More -Wwrite-strings cleanup and make sure you can actually play it.
[dragonfly.git] / sys / kern / vfs_bio.c
blob0e330ed1430103e4da2f7f878869c5f6f54f94a0
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.36 2005/05/08 00:12:22 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
61 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
63 struct bio_ops bioops; /* I/O operation notification */
65 struct buf *buf; /* buffer header pool */
66 struct swqueue bswlist;
68 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
69 vm_offset_t to);
70 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
71 vm_offset_t to);
72 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
73 int pageno, vm_page_t m);
74 static void vfs_clean_pages(struct buf * bp);
75 static void vfs_setdirty(struct buf *bp);
76 static void vfs_vmio_release(struct buf *bp);
77 #if 0
78 static void vfs_backgroundwritedone(struct buf *bp);
79 #endif
80 static int flushbufqueues(void);
82 static int bd_request;
84 static void buf_daemon (void);
86 * bogus page -- for I/O to/from partially complete buffers
87 * this is a temporary solution to the problem, but it is not
88 * really that bad. it would be better to split the buffer
89 * for input in the case of buffers partially already in memory,
90 * but the code is intricate enough already.
92 vm_page_t bogus_page;
93 int vmiodirenable = TRUE;
94 int runningbufspace;
95 struct lwkt_token buftimetoken; /* Interlock on setting prio and timo */
97 static vm_offset_t bogus_offset;
99 static int bufspace, maxbufspace,
100 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
101 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
102 static int needsbuffer;
103 static int lorunningspace, hirunningspace, runningbufreq;
104 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
105 static int numfreebuffers, lofreebuffers, hifreebuffers;
106 static int getnewbufcalls;
107 static int getnewbufrestarts;
109 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
110 &numdirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
112 &lodirtybuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
114 &hidirtybuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
116 &numfreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
118 &lofreebuffers, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
120 &hifreebuffers, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
122 &runningbufspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
124 &lorunningspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
126 &hirunningspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
128 &maxbufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
130 &hibufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
132 &lobufspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
134 &bufspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
136 &maxbufmallocspace, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
138 &bufmallocspace, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
140 &getnewbufcalls, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
142 &getnewbufrestarts, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
144 &vmiodirenable, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
146 &bufdefragcnt, 0, "");
147 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
148 &buffreekvacnt, 0, "");
149 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
150 &bufreusecnt, 0, "");
152 #if 0
154 * Disable background writes for now. There appear to be races in the
155 * flags tests and locking operations as well as races in the completion
156 * code modifying the original bp (origbp) without holding a lock, assuming
157 * splbio protection when there might not be splbio protection.
159 * XXX disable also because the RB tree can't handle multiple blocks with
160 * the same lblkno.
162 static int dobkgrdwrite = 0;
163 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
164 "Do background writes (honoring the BV_BKGRDWRITE flag)?");
165 #endif
167 static int bufhashmask;
168 static int bufhashshift;
169 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
170 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
171 char *buf_wmesg = BUF_WMESG;
173 extern int vm_swap_size;
175 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
176 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
177 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
178 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
181 * Buffer hash table code. Note that the logical block scans linearly, which
182 * gives us some L1 cache locality.
185 static __inline
186 struct bufhashhdr *
187 bufhash(struct vnode *vnp, daddr_t bn)
189 u_int64_t hashkey64;
190 int hashkey;
193 * A variation on the Fibonacci hash that Knuth credits to
194 * R. W. Floyd, see Knuth's _Art of Computer Programming,
195 * Volume 3 / Sorting and Searching_
197 * We reduce the argument to 32 bits before doing the hash to
198 * avoid the need for a slow 64x64 multiply on 32 bit platforms.
200 * sizeof(struct vnode) is 168 on i386, so toss some of the lower
201 * bits of the vnode address to reduce the key range, which
202 * improves the distribution of keys across buckets.
204 * The file system cylinder group blocks are very heavily
205 * used. They are located at invervals of fbg, which is
206 * on the order of 89 to 94 * 2^10, depending on other
207 * filesystem parameters, for a 16k block size. Smaller block
208 * sizes will reduce fpg approximately proportionally. This
209 * will cause the cylinder group index to be hashed using the
210 * lower bits of the hash multiplier, which will not distribute
211 * the keys as uniformly in a classic Fibonacci hash where a
212 * relatively small number of the upper bits of the result
213 * are used. Using 2^16 as a close-enough approximation to
214 * fpg, split the hash multiplier in half, with the upper 16
215 * bits being the inverse of the golden ratio, and the lower
216 * 16 bits being a fraction between 1/3 and 3/7 (closer to
217 * 3/7 in this case), that gives good experimental results.
219 hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn;
220 hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >>
221 bufhashshift) & bufhashmask;
222 return(&bufhashtbl[hashkey]);
226 * numdirtywakeup:
228 * If someone is blocked due to there being too many dirty buffers,
229 * and numdirtybuffers is now reasonable, wake them up.
232 static __inline void
233 numdirtywakeup(int level)
235 if (numdirtybuffers <= level) {
236 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
237 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
238 wakeup(&needsbuffer);
244 * bufspacewakeup:
246 * Called when buffer space is potentially available for recovery.
247 * getnewbuf() will block on this flag when it is unable to free
248 * sufficient buffer space. Buffer space becomes recoverable when
249 * bp's get placed back in the queues.
252 static __inline void
253 bufspacewakeup(void)
256 * If someone is waiting for BUF space, wake them up. Even
257 * though we haven't freed the kva space yet, the waiting
258 * process will be able to now.
260 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
261 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
262 wakeup(&needsbuffer);
267 * runningbufwakeup() - in-progress I/O accounting.
270 static __inline void
271 runningbufwakeup(struct buf *bp)
273 if (bp->b_runningbufspace) {
274 runningbufspace -= bp->b_runningbufspace;
275 bp->b_runningbufspace = 0;
276 if (runningbufreq && runningbufspace <= lorunningspace) {
277 runningbufreq = 0;
278 wakeup(&runningbufreq);
284 * bufcountwakeup:
286 * Called when a buffer has been added to one of the free queues to
287 * account for the buffer and to wakeup anyone waiting for free buffers.
288 * This typically occurs when large amounts of metadata are being handled
289 * by the buffer cache ( else buffer space runs out first, usually ).
292 static __inline void
293 bufcountwakeup(void)
295 ++numfreebuffers;
296 if (needsbuffer) {
297 needsbuffer &= ~VFS_BIO_NEED_ANY;
298 if (numfreebuffers >= hifreebuffers)
299 needsbuffer &= ~VFS_BIO_NEED_FREE;
300 wakeup(&needsbuffer);
305 * waitrunningbufspace()
307 * runningbufspace is a measure of the amount of I/O currently
308 * running. This routine is used in async-write situations to
309 * prevent creating huge backups of pending writes to a device.
310 * Only asynchronous writes are governed by this function.
312 * Reads will adjust runningbufspace, but will not block based on it.
313 * The read load has a side effect of reducing the allowed write load.
315 * This does NOT turn an async write into a sync write. It waits
316 * for earlier writes to complete and generally returns before the
317 * caller's write has reached the device.
319 static __inline void
320 waitrunningbufspace(void)
322 while (runningbufspace > hirunningspace) {
323 int s;
325 s = splbio(); /* fix race against interrupt/biodone() */
326 ++runningbufreq;
327 tsleep(&runningbufreq, 0, "wdrain", 0);
328 splx(s);
333 * vfs_buf_test_cache:
335 * Called when a buffer is extended. This function clears the B_CACHE
336 * bit if the newly extended portion of the buffer does not contain
337 * valid data.
339 static __inline__
340 void
341 vfs_buf_test_cache(struct buf *bp,
342 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
343 vm_page_t m)
345 if (bp->b_flags & B_CACHE) {
346 int base = (foff + off) & PAGE_MASK;
347 if (vm_page_is_valid(m, base, size) == 0)
348 bp->b_flags &= ~B_CACHE;
352 static __inline__
353 void
354 bd_wakeup(int dirtybuflevel)
356 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
357 bd_request = 1;
358 wakeup(&bd_request);
363 * bd_speedup - speedup the buffer cache flushing code
366 static __inline__
367 void
368 bd_speedup(void)
370 bd_wakeup(1);
374 * Initialize buffer headers and related structures.
377 caddr_t
378 bufhashinit(caddr_t vaddr)
380 /* first, make a null hash table */
381 bufhashshift = 29;
382 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
383 bufhashshift--;
384 bufhashtbl = (void *)vaddr;
385 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
386 --bufhashmask;
387 return(vaddr);
390 void
391 bufinit(void)
393 struct buf *bp;
394 int i;
396 TAILQ_INIT(&bswlist);
397 LIST_INIT(&invalhash);
398 lwkt_token_init(&buftimetoken);
400 for (i = 0; i <= bufhashmask; i++)
401 LIST_INIT(&bufhashtbl[i]);
403 /* next, make a null set of free lists */
404 for (i = 0; i < BUFFER_QUEUES; i++)
405 TAILQ_INIT(&bufqueues[i]);
407 /* finally, initialize each buffer header and stick on empty q */
408 for (i = 0; i < nbuf; i++) {
409 bp = &buf[i];
410 bzero(bp, sizeof *bp);
411 bp->b_flags = B_INVAL; /* we're just an empty header */
412 bp->b_dev = NODEV;
413 bp->b_qindex = QUEUE_EMPTY;
414 bp->b_xflags = 0;
415 xio_init(&bp->b_xio);
416 LIST_INIT(&bp->b_dep);
417 BUF_LOCKINIT(bp);
418 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
419 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
423 * maxbufspace is the absolute maximum amount of buffer space we are
424 * allowed to reserve in KVM and in real terms. The absolute maximum
425 * is nominally used by buf_daemon. hibufspace is the nominal maximum
426 * used by most other processes. The differential is required to
427 * ensure that buf_daemon is able to run when other processes might
428 * be blocked waiting for buffer space.
430 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
431 * this may result in KVM fragmentation which is not handled optimally
432 * by the system.
