kernel - Revert part of the contig allocation work
[dragonfly.git] / sys / kern / kern_clock.c
blob13f668b40e6d793fc0d41696e701651d16ad070d
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
71 #include "opt_ntp.h"
72 #include "opt_pctrack.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/kernel.h>
78 #include <sys/kinfo.h>
79 #include <sys/proc.h>
80 #include <sys/malloc.h>
81 #include <sys/resource.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/priv.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <sys/lock.h>
89 #include <sys/sysctl.h>
90 #include <sys/kcollect.h>
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
97 #include <sys/thread2.h>
98 #include <sys/spinlock2.h>
100 #include <machine/cpu.h>
101 #include <machine/limits.h>
102 #include <machine/smp.h>
103 #include <machine/cpufunc.h>
104 #include <machine/specialreg.h>
105 #include <machine/clock.h>
107 #ifdef GPROF
108 #include <sys/gmon.h>
109 #endif
111 #ifdef DEBUG_PCTRACK
112 static void do_pctrack(struct intrframe *frame, int which);
113 #endif
115 static void initclocks (void *dummy);
116 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
119 * Some of these don't belong here, but it's easiest to concentrate them.
120 * Note that cpu_time counts in microseconds, but most userland programs
121 * just compare relative times against the total by delta.
123 struct kinfo_cputime cputime_percpu[MAXCPU];
124 #ifdef DEBUG_PCTRACK
125 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
126 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
127 #endif
129 static int sniff_enable = 1;
130 static int sniff_target = -1;
131 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , "");
132 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , "");
134 static int
135 sysctl_cputime(SYSCTL_HANDLER_ARGS)
137 int cpu, error = 0;
138 int root_error;
139 size_t size = sizeof(struct kinfo_cputime);
140 struct kinfo_cputime tmp;
143 * NOTE: For security reasons, only root can sniff %rip
145 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0);
147 for (cpu = 0; cpu < ncpus; ++cpu) {
148 tmp = cputime_percpu[cpu];
149 if (root_error == 0) {
150 tmp.cp_sample_pc =
151 (int64_t)globaldata_find(cpu)->gd_sample_pc;
152 tmp.cp_sample_sp =
153 (int64_t)globaldata_find(cpu)->gd_sample_sp;
155 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0)
156 break;
159 if (root_error == 0) {
160 if (sniff_enable) {
161 int n = sniff_target;
162 if (n < 0)
163 smp_sniff();
164 else if (n < ncpus)
165 cpu_sniff(n);
169 return (error);
171 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
172 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
174 static int
175 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
177 long cpu_states[CPUSTATES] = {0};
178 int cpu, error = 0;
179 size_t size = sizeof(cpu_states);
181 for (cpu = 0; cpu < ncpus; ++cpu) {
182 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
183 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
184 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
185 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
186 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
189 error = SYSCTL_OUT(req, cpu_states, size);
191 return (error);
194 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
195 sysctl_cp_time, "LU", "CPU time statistics");
197 static int
198 sysctl_cp_times(SYSCTL_HANDLER_ARGS)
200 long cpu_states[CPUSTATES] = {0};
201 int cpu, error;
202 size_t size = sizeof(cpu_states);
204 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) {
205 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user;
206 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice;
207 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys;
208 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr;
209 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle;
210 error = SYSCTL_OUT(req, cpu_states, size);
213 return (error);
216 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
217 sysctl_cp_times, "LU", "per-CPU time statistics");
220 * boottime is used to calculate the 'real' uptime. Do not confuse this with
221 * microuptime(). microtime() is not drift compensated. The real uptime
222 * with compensation is nanotime() - bootime. boottime is recalculated
223 * whenever the real time is set based on the compensated elapsed time
224 * in seconds (gd->gd_time_seconds).
226 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
227 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
228 * the real time.
230 * WARNING! time_second can backstep on time corrections. Also, unlike
231 * time_second, time_uptime is not a "real" time_t (seconds
232 * since the Epoch) but seconds since booting.
234 struct timespec boottime; /* boot time (realtime) for reference only */
235 time_t time_second; /* read-only 'passive' realtime in seconds */
236 time_t time_uptime; /* read-only 'passive' uptime in seconds */
239 * basetime is used to calculate the compensated real time of day. The
240 * basetime can be modified on a per-tick basis by the adjtime(),
241 * ntp_adjtime(), and sysctl-based time correction APIs.
243 * Note that frequency corrections can also be made by adjusting
244 * gd_cpuclock_base.
246 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
247 * used on both SMP and UP systems to avoid MP races between cpu's and
248 * interrupt races on UP systems.
250 struct hardtime {
251 __uint32_t time_second;
252 sysclock_t cpuclock_base;
255 #define BASETIME_ARYSIZE 16
256 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
257 static struct timespec basetime[BASETIME_ARYSIZE];
258 static struct hardtime hardtime[BASETIME_ARYSIZE];
259 static volatile int basetime_index;
261 static int
262 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
264 struct timespec *bt;
265 int error;
266 int index;
269 * Because basetime data and index may be updated by another cpu,
270 * a load fence is required to ensure that the data we read has
271 * not been speculatively read relative to a possibly updated index.
273 index = basetime_index;
274 cpu_lfence();
275 bt = &basetime[index];
276 error = SYSCTL_OUT(req, bt, sizeof(*bt));
277 return (error);
280 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
281 &boottime, timespec, "System boottime");
282 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
283 sysctl_get_basetime, "S,timespec", "System basetime");
285 static void hardclock(systimer_t info, int, struct intrframe *frame);
286 static void statclock(systimer_t info, int, struct intrframe *frame);
287 static void schedclock(systimer_t info, int, struct intrframe *frame);
288 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
290 int ticks; /* system master ticks at hz */
291 int clocks_running; /* tsleep/timeout clocks operational */
292 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
293 int64_t nsec_acc; /* accumulator */
294 int sched_ticks; /* global schedule clock ticks */
296 /* NTPD time correction fields */
297 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
298 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
299 int64_t ntp_delta; /* one-time correction in nsec */
300 int64_t ntp_big_delta = 1000000000;
301 int32_t ntp_tick_delta; /* current adjustment rate */
302 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
303 time_t ntp_leap_second; /* time of next leap second */
304 int ntp_leap_insert; /* whether to insert or remove a second */
305 struct spinlock ntp_spin;
308 * Finish initializing clock frequencies and start all clocks running.
