.. if so skip it
1953 if (fp->f_flag & FMARK)
1954 return(0);
1956 * If all references are from messages
1957 * in transit, then skip it. it's not
1958 * externally accessible.
1960 if (fp->f_count == fp->f_msgcount)
1961 return(0);
1963 * If it got this far then it must be
1964 * externally accessible.
1966 atomic_set_int(&fp->f_flag, FMARK);
1970 * either it was defered, or it is externally
1971 * accessible and not already marked so.
1972 * Now check if it is possibly one of OUR sockets.
1974 if (fp->f_type != DTYPE_SOCKET ||
1975 (so = (struct socket *)fp->f_data) == NULL) {
1976 return(0);
1978 if (so->so_proto->pr_domain != &localdomain ||
1979 !(so->so_proto->pr_flags & PR_RIGHTS)) {
1980 return(0);
1984 * So, Ok, it's one of our sockets and it IS externally accessible
1985 * (or was defered). Now we look to see if we hold any file
1986 * descriptors in its message buffers. Follow those links and mark
1987 * them as accessible too.
1989 * We are holding multiple spinlocks here, if we cannot get the
1990 * token non-blocking defer until the next loop.
1992 info->locked_fp = fp;
1993 if (lwkt_trytoken(&so->so_rcv.ssb_token)) {
1994 unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1995 lwkt_reltoken(&so->so_rcv.ssb_token);
1996 } else {
1997 atomic_set_int(&fp->f_flag, FDEFER);
1998 ++info->defer;
2000 return (0);
2004 * Mark visibility. info->defer is recalculated on every pass.
2006 static void
2007 unp_mark(struct file *fp, void *data)
2009 struct unp_gc_info *info = data;
2011 if ((fp->f_flag & FMARK) == 0) {
2012 ++info->defer;
2013 atomic_set_int(&fp->f_flag, FMARK | FDEFER);
2014 } else if (fp->f_flag & FDEFER) {
2015 ++info->defer;
2019 #else /* !UNP_GC_ALLFILES */
2022 * They are thread local and do not require explicit synchronization.
2024 static int unp_marked;
2025 static int unp_unreachable;
2027 static void
2028 unp_accessable(struct file *fp, void *data __unused)
2030 struct unpcb *unp;
2032 if ((unp = unp_fp2unpcb(fp)) == NULL)
2033 return;
2034 if (unp->unp_gcflags & UNPGC_REF)
2035 return;
2036 unp->unp_gcflags &= ~UNPGC_DEAD;
2037 unp->unp_gcflags |= UNPGC_REF;
2038 unp_marked++;
2041 static void
2042 unp_gc_process(struct unpcb *unp)
2044 struct file *fp;
2046 /* Already processed. */
2047 if (unp->unp_gcflags & UNPGC_SCANNED)
2048 return;
2049 fp = unp->unp_fp;
2052 * Check for a socket potentially in a cycle. It must be in a
2053 * queue as indicated by msgcount, and this must equal the file
2054 * reference count. Note that when msgcount is 0 the file is NULL.
2056 if ((unp->unp_gcflags & UNPGC_REF) == 0 && fp &&
2057 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2058 unp->unp_gcflags |= UNPGC_DEAD;
2059 unp_unreachable++;
2060 return;
2064 * Mark all sockets we reference with RIGHTS.
2066 if (UNP_ISATTACHED(unp)) {
2067 struct signalsockbuf *ssb = &unp->unp_socket->so_rcv;
2069 unp_reference(unp);
2070 lwkt_gettoken(&ssb->ssb_token);
2072 * unp_token would be temporarily dropped, if getting
2073 * so_rcv token blocks, so we need to check unp state
2074 * here again.
2076 if (UNP_ISATTACHED(unp))
2077 unp_scan(ssb->ssb_mb, unp_accessable, NULL);
2078 lwkt_reltoken(&ssb->ssb_token);
2079 unp->unp_gcflags |= UNPGC_SCANNED;
2080 unp_free(unp);
2081 } else {
2082 unp->unp_gcflags |= UNPGC_SCANNED;
2086 static void
2087 unp_gc(void *arg __unused, int pending __unused)
2089 struct unp_global_head *head;
2090 int h, filemax, fileidx, filetot;
2091 struct file **unref;
2092 struct unpcb *unp;
2094 lwkt_gettoken(&unp_rights_token);
2095 lwkt_gettoken(&unp_token);
2098 * First clear all gc flags from previous runs.
2100 for (h = 0; unp_heads[h] != NULL; ++h) {
2102 * NOTE: This loop does not block, so it is safe
2103 * to use TAILQ_FOREACH here.