434 maxbufspace = nbuf * BKVASIZE;
435 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
436 lobufspace = hibufspace - MAXBSIZE;
438 lorunningspace = 512 * 1024;
439 hirunningspace = 1024 * 1024;
442 * Limit the amount of malloc memory since it is wired permanently into
443 * the kernel space. Even though this is accounted for in the buffer
444 * allocation, we don't want the malloced region to grow uncontrolled.
445 * The malloc scheme improves memory utilization significantly on average
446 * (small) directories.
448 maxbufmallocspace = hibufspace / 20;
451 * Reduce the chance of a deadlock occuring by limiting the number
452 * of delayed-write dirty buffers we allow to stack up.
454 hidirtybuffers = nbuf / 4 + 20;
455 numdirtybuffers = 0;
457 * To support extreme low-memory systems, make sure hidirtybuffers cannot
458 * eat up all available buffer space. This occurs when our minimum cannot
459 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
460 * BKVASIZE'd (8K) buffers.
462 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
463 hidirtybuffers >>= 1;
465 lodirtybuffers = hidirtybuffers / 2;
468 * Try to keep the number of free buffers in the specified range,
469 * and give special processes (e.g. like buf_daemon) access to an
470 * emergency reserve.
472 lofreebuffers = nbuf / 18 + 5;
473 hifreebuffers = 2 * lofreebuffers;
474 numfreebuffers = nbuf;
477 * Maximum number of async ops initiated per buf_daemon loop. This is
478 * somewhat of a hack at the moment, we really need to limit ourselves
479 * based on the number of bytes of I/O in-transit that were initiated
480 * from buf_daemon.
483 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
484 bogus_page = vm_page_alloc(kernel_object,
485 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
486 VM_ALLOC_NORMAL);
487 vmstats.v_wire_count++;
492 * bfreekva() - free the kva allocation for a buffer.
494 * Must be called at splbio() or higher as this is the only locking for
495 * buffer_map.
497 * Since this call frees up buffer space, we call bufspacewakeup().
499 static void
500 bfreekva(struct buf * bp)
502 int count;
504 if (bp->b_kvasize) {
505 ++buffreekvacnt;
506 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
507 vm_map_lock(buffer_map);
508 bufspace -= bp->b_kvasize;
509 vm_map_delete(buffer_map,
510 (vm_offset_t) bp->b_kvabase,
511 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
512 &count
514 vm_map_unlock(buffer_map);
515 vm_map_entry_release(count);
516 bp->b_kvasize = 0;
517 bufspacewakeup();
522 * bremfree:
524 * Remove the buffer from the appropriate free list.
526 void
527 bremfree(struct buf * bp)
529 int s = splbio();
530 int old_qindex = bp->b_qindex;
532 if (bp->b_qindex != QUEUE_NONE) {
533 KASSERT(BUF_REFCNTNB(bp) == 1,
534 ("bremfree: bp %p not locked",bp));
535 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
536 bp->b_qindex = QUEUE_NONE;
537 } else {
538 if (BUF_REFCNTNB(bp) <= 1)
539 panic("bremfree: removing a buffer not on a queue");
543 * Fixup numfreebuffers count. If the buffer is invalid or not
544 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
545 * the buffer was free and we must decrement numfreebuffers.
547 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
548 switch(old_qindex) {
549 case QUEUE_DIRTY:
550 case QUEUE_CLEAN:
551 case QUEUE_EMPTY:
552 case QUEUE_EMPTYKVA:
553 --numfreebuffers;
554 break;
555 default:
556 break;
559 splx(s);
564 * Get a buffer with the specified data. Look in the cache first. We
565 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
566 * is set, the buffer is valid and we do not have to do anything ( see
567 * getblk() ).
570 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
572 struct buf *bp;
574 bp = getblk(vp, blkno, size, 0, 0);
575 *bpp = bp;
577 /* if not found in cache, do some I/O */
578 if ((bp->b_flags & B_CACHE) == 0) {
579 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
580 bp->b_flags |= B_READ;
581 bp->b_flags &= ~(B_ERROR | B_INVAL);
582 vfs_busy_pages(bp, 0);
583 VOP_STRATEGY(vp, bp);
584 return (biowait(bp));
586 return (0);
590 * Operates like bread, but also starts asynchronous I/O on
591 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
592 * to initiating I/O . If B_CACHE is set, the buffer is valid
593 * and we do not have to do anything.
596 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
597 int *rabsize, int cnt, struct buf ** bpp)
599 struct buf *bp, *rabp;
600 int i;
601 int rv = 0, readwait = 0;
603 *bpp = bp = getblk(vp, blkno, size, 0, 0);
605 /* if not found in cache, do some I/O */
606 if ((bp->b_flags & B_CACHE) == 0) {
607 bp->b_flags |= B_READ;
608 bp->b_flags &= ~(B_ERROR | B_INVAL);
609 vfs_busy_pages(bp, 0);
610 VOP_STRATEGY(vp, bp);
611 ++readwait;
614 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
615 if (inmem(vp, *rablkno))
616 continue;
617 rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
619 if ((rabp->b_flags & B_CACHE) == 0) {
620 rabp->b_flags |= B_READ | B_ASYNC;
621 rabp->b_flags &= ~(B_ERROR | B_INVAL);
622 vfs_busy_pages(rabp, 0);
623 BUF_KERNPROC(rabp);
624 VOP_STRATEGY(vp, rabp);
625 } else {
626 brelse(rabp);
630 if (readwait) {
631 rv = biowait(bp);
633 return (rv);
637 * Write, release buffer on completion. (Done by iodone
638 * if async). Do not bother writing anything if the buffer
639 * is invalid.
641 * Note that we set B_CACHE here, indicating that buffer is
642 * fully valid and thus cacheable. This is true even of NFS
643 * now so we set it generally. This could be set either here
644 * or in biodone() since the I/O is synchronous. We put it
645 * here.
648 bwrite(struct buf * bp)
650 int oldflags, s;
651 #if 0
652 struct buf *newbp;
653 #endif
655 if (bp->b_flags & B_INVAL) {
656 brelse(bp);
657 return (0);
660 oldflags = bp->b_flags;
662 if (BUF_REFCNTNB(bp) == 0)
663 panic("bwrite: buffer is not busy???");
664 s = splbio();
666 * If a background write is already in progress, delay
667 * writing this block if it is asynchronous. Otherwise
668 * wait for the background write to complete.
670 if (bp->b_xflags & BX_BKGRDINPROG) {
671 if (bp->b_flags & B_ASYNC) {
672 splx(s);
673 bdwrite(bp);
674 return (0);
676 bp->b_xflags |= BX_BKGRDWAIT;
677 tsleep(&bp->b_xflags, 0, "biord", 0);
678 if (bp->b_xflags & BX_BKGRDINPROG)
679 panic("bwrite: still writing");
682 /* Mark the buffer clean */
683 bundirty(bp);
685 #if 0
687 * If this buffer is marked for background writing and we
688 * do not have to wait for it, make a copy and write the
689 * copy so as to leave this buffer ready for further use.
691 * This optimization eats a lot of memory. If we have a page
692 * or buffer shortfull we can't do it.
694 * XXX DISABLED! This had to be removed to support the RB_TREE
695 * work and, really, this isn't the best place to do this sort
696 * of thing anyway. We really need a device copy-on-write feature.
698 if (dobkgrdwrite &&
699 (bp->b_xflags & BX_BKGRDWRITE) &&
700 (bp->b_flags & B_ASYNC) &&
701 !vm_page_count_severe() &&
702 !buf_dirty_count_severe()) {
703 if (bp->b_flags & B_CALL)
704 panic("bwrite: need chained iodone");
706 /* get a new block */
707 newbp = geteblk(bp->b_bufsize);
709 /* set it to be identical to the old block */
710 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
711 newbp->b_lblkno = bp->b_lblkno;
712 newbp->b_blkno = bp->b_blkno;
713 newbp->b_offset = bp->b_offset;
714 newbp->b_iodone = vfs_backgroundwritedone;
715 newbp->b_flags |= B_ASYNC | B_CALL;
716 newbp->b_flags &= ~B_INVAL;
717 bgetvp(bp->b_vp, newbp);
719 /* move over the dependencies */
720 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
721 (*bioops.io_movedeps)(bp, newbp);
724 * Initiate write on the copy, release the original to
725 * the B_LOCKED queue so that it cannot go away until
726 * the background write completes. If not locked it could go
727 * away and then be reconstituted while it was being written.
728 * If the reconstituted buffer were written, we could end up
729 * with two background copies being written at the same time.
731 bp->b_xflags |= BX_BKGRDINPROG;
732 bp->b_flags |= B_LOCKED;
733 bqrelse(bp);
734 bp = newbp;
736 #endif
738 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
739 bp->b_flags |= B_CACHE;
741 bp->b_vp->v_numoutput++;
742 vfs_busy_pages(bp, 1);
745 * Normal bwrites pipeline writes
747 bp->b_runningbufspace = bp->b_bufsize;
748 runningbufspace += bp->b_runningbufspace;
750 splx(s);
751 if (oldflags & B_ASYNC)
752 BUF_KERNPROC(bp);
753 VOP_STRATEGY(bp->b_vp, bp);
755 if ((oldflags & B_ASYNC) == 0) {
756 int rtval = biowait(bp);
757 brelse(bp);
758 return (rtval);
759 } else if ((oldflags & B_NOWDRAIN) == 0) {
761 * don't allow the async write to saturate the I/O
762 * system. Deadlocks can occur only if a device strategy
763 * routine (like in VN) turns around and issues another
764 * high-level write, in which case B_NOWDRAIN is expected
765 * to be set. Otherwise we will not deadlock here because
766 * we are blocking waiting for I/O that is already in-progress
767 * to complete.
769 waitrunningbufspace();
772 return (0);
775 #if 0
777 * Complete a background write started from bwrite.
779 static void
780 vfs_backgroundwritedone(struct buf *bp)
782 struct buf *origbp;
785 * Find the original buffer that we are writing.
787 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
788 panic("backgroundwritedone: lost buffer");
790 * Process dependencies then return any unfinished ones.