310 /* ARGSUSED*/
311 static void
312 initclocks(void *dummy)
314 /*psratio = profhz / stathz;*/
315 spin_init(&ntp_spin, "ntp");
316 initclocks_pcpu();
317 clocks_running = 1;
318 if (kpmap) {
319 kpmap->tsc_freq = tsc_frequency;
320 kpmap->tick_freq = hz;
325 * Called on a per-cpu basis from the idle thread bootstrap on each cpu
326 * during SMP initialization.
328 * This routine is called concurrently during low-level SMP initialization
329 * and may not block in any way. Meaning, among other things, we can't
330 * acquire any tokens.
332 void
333 initclocks_pcpu(void)
335 struct globaldata *gd = mycpu;
337 crit_enter();
338 if (gd->gd_cpuid == 0) {
339 gd->gd_time_seconds = 1;
340 gd->gd_cpuclock_base = sys_cputimer->count();
341 hardtime[0].time_second = gd->gd_time_seconds;
342 hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
343 } else {
344 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
345 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
348 systimer_intr_enable();
350 crit_exit();
354 * Called on a 10-second interval after the system is operational.
355 * Return the collection data for USERPCT and install the data for
356 * SYSTPCT and IDLEPCT.
358 static
359 uint64_t
360 collect_cputime_callback(int n)
362 static long cpu_base[CPUSTATES];
363 long cpu_states[CPUSTATES];
364 long total;
365 long acc;
366 long lsb;
368 bzero(cpu_states, sizeof(cpu_states));
369 for (n = 0; n < ncpus; ++n) {
370 cpu_states[CP_USER] += cputime_percpu[n].cp_user;
371 cpu_states[CP_NICE] += cputime_percpu[n].cp_nice;
372 cpu_states[CP_SYS] += cputime_percpu[n].cp_sys;
373 cpu_states[CP_INTR] += cputime_percpu[n].cp_intr;
374 cpu_states[CP_IDLE] += cputime_percpu[n].cp_idle;
377 acc = 0;
378 for (n = 0; n < CPUSTATES; ++n) {
379 total = cpu_states[n] - cpu_base[n];
380 cpu_base[n] = cpu_states[n];
381 cpu_states[n] = total;
382 acc += total;
384 if (acc == 0) /* prevent degenerate divide by 0 */
385 acc = 1;
386 lsb = acc / (10000 * 2);
387 kcollect_setvalue(KCOLLECT_SYSTPCT,
388 (cpu_states[CP_SYS] + lsb) * 10000 / acc);
389 kcollect_setvalue(KCOLLECT_IDLEPCT,
390 (cpu_states[CP_IDLE] + lsb) * 10000 / acc);
391 kcollect_setvalue(KCOLLECT_INTRPCT,
392 (cpu_states[CP_INTR] + lsb) * 10000 / acc);
393 return((cpu_states[CP_USER] + cpu_states[CP_NICE] + lsb) * 10000 / acc);
397 * This routine is called on just the BSP, just after SMP initialization
398 * completes to * finish initializing any clocks that might contend/block
399 * (e.g. like on a token). We can't do this in initclocks_pcpu() because
400 * that function is called from the idle thread bootstrap for each cpu and
401 * not allowed to block at all.
403 static
404 void
405 initclocks_other(void *dummy)
407 struct globaldata *ogd = mycpu;
408 struct globaldata *gd;
409 int n;
411 for (n = 0; n < ncpus; ++n) {
412 lwkt_setcpu_self(globaldata_find(n));
413 gd = mycpu;
416 * Use a non-queued periodic systimer to prevent multiple
417 * ticks from building up if the sysclock jumps forward
418 * (8254 gets reset). The sysclock will never jump backwards.
419 * Our time sync is based on the actual sysclock, not the
420 * ticks count.
422 * Install statclock before hardclock to prevent statclock
423 * from misinterpreting gd_flags for tick assignment when
424 * they overlap.
426 systimer_init_periodic_flags(&gd->gd_statclock, statclock,
427 NULL, stathz,
428 SYSTF_MSSYNC | SYSTF_FIRST);
429 systimer_init_periodic_flags(&gd->gd_hardclock, hardclock,
430 NULL, hz, SYSTF_MSSYNC);
431 /* XXX correct the frequency for scheduler / estcpu tests */
432 systimer_init_periodic_flags(&gd->gd_schedclock, schedclock,
433 NULL, ESTCPUFREQ, SYSTF_MSSYNC);
435 lwkt_setcpu_self(ogd);
438 * Regular data collection
440 kcollect_register(KCOLLECT_USERPCT, "user", collect_cputime_callback,
441 KCOLLECT_SCALE(KCOLLECT_USERPCT_FORMAT, 0));
442 kcollect_register(KCOLLECT_SYSTPCT, "syst", NULL,
443 KCOLLECT_SCALE(KCOLLECT_SYSTPCT_FORMAT, 0));
444 kcollect_register(KCOLLECT_IDLEPCT, "idle", NULL,
445 KCOLLECT_SCALE(KCOLLECT_IDLEPCT_FORMAT, 0));
447 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
450 * This sets the current real time of day. Timespecs are in seconds and
451 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
452 * instead we adjust basetime so basetime + gd_* results in the current
453 * time of day. This way the gd_* fields are guaranteed to represent
454 * a monotonically increasing 'uptime' value.
456 * When set_timeofday() is called from userland, the system call forces it
457 * onto cpu #0 since only cpu #0 can update basetime_index.