2105 head = unp_heads[h];
2106 TAILQ_FOREACH(unp, &head->list, unp_link)
2107 unp->unp_gcflags = 0;
2111 * Scan marking all reachable sockets with UNPGC_REF. Once a socket
2112 * is reachable all of the sockets it references are reachable.
2113 * Stop the scan once we do a complete loop without discovering
2114 * a new reachable socket.
2116 do {
2117 unp_unreachable = 0;
2118 unp_marked = 0;
2119 for (h = 0; unp_heads[h] != NULL; ++h) {
2120 head = unp_heads[h];
2121 TAILQ_INSERT_HEAD(&head->list, unp_gc_marker, unp_link);
2122 while ((unp = TAILQ_NEXT(unp_gc_marker, unp_link))
2123 != NULL) {
2124 TAILQ_REMOVE(&head->list, unp_gc_marker,
2125 unp_link);
2126 TAILQ_INSERT_AFTER(&head->list, unp,
2127 unp_gc_marker, unp_link);
2129 if (unp->unp_flags & UNP_MARKER)
2130 continue;
2131 unp_gc_process(unp);
2133 TAILQ_REMOVE(&head->list, unp_gc_marker, unp_link);
2135 } while (unp_marked);
2137 if (unp_unreachable == 0)
2138 goto done;
2141 * We grab an extra reference to each of the file table entries
2142 * that are not otherwise accessible and then free the rights
2143 * that are stored in messages on them.
2145 * The bug in the orginal code is a little tricky, so I'll describe
2146 * what's wrong with it here.
2148 * It is incorrect to simply unp_discard each entry for f_msgcount
2149 * times -- consider the case of sockets A and B that contain
2150 * references to each other. On a last close of some other socket,
2151 * we trigger a gc since the number of outstanding rights (unp_rights)
2152 * is non-zero. If during the sweep phase the gc code unp_discards,
2153 * we end up doing a (full) fdrop on the descriptor. A fdrop on A
2154 * results in the following chain. Closef calls soo_close, which
2155 * calls soclose. Soclose calls first (through the switch
2156 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
2157 * returns because the previous instance had set unp_gcing, and
2158 * we return all the way back to soclose, which marks the socket
2159 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
2160 * to free up the rights that are queued in messages on the socket A,
2161 * i.e., the reference on B. The sorflush calls via the dom_dispose
2162 * switch unp_dispose, which unp_scans with unp_discard. This second
2163 * instance of unp_discard just calls fdrop on B.
2165 * Well, a similar chain occurs on B, resulting in a sorflush on B,
2166 * which results in another fdrop on A. Unfortunately, A is already
2167 * being closed, and the descriptor has already been marked with
2168 * SS_NOFDREF, and soclose panics at this point.
2170 * Here, we first take an extra reference to each inaccessible
2171 * descriptor. Then, we call sorflush ourself, since we know
2172 * it is a Unix domain socket anyhow. After we destroy all the
2173 * rights carried in messages, we do a last fdrop to get rid
2174 * of our extra reference. This is the last close, and the
2175 * unp_detach etc will shut down the socket.
2177 * 91/09/19, bsy@cs.cmu.edu
2180 filemax = unp_unreachable;
2181 if (filemax > UNP_GCFILE_MAX)
2182 filemax = UNP_GCFILE_MAX;
2183 unref = kmalloc(filemax * sizeof(struct file *), M_TEMP, M_WAITOK);
2185 filetot = 0;
2186 do {
2187 int i;
2190 * Iterate looking for sockets which have been specifically
2191 * marked as as unreachable and store them locally.
2193 fileidx = 0;
2194 for (h = 0; unp_heads[h] != NULL; ++h) {
2196 * NOTE: This loop does not block, so it is safe
2197 * to use TAILQ_FOREACH here.
2199 head = unp_heads[h];
2200 TAILQ_FOREACH(unp, &head->list, unp_link) {
2201 struct file *fp;
2203 if ((unp->unp_gcflags & UNPGC_DEAD) == 0)
2204 continue;
2205 unp->unp_gcflags &= ~UNPGC_DEAD;
2207 fp = unp->unp_fp;
2208 if (unp->unp_msgcount == 0 || fp == NULL ||
2209 fp->f_count != unp->unp_msgcount)
2210 continue;
2211 fhold(fp);
2213 KASSERT(fileidx < filemax,
2214 ("invalid fileidx %d, filemax %d",
2215 fileidx, filemax));
2216 unref[fileidx++] = fp;
2218 KASSERT(filetot < unp_unreachable,
2219 ("invalid filetot %d and "
2220 "unp_unreachable %d",
2221 filetot, unp_unreachable));
2222 ++filetot;
2224 if (fileidx == filemax ||
2225 filetot == unp_unreachable)
2226 goto dogc;
2229 dogc:
2231 * For each Unix domain socket on our hit list, do the
2232 * following two things.
