1:1 Userland threading stage 2.10/4:
[dragonfly.git] / sys / vm / vm_fault.c
blob25be785f7545c7818d26f72551f6f25f4c0e872e
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.34 2007/01/01 22:51:18 corecode Exp $
74 * Page fault handling module.
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
107 struct faultstate {
108 vm_page_t m;
109 vm_object_t object;
110 vm_pindex_t pindex;
111 vm_prot_t prot;
112 vm_page_t first_m;
113 vm_object_t first_object;
114 vm_prot_t first_prot;
115 vm_map_t map;
116 vm_map_entry_t entry;
117 int lookup_still_valid;
118 int didlimit;
119 int hardfault;
120 int fault_flags;
121 int map_generation;
122 boolean_t wired;
123 struct vnode *vp;
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
131 static __inline void
132 release_page(struct faultstate *fs)
134 vm_page_wakeup(fs->m);
135 vm_page_deactivate(fs->m);
136 fs->m = NULL;
139 static __inline void
140 unlock_map(struct faultstate *fs)
142 if (fs->lookup_still_valid) {
143 vm_map_lookup_done(fs->map, fs->entry, 0);
144 fs->lookup_still_valid = FALSE;
149 * Clean up after a successful call to vm_fault_object() so another call
150 * to vm_fault_object() can be made.
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
155 if (fs->object != fs->first_object) {
156 vm_page_free(fs->first_m);
157 vm_object_pip_wakeup(fs->object);
158 fs->first_m = NULL;
160 fs->object = fs->first_object;
161 if (relock && fs->lookup_still_valid == FALSE) {
162 vm_map_lock_read(fs->map);
163 fs->lookup_still_valid = TRUE;
167 static void
168 _unlock_things(struct faultstate *fs, int dealloc)
170 vm_object_pip_wakeup(fs->first_object);
171 _cleanup_successful_fault(fs, 0);
172 if (dealloc) {
173 vm_object_deallocate(fs->first_object);
175 unlock_map(fs);
176 if (fs->vp != NULL) {
177 vput(fs->vp);
178 fs->vp = NULL;
182 #define unlock_things(fs) _unlock_things(fs, 0)
183 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
184 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
187 * TRYPAGER
189 * Determine if the pager for the current object *might* contain the page.
191 * We only need to try the pager if this is not a default object (default
192 * objects are zero-fill and have no real pager), and if we are not taking
193 * a wiring fault or if the FS entry is wired.
195 #define TRYPAGER(fs) \
196 (fs->object->type != OBJT_DEFAULT && \
197 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
200 * vm_fault:
202 * Handle a page fault occuring at the given address, requiring the given
203 * permissions, in the map specified. If successful, the page is inserted
204 * into the associated physical map.
206 * NOTE: The given address should be truncated to the proper page address.
208 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
209 * a standard error specifying why the fault is fatal is returned.
211 * The map in question must be referenced, and remains so.
212 * The caller may hold no locks.
215 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
217 int result;
218 vm_pindex_t first_pindex;
219 struct faultstate fs;
221 mycpu->gd_cnt.v_vm_faults++;
223 fs.didlimit = 0;
224 fs.hardfault = 0;
225 fs.fault_flags = fault_flags;
227 RetryFault:
229 * Find the vm_map_entry representing the backing store and resolve
230 * the top level object and page index. This may have the side
231 * effect of executing a copy-on-write on the map entry and/or
232 * creating a shadow object, but will not COW any actual VM pages.
234 * On success fs.map is left read-locked and various other fields
235 * are initialized but not otherwise referenced or locked.
237 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
238 * if the map entry is a virtual page table and also writable,
239 * so we can set the 'A'accessed bit in the virtual page table entry.
241 fs.map = map;
242 result = vm_map_lookup(&fs.map, vaddr, fault_type,
243 &fs.entry, &fs.first_object,
244 &first_pindex, &fs.first_prot, &fs.wired);
247 * If the lookup failed or the map protections are incompatible,
248 * the fault generally fails. However, if the caller is trying
249 * to do a user wiring we have more work to do.
251 if (result != KERN_SUCCESS) {
252 if (result != KERN_PROTECTION_FAILURE)
253 return result;
254 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
255 return result;
258 * If we are user-wiring a r/w segment, and it is COW, then
259 * we need to do the COW operation. Note that we don't
260 * currently COW RO sections now, because it is NOT desirable
261 * to COW .text. We simply keep .text from ever being COW'ed
262 * and take the heat that one cannot debug wired .text sections.