459 void
460 set_timeofday(struct timespec *ts)
462 struct timespec *nbt;
463 int ni;
466 * XXX SMP / non-atomic basetime updates
468 crit_enter();
469 ni = (basetime_index + 1) & BASETIME_ARYMASK;
470 cpu_lfence();
471 nbt = &basetime[ni];
472 nanouptime(nbt);
473 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
474 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
475 if (nbt->tv_nsec < 0) {
476 nbt->tv_nsec += 1000000000;
477 --nbt->tv_sec;
481 * Note that basetime diverges from boottime as the clock drift is
482 * compensated for, so we cannot do away with boottime. When setting
483 * the absolute time of day the drift is 0 (for an instant) and we
484 * can simply assign boottime to basetime.
486 * Note that nanouptime() is based on gd_time_seconds which is drift
487 * compensated up to a point (it is guaranteed to remain monotonically
488 * increasing). gd_time_seconds is thus our best uptime guess and
489 * suitable for use in the boottime calculation. It is already taken
490 * into account in the basetime calculation above.
492 spin_lock(&ntp_spin);
493 boottime.tv_sec = nbt->tv_sec;
494 ntp_delta = 0;
497 * We now have a new basetime, make sure all other cpus have it,
498 * then update the index.
500 cpu_sfence();
501 basetime_index = ni;
502 spin_unlock(&ntp_spin);
504 crit_exit();
508 * Each cpu has its own hardclock, but we only increments ticks and softticks
509 * on cpu #0.
511 * NOTE! systimer! the MP lock might not be held here. We can only safely
512 * manipulate objects owned by the current cpu.
514 static void
515 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
517 sysclock_t cputicks;
518 struct proc *p;
519 struct globaldata *gd = mycpu;
521 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
522 /* Defer to doreti on passive IPIQ processing */
523 need_ipiq();
527 * We update the compensation base to calculate fine-grained time
528 * from the sys_cputimer on a per-cpu basis in order to avoid
529 * having to mess around with locks. sys_cputimer is assumed to
530 * be consistent across all cpus. CPU N copies the base state from
531 * CPU 0 using the same FIFO trick that we use for basetime (so we
532 * don't catch a CPU 0 update in the middle).
534 * Note that we never allow info->time (aka gd->gd_hardclock.time)
535 * to reverse index gd_cpuclock_base, but that it is possible for
536 * it to temporarily get behind in the seconds if something in the
537 * system locks interrupts for a long period of time. Since periodic
538 * timers count events, though everything should resynch again
539 * immediately.
541 if (gd->gd_cpuid == 0) {
542 int ni;
544 cputicks = info->time - gd->gd_cpuclock_base;
545 if (cputicks >= sys_cputimer->freq) {
546 cputicks /= sys_cputimer->freq;
547 if (cputicks != 0 && cputicks != 1)
548 kprintf("Warning: hardclock missed > 1 sec\n");
549 gd->gd_time_seconds += cputicks;
550 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
551 /* uncorrected monotonic 1-sec gran */
552 time_uptime += cputicks;
554 ni = (basetime_index + 1) & BASETIME_ARYMASK;
555 hardtime[ni].time_second = gd->gd_time_seconds;
556 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
557 } else {
558 int ni;
560 ni = basetime_index;
561 cpu_lfence();
562 gd->gd_time_seconds = hardtime[ni].time_second;
563 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
567 * The system-wide ticks counter and NTP related timedelta/tickdelta
568 * adjustments only occur on cpu #0. NTP adjustments are accomplished
569 * by updating basetime.
571 if (gd->gd_cpuid == 0) {
572 struct timespec *nbt;
573 struct timespec nts;
574 int leap;
575 int ni;
577 ++ticks;
579 #if 0
580 if (tco->tc_poll_pps)
581 tco->tc_poll_pps(tco);
582 #endif
585 * Calculate the new basetime index. We are in a critical section
586 * on cpu #0 and can safely play with basetime_index. Start
587 * with the current basetime and then make adjustments.
589 ni = (basetime_index + 1) & BASETIME_ARYMASK;
590 nbt = &basetime[ni];
591 *nbt = basetime[basetime_index];
594 * ntp adjustments only occur on cpu 0 and are protected by
595 * ntp_spin. This spinlock virtually never conflicts.
597 spin_lock(&ntp_spin);
600 * Apply adjtime corrections. (adjtime() API)
602 * adjtime() only runs on cpu #0 so our critical section is
603 * sufficient to access these variables.
605 if (ntp_delta != 0) {
606 nbt->tv_nsec += ntp_tick_delta;
607 ntp_delta -= ntp_tick_delta;
608 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
609 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
610 ntp_tick_delta = ntp_delta;
615 * Apply permanent frequency corrections. (sysctl API)
617 if (ntp_tick_permanent != 0) {
618 ntp_tick_acc += ntp_tick_permanent;
619 if (ntp_tick_acc >= (1LL << 32)) {
620 nbt->tv_nsec += ntp_tick_acc >> 32;
621 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
622 } else if (ntp_tick_acc <= -(1LL << 32)) {
623 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
624 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
625 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
629 if (nbt->tv_nsec >= 1000000000) {
630 nbt->tv_sec++;
631 nbt->tv_nsec -= 1000000000;
632 } else if (nbt->tv_nsec < 0) {
633 nbt->tv_sec--;
634 nbt->tv_nsec += 1000000000;
638 * Another per-tick compensation. (for ntp_adjtime() API)
640 if (nsec_adj != 0) {
641 nsec_acc += nsec_adj;
642 if (nsec_acc >= 0x100000000LL) {
643 nbt->tv_nsec += nsec_acc >> 32;
644 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
645 } else if (nsec_acc <= -0x100000000LL) {
646 nbt->tv_nsec -= -nsec_acc >> 32;
647 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
649 if (nbt->tv_nsec >= 1000000000) {
650 nbt->tv_nsec -= 1000000000;
651 ++nbt->tv_sec;
652 } else if (nbt->tv_nsec < 0) {
653 nbt->tv_nsec += 1000000000;
654 --nbt->tv_sec;
657 spin_unlock(&ntp_spin);
659 /************************************************************
660 * LEAP SECOND CORRECTION *
661 ************************************************************
663 * Taking into account all the corrections made above, figure
664 * out the new real time. If the seconds field has changed
665 * then apply any pending leap-second corrections.