2234 for (i = 0; i < fileidx; ++i)
2235 sorflush(unref[i]->f_data);
2236 for (i = 0; i < fileidx; ++i)
2237 fdrop(unref[i]);
2238 } while (fileidx == filemax && filetot < unp_unreachable);
2239 kfree(unref, M_TEMP);
2240 done:
2241 lwkt_reltoken(&unp_token);
2242 lwkt_reltoken(&unp_rights_token);
2245 #endif /* UNP_GC_ALLFILES */
2248 * Dispose of the fp's stored in a mbuf.
2250 * The dds loop can cause additional fps to be entered onto the
2251 * list while it is running, flattening out the operation and avoiding
2252 * a deep kernel stack recursion.
2254 void
2255 unp_dispose(struct mbuf *m)
2257 lwkt_gettoken(&unp_rights_token);
2258 if (m)
2259 unp_scan(m, unp_discard, NULL);
2260 lwkt_reltoken(&unp_rights_token);
2263 static int
2264 unp_listen(struct unpcb *unp, struct thread *td)
2266 struct proc *p = td->td_proc;
2268 ASSERT_LWKT_TOKEN_HELD(&unp_token);
2269 UNP_ASSERT_TOKEN_HELD(unp);
2271 KKASSERT(p);
2272 cru2x(p->p_ucred, &unp->unp_peercred);
2273 unp_setflags(unp, UNP_HAVEPCCACHED);
2274 return (0);
2277 static void
2278 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
2280 struct mbuf *m;
2281 struct file **rp;
2282 struct cmsghdr *cm;
2283 int i;
2284 int qfds;
2286 while (m0) {
2287 for (m = m0; m; m = m->m_next) {
2288 if (m->m_type == MT_CONTROL &&
2289 m->m_len >= sizeof(*cm)) {
2290 cm = mtod(m, struct cmsghdr *);
2291 if (cm->cmsg_level != SOL_SOCKET ||
2292 cm->cmsg_type != SCM_RIGHTS)
2293 continue;
2294 qfds = (cm->cmsg_len - CMSG_LEN(0)) /
2295 sizeof(void *);
2296 rp = (struct file **)CMSG_DATA(cm);
2297 for (i = 0; i < qfds; i++)
2298 (*op)(*rp++, data);
2299 break; /* XXX, but saves time */
2302 m0 = m0->m_nextpkt;
2307 * Discard a fp previously held in a unix domain socket mbuf. To
2308 * avoid blowing out the kernel stack due to contrived chain-reactions
2309 * we may have to defer the operation to a dedicated taskqueue.
2311 * Caller holds unp_rights_token.
2313 static void
2314 unp_discard(struct file *fp, void *data __unused)
2316 unp_del_right(fp);
2317 if (unp_fp2unpcb(fp) != NULL) {
2318 struct unp_defdiscard *d;
2321 * This fp is a Unix domain socket itself and fdrop()
2322 * it here directly may cause deep unp_discard()
2323 * recursion, so the fdrop() is defered to the
2324 * dedicated taskqueue.
2326 d = kmalloc(sizeof(*d), M_UNPCB, M_WAITOK);
2327 d->fp = fp;
2329 spin_lock(&unp_defdiscard_spin);
2330 SLIST_INSERT_HEAD(&unp_defdiscard_head, d, next);
2331 spin_unlock(&unp_defdiscard_spin);
2333 taskqueue_enqueue(unp_taskqueue, &unp_defdiscard_task);
2334 } else {
2335 /* This fp is not a Unix domain socket */
2336 fdrop(fp);
2341 * NOTE:
2342 * unp_token must be held before calling this function to avoid name
2343 * resolution and v_socket accessing races, especially racing against
2344 * the unp_detach().
2346 * NOTE:
2347 * For anyone caring about unconnected Unix domain socket sending
2348 * performance, other approach could be taken...