792 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
793 (*bioops.io_complete)(bp);
794 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
795 (*bioops.io_movedeps)(bp, origbp);
797 * Clear the BX_BKGRDINPROG flag in the original buffer
798 * and awaken it if it is waiting for the write to complete.
799 * If BX_BKGRDINPROG is not set in the original buffer it must
800 * have been released and re-instantiated - which is not legal.
802 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
803 origbp->b_xflags &= ~BX_BKGRDINPROG;
804 if (origbp->b_xflags & BX_BKGRDWAIT) {
805 origbp->b_xflags &= ~BX_BKGRDWAIT;
806 wakeup(&origbp->b_xflags);
809 * Clear the B_LOCKED flag and remove it from the locked
810 * queue if it currently resides there.
812 origbp->b_flags &= ~B_LOCKED;
813 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
814 bremfree(origbp);
815 bqrelse(origbp);
818 * This buffer is marked B_NOCACHE, so when it is released
819 * by biodone, it will be tossed. We mark it with B_READ
820 * to avoid biodone doing a second vwakeup.
822 bp->b_flags |= B_NOCACHE | B_READ;
823 bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
824 bp->b_iodone = 0;
825 biodone(bp);
827 #endif
830 * Delayed write. (Buffer is marked dirty). Do not bother writing
831 * anything if the buffer is marked invalid.
833 * Note that since the buffer must be completely valid, we can safely
834 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
835 * biodone() in order to prevent getblk from writing the buffer
836 * out synchronously.
838 void
839 bdwrite(struct buf *bp)
841 if (BUF_REFCNTNB(bp) == 0)
842 panic("bdwrite: buffer is not busy");
844 if (bp->b_flags & B_INVAL) {
845 brelse(bp);
846 return;
848 bdirty(bp);
851 * Set B_CACHE, indicating that the buffer is fully valid. This is
852 * true even of NFS now.
854 bp->b_flags |= B_CACHE;
857 * This bmap keeps the system from needing to do the bmap later,
858 * perhaps when the system is attempting to do a sync. Since it
859 * is likely that the indirect block -- or whatever other datastructure
860 * that the filesystem needs is still in memory now, it is a good
861 * thing to do this. Note also, that if the pageout daemon is
862 * requesting a sync -- there might not be enough memory to do
863 * the bmap then... So, this is important to do.
865 if (bp->b_lblkno == bp->b_blkno) {
866 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
870 * Set the *dirty* buffer range based upon the VM system dirty pages.
872 vfs_setdirty(bp);
875 * We need to do this here to satisfy the vnode_pager and the
876 * pageout daemon, so that it thinks that the pages have been
877 * "cleaned". Note that since the pages are in a delayed write
878 * buffer -- the VFS layer "will" see that the pages get written
879 * out on the next sync, or perhaps the cluster will be completed.
881 vfs_clean_pages(bp);
882 bqrelse(bp);
885 * Wakeup the buffer flushing daemon if we have a lot of dirty
886 * buffers (midpoint between our recovery point and our stall
887 * point).
889 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
892 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
893 * due to the softdep code.
898 * bdirty:
900 * Turn buffer into delayed write request. We must clear B_READ and
901 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
902 * itself to properly update it in the dirty/clean lists. We mark it
903 * B_DONE to ensure that any asynchronization of the buffer properly
904 * clears B_DONE ( else a panic will occur later ).
906 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
907 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
908 * should only be called if the buffer is known-good.
910 * Since the buffer is not on a queue, we do not update the numfreebuffers
911 * count.
913 * Must be called at splbio().
914 * The buffer must be on QUEUE_NONE.
916 void
917 bdirty(struct buf *bp)
919 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
920 bp->b_flags &= ~(B_READ|B_RELBUF);
922 if ((bp->b_flags & B_DELWRI) == 0) {
923 bp->b_flags |= B_DONE | B_DELWRI;
924 reassignbuf(bp, bp->b_vp);
925 ++numdirtybuffers;
926 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
931 * bundirty:
933 * Clear B_DELWRI for buffer.
935 * Since the buffer is not on a queue, we do not update the numfreebuffers
936 * count.
938 * Must be called at splbio().
940 * The buffer is typically on QUEUE_NONE but there is one case in
941 * brelse() that calls this function after placing the buffer on
942 * a different queue.
945 void
946 bundirty(struct buf *bp)
948 if (bp->b_flags & B_DELWRI) {
949 bp->b_flags &= ~B_DELWRI;
950 reassignbuf(bp, bp->b_vp);
951 --numdirtybuffers;
952 numdirtywakeup(lodirtybuffers);
955 * Since it is now being written, we can clear its deferred write flag.
957 bp->b_flags &= ~B_DEFERRED;
961 * bawrite:
963 * Asynchronous write. Start output on a buffer, but do not wait for
964 * it to complete. The buffer is released when the output completes.
966 * bwrite() ( or the VOP routine anyway ) is responsible for handling
967 * B_INVAL buffers. Not us.
969 void
970 bawrite(struct buf * bp)
972 bp->b_flags |= B_ASYNC;
973 (void) VOP_BWRITE(bp->b_vp, bp);
977 * bowrite:
979 * Ordered write. Start output on a buffer, and flag it so that the
980 * device will write it in the order it was queued. The buffer is
981 * released when the output completes. bwrite() ( or the VOP routine
982 * anyway ) is responsible for handling B_INVAL buffers.
985 bowrite(struct buf * bp)
987 bp->b_flags |= B_ORDERED | B_ASYNC;
988 return (VOP_BWRITE(bp->b_vp, bp));
992 * bwillwrite:
994 * Called prior to the locking of any vnodes when we are expecting to
995 * write. We do not want to starve the buffer cache with too many
996 * dirty buffers so we block here. By blocking prior to the locking
997 * of any vnodes we attempt to avoid the situation where a locked vnode
998 * prevents the various system daemons from flushing related buffers.
1001 void
1002 bwillwrite(void)
1004 if (numdirtybuffers >= hidirtybuffers) {
1005 int s;
1007 s = splbio();
1008 while (numdirtybuffers >= hidirtybuffers) {
1009 bd_wakeup(1);
1010 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1011 tsleep(&needsbuffer, 0, "flswai", 0);
1013 splx(s);
1018 * Return true if we have too many dirty buffers.
1021 buf_dirty_count_severe(void)
1023 return(numdirtybuffers >= hidirtybuffers);
1027 * brelse:
1029 * Release a busy buffer and, if requested, free its resources. The
1030 * buffer will be stashed in the appropriate bufqueue[] allowing it
1031 * to be accessed later as a cache entity or reused for other purposes.
1033 void
1034 brelse(struct buf * bp)
1036 int s;
1038 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1040 s = splbio();
1042 if (bp->b_flags & B_LOCKED)
1043 bp->b_flags &= ~B_ERROR;
1045 if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
1047 * Failed write, redirty. Must clear B_ERROR to prevent
1048 * pages from being scrapped. If B_INVAL is set then
1049 * this case is not run and the next case is run to
1050 * destroy the buffer. B_INVAL can occur if the buffer
1051 * is outside the range supported by the underlying device.
1053 bp->b_flags &= ~B_ERROR;
1054 bdirty(bp);
1055 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1056 (bp->b_bufsize <= 0)) {
1058 * Either a failed I/O or we were asked to free or not
1059 * cache the buffer.
1061 bp->b_flags |= B_INVAL;
1062 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1063 (*bioops.io_deallocate)(bp);
1064 if (bp->b_flags & B_DELWRI) {
1065 --numdirtybuffers;
1066 numdirtywakeup(lodirtybuffers);
1068 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1069 if ((bp->b_flags & B_VMIO) == 0) {
1070 if (bp->b_bufsize)
1071 allocbuf(bp, 0);
1072 if (bp->b_vp)
1073 brelvp(bp);
1078 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
1079 * is called with B_DELWRI set, the underlying pages may wind up
1080 * getting freed causing a previous write (bdwrite()) to get 'lost'
1081 * because pages associated with a B_DELWRI bp are marked clean.
1083 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1084 * if B_DELWRI is set.
1086 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1087 * on pages to return pages to the VM page queues.
1089 if (bp->b_flags & B_DELWRI)
1090 bp->b_flags &= ~B_RELBUF;
1091 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1092 bp->b_flags |= B_RELBUF;
1095 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
1096 * constituted, not even NFS buffers now. Two flags effect this. If
1097 * B_INVAL, the struct buf is invalidated but the VM object is kept
1098 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1100 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1101 * invalidated. B_ERROR cannot be set for a failed write unless the
1102 * buffer is also B_INVAL because it hits the re-dirtying code above.
1104 * Normally we can do this whether a buffer is B_DELWRI or not. If
1105 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1106 * the commit state and we cannot afford to lose the buffer. If the
1107 * buffer has a background write in progress, we need to keep it
1108 * around to prevent it from being reconstituted and starting a second
1109 * background write.
1111 if ((bp->b_flags & B_VMIO)
1112 && !(bp->b_vp->v_tag == VT_NFS &&
1113 !vn_isdisk(bp->b_vp, NULL) &&
1114 (bp->b_flags & B_DELWRI))
1117 int i, j, resid;
1118 vm_page_t m;
1119 off_t foff;
1120 vm_pindex_t poff;
1121 vm_object_t obj;
1122 struct vnode *vp;
1124 vp = bp->b_vp;
1127 * Get the base offset and length of the buffer. Note that
1128 * in the VMIO case if the buffer block size is not
1129 * page-aligned then b_data pointer may not be page-aligned.
1130 * But our b_xio.xio_pages array *IS* page aligned.
1132 * block sizes less then DEV_BSIZE (usually 512) are not
1133 * supported due to the page granularity bits (m->valid,
1134 * m->dirty, etc...).
1136 * See man buf(9) for more information
1139 resid = bp->b_bufsize;
1140 foff = bp->b_offset;
1142 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1143 m = bp->b_xio.xio_pages[i];
1144 vm_page_flag_clear(m, PG_ZERO);
1146 * If we hit a bogus page, fixup *all* of them
1147 * now. Note that we left these pages wired
1148 * when we removed them so they had better exist,
1149 * and they cannot be ripped out from under us so
1150 * no splvm() protection is necessary.