667 getnanotime_nbt(nbt, &nts);
669 if (time_second != nts.tv_sec) {
671 * Apply leap second (sysctl API). Adjust nts for changes
672 * so we do not have to call getnanotime_nbt again.
674 if (ntp_leap_second) {
675 if (ntp_leap_second == nts.tv_sec) {
676 if (ntp_leap_insert) {
677 nbt->tv_sec++;
678 nts.tv_sec++;
679 } else {
680 nbt->tv_sec--;
681 nts.tv_sec--;
683 ntp_leap_second--;
688 * Apply leap second (ntp_adjtime() API), calculate a new
689 * nsec_adj field. ntp_update_second() returns nsec_adj
690 * as a per-second value but we need it as a per-tick value.
692 leap = ntp_update_second(time_second, &nsec_adj);
693 nsec_adj /= hz;
694 nbt->tv_sec += leap;
695 nts.tv_sec += leap;
698 * Update the time_second 'approximate time' global.
700 time_second = nts.tv_sec;
704 * Finally, our new basetime is ready to go live!
706 cpu_sfence();
707 basetime_index = ni;
710 * Update kpmap on each tick. TS updates are integrated with
711 * fences and upticks allowing userland to read the data
712 * deterministically.
714 if (kpmap) {
715 int w;
717 w = (kpmap->upticks + 1) & 1;
718 getnanouptime(&kpmap->ts_uptime[w]);
719 getnanotime(&kpmap->ts_realtime[w]);
720 cpu_sfence();
721 ++kpmap->upticks;
722 cpu_sfence();
727 * lwkt thread scheduler fair queueing
729 lwkt_schedulerclock(curthread);
732 * softticks are handled for all cpus
734 hardclock_softtick(gd);
737 * Rollup accumulated vmstats, copy-back for critical path checks.
739 vmstats_rollup_cpu(gd);
740 vfscache_rollup_cpu(gd);
741 mycpu->gd_vmstats = vmstats;
744 * ITimer handling is per-tick, per-cpu.
746 * We must acquire the per-process token in order for ksignal()
747 * to be non-blocking. For the moment this requires an AST fault,
748 * the ksignal() cannot be safely issued from this hard interrupt.
750 * XXX Even the trytoken here isn't right, and itimer operation in
751 * a multi threaded environment is going to be weird at the
752 * very least.
754 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
755 crit_enter_hard();
756 if (p->p_upmap)
757 ++p->p_upmap->runticks;
759 if (frame && CLKF_USERMODE(frame) &&
760 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
761 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
762 p->p_flags |= P_SIGVTALRM;
763 need_user_resched();
765 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
766 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
767 p->p_flags |= P_SIGPROF;
768 need_user_resched();
770 crit_exit_hard();
771 lwkt_reltoken(&p->p_token);
773 setdelayed();
777 * The statistics clock typically runs at a 125Hz rate, and is intended
778 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
780 * NOTE! systimer! the MP lock might not be held here. We can only safely
781 * manipulate objects owned by the current cpu.
783 * The stats clock is responsible for grabbing a profiling sample.
784 * Most of the statistics are only used by user-level statistics programs.
785 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
786 * p->p_estcpu.
788 * Like the other clocks, the stat clock is called from what is effectively
789 * a fast interrupt, so the context should be the thread/process that got
790 * interrupted.
792 static void
793 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
795 #ifdef GPROF
796 struct gmonparam *g;
797 int i;
798 #endif
799 globaldata_t gd = mycpu;
800 thread_t td;
801 struct proc *p;
802 int bump;
803 sysclock_t cv;
804 sysclock_t scv;
807 * How big was our timeslice relative to the last time? Calculate
808 * in microseconds.
810 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
811 * during early boot. Just use the systimer count to be nice
812 * to e.g. qemu. The systimer has a better chance of being
813 * MPSAFE at early boot.
815 cv = sys_cputimer->count();
816 scv = gd->statint.gd_statcv;
817 if (scv == 0) {
818 bump = 1;
819 } else {
820 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
821 if (bump < 0)
822 bump = 0;
823 if (bump > 1000000)
824 bump = 1000000;
826 gd->statint.gd_statcv = cv;
828 #if 0
829 stv = &gd->gd_stattv;
830 if (stv->tv_sec == 0) {
831 bump = 1;
832 } else {
833 bump = tv.tv_usec - stv->tv_usec +
834 (tv.tv_sec - stv->tv_sec) * 1000000;
835 if (bump < 0)
836 bump = 0;
837 if (bump > 1000000)
838 bump = 1000000;
840 *stv = tv;
841 #endif
843 td = curthread;
844 p = td->td_proc;
846 if (frame && CLKF_USERMODE(frame)) {
848 * Came from userland, handle user time and deal with
849 * possible process.
851 if (p && (p->p_flags & P_PROFIL))
852 addupc_intr(p, CLKF_PC(frame), 1);
853 td->td_uticks += bump;
856 * Charge the time as appropriate
858 if (p && p->p_nice > NZERO)
859 cpu_time.cp_nice += bump;
860 else
861 cpu_time.cp_user += bump;
862 } else {
863 int intr_nest = gd->gd_intr_nesting_level;
865 if (in_ipi) {
867 * IPI processing code will bump gd_intr_nesting_level
868 * up by one, which breaks following CLKF_INTR testing,
869 * so we subtract it by one here.
871 --intr_nest;
873 #ifdef GPROF
875 * Kernel statistics are just like addupc_intr, only easier.
877 g = &_gmonparam;
878 if (g->state == GMON_PROF_ON && frame) {
879 i = CLKF_PC(frame) - g->lowpc;
880 if (i < g->textsize) {
881 i /= HISTFRACTION * sizeof(*g->kcount);
882 g->kcount[i]++;
885 #endif
887 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
890 * Came from kernel mode, so we were:
891 * - handling an interrupt,
892 * - doing syscall or trap work on behalf of the current
893 * user process, or
894 * - spinning in the idle loop.