264 result = vm_map_lookup(&fs.map, vaddr,
265 VM_PROT_READ|VM_PROT_WRITE|
266 VM_PROT_OVERRIDE_WRITE,
267 &fs.entry, &fs.first_object,
268 &first_pindex, &fs.first_prot,
269 &fs.wired);
270 if (result != KERN_SUCCESS)
271 return result;
274 * If we don't COW now, on a user wire, the user will never
275 * be able to write to the mapping. If we don't make this
276 * restriction, the bookkeeping would be nearly impossible.
278 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
279 fs.entry->max_protection &= ~VM_PROT_WRITE;
283 * fs.map is read-locked
285 * Misc checks. Save the map generation number to detect races.
287 fs.map_generation = fs.map->timestamp;
289 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
290 panic("vm_fault: fault on nofault entry, addr: %lx",
291 (u_long)vaddr);
295 * A system map entry may return a NULL object. No object means
296 * no pager means an unrecoverable kernel fault.
298 if (fs.first_object == NULL) {
299 panic("vm_fault: unrecoverable fault at %p in entry %p",
300 (void *)vaddr, fs.entry);
304 * Make a reference to this object to prevent its disposal while we
305 * are messing with it. Once we have the reference, the map is free
306 * to be diddled. Since objects reference their shadows (and copies),
307 * they will stay around as well.
309 * Bump the paging-in-progress count to prevent size changes (e.g.
310 * truncation operations) during I/O. This must be done after
311 * obtaining the vnode lock in order to avoid possible deadlocks.
313 vm_object_reference(fs.first_object);
314 fs.vp = vnode_pager_lock(fs.first_object);
315 vm_object_pip_add(fs.first_object, 1);
317 fs.lookup_still_valid = TRUE;
318 fs.first_m = NULL;
319 fs.object = fs.first_object; /* so unlock_and_deallocate works */
322 * If the entry is wired we cannot change the page protection.
324 if (fs.wired)
325 fault_type = fs.first_prot;
328 * The page we want is at (first_object, first_pindex), but if the
329 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
330 * page table to figure out the actual pindex.
332 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
333 * ONLY
335 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
336 result = vm_fault_vpagetable(&fs, &first_pindex,
337 fs.entry->aux.master_pde);
338 if (result == KERN_TRY_AGAIN)
339 goto RetryFault;
340 if (result != KERN_SUCCESS)
341 return (result);
345 * Now we have the actual (object, pindex), fault in the page. If
346 * vm_fault_object() fails it will unlock and deallocate the FS
347 * data. If it succeeds everything remains locked and fs->object
348 * will have an additinal PIP count if it is not equal to
349 * fs->first_object
351 result = vm_fault_object(&fs, first_pindex, fault_type);
353 if (result == KERN_TRY_AGAIN)
354 goto RetryFault;
355 if (result != KERN_SUCCESS)
356 return (result);
359 * On success vm_fault_object() does not unlock or deallocate, and fs.m
360 * will contain a busied page.
362 * Enter the page into the pmap and do pmap-related adjustments.
364 unlock_things(&fs);
365 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
367 if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
368 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
371 vm_page_flag_clear(fs.m, PG_ZERO);
372 vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
373 if (fs.fault_flags & VM_FAULT_HOLD)
374 vm_page_hold(fs.m);
377 * If the page is not wired down, then put it where the pageout daemon
378 * can find it.
380 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
381 if (fs.wired)
382 vm_page_wire(fs.m);
383 else
384 vm_page_unwire(fs.m, 1);
385 } else {
386 vm_page_activate(fs.m);
389 if (curthread->td_lwp) {
390 if (fs.hardfault) {
391 curthread->td_lwp->lwp_ru.ru_majflt++;
392 } else {
393 curthread->td_lwp->lwp_ru.ru_minflt++;
398 * Unlock everything, and return
400 vm_page_wakeup(fs.m);
401 vm_object_deallocate(fs.first_object);
403 return (KERN_SUCCESS);
407 * Translate the virtual page number (first_pindex) that is relative
408 * to the address space into a logical page number that is relative to the
409 * backing object. Use the virtual page table pointed to by (vpte).