1152 if (m == bogus_page) {
1153 VOP_GETVOBJECT(vp, &obj);
1154 poff = OFF_TO_IDX(bp->b_offset);
1156 for (j = i; j < bp->b_xio.xio_npages; j++) {
1157 vm_page_t mtmp;
1159 mtmp = bp->b_xio.xio_pages[j];
1160 if (mtmp == bogus_page) {
1161 mtmp = vm_page_lookup(obj, poff + j);
1162 if (!mtmp) {
1163 panic("brelse: page missing");
1165 bp->b_xio.xio_pages[j] = mtmp;
1169 if ((bp->b_flags & B_INVAL) == 0) {
1170 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1171 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1173 m = bp->b_xio.xio_pages[i];
1177 * Invalidate the backing store if B_NOCACHE is set
1178 * (e.g. used with vinvalbuf()). If this is NFS
1179 * we impose a requirement that the block size be
1180 * a multiple of PAGE_SIZE and create a temporary
1181 * hack to basically invalidate the whole page. The
1182 * problem is that NFS uses really odd buffer sizes
1183 * especially when tracking piecemeal writes and
1184 * it also vinvalbuf()'s a lot, which would result
1185 * in only partial page validation and invalidation
1186 * here. If the file page is mmap()'d, however,
1187 * all the valid bits get set so after we invalidate
1188 * here we would end up with weird m->valid values
1189 * like 0xfc. nfs_getpages() can't handle this so
1190 * we clear all the valid bits for the NFS case
1191 * instead of just some of them.
1193 * The real bug is the VM system having to set m->valid
1194 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1195 * itself is an artifact of the whole 512-byte
1196 * granular mess that exists to support odd block
1197 * sizes and UFS meta-data block sizes (e.g. 6144).
1198 * A complete rewrite is required.
1200 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1201 int poffset = foff & PAGE_MASK;
1202 int presid;
1204 presid = PAGE_SIZE - poffset;
1205 if (bp->b_vp->v_tag == VT_NFS &&
1206 bp->b_vp->v_type == VREG) {
1207 ; /* entire page */
1208 } else if (presid > resid) {
1209 presid = resid;
1211 KASSERT(presid >= 0, ("brelse: extra page"));
1212 vm_page_set_invalid(m, poffset, presid);
1214 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1215 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1218 if (bp->b_flags & (B_INVAL | B_RELBUF))
1219 vfs_vmio_release(bp);
1221 } else if (bp->b_flags & B_VMIO) {
1223 if (bp->b_flags & (B_INVAL | B_RELBUF))
1224 vfs_vmio_release(bp);
1228 if (bp->b_qindex != QUEUE_NONE)
1229 panic("brelse: free buffer onto another queue???");
1230 if (BUF_REFCNTNB(bp) > 1) {
1231 /* Temporary panic to verify exclusive locking */
1232 /* This panic goes away when we allow shared refs */
1233 panic("brelse: multiple refs");
1234 /* do not release to free list */
1235 BUF_UNLOCK(bp);
1236 splx(s);
1237 return;
1240 /* enqueue */
1242 /* buffers with no memory */
1243 if (bp->b_bufsize == 0) {
1244 bp->b_flags |= B_INVAL;
1245 bp->b_xflags &= ~BX_BKGRDWRITE;
1246 if (bp->b_xflags & BX_BKGRDINPROG)
1247 panic("losing buffer 1");
1248 if (bp->b_kvasize) {
1249 bp->b_qindex = QUEUE_EMPTYKVA;
1250 } else {
1251 bp->b_qindex = QUEUE_EMPTY;
1253 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1254 LIST_REMOVE(bp, b_hash);
1255 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1256 bp->b_dev = NODEV;
1257 /* buffers with junk contents */
1258 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1259 bp->b_flags |= B_INVAL;
1260 bp->b_xflags &= ~BX_BKGRDWRITE;
1261 if (bp->b_xflags & BX_BKGRDINPROG)
1262 panic("losing buffer 2");
1263 bp->b_qindex = QUEUE_CLEAN;
1264 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1265 LIST_REMOVE(bp, b_hash);
1266 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1267 bp->b_dev = NODEV;
1269 /* buffers that are locked */
1270 } else if (bp->b_flags & B_LOCKED) {
1271 bp->b_qindex = QUEUE_LOCKED;
1272 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1274 /* remaining buffers */
1275 } else {
1276 switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1277 case B_DELWRI | B_AGE:
1278 bp->b_qindex = QUEUE_DIRTY;
1279 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1280 break;
1281 case B_DELWRI:
1282 bp->b_qindex = QUEUE_DIRTY;
1283 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1284 break;
1285 case B_AGE:
1286 bp->b_qindex = QUEUE_CLEAN;
1287 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1288 break;
1289 default:
1290 bp->b_qindex = QUEUE_CLEAN;
1291 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1292 break;
1297 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1298 * on the correct queue.
1300 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1301 bundirty(bp);
1304 * Fixup numfreebuffers count. The bp is on an appropriate queue
1305 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1306 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1307 * if B_INVAL is set ).
1310 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1311 bufcountwakeup();
1314 * Something we can maybe free or reuse
1316 if (bp->b_bufsize || bp->b_kvasize)
1317 bufspacewakeup();
1319 /* unlock */
1320 BUF_UNLOCK(bp);
1321 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1322 B_DIRECT | B_NOWDRAIN);
1323 splx(s);
1327 * Release a buffer back to the appropriate queue but do not try to free
1328 * it. The buffer is expected to be used again soon.
1330 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1331 * biodone() to requeue an async I/O on completion. It is also used when
1332 * known good buffers need to be requeued but we think we may need the data
1333 * again soon.
1335 * XXX we should be able to leave the B_RELBUF hint set on completion.
1337 void
1338 bqrelse(struct buf * bp)
1340 int s;
1342 s = splbio();
1344 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1346 if (bp->b_qindex != QUEUE_NONE)
1347 panic("bqrelse: free buffer onto another queue???");
1348 if (BUF_REFCNTNB(bp) > 1) {
1349 /* do not release to free list */
1350 panic("bqrelse: multiple refs");
1351 BUF_UNLOCK(bp);
1352 splx(s);
1353 return;
1355 if (bp->b_flags & B_LOCKED) {
1356 bp->b_flags &= ~B_ERROR;
1357 bp->b_qindex = QUEUE_LOCKED;
1358 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1359 /* buffers with stale but valid contents */
1360 } else if (bp->b_flags & B_DELWRI) {
1361 bp->b_qindex = QUEUE_DIRTY;
1362 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1363 } else if (vm_page_count_severe()) {
1365 * We are too low on memory, we have to try to free the
1366 * buffer (most importantly: the wired pages making up its
1367 * backing store) *now*.
1369 splx(s);
1370 brelse(bp);
1371 return;
1372 } else {
1373 bp->b_qindex = QUEUE_CLEAN;
1374 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1377 if ((bp->b_flags & B_LOCKED) == 0 &&
1378 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1379 bufcountwakeup();
1383 * Something we can maybe free or reuse.
1385 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1386 bufspacewakeup();
1388 /* unlock */
1389 BUF_UNLOCK(bp);
1390 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1391 splx(s);
1394 static void
1395 vfs_vmio_release(struct buf *bp)
1397 int i, s;
1398 vm_page_t m;
1400 s = splvm();
1401 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1402 m = bp->b_xio.xio_pages[i];
1403 bp->b_xio.xio_pages[i] = NULL;
1405 * In order to keep page LRU ordering consistent, put
1406 * everything on the inactive queue.
1408 vm_page_unwire(m, 0);
1410 * We don't mess with busy pages, it is
1411 * the responsibility of the process that
1412 * busied the pages to deal with them.
1414 if ((m->flags & PG_BUSY) || (m->busy != 0))
1415 continue;
1417 if (m->wire_count == 0) {
1418 vm_page_flag_clear(m, PG_ZERO);
1420 * Might as well free the page if we can and it has
1421 * no valid data. We also free the page if the
1422 * buffer was used for direct I/O.
1424 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1425 vm_page_busy(m);
1426 vm_page_protect(m, VM_PROT_NONE);
1427 vm_page_free(m);
1428 } else if (bp->b_flags & B_DIRECT) {
1429 vm_page_try_to_free(m);
1430 } else if (vm_page_count_severe()) {
1431 vm_page_try_to_cache(m);
1435 splx(s);
1436 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1437 if (bp->b_bufsize) {
1438 bufspacewakeup();
1439 bp->b_bufsize = 0;
1441 bp->b_xio.xio_npages = 0;
1442 bp->b_flags &= ~B_VMIO;
1443 if (bp->b_vp)
1444 brelvp(bp);
1448 * Check to see if a block is currently memory resident.
1450 struct buf *
1451 gbincore(struct vnode * vp, daddr_t blkno)
1453 struct buf *bp;
1454 struct bufhashhdr *bh;
1456 bh = bufhash(vp, blkno);
1458 /* Search hash chain */
1459 LIST_FOREACH(bp, bh, b_hash) {
1460 /* hit */
1461 if (bp->b_vp == vp && bp->b_lblkno == blkno)
1462 break;
1464 return (bp);
1468 * vfs_bio_awrite:
1470 * Implement clustered async writes for clearing out B_DELWRI buffers.
1471 * This is much better then the old way of writing only one buffer at
1472 * a time. Note that we may not be presented with the buffers in the
1473 * correct order, so we search for the cluster in both directions.
1476 vfs_bio_awrite(struct buf * bp)
1478 int i;
1479 int j;
1480 daddr_t lblkno = bp->b_lblkno;
1481 struct vnode *vp = bp->b_vp;
1482 int s;
1483 int ncl;
1484 struct buf *bpa;
1485 int nwritten;
1486 int size;
1487 int maxcl;
1489 s = splbio();
1491 * right now we support clustered writing only to regular files. If
1492 * we find a clusterable block we could be in the middle of a cluster
1493 * rather then at the beginning.