2350 static int
2351 unp_find_lockref(struct sockaddr *nam, struct thread *td, short type,
2352 struct unpcb **unp_ret)
2354 struct proc *p = td->td_proc;
2355 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
2356 struct vnode *vp = NULL;
2357 struct socket *so;
2358 struct unpcb *unp;
2359 int error, len;
2360 struct nlookupdata nd;
2361 char buf[SOCK_MAXADDRLEN];
2363 ASSERT_LWKT_TOKEN_HELD(&unp_token);
2365 *unp_ret = NULL;
2367 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2368 if (len <= 0) {
2369 error = EINVAL;
2370 goto failed;
2372 strncpy(buf, soun->sun_path, len);
2373 buf[len] = 0;
2375 error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
2376 if (error == 0)
2377 error = nlookup(&nd);
2378 if (error == 0)
2379 error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
2380 nlookup_done(&nd);
2381 if (error) {
2382 vp = NULL;
2383 goto failed;
2386 if (vp->v_type != VSOCK) {
2387 error = ENOTSOCK;
2388 goto failed;
2390 error = VOP_EACCESS(vp, VWRITE, p->p_ucred);
2391 if (error)
2392 goto failed;
2393 so = vp->v_socket;
2394 if (so == NULL) {
2395 error = ECONNREFUSED;
2396 goto failed;
2398 if (so->so_type != type) {
2399 error = EPROTOTYPE;
2400 goto failed;
2403 /* Lock this unp. */
2404 unp = unp_getsocktoken(so);
2405 if (!UNP_ISATTACHED(unp)) {
2406 unp_reltoken(unp);
2407 error = ECONNREFUSED;
2408 goto failed;
2410 /* And keep this unp referenced. */
2411 unp_reference(unp);
2413 /* Done! */
2414 *unp_ret = unp;
2415 error = 0;
2416 failed:
2417 if (vp != NULL)
2418 vput(vp);
2419 return error;
2422 static int
2423 unp_connect_pair(struct unpcb *unp, struct unpcb *unp2)
2425 struct socket *so = unp->unp_socket;
2426 struct socket *so2 = unp2->unp_socket;
2428 ASSERT_LWKT_TOKEN_HELD(&unp_token);
2429 UNP_ASSERT_TOKEN_HELD(unp);
2430 UNP_ASSERT_TOKEN_HELD(unp2);
2432 KASSERT(so->so_type == so2->so_type,
2433 ("socket type mismatch, so %d, so2 %d", so->so_type, so2->so_type));
2435 if (!UNP_ISATTACHED(unp))
2436 return EINVAL;
2437 if (!UNP_ISATTACHED(unp2))
2438 return ECONNREFUSED;
2440 KASSERT(unp->unp_conn == NULL, ("unp is already connected"));
2441 unp->unp_conn = unp2;
2443 switch (so->so_type) {
2444 case SOCK_DGRAM:
2445 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2446 soisconnected(so);
2447 break;
2449 case SOCK_STREAM:
2450 case SOCK_SEQPACKET:
2451 KASSERT(unp2->unp_conn == NULL, ("unp2 is already connected"));
2452 unp2->unp_conn = unp;
2453 soisconnected(so);
2454 soisconnected(so2);
2455 break;
2457 default:
2458 panic("unp_connect_pair: unknown socket type %d", so->so_type);
2460 return 0;
2463 static void
2464 unp_drop(struct unpcb *unp, int error)
2466 struct unp_global_head *head;
2467 struct unpcb *unp2;
2469 ASSERT_LWKT_TOKEN_HELD(&unp_token);
2470 UNP_ASSERT_TOKEN_HELD(unp);
2472 KASSERT((unp->unp_flags & (UNP_DETACHED | UNP_DROPPED)) == 0,
2473 ("unp is dropped"));
2475 /* Mark this unp as detached. */
2476 unp_setflags(unp, UNP_DETACHED);
2478 /* Remove this unp from the global unp list. */
2479 head = unp_globalhead(unp->unp_socket->so_type);
2480 KASSERT(head->count > 0, ("invalid unp count"));
2481 TAILQ_REMOVE(&head->list, unp, unp_link);
2482 head->count--;
2484 /* Disconnect all. */
2485 unp_disconnect(unp, error);
2486 while ((unp2 = LIST_FIRST(&unp->unp_refs)) != NULL) {
2487 lwkt_getpooltoken(unp2);
2488 unp_disconnect(unp2, ECONNRESET);
2489 lwkt_relpooltoken(unp2);
2491 unp_setflags(unp, UNP_DROPPED);
2493 /* Try freeing this unp. */
2494 unp_free(unp);
2497 static void
2498 unp_defdiscard_taskfunc(void *arg __unused, int pending __unused)
2500 struct unp_defdiscard *d;
2502 spin_lock(&unp_defdiscard_spin);
2503 while ((d = SLIST_FIRST(&unp_defdiscard_head)) != NULL) {
2504 SLIST_REMOVE_HEAD(&unp_defdiscard_head, next);
2505 spin_unlock(&unp_defdiscard_spin);
2507 fdrop(d->fp);
2508 kfree(d, M_UNPCB);
2510 spin_lock(&unp_defdiscard_spin);
2512 spin_unlock(&unp_defdiscard_spin);