411 * This implements an N-level page table. Any level can terminate the
412 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
413 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
415 static
417 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, vpte_t vpte)
419 struct sf_buf *sf;
420 int vshift = 32 - PAGE_SHIFT; /* page index bits remaining */
421 int result = KERN_SUCCESS;
423 for (;;) {
424 if ((vpte & VPTE_V) == 0) {
425 unlock_and_deallocate(fs);
426 return (KERN_FAILURE);
428 if ((vpte & VPTE_PS) || vshift == 0)
429 break;
430 KKASSERT(vshift >= VPTE_PAGE_BITS);
433 * Get the page table page
435 result = vm_fault_object(fs, vpte >> PAGE_SHIFT, VM_PROT_READ);
436 if (result != KERN_SUCCESS)
437 return (result);
440 * Process the returned fs.m and look up the page table
441 * entry in the page table page.
443 vshift -= VPTE_PAGE_BITS;
444 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
445 vpte = *((vpte_t *)sf_buf_kva(sf) +
446 ((*pindex >> vshift) & VPTE_PAGE_MASK));
447 sf_buf_free(sf);
448 vm_page_flag_set(fs->m, PG_REFERENCED);
449 vm_page_activate(fs->m);
450 vm_page_wakeup(fs->m);
451 cleanup_successful_fault(fs);
454 * Combine remaining address bits with the vpte.
456 *pindex = (vpte >> PAGE_SHIFT) +
457 (*pindex & ((1 << vshift) - 1));
458 return (KERN_SUCCESS);
463 * Do all operations required to fault-in (fs.first_object, pindex). Run
464 * through the shadow chain as necessary and do required COW or virtual
465 * copy operations. The caller has already fully resolved the vm_map_entry
466 * and, if appropriate, has created a copy-on-write layer. All we need to
467 * do is iterate the object chain.
469 * On failure (fs) is unlocked and deallocated and the caller may return or
470 * retry depending on the failure code. On success (fs) is NOT unlocked or
471 * deallocated, fs.m will contained a resolved, busied page, and fs.object
472 * will have an additional PIP count if it is not equal to fs.first_object.
474 static
476 vm_fault_object(struct faultstate *fs,
477 vm_pindex_t first_pindex, vm_prot_t fault_type)
479 vm_object_t next_object;
480 vm_page_t marray[VM_FAULT_READ];
481 vm_pindex_t pindex;
482 int faultcount;
484 fs->prot = fs->first_prot;
485 fs->object = fs->first_object;
486 pindex = first_pindex;
488 for (;;) {
490 * If the object is dead, we stop here
492 if (fs->object->flags & OBJ_DEAD) {
493 unlock_and_deallocate(fs);
494 return (KERN_PROTECTION_FAILURE);
498 * See if page is resident. spl protection is required
499 * to avoid an interrupt unbusy/free race against our
500 * lookup. We must hold the protection through a page
501 * allocation or busy.
503 crit_enter();
504 fs->m = vm_page_lookup(fs->object, pindex);
505 if (fs->m != NULL) {
506 int queue;
508 * Wait/Retry if the page is busy. We have to do this
509 * if the page is busy via either PG_BUSY or
510 * vm_page_t->busy because the vm_pager may be using
511 * vm_page_t->busy for pageouts ( and even pageins if
512 * it is the vnode pager ), and we could end up trying
513 * to pagein and pageout the same page simultaneously.
515 * We can theoretically allow the busy case on a read
516 * fault if the page is marked valid, but since such
517 * pages are typically already pmap'd, putting that
518 * special case in might be more effort then it is
519 * worth. We cannot under any circumstances mess
520 * around with a vm_page_t->busy page except, perhaps,
521 * to pmap it.
523 if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
524 unlock_things(fs);
525 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
526 mycpu->gd_cnt.v_intrans++;
527 vm_object_deallocate(fs->first_object);
528 crit_exit();
529 return (KERN_TRY_AGAIN);
533 * If reactivating a page from PQ_CACHE we may have
534 * to rate-limit.
536 queue = fs->m->queue;
537 vm_page_unqueue_nowakeup(fs->m);
539 if ((queue - fs->m->pc) == PQ_CACHE &&
540 vm_page_count_severe()) {
541 vm_page_activate(fs->m);
542 unlock_and_deallocate(fs);
543 vm_waitpfault();
544 crit_exit();
545 return (KERN_TRY_AGAIN);
549 * Mark page busy for other processes, and the
550 * pagedaemon. If it still isn't completely valid
551 * (readable), jump to readrest, else we found the
552 * page and can return.
554 * We can release the spl once we have marked the
555 * page busy.
557 vm_page_busy(fs->m);
558 crit_exit();
560 if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
561 fs->m->object != &kernel_object) {
562 goto readrest;
564 break; /* break to PAGE HAS BEEN FOUND */
568 * Page is not resident, If this is the search termination
569 * or the pager might contain the page, allocate a new page.