1495 if ((vp->v_type == VREG) &&
1496 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1497 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1499 size = vp->v_mount->mnt_stat.f_iosize;
1500 maxcl = MAXPHYS / size;
1502 for (i = 1; i < maxcl; i++) {
1503 if ((bpa = gbincore(vp, lblkno + i)) &&
1504 BUF_REFCNT(bpa) == 0 &&
1505 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1506 (B_DELWRI | B_CLUSTEROK)) &&
1507 (bpa->b_bufsize == size)) {
1508 if ((bpa->b_blkno == bpa->b_lblkno) ||
1509 (bpa->b_blkno !=
1510 bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1511 break;
1512 } else {
1513 break;
1516 for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1517 if ((bpa = gbincore(vp, lblkno - j)) &&
1518 BUF_REFCNT(bpa) == 0 &&
1519 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1520 (B_DELWRI | B_CLUSTEROK)) &&
1521 (bpa->b_bufsize == size)) {
1522 if ((bpa->b_blkno == bpa->b_lblkno) ||
1523 (bpa->b_blkno !=
1524 bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1525 break;
1526 } else {
1527 break;
1530 --j;
1531 ncl = i + j;
1533 * this is a possible cluster write
1535 if (ncl != 1) {
1536 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1537 splx(s);
1538 return nwritten;
1542 BUF_LOCK(bp, LK_EXCLUSIVE);
1543 bremfree(bp);
1544 bp->b_flags |= B_ASYNC;
1546 splx(s);
1548 * default (old) behavior, writing out only one block
1550 * XXX returns b_bufsize instead of b_bcount for nwritten?
1552 nwritten = bp->b_bufsize;
1553 (void) VOP_BWRITE(bp->b_vp, bp);
1555 return nwritten;
1559 * getnewbuf:
1561 * Find and initialize a new buffer header, freeing up existing buffers
1562 * in the bufqueues as necessary. The new buffer is returned locked.
1564 * Important: B_INVAL is not set. If the caller wishes to throw the
1565 * buffer away, the caller must set B_INVAL prior to calling brelse().
1567 * We block if:
1568 * We have insufficient buffer headers
1569 * We have insufficient buffer space
1570 * buffer_map is too fragmented ( space reservation fails )
1571 * If we have to flush dirty buffers ( but we try to avoid this )
1573 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1574 * Instead we ask the buf daemon to do it for us. We attempt to
1575 * avoid piecemeal wakeups of the pageout daemon.
1578 static struct buf *
1579 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1581 struct buf *bp;
1582 struct buf *nbp;
1583 int defrag = 0;
1584 int nqindex;
1585 static int flushingbufs;
1588 * We can't afford to block since we might be holding a vnode lock,
1589 * which may prevent system daemons from running. We deal with
1590 * low-memory situations by proactively returning memory and running
1591 * async I/O rather then sync I/O.
1594 ++getnewbufcalls;
1595 --getnewbufrestarts;
1596 restart:
1597 ++getnewbufrestarts;
1600 * Setup for scan. If we do not have enough free buffers,
1601 * we setup a degenerate case that immediately fails. Note
1602 * that if we are specially marked process, we are allowed to
1603 * dip into our reserves.
1605 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1607 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1608 * However, there are a number of cases (defragging, reusing, ...)
1609 * where we cannot backup.
1611 nqindex = QUEUE_EMPTYKVA;
1612 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1614 if (nbp == NULL) {
1616 * If no EMPTYKVA buffers and we are either
1617 * defragging or reusing, locate a CLEAN buffer
1618 * to free or reuse. If bufspace useage is low
1619 * skip this step so we can allocate a new buffer.
1621 if (defrag || bufspace >= lobufspace) {
1622 nqindex = QUEUE_CLEAN;
1623 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1627 * If we could not find or were not allowed to reuse a
1628 * CLEAN buffer, check to see if it is ok to use an EMPTY
1629 * buffer. We can only use an EMPTY buffer if allocating
1630 * its KVA would not otherwise run us out of buffer space.
1632 if (nbp == NULL && defrag == 0 &&
1633 bufspace + maxsize < hibufspace) {
1634 nqindex = QUEUE_EMPTY;
1635 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1640 * Run scan, possibly freeing data and/or kva mappings on the fly
1641 * depending.
1644 while ((bp = nbp) != NULL) {
1645 int qindex = nqindex;
1648 * Calculate next bp ( we can only use it if we do not block
1649 * or do other fancy things ).
1651 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1652 switch(qindex) {
1653 case QUEUE_EMPTY:
1654 nqindex = QUEUE_EMPTYKVA;
1655 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1656 break;
1657 /* fall through */
1658 case QUEUE_EMPTYKVA:
1659 nqindex = QUEUE_CLEAN;
1660 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1661 break;
1662 /* fall through */
1663 case QUEUE_CLEAN:
1665 * nbp is NULL.
1667 break;
1672 * Sanity Checks
1674 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1677 * Note: we no longer distinguish between VMIO and non-VMIO
1678 * buffers.
1681 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1684 * If we are defragging then we need a buffer with
1685 * b_kvasize != 0. XXX this situation should no longer
1686 * occur, if defrag is non-zero the buffer's b_kvasize
1687 * should also be non-zero at this point. XXX
1689 if (defrag && bp->b_kvasize == 0) {
1690 printf("Warning: defrag empty buffer %p\n", bp);
1691 continue;
1695 * Start freeing the bp. This is somewhat involved. nbp
1696 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1699 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1700 panic("getnewbuf: locked buf");
1701 bremfree(bp);
1703 if (qindex == QUEUE_CLEAN) {
1704 if (bp->b_flags & B_VMIO) {
1705 bp->b_flags &= ~B_ASYNC;
1706 vfs_vmio_release(bp);
1708 if (bp->b_vp)
1709 brelvp(bp);
1713 * NOTE: nbp is now entirely invalid. We can only restart
1714 * the scan from this point on.
1716 * Get the rest of the buffer freed up. b_kva* is still
1717 * valid after this operation.
1720 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1721 (*bioops.io_deallocate)(bp);
1722 if (bp->b_xflags & BX_BKGRDINPROG)
1723 panic("losing buffer 3");
1724 LIST_REMOVE(bp, b_hash);
1725 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1728 * spl protection not required when scrapping a buffer's
1729 * contents because it is already wired.
1731 if (bp->b_bufsize)
1732 allocbuf(bp, 0);
1734 bp->b_flags = 0;
1735 bp->b_xflags = 0;
1736 bp->b_dev = NODEV;
1737 bp->b_vp = NULL;
1738 bp->b_blkno = bp->b_lblkno = 0;
1739 bp->b_offset = NOOFFSET;
1740 bp->b_iodone = 0;
1741 bp->b_error = 0;
1742 bp->b_resid = 0;
1743 bp->b_bcount = 0;
1744 bp->b_xio.xio_npages = 0;
1745 bp->b_dirtyoff = bp->b_dirtyend = 0;
1747 LIST_INIT(&bp->b_dep);
1750 * If we are defragging then free the buffer.
1752 if (defrag) {
1753 bp->b_flags |= B_INVAL;
1754 bfreekva(bp);
1755 brelse(bp);
1756 defrag = 0;
1757 goto restart;
1761 * If we are overcomitted then recover the buffer and its
1762 * KVM space. This occurs in rare situations when multiple
1763 * processes are blocked in getnewbuf() or allocbuf().
1765 if (bufspace >= hibufspace)
1766 flushingbufs = 1;
1767 if (flushingbufs && bp->b_kvasize != 0) {
1768 bp->b_flags |= B_INVAL;
1769 bfreekva(bp);
1770 brelse(bp);
1771 goto restart;
1773 if (bufspace < lobufspace)
1774 flushingbufs = 0;
1775 break;
1779 * If we exhausted our list, sleep as appropriate. We may have to
1780 * wakeup various daemons and write out some dirty buffers.
1782 * Generally we are sleeping due to insufficient buffer space.
1785 if (bp == NULL) {
1786 int flags;
1787 char *waitmsg;
1789 if (defrag) {
1790 flags = VFS_BIO_NEED_BUFSPACE;
1791 waitmsg = "nbufkv";
1792 } else if (bufspace >= hibufspace) {
1793 waitmsg = "nbufbs";
1794 flags = VFS_BIO_NEED_BUFSPACE;
1795 } else {
1796 waitmsg = "newbuf";
1797 flags = VFS_BIO_NEED_ANY;
1800 bd_speedup(); /* heeeelp */
1802 needsbuffer |= flags;
1803 while (needsbuffer & flags) {
1804 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1805 return (NULL);
1807 } else {
1809 * We finally have a valid bp. We aren't quite out of the
1810 * woods, we still have to reserve kva space. In order
1811 * to keep fragmentation sane we only allocate kva in
1812 * BKVASIZE chunks.
1814 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1816 if (maxsize != bp->b_kvasize) {
1817 vm_offset_t addr = 0;
1818 int count;
1820 bfreekva(bp);
1822 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1823 vm_map_lock(buffer_map);
1825 if (vm_map_findspace(buffer_map,
1826 vm_map_min(buffer_map), maxsize,
1827 maxsize, &addr)) {
1829 * Uh oh. Buffer map is to fragmented. We
1830 * must defragment the map.
1832 vm_map_unlock(buffer_map);
1833 vm_map_entry_release(count);
1834 ++bufdefragcnt;
1835 defrag = 1;
1836 bp->b_flags |= B_INVAL;
1837 brelse(bp);
1838 goto restart;
1840 if (addr) {
1841 vm_map_insert(buffer_map, &count,
1842 NULL, 0,
1843 addr, addr + maxsize,
1844 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1846 bp->b_kvabase = (caddr_t) addr;
1847 bp->b_kvasize = maxsize;
1848 bufspace += bp->b_kvasize;
1849 ++bufreusecnt;
1851 vm_map_unlock(buffer_map);
1852 vm_map_entry_release(count);
1854 bp->b_data = bp->b_kvabase;
1856 return(bp);
1860 * buf_daemon:
1862 * buffer flushing daemon. Buffers are normally flushed by the
1863 * update daemon but if it cannot keep up this process starts to
1864 * take the load in an attempt to prevent getnewbuf() from blocking.