895 * Whichever it is, charge the time as appropriate.
896 * Note that we charge interrupts to the current process,
897 * regardless of whether they are ``for'' that process,
898 * so that we know how much of its real time was spent
899 * in ``non-process'' (i.e., interrupt) work.
901 * XXX assume system if frame is NULL. A NULL frame
902 * can occur if ipi processing is done from a crit_exit().
904 if (IS_INTR_RUNNING ||
905 (gd->gd_reqflags & RQF_INTPEND)) {
907 * If we interrupted an interrupt thread, well,
908 * count it as interrupt time.
910 td->td_iticks += bump;
911 #ifdef DEBUG_PCTRACK
912 if (frame)
913 do_pctrack(frame, PCTRACK_INT);
914 #endif
915 cpu_time.cp_intr += bump;
916 } else if (gd->gd_flags & GDF_VIRTUSER) {
918 * The vkernel doesn't do a good job providing trap
919 * frames that we can test. If the GDF_VIRTUSER
920 * flag is set we probably interrupted user mode.
922 * We also use this flag on the host when entering
923 * VMM mode.
925 td->td_uticks += bump;
928 * Charge the time as appropriate
930 if (p && p->p_nice > NZERO)
931 cpu_time.cp_nice += bump;
932 else
933 cpu_time.cp_user += bump;
934 } else {
935 td->td_sticks += bump;
936 if (td == &gd->gd_idlethread) {
938 * We want to count token contention as
939 * system time. When token contention occurs
940 * the cpu may only be outside its critical
941 * section while switching through the idle
942 * thread. In this situation, various flags
943 * will be set in gd_reqflags.
945 if (gd->gd_reqflags & RQF_IDLECHECK_WK_MASK)
946 cpu_time.cp_sys += bump;
947 else
948 cpu_time.cp_idle += bump;
949 } else {
951 * System thread was running.
953 #ifdef DEBUG_PCTRACK
954 if (frame)
955 do_pctrack(frame, PCTRACK_SYS);
956 #endif
957 cpu_time.cp_sys += bump;
961 #undef IS_INTR_RUNNING
965 #ifdef DEBUG_PCTRACK
967 * Sample the PC when in the kernel or in an interrupt. User code can
968 * retrieve the information and generate a histogram or other output.
971 static void
972 do_pctrack(struct intrframe *frame, int which)
974 struct kinfo_pctrack *pctrack;
976 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
977 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
978 (void *)CLKF_PC(frame);
979 ++pctrack->pc_index;
982 static int
983 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
985 struct kinfo_pcheader head;
986 int error;
987 int cpu;
988 int ntrack;
990 head.pc_ntrack = PCTRACK_SIZE;
991 head.pc_arysize = PCTRACK_ARYSIZE;
993 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
994 return (error);
996 for (cpu = 0; cpu < ncpus; ++cpu) {
997 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
998 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
999 sizeof(struct kinfo_pctrack));
1000 if (error)
1001 break;
1003 if (error)
1004 break;
1006 return (error);
1008 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
1009 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
1011 #endif
1014 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
1015 * the MP lock might not be held. We can safely manipulate parts of curproc
1016 * but that's about it.
1018 * Each cpu has its own scheduler clock.
1020 static void
1021 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
1023 struct lwp *lp;
1024 struct rusage *ru;
1025 struct vmspace *vm;
1026 long rss;
1028 if ((lp = lwkt_preempted_proc()) != NULL) {
1030 * Account for cpu time used and hit the scheduler. Note
1031 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
1032 * HERE.
1034 ++lp->lwp_cpticks;
1035 usched_schedulerclock(lp, info->periodic, info->time);
1036 } else {
1037 usched_schedulerclock(NULL, info->periodic, info->time);
1039 if ((lp = curthread->td_lwp) != NULL) {
1041 * Update resource usage integrals and maximums.
1043 if ((ru = &lp->lwp_proc->p_ru) &&
1044 (vm = lp->lwp_proc->p_vmspace) != NULL) {
1045 ru->ru_ixrss += pgtok(vm->vm_tsize);
1046 ru->ru_idrss += pgtok(vm->vm_dsize);
1047 ru->ru_isrss += pgtok(vm->vm_ssize);
1048 if (lwkt_trytoken(&vm->vm_map.token)) {
1049 rss = pgtok(vmspace_resident_count(vm));
1050 if (ru->ru_maxrss < rss)
1051 ru->ru_maxrss = rss;
1052 lwkt_reltoken(&vm->vm_map.token);
1056 /* Increment the global sched_ticks */
1057 if (mycpu->gd_cpuid == 0)
1058 ++sched_ticks;
1062 * Compute number of ticks for the specified amount of time. The
1063 * return value is intended to be used in a clock interrupt timed
1064 * operation and guaranteed to meet or exceed the requested time.
1065 * If the representation overflows, return INT_MAX. The minimum return
1066 * value is 1 ticks and the function will average the calculation up.
1067 * If any value greater then 0 microseconds is supplied, a value
1068 * of at least 2 will be returned to ensure that a near-term clock
1069 * interrupt does not cause the timeout to occur (degenerately) early.
1071 * Note that limit checks must take into account microseconds, which is
1072 * done simply by using the smaller signed long maximum instead of
1073 * the unsigned long maximum.
1075 * If ints have 32 bits, then the maximum value for any timeout in
1076 * 10ms ticks is 248 days.