571 * NOTE: We are still in a critical section.
573 if (TRYPAGER(fs) || fs->object == fs->first_object) {
575 * If the page is beyond the object size we fail
577 if (pindex >= fs->object->size) {
578 crit_exit();
579 unlock_and_deallocate(fs);
580 return (KERN_PROTECTION_FAILURE);
584 * Ratelimit.
586 if (fs->didlimit == 0 && curproc != NULL) {
587 int limticks;
589 limticks = vm_fault_ratelimit(curproc->p_vmspace);
590 if (limticks) {
591 crit_exit();
592 unlock_and_deallocate(fs);
593 tsleep(curproc, 0, "vmrate", limticks);
594 fs->didlimit = 1;
595 return (KERN_TRY_AGAIN);
600 * Allocate a new page for this object/offset pair.
602 fs->m = NULL;
603 if (!vm_page_count_severe()) {
604 fs->m = vm_page_alloc(fs->object, pindex,
605 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
607 if (fs->m == NULL) {
608 crit_exit();
609 unlock_and_deallocate(fs);
610 vm_waitpfault();
611 return (KERN_TRY_AGAIN);
614 crit_exit();
616 readrest:
618 * We have found a valid page or we have allocated a new page.
619 * The page thus may not be valid or may not be entirely
620 * valid.
622 * Attempt to fault-in the page if there is a chance that the
623 * pager has it, and potentially fault in additional pages
624 * at the same time.
626 * We are NOT in splvm here and if TRYPAGER is true then
627 * fs.m will be non-NULL and will be PG_BUSY for us.
630 if (TRYPAGER(fs)) {
631 int rv;
632 int reqpage;
633 int ahead, behind;
634 u_char behavior = vm_map_entry_behavior(fs->entry);
636 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
637 ahead = 0;
638 behind = 0;
639 } else {
640 behind = pindex;
641 if (behind > VM_FAULT_READ_BEHIND)
642 behind = VM_FAULT_READ_BEHIND;
644 ahead = fs->object->size - pindex;
645 if (ahead < 1)
646 ahead = 1;
647 if (ahead > VM_FAULT_READ_AHEAD)
648 ahead = VM_FAULT_READ_AHEAD;
651 if ((fs->first_object->type != OBJT_DEVICE) &&
652 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
653 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
654 pindex >= fs->entry->lastr &&
655 pindex < fs->entry->lastr + VM_FAULT_READ))
657 vm_pindex_t firstpindex, tmppindex;
659 if (first_pindex < 2 * VM_FAULT_READ)
660 firstpindex = 0;
661 else
662 firstpindex = first_pindex - 2 * VM_FAULT_READ;
665 * note: partially valid pages cannot be
666 * included in the lookahead - NFS piecemeal
667 * writes will barf on it badly.
669 * spl protection is required to avoid races
670 * between the lookup and an interrupt
671 * unbusy/free sequence occuring prior to
672 * our busy check.
674 crit_enter();
675 for (tmppindex = first_pindex - 1;
676 tmppindex >= firstpindex;
677 --tmppindex
679 vm_page_t mt;
681 mt = vm_page_lookup(fs->first_object, tmppindex);
682 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
683 break;
684 if (mt->busy ||
685 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
686 mt->hold_count ||
687 mt->wire_count)
688 continue;
689 if (mt->dirty == 0)
690 vm_page_test_dirty(mt);
691 if (mt->dirty) {
692 vm_page_protect(mt, VM_PROT_NONE);
693 vm_page_deactivate(mt);
694 } else {
695 vm_page_cache(mt);
698 crit_exit();
700 ahead += behind;
701 behind = 0;
705 * now we find out if any other pages should be paged
706 * in at this time this routine checks to see if the
707 * pages surrounding this fault reside in the same
708 * object as the page for this fault. If they do,
709 * then they are faulted in also into the object. The
710 * array "marray" returned contains an array of
711 * vm_page_t structs where one of them is the
712 * vm_page_t passed to the routine. The reqpage
713 * return value is the index into the marray for the
714 * vm_page_t passed to the routine.
716 * fs.m plus the additional pages are PG_BUSY'd.
718 faultcount = vm_fault_additional_pages(
719 fs->m, behind, ahead, marray, &reqpage);
722 * update lastr imperfectly (we do not know how much
723 * getpages will actually read), but good enough.