1867 static struct thread *bufdaemonthread;
1869 static struct kproc_desc buf_kp = {
1870 "bufdaemon",
1871 buf_daemon,
1872 &bufdaemonthread
1874 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1876 static void
1877 buf_daemon()
1879 int s;
1882 * This process needs to be suspended prior to shutdown sync.
1884 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1885 bufdaemonthread, SHUTDOWN_PRI_LAST);
1888 * This process is allowed to take the buffer cache to the limit
1890 s = splbio();
1892 for (;;) {
1893 kproc_suspend_loop();
1896 * Do the flush. Limit the amount of in-transit I/O we
1897 * allow to build up, otherwise we would completely saturate
1898 * the I/O system. Wakeup any waiting processes before we
1899 * normally would so they can run in parallel with our drain.
1901 while (numdirtybuffers > lodirtybuffers) {
1902 if (flushbufqueues() == 0)
1903 break;
1904 waitrunningbufspace();
1905 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1909 * Only clear bd_request if we have reached our low water
1910 * mark. The buf_daemon normally waits 5 seconds and
1911 * then incrementally flushes any dirty buffers that have
1912 * built up, within reason.
1914 * If we were unable to hit our low water mark and couldn't
1915 * find any flushable buffers, we sleep half a second.
1916 * Otherwise we loop immediately.
1918 if (numdirtybuffers <= lodirtybuffers) {
1920 * We reached our low water mark, reset the
1921 * request and sleep until we are needed again.
1922 * The sleep is just so the suspend code works.
1924 bd_request = 0;
1925 tsleep(&bd_request, 0, "psleep", hz);
1926 } else {
1928 * We couldn't find any flushable dirty buffers but
1929 * still have too many dirty buffers, we
1930 * have to sleep and try again. (rare)
1932 tsleep(&bd_request, 0, "qsleep", hz / 2);
1938 * flushbufqueues:
1940 * Try to flush a buffer in the dirty queue. We must be careful to
1941 * free up B_INVAL buffers instead of write them, which NFS is
1942 * particularly sensitive to.
1945 static int
1946 flushbufqueues(void)
1948 struct buf *bp;
1949 int r = 0;
1951 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1953 while (bp) {
1954 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1955 if ((bp->b_flags & B_DELWRI) != 0 &&
1956 (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1957 if (bp->b_flags & B_INVAL) {
1958 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1959 panic("flushbufqueues: locked buf");
1960 bremfree(bp);
1961 brelse(bp);
1962 ++r;
1963 break;
1965 if (LIST_FIRST(&bp->b_dep) != NULL &&
1966 bioops.io_countdeps &&
1967 (bp->b_flags & B_DEFERRED) == 0 &&
1968 (*bioops.io_countdeps)(bp, 0)) {
1969 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1970 bp, b_freelist);
1971 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1972 bp, b_freelist);
1973 bp->b_flags |= B_DEFERRED;
1974 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1975 continue;
1977 vfs_bio_awrite(bp);
1978 ++r;
1979 break;
1981 bp = TAILQ_NEXT(bp, b_freelist);
1983 return (r);
1987 * Check to see if a block is currently memory resident.
1989 struct buf *
1990 incore(struct vnode * vp, daddr_t blkno)
1992 struct buf *bp;
1994 crit_enter();
1995 bp = gbincore(vp, blkno);
1996 crit_exit();
1997 return (bp);
2001 * Returns true if no I/O is needed to access the associated VM object.
2002 * This is like incore except it also hunts around in the VM system for
2003 * the data.
2005 * Note that we ignore vm_page_free() races from interrupts against our
2006 * lookup, since if the caller is not protected our return value will not
2007 * be any more valid then otherwise once we splx().
2010 inmem(struct vnode * vp, daddr_t blkno)
2012 vm_object_t obj;
2013 vm_offset_t toff, tinc, size;
2014 vm_page_t m;
2015 vm_ooffset_t off;
2017 if (incore(vp, blkno))
2018 return 1;
2019 if (vp->v_mount == NULL)
2020 return 0;
2021 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2022 return 0;
2024 size = PAGE_SIZE;
2025 if (size > vp->v_mount->mnt_stat.f_iosize)
2026 size = vp->v_mount->mnt_stat.f_iosize;
2027 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2029 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2030 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2031 if (!m)
2032 return 0;
2033 tinc = size;
2034 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2035 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2036 if (vm_page_is_valid(m,
2037 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2038 return 0;
2040 return 1;
2044 * vfs_setdirty:
2046 * Sets the dirty range for a buffer based on the status of the dirty
2047 * bits in the pages comprising the buffer.
2049 * The range is limited to the size of the buffer.
2051 * This routine is primarily used by NFS, but is generalized for the
2052 * B_VMIO case.
2054 static void
2055 vfs_setdirty(struct buf *bp)
2057 int i;
2058 vm_object_t object;
2061 * Degenerate case - empty buffer
2064 if (bp->b_bufsize == 0)
2065 return;
2068 * We qualify the scan for modified pages on whether the
2069 * object has been flushed yet. The OBJ_WRITEABLE flag
2070 * is not cleared simply by protecting pages off.
2073 if ((bp->b_flags & B_VMIO) == 0)
2074 return;
2076 object = bp->b_xio.xio_pages[0]->object;
2078 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2079 printf("Warning: object %p writeable but not mightbedirty\n", object);
2080 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2081 printf("Warning: object %p mightbedirty but not writeable\n", object);
2083 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2084 vm_offset_t boffset;
2085 vm_offset_t eoffset;
2088 * test the pages to see if they have been modified directly
2089 * by users through the VM system.
2091 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2092 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2093 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2097 * Calculate the encompassing dirty range, boffset and eoffset,
2098 * (eoffset - boffset) bytes.
2101 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2102 if (bp->b_xio.xio_pages[i]->dirty)
2103 break;
2105 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2107 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2108 if (bp->b_xio.xio_pages[i]->dirty) {
2109 break;
2112 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2115 * Fit it to the buffer.
2118 if (eoffset > bp->b_bcount)
2119 eoffset = bp->b_bcount;
2122 * If we have a good dirty range, merge with the existing
2123 * dirty range.
2126 if (boffset < eoffset) {
2127 if (bp->b_dirtyoff > boffset)
2128 bp->b_dirtyoff = boffset;
2129 if (bp->b_dirtyend < eoffset)
2130 bp->b_dirtyend = eoffset;
2136 * getblk:
2138 * Get a block given a specified block and offset into a file/device.
2139 * The buffers B_DONE bit will be cleared on return, making it almost
2140 * ready for an I/O initiation. B_INVAL may or may not be set on
2141 * return. The caller should clear B_INVAL prior to initiating a
2142 * READ.
2144 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2145 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2146 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2147 * without doing any of those things the system will likely believe
2148 * the buffer to be valid (especially if it is not B_VMIO), and the
2149 * next getblk() will return the buffer with B_CACHE set.
2151 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2152 * an existing buffer.
2154 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2155 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2156 * and then cleared based on the backing VM. If the previous buffer is
2157 * non-0-sized but invalid, B_CACHE will be cleared.
2159 * If getblk() must create a new buffer, the new buffer is returned with
2160 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2161 * case it is returned with B_INVAL clear and B_CACHE set based on the
2162 * backing VM.
2164 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2165 * B_CACHE bit is clear.
2167 * What this means, basically, is that the caller should use B_CACHE to
2168 * determine whether the buffer is fully valid or not and should clear
2169 * B_INVAL prior to issuing a read. If the caller intends to validate
2170 * the buffer by loading its data area with something, the caller needs
2171 * to clear B_INVAL. If the caller does this without issuing an I/O,
2172 * the caller should set B_CACHE ( as an optimization ), else the caller
2173 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2174 * a write attempt or if it was a successfull read. If the caller
2175 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2176 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2178 struct buf *
2179 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2181 struct buf *bp;
2182 int s;
2183 struct bufhashhdr *bh;
2185 if (size > MAXBSIZE)
2186 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2188 s = splbio();
2189 loop:
2191 * Block if we are low on buffers. Certain processes are allowed
2192 * to completely exhaust the buffer cache.
2194 * If this check ever becomes a bottleneck it may be better to
2195 * move it into the else, when gbincore() fails. At the moment
2196 * it isn't a problem.
2198 * XXX remove, we cannot afford to block anywhere if holding a vnode
2199 * lock in low-memory situation, so take it to the max.
2201 if (numfreebuffers == 0) {
2202 if (!curproc)
2203 return NULL;
2204 needsbuffer |= VFS_BIO_NEED_ANY;
2205 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2208 if ((bp = gbincore(vp, blkno))) {
2210 * Buffer is in-core. If the buffer is not busy, it must
2211 * be on a queue.
2214 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2215 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2216 "getblk", slpflag, slptimeo) == ENOLCK)
2217 goto loop;
2218 splx(s);
2219 return (struct buf *) NULL;
2223 * The buffer is locked. B_CACHE is cleared if the buffer is
2224 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set
2225 * and for a VMIO buffer B_CACHE is adjusted according to the
2226 * backing VM cache.
2228 if (bp->b_flags & B_INVAL)
2229 bp->b_flags &= ~B_CACHE;
2230 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2231 bp->b_flags |= B_CACHE;
2232 bremfree(bp);
2235 * check for size inconsistancies for non-VMIO case.
2238 if (bp->b_bcount != size) {
2239 if ((bp->b_flags & B_VMIO) == 0 ||
2240 (size > bp->b_kvasize)) {
2241 if (bp->b_flags & B_DELWRI) {
2242 bp->b_flags |= B_NOCACHE;
2243 VOP_BWRITE(bp->b_vp, bp);
2244 } else {
2245 if ((bp->b_flags & B_VMIO) &&
2246 (LIST_FIRST(&bp->b_dep) == NULL)) {
2247 bp->b_flags |= B_RELBUF;
2248 brelse(bp);
2249 } else {
2250 bp->b_flags |= B_NOCACHE;
2251 VOP_BWRITE(bp->b_vp, bp);
2254 goto loop;
2259 * If the size is inconsistant in the VMIO case, we can resize
2260 * the buffer. This might lead to B_CACHE getting set or
2261 * cleared. If the size has not changed, B_CACHE remains
2262 * unchanged from its previous state.