1079 tvtohz_high(struct timeval *tv)
1081 int ticks;
1082 long sec, usec;
1084 sec = tv->tv_sec;
1085 usec = tv->tv_usec;
1086 if (usec < 0) {
1087 sec--;
1088 usec += 1000000;
1090 if (sec < 0) {
1091 #ifdef DIAGNOSTIC
1092 if (usec > 0) {
1093 sec++;
1094 usec -= 1000000;
1096 kprintf("tvtohz_high: negative time difference "
1097 "%ld sec %ld usec\n",
1098 sec, usec);
1099 #endif
1100 ticks = 1;
1101 } else if (sec <= INT_MAX / hz) {
1102 ticks = (int)(sec * hz +
1103 ((u_long)usec + (ustick - 1)) / ustick) + 1;
1104 } else {
1105 ticks = INT_MAX;
1107 return (ticks);
1111 tstohz_high(struct timespec *ts)
1113 int ticks;
1114 long sec, nsec;
1116 sec = ts->tv_sec;
1117 nsec = ts->tv_nsec;
1118 if (nsec < 0) {
1119 sec--;
1120 nsec += 1000000000;
1122 if (sec < 0) {
1123 #ifdef DIAGNOSTIC
1124 if (nsec > 0) {
1125 sec++;
1126 nsec -= 1000000000;
1128 kprintf("tstohz_high: negative time difference "
1129 "%ld sec %ld nsec\n",
1130 sec, nsec);
1131 #endif
1132 ticks = 1;
1133 } else if (sec <= INT_MAX / hz) {
1134 ticks = (int)(sec * hz +
1135 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
1136 } else {
1137 ticks = INT_MAX;
1139 return (ticks);
1144 * Compute number of ticks for the specified amount of time, erroring on
1145 * the side of it being too low to ensure that sleeping the returned number
1146 * of ticks will not result in a late return.
1148 * The supplied timeval may not be negative and should be normalized. A
1149 * return value of 0 is possible if the timeval converts to less then
1150 * 1 tick.
1152 * If ints have 32 bits, then the maximum value for any timeout in
1153 * 10ms ticks is 248 days.
1156 tvtohz_low(struct timeval *tv)
1158 int ticks;
1159 long sec;
1161 sec = tv->tv_sec;
1162 if (sec <= INT_MAX / hz)
1163 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1164 else
1165 ticks = INT_MAX;
1166 return (ticks);
1170 tstohz_low(struct timespec *ts)
1172 int ticks;
1173 long sec;
1175 sec = ts->tv_sec;
1176 if (sec <= INT_MAX / hz)
1177 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1178 else
1179 ticks = INT_MAX;
1180 return (ticks);
1184 * Start profiling on a process.
1186 * Caller must hold p->p_token();
1188 * Kernel profiling passes proc0 which never exits and hence
1189 * keeps the profile clock running constantly.
1191 void
1192 startprofclock(struct proc *p)
1194 if ((p->p_flags & P_PROFIL) == 0) {
1195 p->p_flags |= P_PROFIL;
1196 #if 0 /* XXX */
1197 if (++profprocs == 1 && stathz != 0) {
1198 crit_enter();
1199 psdiv = psratio;
1200 setstatclockrate(profhz);
1201 crit_exit();
1203 #endif
1208 * Stop profiling on a process.
1210 * caller must hold p->p_token
1212 void
1213 stopprofclock(struct proc *p)
1215 if (p->p_flags & P_PROFIL) {
1216 p->p_flags &= ~P_PROFIL;
1217 #if 0 /* XXX */
1218 if (--profprocs == 0 && stathz != 0) {
1219 crit_enter();
1220 psdiv = 1;
1221 setstatclockrate(stathz);
1222 crit_exit();
1224 #endif
1229 * Return information about system clocks.
1231 static int
1232 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1234 struct kinfo_clockinfo clkinfo;
1236 * Construct clockinfo structure.
1238 clkinfo.ci_hz = hz;
1239 clkinfo.ci_tick = ustick;
1240 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1241 clkinfo.ci_profhz = profhz;
1242 clkinfo.ci_stathz = stathz ? stathz : hz;
1243 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1246 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1247 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1250 * We have eight functions for looking at the clock, four for
1251 * microseconds and four for nanoseconds. For each there is fast
1252 * but less precise version "get{nano|micro}[up]time" which will
1253 * return a time which is up to 1/HZ previous to the call, whereas
1254 * the raw version "{nano|micro}[up]time" will return a timestamp
1255 * which is as precise as possible. The "up" variants return the
1256 * time relative to system boot, these are well suited for time
1257 * interval measurements.
1259 * Each cpu independently maintains the current time of day, so all
1260 * we need to do to protect ourselves from changes is to do a loop
1261 * check on the seconds field changing out from under us.
1263 * The system timer maintains a 32 bit count and due to various issues
1264 * it is possible for the calculated delta to occasionally exceed
1265 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1266 * multiplication can easily overflow, so we deal with the case. For
1267 * uniformity we deal with the case in the usec case too.