725 fs->entry->lastr = pindex + faultcount - behind;
728 * Call the pager to retrieve the data, if any, after
729 * releasing the lock on the map. We hold a ref on
730 * fs.object and the pages are PG_BUSY'd.
732 unlock_map(fs);
734 if (faultcount) {
735 rv = vm_pager_get_pages(fs->object, marray,
736 faultcount, reqpage);
737 } else {
738 rv = VM_PAGER_FAIL;
741 if (rv == VM_PAGER_OK) {
743 * Found the page. Leave it busy while we play
744 * with it.
748 * Relookup in case pager changed page. Pager
749 * is responsible for disposition of old page
750 * if moved.
752 * XXX other code segments do relookups too.
753 * It's a bad abstraction that needs to be
754 * fixed/removed.
756 fs->m = vm_page_lookup(fs->object, pindex);
757 if (fs->m == NULL) {
758 unlock_and_deallocate(fs);
759 return (KERN_TRY_AGAIN);
762 ++fs->hardfault;
763 break; /* break to PAGE HAS BEEN FOUND */
767 * Remove the bogus page (which does not exist at this
768 * object/offset); before doing so, we must get back
769 * our object lock to preserve our invariant.
771 * Also wake up any other process that may want to bring
772 * in this page.
774 * If this is the top-level object, we must leave the
775 * busy page to prevent another process from rushing
776 * past us, and inserting the page in that object at
777 * the same time that we are.
779 if (rv == VM_PAGER_ERROR) {
780 if (curproc)
781 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
782 else
783 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
786 * Data outside the range of the pager or an I/O error
789 * XXX - the check for kernel_map is a kludge to work
790 * around having the machine panic on a kernel space
791 * fault w/ I/O error.
793 if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
794 (rv == VM_PAGER_BAD)) {
795 vm_page_free(fs->m);
796 fs->m = NULL;
797 unlock_and_deallocate(fs);
798 if (rv == VM_PAGER_ERROR)
799 return (KERN_FAILURE);
800 else
801 return (KERN_PROTECTION_FAILURE);
802 /* NOT REACHED */
804 if (fs->object != fs->first_object) {
805 vm_page_free(fs->m);
806 fs->m = NULL;
808 * XXX - we cannot just fall out at this
809 * point, m has been freed and is invalid!
815 * We get here if the object has a default pager (or unwiring)
816 * or the pager doesn't have the page.
818 if (fs->object == fs->first_object)
819 fs->first_m = fs->m;
822 * Move on to the next object. Lock the next object before
823 * unlocking the current one.
825 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
826 next_object = fs->object->backing_object;
827 if (next_object == NULL) {
829 * If there's no object left, fill the page in the top
830 * object with zeros.
832 if (fs->object != fs->first_object) {
833 vm_object_pip_wakeup(fs->object);
835 fs->object = fs->first_object;
836 pindex = first_pindex;
837 fs->m = fs->first_m;
839 fs->first_m = NULL;
842 * Zero the page if necessary and mark it valid.
844 if ((fs->m->flags & PG_ZERO) == 0) {
845 vm_page_zero_fill(fs->m);
846 } else {
847 mycpu->gd_cnt.v_ozfod++;
849 mycpu->gd_cnt.v_zfod++;
850 fs->m->valid = VM_PAGE_BITS_ALL;
851 break; /* break to PAGE HAS BEEN FOUND */
852 } else {
853 if (fs->object != fs->first_object) {
854 vm_object_pip_wakeup(fs->object);
856 KASSERT(fs->object != next_object, ("object loop %p", next_object));
857 fs->object = next_object;
858 vm_object_pip_add(fs->object, 1);
862 KASSERT((fs->m->flags & PG_BUSY) != 0,
863 ("vm_fault: not busy after main loop"));
866 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
867 * is held.]
871 * If the page is being written, but isn't already owned by the
872 * top-level object, we have to copy it into a new page owned by the
873 * top-level object.
875 if (fs->object != fs->first_object) {
877 * We only really need to copy if we want to write it.
879 if (fault_type & VM_PROT_WRITE) {
881 * This allows pages to be virtually copied from a
882 * backing_object into the first_object, where the
883 * backing object has no other refs to it, and cannot
884 * gain any more refs. Instead of a bcopy, we just
885 * move the page from the backing object to the
886 * first object. Note that we must mark the page
887 * dirty in the first object so that it will go out
888 * to swap when needed.