2265 if (bp->b_bcount != size)
2266 allocbuf(bp, size);
2268 KASSERT(bp->b_offset != NOOFFSET,
2269 ("getblk: no buffer offset"));
2272 * A buffer with B_DELWRI set and B_CACHE clear must
2273 * be committed before we can return the buffer in
2274 * order to prevent the caller from issuing a read
2275 * ( due to B_CACHE not being set ) and overwriting
2276 * it.
2278 * Most callers, including NFS and FFS, need this to
2279 * operate properly either because they assume they
2280 * can issue a read if B_CACHE is not set, or because
2281 * ( for example ) an uncached B_DELWRI might loop due
2282 * to softupdates re-dirtying the buffer. In the latter
2283 * case, B_CACHE is set after the first write completes,
2284 * preventing further loops.
2286 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2287 * above while extending the buffer, we cannot allow the
2288 * buffer to remain with B_CACHE set after the write
2289 * completes or it will represent a corrupt state. To
2290 * deal with this we set B_NOCACHE to scrap the buffer
2291 * after the write.
2293 * We might be able to do something fancy, like setting
2294 * B_CACHE in bwrite() except if B_DELWRI is already set,
2295 * so the below call doesn't set B_CACHE, but that gets real
2296 * confusing. This is much easier.
2299 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2300 bp->b_flags |= B_NOCACHE;
2301 VOP_BWRITE(bp->b_vp, bp);
2302 goto loop;
2305 splx(s);
2306 bp->b_flags &= ~B_DONE;
2307 } else {
2309 * Buffer is not in-core, create new buffer. The buffer
2310 * returned by getnewbuf() is locked. Note that the returned
2311 * buffer is also considered valid (not marked B_INVAL).
2313 * Calculating the offset for the I/O requires figuring out
2314 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2315 * the mount's f_iosize otherwise. If the vnode does not
2316 * have an associated mount we assume that the passed size is
2317 * the block size.
2319 * Note that vn_isdisk() cannot be used here since it may
2320 * return a failure for numerous reasons. Note that the
2321 * buffer size may be larger then the block size (the caller
2322 * will use block numbers with the proper multiple). Beware
2323 * of using any v_* fields which are part of unions. In
2324 * particular, in DragonFly the mount point overloading
2325 * mechanism is such that the underlying directory (with a
2326 * non-NULL v_mountedhere) is not a special case.
2328 int bsize, maxsize, vmio;
2329 off_t offset;
2331 if (vp->v_type == VBLK || vp->v_type == VCHR)
2332 bsize = DEV_BSIZE;
2333 else if (vp->v_mount)
2334 bsize = vp->v_mount->mnt_stat.f_iosize;
2335 else
2336 bsize = size;
2338 offset = (off_t)blkno * bsize;
2339 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2340 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2341 maxsize = imax(maxsize, bsize);
2343 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2344 if (slpflag || slptimeo) {
2345 splx(s);
2346 return NULL;
2348 goto loop;
2352 * This code is used to make sure that a buffer is not
2353 * created while the getnewbuf routine is blocked.
2354 * This can be a problem whether the vnode is locked or not.
2355 * If the buffer is created out from under us, we have to
2356 * throw away the one we just created. There is now window
2357 * race because we are safely running at splbio() from the
2358 * point of the duplicate buffer creation through to here,
2359 * and we've locked the buffer.
2361 if (gbincore(vp, blkno)) {
2362 bp->b_flags |= B_INVAL;
2363 brelse(bp);
2364 goto loop;
2368 * Insert the buffer into the hash, so that it can
2369 * be found by incore.
2371 bp->b_blkno = bp->b_lblkno = blkno;
2372 bp->b_offset = offset;
2374 bgetvp(vp, bp);
2375 LIST_REMOVE(bp, b_hash);
2376 bh = bufhash(vp, blkno);
2377 LIST_INSERT_HEAD(bh, bp, b_hash);
2380 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
2381 * buffer size starts out as 0, B_CACHE will be set by
2382 * allocbuf() for the VMIO case prior to it testing the
2383 * backing store for validity.
2386 if (vmio) {
2387 bp->b_flags |= B_VMIO;
2388 #if defined(VFS_BIO_DEBUG)
2389 if (vn_canvmio(vp) != TRUE)
2390 printf("getblk: vmioing file type %d???\n", vp->v_type);
2391 #endif
2392 } else {
2393 bp->b_flags &= ~B_VMIO;
2396 allocbuf(bp, size);
2398 splx(s);
2399 bp->b_flags &= ~B_DONE;
2401 return (bp);
2405 * Get an empty, disassociated buffer of given size. The buffer is initially
2406 * set to B_INVAL.
2408 * spl protection is not required for the allocbuf() call because races are
2409 * impossible here.
2411 struct buf *
2412 geteblk(int size)
2414 struct buf *bp;
2415 int s;
2416 int maxsize;
2418 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2420 s = splbio();
2421 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2422 splx(s);
2423 allocbuf(bp, size);
2424 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2425 return (bp);
2430 * This code constitutes the buffer memory from either anonymous system
2431 * memory (in the case of non-VMIO operations) or from an associated
2432 * VM object (in the case of VMIO operations). This code is able to
2433 * resize a buffer up or down.
2435 * Note that this code is tricky, and has many complications to resolve
2436 * deadlock or inconsistant data situations. Tread lightly!!!
2437 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2438 * the caller. Calling this code willy nilly can result in the loss of data.
2440 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2441 * B_CACHE for the non-VMIO case.
2443 * This routine does not need to be called at splbio() but you must own the
2444 * buffer.
2447 allocbuf(struct buf *bp, int size)
2449 int newbsize, mbsize;
2450 int i;
2452 if (BUF_REFCNT(bp) == 0)
2453 panic("allocbuf: buffer not busy");
2455 if (bp->b_kvasize < size)
2456 panic("allocbuf: buffer too small");
2458 if ((bp->b_flags & B_VMIO) == 0) {
2459 caddr_t origbuf;
2460 int origbufsize;
2462 * Just get anonymous memory from the kernel. Don't
2463 * mess with B_CACHE.
2465 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2466 #if !defined(NO_B_MALLOC)
2467 if (bp->b_flags & B_MALLOC)
2468 newbsize = mbsize;
2469 else
2470 #endif
2471 newbsize = round_page(size);
2473 if (newbsize < bp->b_bufsize) {
2474 #if !defined(NO_B_MALLOC)
2476 * malloced buffers are not shrunk
2478 if (bp->b_flags & B_MALLOC) {
2479 if (newbsize) {
2480 bp->b_bcount = size;
2481 } else {
2482 free(bp->b_data, M_BIOBUF);
2483 if (bp->b_bufsize) {
2484 bufmallocspace -= bp->b_bufsize;
2485 bufspacewakeup();
2486 bp->b_bufsize = 0;
2488 bp->b_data = bp->b_kvabase;
2489 bp->b_bcount = 0;
2490 bp->b_flags &= ~B_MALLOC;
2492 return 1;
2494 #endif
2495 vm_hold_free_pages(
2497 (vm_offset_t) bp->b_data + newbsize,
2498 (vm_offset_t) bp->b_data + bp->b_bufsize);
2499 } else if (newbsize > bp->b_bufsize) {
2500 #if !defined(NO_B_MALLOC)
2502 * We only use malloced memory on the first allocation.
2503 * and revert to page-allocated memory when the buffer
2504 * grows.
2506 if ( (bufmallocspace < maxbufmallocspace) &&
2507 (bp->b_bufsize == 0) &&
2508 (mbsize <= PAGE_SIZE/2)) {
2510 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2511 bp->b_bufsize = mbsize;
2512 bp->b_bcount = size;
2513 bp->b_flags |= B_MALLOC;
2514 bufmallocspace += mbsize;
2515 return 1;
2517 #endif
2518 origbuf = NULL;
2519 origbufsize = 0;
2520 #if !defined(NO_B_MALLOC)
2522 * If the buffer is growing on its other-than-first allocation,
2523 * then we revert to the page-allocation scheme.
2525 if (bp->b_flags & B_MALLOC) {
2526 origbuf = bp->b_data;
2527 origbufsize = bp->b_bufsize;
2528 bp->b_data = bp->b_kvabase;
2529 if (bp->b_bufsize) {
2530 bufmallocspace -= bp->b_bufsize;
2531 bufspacewakeup();
2532 bp->b_bufsize = 0;
2534 bp->b_flags &= ~B_MALLOC;
2535 newbsize = round_page(newbsize);
2537 #endif
2538 vm_hold_load_pages(
2540 (vm_offset_t) bp->b_data + bp->b_bufsize,
2541 (vm_offset_t) bp->b_data + newbsize);
2542 #if !defined(NO_B_MALLOC)
2543 if (origbuf) {
2544 bcopy(origbuf, bp->b_data, origbufsize);
2545 free(origbuf, M_BIOBUF);
2547 #endif
2549 } else {
2550 vm_page_t m;
2551 int desiredpages;
2553 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2554 desiredpages = (size == 0) ? 0 :
2555 num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2557 #if !defined(NO_B_MALLOC)
2558 if (bp->b_flags & B_MALLOC)
2559 panic("allocbuf: VMIO buffer can't be malloced");
2560 #endif
2562 * Set B_CACHE initially if buffer is 0 length or will become
2563 * 0-length.
2565 if (size == 0 || bp->b_bufsize == 0)
2566 bp->b_flags |= B_CACHE;
2568 if (newbsize < bp->b_bufsize) {
2570 * DEV_BSIZE aligned new buffer size is less then the
2571 * DEV_BSIZE aligned existing buffer size. Figure out
2572 * if we have to remove any pages.
2574 if (desiredpages < bp->b_xio.xio_npages) {
2575 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2577 * the page is not freed here -- it
2578 * is the responsibility of
2579 * vnode_pager_setsize
2581 m = bp->b_xio.xio_pages[i];
2582 KASSERT(m != bogus_page,
2583 ("allocbuf: bogus page found"));
2584 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2587 bp->b_xio.xio_pages[i] = NULL;
2588 vm_page_unwire(m, 0);
2590 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2591 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2592 bp->b_xio.xio_npages = desiredpages;
2594 } else if (size > bp->b_bcount) {
2596 * We are growing the buffer, possibly in a
2597 * byte-granular fashion.