1269 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1271 void
1272 getmicrouptime(struct timeval *tvp)
1274 struct globaldata *gd = mycpu;
1275 sysclock_t delta;
1277 do {
1278 tvp->tv_sec = gd->gd_time_seconds;
1279 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1280 } while (tvp->tv_sec != gd->gd_time_seconds);
1282 if (delta >= sys_cputimer->freq) {
1283 tvp->tv_sec += delta / sys_cputimer->freq;
1284 delta %= sys_cputimer->freq;
1286 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1287 if (tvp->tv_usec >= 1000000) {
1288 tvp->tv_usec -= 1000000;
1289 ++tvp->tv_sec;
1293 void
1294 getnanouptime(struct timespec *tsp)
1296 struct globaldata *gd = mycpu;
1297 sysclock_t delta;
1299 do {
1300 tsp->tv_sec = gd->gd_time_seconds;
1301 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1302 } while (tsp->tv_sec != gd->gd_time_seconds);
1304 if (delta >= sys_cputimer->freq) {
1305 tsp->tv_sec += delta / sys_cputimer->freq;
1306 delta %= sys_cputimer->freq;
1308 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1311 void
1312 microuptime(struct timeval *tvp)
1314 struct globaldata *gd = mycpu;
1315 sysclock_t delta;
1317 do {
1318 tvp->tv_sec = gd->gd_time_seconds;
1319 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1320 } while (tvp->tv_sec != gd->gd_time_seconds);
1322 if (delta >= sys_cputimer->freq) {
1323 tvp->tv_sec += delta / sys_cputimer->freq;
1324 delta %= sys_cputimer->freq;
1326 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1329 void
1330 nanouptime(struct timespec *tsp)
1332 struct globaldata *gd = mycpu;
1333 sysclock_t delta;
1335 do {
1336 tsp->tv_sec = gd->gd_time_seconds;
1337 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1338 } while (tsp->tv_sec != gd->gd_time_seconds);
1340 if (delta >= sys_cputimer->freq) {
1341 tsp->tv_sec += delta / sys_cputimer->freq;
1342 delta %= sys_cputimer->freq;
1344 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1348 * realtime routines
1350 void
1351 getmicrotime(struct timeval *tvp)
1353 struct globaldata *gd = mycpu;
1354 struct timespec *bt;
1355 sysclock_t delta;
1357 do {
1358 tvp->tv_sec = gd->gd_time_seconds;
1359 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1360 } while (tvp->tv_sec != gd->gd_time_seconds);
1362 if (delta >= sys_cputimer->freq) {
1363 tvp->tv_sec += delta / sys_cputimer->freq;
1364 delta %= sys_cputimer->freq;
1366 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1368 bt = &basetime[basetime_index];
1369 cpu_lfence();
1370 tvp->tv_sec += bt->tv_sec;
1371 tvp->tv_usec += bt->tv_nsec / 1000;
1372 while (tvp->tv_usec >= 1000000) {
1373 tvp->tv_usec -= 1000000;
1374 ++tvp->tv_sec;
1378 void
1379 getnanotime(struct timespec *tsp)
1381 struct globaldata *gd = mycpu;
1382 struct timespec *bt;
1383 sysclock_t delta;
1385 do {
1386 tsp->tv_sec = gd->gd_time_seconds;
1387 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1388 } while (tsp->tv_sec != gd->gd_time_seconds);
1390 if (delta >= sys_cputimer->freq) {
1391 tsp->tv_sec += delta / sys_cputimer->freq;
1392 delta %= sys_cputimer->freq;
1394 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1396 bt = &basetime[basetime_index];
1397 cpu_lfence();
1398 tsp->tv_sec += bt->tv_sec;
1399 tsp->tv_nsec += bt->tv_nsec;
1400 while (tsp->tv_nsec >= 1000000000) {
1401 tsp->tv_nsec -= 1000000000;
1402 ++tsp->tv_sec;
1406 static void
1407 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1409 struct globaldata *gd = mycpu;
1410 sysclock_t delta;
1412 do {
1413 tsp->tv_sec = gd->gd_time_seconds;
1414 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1415 } while (tsp->tv_sec != gd->gd_time_seconds);
1417 if (delta >= sys_cputimer->freq) {
1418 tsp->tv_sec += delta / sys_cputimer->freq;
1419 delta %= sys_cputimer->freq;
1421 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1423 tsp->tv_sec += nbt->tv_sec;
1424 tsp->tv_nsec += nbt->tv_nsec;
1425 while (tsp->tv_nsec >= 1000000000) {
1426 tsp->tv_nsec -= 1000000000;
1427 ++tsp->tv_sec;
1432 void
1433 microtime(struct timeval *tvp)
1435 struct globaldata *gd = mycpu;
1436 struct timespec *bt;
1437 sysclock_t delta;
1439 do {
1440 tvp->tv_sec = gd->gd_time_seconds;
1441 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1442 } while (tvp->tv_sec != gd->gd_time_seconds);
1444 if (delta >= sys_cputimer->freq) {
1445 tvp->tv_sec += delta / sys_cputimer->freq;
1446 delta %= sys_cputimer->freq;
1448 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1450 bt = &basetime[basetime_index];
1451 cpu_lfence();
1452 tvp->tv_sec += bt->tv_sec;
1453 tvp->tv_usec += bt->tv_nsec / 1000;
1454 while (tvp->tv_usec >= 1000000) {
1455 tvp->tv_usec -= 1000000;
1456 ++tvp->tv_sec;
1460 void
1461 nanotime(struct timespec *tsp)
1463 struct globaldata *gd = mycpu;
1464 struct timespec *bt;
1465 sysclock_t delta;
1467 do {
1468 tsp->tv_sec = gd->gd_time_seconds;
1469 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1470 } while (tsp->tv_sec != gd->gd_time_seconds);
1472 if (delta >= sys_cputimer->freq) {
1473 tsp->tv_sec += delta / sys_cputimer->freq;
1474 delta %= sys_cputimer->freq;
1476 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1478 bt = &basetime[basetime_index];
1479 cpu_lfence();
1480 tsp->tv_sec += bt->tv_sec;
1481 tsp->tv_nsec += bt->tv_nsec;
1482 while (tsp->tv_nsec >= 1000000000) {
1483 tsp->tv_nsec -= 1000000000;
1484 ++tsp->tv_sec;
1489 * Get an approximate time_t. It does not have to be accurate. This
1490 * function is called only from KTR and can be called with the system in
1491 * any state so do not use a critical section or other complex operation
1492 * here.
1494 * NOTE: This is not exactly synchronized with real time. To do that we
1495 * would have to do what microtime does and check for a nanoseconds
1496 * overflow.