890 if (fs->map_generation == fs->map->timestamp &&
892 * Only one shadow object
894 (fs->object->shadow_count == 1) &&
896 * No COW refs, except us
898 (fs->object->ref_count == 1) &&
900 * No one else can look this object up
902 (fs->object->handle == NULL) &&
904 * No other ways to look the object up
906 ((fs->object->type == OBJT_DEFAULT) ||
907 (fs->object->type == OBJT_SWAP)) &&
909 * We don't chase down the shadow chain
911 (fs->object == fs->first_object->backing_object) &&
914 * grab the lock if we need to
916 (fs->lookup_still_valid ||
917 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
920 fs->lookup_still_valid = 1;
922 * get rid of the unnecessary page
924 vm_page_protect(fs->first_m, VM_PROT_NONE);
925 vm_page_free(fs->first_m);
926 fs->first_m = NULL;
929 * grab the page and put it into the
930 * process'es object. The page is
931 * automatically made dirty.
933 vm_page_rename(fs->m, fs->first_object, first_pindex);
934 fs->first_m = fs->m;
935 vm_page_busy(fs->first_m);
936 fs->m = NULL;
937 mycpu->gd_cnt.v_cow_optim++;
938 } else {
940 * Oh, well, lets copy it.
942 vm_page_copy(fs->m, fs->first_m);
945 if (fs->m) {
947 * We no longer need the old page or object.
949 release_page(fs);
953 * fs->object != fs->first_object due to above
954 * conditional
956 vm_object_pip_wakeup(fs->object);
959 * Only use the new page below...
962 mycpu->gd_cnt.v_cow_faults++;
963 fs->m = fs->first_m;
964 fs->object = fs->first_object;
965 pindex = first_pindex;
966 } else {
968 * If it wasn't a write fault avoid having to copy
969 * the page by mapping it read-only.
971 fs->prot &= ~VM_PROT_WRITE;
976 * We may have had to unlock a map to do I/O. If we did then
977 * lookup_still_valid will be FALSE. If the map generation count
978 * also changed then all sorts of things could have happened while
979 * we were doing the I/O and we need to retry.
982 if (!fs->lookup_still_valid &&
983 (fs->map->timestamp != fs->map_generation)) {
984 release_page(fs);
985 unlock_and_deallocate(fs);
986 return (KERN_TRY_AGAIN);
990 * Put this page into the physical map. We had to do the unlock above
991 * because pmap_enter may cause other faults. We don't put the page
992 * back on the active queue until later so that the page-out daemon
993 * won't find us (yet).
995 if (fs->prot & VM_PROT_WRITE) {
996 vm_page_flag_set(fs->m, PG_WRITEABLE);
997 vm_object_set_writeable_dirty(fs->m->object);
1000 * If the fault is a write, we know that this page is being
1001 * written NOW so dirty it explicitly to save on
1002 * pmap_is_modified() calls later.
1004 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1005 * if the page is already dirty to prevent data written with
1006 * the expectation of being synced from not being synced.
1007 * Likewise if this entry does not request NOSYNC then make
1008 * sure the page isn't marked NOSYNC. Applications sharing
1009 * data should use the same flags to avoid ping ponging.
1011 * Also tell the backing pager, if any, that it should remove
1012 * any swap backing since the page is now dirty.
1014 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1015 if (fs->m->dirty == 0)
1016 vm_page_flag_set(fs->m, PG_NOSYNC);
1017 } else {
1018 vm_page_flag_clear(fs->m, PG_NOSYNC);
1020 if (fs->fault_flags & VM_FAULT_DIRTY) {
1021 crit_enter();
1022 vm_page_dirty(fs->m);
1023 vm_pager_page_unswapped(fs->m);
1024 crit_exit();
1029 * Page had better still be busy. We are still locked up and
1030 * fs->object will have another PIP reference if it is not equal
1031 * to fs->first_object.
1033 KASSERT(fs->m->flags & PG_BUSY,
1034 ("vm_fault: page %p not busy!", fs->m));
1037 * Sanity check: page must be completely valid or it is not fit to
1038 * map into user space. vm_pager_get_pages() ensures this.
1040 if (fs->m->valid != VM_PAGE_BITS_ALL) {
1041 vm_page_zero_invalid(fs->m, TRUE);
1042 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1045 return (KERN_SUCCESS);
1049 * quick version of vm_fault
1052 vm_fault_quick(caddr_t v, int prot)
1054 int r;
1056 if (prot & VM_PROT_WRITE)
1057 r = subyte(v, fubyte(v));
1058 else
1059 r = fubyte(v);
1060 return(r);
1064 * Wire down a range of virtual addresses in a map. The entry in question
1065 * should be marked in-transition and the map must be locked. We must
1066 * release the map temporarily while faulting-in the page to avoid a
1067 * deadlock. Note that the entry may be clipped while we are blocked but
1068 * will never be freed.
1071 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1073 boolean_t fictitious;
1074 vm_offset_t start;
1075 vm_offset_t end;
1076 vm_offset_t va;
1077 vm_paddr_t pa;
1078 pmap_t pmap;
1079 int rv;
1081 pmap = vm_map_pmap(map);
1082 start = entry->start;
1083 end = entry->end;
1084 fictitious = entry->object.vm_object &&
1085 (entry->object.vm_object->type == OBJT_DEVICE);
1087 vm_map_unlock(map);
1088 map->timestamp++;
1091 * We simulate a fault to get the page and enter it in the physical
1092 * map.
1094 for (va = start; va < end; va += PAGE_SIZE) {
1095 if (user_wire) {
1096 rv = vm_fault(map, va, VM_PROT_READ,
1097 VM_FAULT_USER_WIRE);
1098 } else {
1099 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1100 VM_FAULT_CHANGE_WIRING);
1102 if (rv) {
1103 while (va > start) {
1104 va -= PAGE_SIZE;
1105 if ((pa = pmap_extract(pmap, va)) == 0)
1106 continue;
1107 pmap_change_wiring(pmap, va, FALSE);
1108 if (!fictitious)
1109 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1111 vm_map_lock(map);
1112 return (rv);
1115 vm_map_lock(map);
1116 return (KERN_SUCCESS);
1120 * Unwire a range of virtual addresses in a map. The map should be
1121 * locked.
1123 void
1124 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1126 boolean_t fictitious;
1127 vm_offset_t start;
1128 vm_offset_t end;
1129 vm_offset_t va;
1130 vm_paddr_t pa;
1131 pmap_t pmap;
1133 pmap = vm_map_pmap(map);
1134 start = entry->start;
1135 end = entry->end;
1136 fictitious = entry->object.vm_object &&
1137 (entry->object.vm_object->type == OBJT_DEVICE);
1140 * Since the pages are wired down, we must be able to get their
1141 * mappings from the physical map system.
1143 for (va = start; va < end; va += PAGE_SIZE) {
1144 pa = pmap_extract(pmap, va);
1145 if (pa != 0) {
1146 pmap_change_wiring(pmap, va, FALSE);
1147 if (!fictitious)
1148 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1154 * Reduce the rate at which memory is allocated to a process based
1155 * on the perceived load on the VM system. As the load increases
1156 * the allocation burst rate goes down and the delay increases.
1158 * Rate limiting does not apply when faulting active or inactive
1159 * pages. When faulting 'cache' pages, rate limiting only applies
1160 * if the system currently has a severe page deficit.
1162 * XXX vm_pagesupply should be increased when a page is freed.
1164 * We sleep up to 1/10 of a second.
1166 static int
1167 vm_fault_ratelimit(struct vmspace *vmspace)
1169 if (vm_load_enable == 0)
1170 return(0);
1171 if (vmspace->vm_pagesupply > 0) {
1172 --vmspace->vm_pagesupply;
1173 return(0);
1175 #ifdef INVARIANTS
1176 if (vm_load_debug) {
1177 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1178 vm_load,
1179 (1000 - vm_load ) / 10, vm_load * hz / 10000,
1180 curproc->p_pid, curproc->p_comm);
1182 #endif
1183 vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1184 return(vm_load * hz / 10000);
1188 * Routine:
1189 * vm_fault_copy_entry
1190 * Function:
1191 * Copy all of the pages from a wired-down map entry to another.
1193 * In/out conditions:
1194 * The source and destination maps must be locked for write.
1195 * The source map entry must be wired down (or be a sharing map
1196 * entry corresponding to a main map entry that is wired down).
1199 void
1200 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1201 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1203 vm_object_t dst_object;
1204 vm_object_t src_object;
1205 vm_ooffset_t dst_offset;
1206 vm_ooffset_t src_offset;
1207 vm_prot_t prot;
1208 vm_offset_t vaddr;
1209 vm_page_t dst_m;
1210 vm_page_t src_m;
1212 #ifdef lint
1213 src_map++;
1214 #endif /* lint */
1216 src_object = src_entry->object.vm_object;
1217 src_offset = src_entry->offset;
1220 * Create the top-level object for the destination entry. (Doesn't
1221 * actually shadow anything - we copy the pages directly.)