1498 time_t
1499 get_approximate_time_t(void)
1501 struct globaldata *gd = mycpu;
1502 struct timespec *bt;
1504 bt = &basetime[basetime_index];
1505 return(gd->gd_time_seconds + bt->tv_sec);
1509 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1511 pps_params_t *app;
1512 struct pps_fetch_args *fapi;
1513 #ifdef PPS_SYNC
1514 struct pps_kcbind_args *kapi;
1515 #endif
1517 switch (cmd) {
1518 case PPS_IOC_CREATE:
1519 return (0);
1520 case PPS_IOC_DESTROY:
1521 return (0);
1522 case PPS_IOC_SETPARAMS:
1523 app = (pps_params_t *)data;
1524 if (app->mode & ~pps->ppscap)
1525 return (EINVAL);
1526 pps->ppsparam = *app;
1527 return (0);
1528 case PPS_IOC_GETPARAMS:
1529 app = (pps_params_t *)data;
1530 *app = pps->ppsparam;
1531 app->api_version = PPS_API_VERS_1;
1532 return (0);
1533 case PPS_IOC_GETCAP:
1534 *(int*)data = pps->ppscap;
1535 return (0);
1536 case PPS_IOC_FETCH:
1537 fapi = (struct pps_fetch_args *)data;
1538 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1539 return (EINVAL);
1540 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1541 return (EOPNOTSUPP);
1542 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1543 fapi->pps_info_buf = pps->ppsinfo;
1544 return (0);
1545 case PPS_IOC_KCBIND:
1546 #ifdef PPS_SYNC
1547 kapi = (struct pps_kcbind_args *)data;
1548 /* XXX Only root should be able to do this */
1549 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1550 return (EINVAL);
1551 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1552 return (EINVAL);
1553 if (kapi->edge & ~pps->ppscap)
1554 return (EINVAL);
1555 pps->kcmode = kapi->edge;
1556 return (0);
1557 #else
1558 return (EOPNOTSUPP);
1559 #endif
1560 default:
1561 return (ENOTTY);
1565 void
1566 pps_init(struct pps_state *pps)
1568 pps->ppscap |= PPS_TSFMT_TSPEC;
1569 if (pps->ppscap & PPS_CAPTUREASSERT)
1570 pps->ppscap |= PPS_OFFSETASSERT;
1571 if (pps->ppscap & PPS_CAPTURECLEAR)
1572 pps->ppscap |= PPS_OFFSETCLEAR;
1575 void
1576 pps_event(struct pps_state *pps, sysclock_t count, int event)
1578 struct globaldata *gd;
1579 struct timespec *tsp;
1580 struct timespec *osp;
1581 struct timespec *bt;
1582 struct timespec ts;
1583 sysclock_t *pcount;
1584 #ifdef PPS_SYNC
1585 sysclock_t tcount;
1586 #endif
1587 sysclock_t delta;
1588 pps_seq_t *pseq;
1589 int foff;
1590 #ifdef PPS_SYNC
1591 int fhard;
1592 #endif
1593 int ni;
1595 gd = mycpu;
1597 /* Things would be easier with arrays... */
1598 if (event == PPS_CAPTUREASSERT) {
1599 tsp = &pps->ppsinfo.assert_timestamp;
1600 osp = &pps->ppsparam.assert_offset;
1601 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1602 #ifdef PPS_SYNC
1603 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1604 #endif
1605 pcount = &pps->ppscount[0];
1606 pseq = &pps->ppsinfo.assert_sequence;
1607 } else {
1608 tsp = &pps->ppsinfo.clear_timestamp;
1609 osp = &pps->ppsparam.clear_offset;
1610 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1611 #ifdef PPS_SYNC
1612 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1613 #endif
1614 pcount = &pps->ppscount[1];
1615 pseq = &pps->ppsinfo.clear_sequence;
1618 /* Nothing really happened */
1619 if (*pcount == count)
1620 return;
1622 *pcount = count;
1624 do {
1625 ts.tv_sec = gd->gd_time_seconds;
1626 delta = count - gd->gd_cpuclock_base;
1627 } while (ts.tv_sec != gd->gd_time_seconds);
1629 if (delta >= sys_cputimer->freq) {
1630 ts.tv_sec += delta / sys_cputimer->freq;
1631 delta %= sys_cputimer->freq;
1633 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1634 ni = basetime_index;
1635 cpu_lfence();
1636 bt = &basetime[ni];
1637 ts.tv_sec += bt->tv_sec;
1638 ts.tv_nsec += bt->tv_nsec;
1639 while (ts.tv_nsec >= 1000000000) {
1640 ts.tv_nsec -= 1000000000;
1641 ++ts.tv_sec;
1644 (*pseq)++;
1645 *tsp = ts;
1647 if (foff) {
1648 timespecadd(tsp, osp);
1649 if (tsp->tv_nsec < 0) {
1650 tsp->tv_nsec += 1000000000;
1651 tsp->tv_sec -= 1;
1654 #ifdef PPS_SYNC
1655 if (fhard) {
1656 /* magic, at its best... */
1657 tcount = count - pps->ppscount[2];
1658 pps->ppscount[2] = count;
1659 if (tcount >= sys_cputimer->freq) {
1660 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1661 sys_cputimer->freq64_nsec *
1662 (tcount % sys_cputimer->freq)) >> 32;
1663 } else {
1664 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1666 hardpps(tsp, delta);
1668 #endif
1672 * Return the tsc target value for a delay of (ns).
1674 * Returns -1 if the TSC is not supported.
1676 tsc_uclock_t
1677 tsc_get_target(int ns)
1679 #if defined(_RDTSC_SUPPORTED_)
1680 if (cpu_feature & CPUID_TSC) {
1681 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1683 #endif
1684 return(-1);
1688 * Compare the tsc against the passed target
1690 * Returns +1 if the target has been reached
1691 * Returns 0 if the target has not yet been reached
1692 * Returns -1 if the TSC is not supported.
1694 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1697 tsc_test_target(int64_t target)
1699 #if defined(_RDTSC_SUPPORTED_)
1700 if (cpu_feature & CPUID_TSC) {
1701 if ((int64_t)(target - rdtsc()) <= 0)
1702 return(1);
1703 return(0);
1705 #endif
1706 return(-1);
1710 * Delay the specified number of nanoseconds using the tsc. This function
1711 * returns immediately if the TSC is not supported. At least one cpu_pause()
1712 * will be issued.
1714 void
1715 tsc_delay(int ns)
1717 int64_t clk;
1719 clk = tsc_get_target(ns);
1720 cpu_pause();
1721 cpu_pause();
1722 while (tsc_test_target(clk) == 0) {
1723 cpu_pause();
1724 cpu_pause();
1725 cpu_pause();
1726 cpu_pause();