1223 vm_map_entry_allocate_object(dst_entry);
1224 dst_object = dst_entry->object.vm_object;
1226 prot = dst_entry->max_protection;
1229 * Loop through all of the pages in the entry's range, copying each
1230 * one from the source object (it should be there) to the destination
1231 * object.
1233 for (vaddr = dst_entry->start, dst_offset = 0;
1234 vaddr < dst_entry->end;
1235 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1238 * Allocate a page in the destination object
1240 do {
1241 dst_m = vm_page_alloc(dst_object,
1242 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1243 if (dst_m == NULL) {
1244 vm_wait();
1246 } while (dst_m == NULL);
1249 * Find the page in the source object, and copy it in.
1250 * (Because the source is wired down, the page will be in
1251 * memory.)
1253 src_m = vm_page_lookup(src_object,
1254 OFF_TO_IDX(dst_offset + src_offset));
1255 if (src_m == NULL)
1256 panic("vm_fault_copy_wired: page missing");
1258 vm_page_copy(src_m, dst_m);
1261 * Enter it in the pmap...
1264 vm_page_flag_clear(dst_m, PG_ZERO);
1265 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1266 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1269 * Mark it no longer busy, and put it on the active list.
1271 vm_page_activate(dst_m);
1272 vm_page_wakeup(dst_m);
1278 * This routine checks around the requested page for other pages that
1279 * might be able to be faulted in. This routine brackets the viable
1280 * pages for the pages to be paged in.
1282 * Inputs:
1283 * m, rbehind, rahead
1285 * Outputs:
1286 * marray (array of vm_page_t), reqpage (index of requested page)
1288 * Return value:
1289 * number of pages in marray
1291 static int
1292 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1293 vm_page_t *marray, int *reqpage)
1295 int i,j;
1296 vm_object_t object;
1297 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1298 vm_page_t rtm;
1299 int cbehind, cahead;
1301 object = m->object;
1302 pindex = m->pindex;
1305 * we don't fault-ahead for device pager
1307 if (object->type == OBJT_DEVICE) {
1308 *reqpage = 0;
1309 marray[0] = m;
1310 return 1;
1314 * if the requested page is not available, then give up now
1317 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1318 return 0;
1321 if ((cbehind == 0) && (cahead == 0)) {
1322 *reqpage = 0;
1323 marray[0] = m;
1324 return 1;
1327 if (rahead > cahead) {
1328 rahead = cahead;
1331 if (rbehind > cbehind) {
1332 rbehind = cbehind;
1336 * try to do any readahead that we might have free pages for.
1338 if ((rahead + rbehind) >
1339 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1340 pagedaemon_wakeup();
1341 marray[0] = m;
1342 *reqpage = 0;
1343 return 1;
1347 * scan backward for the read behind pages -- in memory
1349 * Assume that if the page is not found an interrupt will not
1350 * create it. Theoretically interrupts can only remove (busy)
1351 * pages, not create new associations.
1353 if (pindex > 0) {
1354 if (rbehind > pindex) {
1355 rbehind = pindex;
1356 startpindex = 0;
1357 } else {
1358 startpindex = pindex - rbehind;
1361 crit_enter();
1362 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1363 if (vm_page_lookup( object, tpindex)) {
1364 startpindex = tpindex + 1;
1365 break;
1367 if (tpindex == 0)
1368 break;
1371 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1373 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1374 if (rtm == NULL) {
1375 crit_exit();
1376 for (j = 0; j < i; j++) {
1377 vm_page_free(marray[j]);
1379 marray[0] = m;
1380 *reqpage = 0;
1381 return 1;
1384 marray[i] = rtm;
1386 crit_exit();
1387 } else {
1388 startpindex = 0;
1389 i = 0;
1392 marray[i] = m;
1393 /* page offset of the required page */
1394 *reqpage = i;
1396 tpindex = pindex + 1;
1397 i++;
1400 * scan forward for the read ahead pages
1402 endpindex = tpindex + rahead;
1403 if (endpindex > object->size)
1404 endpindex = object->size;
1406 crit_enter();
1407 for( ; tpindex < endpindex; i++, tpindex++) {
1409 if (vm_page_lookup(object, tpindex)) {
1410 break;
1413 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1414 if (rtm == NULL) {
1415 break;
1418 marray[i] = rtm;
1420 crit_exit();
1422 /* return number of bytes of pages */
1423 return i;