2599 struct vnode *vp;
2600 vm_object_t obj;
2601 vm_offset_t toff;
2602 vm_offset_t tinc;
2605 * Step 1, bring in the VM pages from the object,
2606 * allocating them if necessary. We must clear
2607 * B_CACHE if these pages are not valid for the
2608 * range covered by the buffer.
2610 * spl protection is required to protect against
2611 * interrupts unbusying and freeing pages between
2612 * our vm_page_lookup() and our busycheck/wiring
2613 * call.
2615 vp = bp->b_vp;
2616 VOP_GETVOBJECT(vp, &obj);
2618 crit_enter();
2619 while (bp->b_xio.xio_npages < desiredpages) {
2620 vm_page_t m;
2621 vm_pindex_t pi;
2623 pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages;
2624 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2626 * note: must allocate system pages
2627 * since blocking here could intefere
2628 * with paging I/O, no matter which
2629 * process we are.
2631 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2632 if (m == NULL) {
2633 vm_wait();
2634 vm_pageout_deficit += desiredpages -
2635 bp->b_xio.xio_npages;
2636 } else {
2637 vm_page_wire(m);
2638 vm_page_wakeup(m);
2639 bp->b_flags &= ~B_CACHE;
2640 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2641 ++bp->b_xio.xio_npages;
2643 continue;
2647 * We found a page. If we have to sleep on it,
2648 * retry because it might have gotten freed out
2649 * from under us.
2651 * We can only test PG_BUSY here. Blocking on
2652 * m->busy might lead to a deadlock:
2654 * vm_fault->getpages->cluster_read->allocbuf
2658 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2659 continue;
2662 * We have a good page. Should we wakeup the
2663 * page daemon?
2665 if ((curthread != pagethread) &&
2666 ((m->queue - m->pc) == PQ_CACHE) &&
2667 ((vmstats.v_free_count + vmstats.v_cache_count) <
2668 (vmstats.v_free_min + vmstats.v_cache_min))) {
2669 pagedaemon_wakeup();
2671 vm_page_flag_clear(m, PG_ZERO);
2672 vm_page_wire(m);
2673 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2674 ++bp->b_xio.xio_npages;
2676 crit_exit();
2679 * Step 2. We've loaded the pages into the buffer,
2680 * we have to figure out if we can still have B_CACHE
2681 * set. Note that B_CACHE is set according to the
2682 * byte-granular range ( bcount and size ), new the
2683 * aligned range ( newbsize ).
2685 * The VM test is against m->valid, which is DEV_BSIZE
2686 * aligned. Needless to say, the validity of the data
2687 * needs to also be DEV_BSIZE aligned. Note that this
2688 * fails with NFS if the server or some other client
2689 * extends the file's EOF. If our buffer is resized,
2690 * B_CACHE may remain set! XXX
2693 toff = bp->b_bcount;
2694 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2696 while ((bp->b_flags & B_CACHE) && toff < size) {
2697 vm_pindex_t pi;
2699 if (tinc > (size - toff))
2700 tinc = size - toff;
2702 pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2703 PAGE_SHIFT;
2705 vfs_buf_test_cache(
2706 bp,
2707 bp->b_offset,
2708 toff,
2709 tinc,
2710 bp->b_xio.xio_pages[pi]
2712 toff += tinc;
2713 tinc = PAGE_SIZE;
2717 * Step 3, fixup the KVM pmap. Remember that
2718 * bp->b_data is relative to bp->b_offset, but
2719 * bp->b_offset may be offset into the first page.
2722 bp->b_data = (caddr_t)
2723 trunc_page((vm_offset_t)bp->b_data);
2724 pmap_qenter(
2725 (vm_offset_t)bp->b_data,
2726 bp->b_xio.xio_pages,
2727 bp->b_xio.xio_npages
2729 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2730 (vm_offset_t)(bp->b_offset & PAGE_MASK));
2733 if (newbsize < bp->b_bufsize)
2734 bufspacewakeup();
2735 bp->b_bufsize = newbsize; /* actual buffer allocation */
2736 bp->b_bcount = size; /* requested buffer size */
2737 return 1;
2741 * biowait:
2743 * Wait for buffer I/O completion, returning error status. The buffer
2744 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR
2745 * error and cleared.
2748 biowait(struct buf * bp)
2750 int s;
2752 s = splbio();
2753 while ((bp->b_flags & B_DONE) == 0) {
2754 #if defined(NO_SCHEDULE_MODS)
2755 tsleep(bp, 0, "biowait", 0);
2756 #else
2757 if (bp->b_flags & B_READ)
2758 tsleep(bp, 0, "biord", 0);
2759 else
2760 tsleep(bp, 0, "biowr", 0);
2761 #endif
2763 splx(s);
2764 if (bp->b_flags & B_EINTR) {
2765 bp->b_flags &= ~B_EINTR;
2766 return (EINTR);
2768 if (bp->b_flags & B_ERROR) {
2769 return (bp->b_error ? bp->b_error : EIO);
2770 } else {
2771 return (0);
2776 * biodone:
2778 * Finish I/O on a buffer, optionally calling a completion function.
2779 * This is usually called from an interrupt so process blocking is
2780 * not allowed.
2782 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2783 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2784 * assuming B_INVAL is clear.
2786 * For the VMIO case, we set B_CACHE if the op was a read and no
2787 * read error occured, or if the op was a write. B_CACHE is never
2788 * set if the buffer is invalid or otherwise uncacheable.
2790 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2791 * initiator to leave B_INVAL set to brelse the buffer out of existance
2792 * in the biodone routine.
2794 * b_dev is required to be reinitialized prior to the top level strategy
2795 * call in a device stack. To avoid improper reuse, biodone() sets
2796 * b_dev to NODEV.
2798 void
2799 biodone(struct buf *bp)
2801 int s, error;
2803 s = splbio();
2805 KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2806 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2808 bp->b_flags |= B_DONE;
2809 bp->b_dev = NODEV;
2810 runningbufwakeup(bp);
2812 if (bp->b_flags & B_FREEBUF) {
2813 brelse(bp);
2814 splx(s);
2815 return;
2818 if ((bp->b_flags & B_READ) == 0) {
2819 vwakeup(bp);
2822 /* call optional completion function if requested */
2823 if (bp->b_flags & B_CALL) {
2824 bp->b_flags &= ~B_CALL;
2825 (*bp->b_iodone) (bp);
2826 splx(s);
2827 return;
2829 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2830 (*bioops.io_complete)(bp);
2832 if (bp->b_flags & B_VMIO) {
2833 int i;
2834 vm_ooffset_t foff;
2835 vm_page_t m;
2836 vm_object_t obj;
2837 int iosize;
2838 struct vnode *vp = bp->b_vp;
2840 error = VOP_GETVOBJECT(vp, &obj);
2842 #if defined(VFS_BIO_DEBUG)
2843 if (vp->v_holdcnt == 0) {
2844 panic("biodone: zero vnode hold count");
2847 if (error) {
2848 panic("biodone: missing VM object");
2851 if ((vp->v_flag & VOBJBUF) == 0) {
2852 panic("biodone: vnode is not setup for merged cache");
2854 #endif
2856 foff = bp->b_offset;
2857 KASSERT(bp->b_offset != NOOFFSET,
2858 ("biodone: no buffer offset"));
2860 if (error) {
2861 panic("biodone: no object");
2863 #if defined(VFS_BIO_DEBUG)
2864 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2865 printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2866 obj->paging_in_progress, bp->b_xio.xio_npages);
2868 #endif
2871 * Set B_CACHE if the op was a normal read and no error
2872 * occured. B_CACHE is set for writes in the b*write()
2873 * routines.
2875 iosize = bp->b_bcount - bp->b_resid;
2876 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2877 bp->b_flags |= B_CACHE;
2880 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2881 int bogusflag = 0;
2882 int resid;
2884 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2885 if (resid > iosize)
2886 resid = iosize;
2889 * cleanup bogus pages, restoring the originals. Since
2890 * the originals should still be wired, we don't have
2891 * to worry about interrupt/freeing races destroying
2892 * the VM object association.
2894 m = bp->b_xio.xio_pages[i];
2895 if (m == bogus_page) {
2896 bogusflag = 1;
2897 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2898 if (m == NULL)
2899 panic("biodone: page disappeared");
2900 bp->b_xio.xio_pages[i] = m;
2901 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2902 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2904 #if defined(VFS_BIO_DEBUG)
2905 if (OFF_TO_IDX(foff) != m->pindex) {
2906 printf(
2907 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2908 (unsigned long)foff, m->pindex);
2910 #endif
2913 * In the write case, the valid and clean bits are
2914 * already changed correctly ( see bdwrite() ), so we
2915 * only need to do this here in the read case.
2917 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2918 vfs_page_set_valid(bp, foff, i, m);
2920 vm_page_flag_clear(m, PG_ZERO);
2923 * when debugging new filesystems or buffer I/O methods, this
2924 * is the most common error that pops up. if you see this, you
2925 * have not set the page busy flag correctly!!!
2927 if (m->busy == 0) {
2928 printf("biodone: page busy < 0, "
2929 "pindex: %d, foff: 0x(%x,%x), "
2930 "resid: %d, index: %d\n",
2931 (int) m->pindex, (int)(foff >> 32),
2932 (int) foff & 0xffffffff, resid, i);
2933 if (!vn_isdisk(vp, NULL))
2934 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2935 bp->b_vp->v_mount->mnt_stat.f_iosize,
2936 (int) bp->b_lblkno,
2937 bp->b_flags, bp->b_xio.xio_npages);
2938 else
2939 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2940 (int) bp->b_lblkno,
2941 bp->b_flags, bp->b_xio.xio_npages);
2942 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2943 m->valid, m->dirty, m->wire_count);
2944 panic("biodone: page busy < 0");
2946 vm_page_io_finish(m);
2947 vm_object_pip_subtract(obj, 1);
2948 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2949 iosize -= resid;
2951 if (obj)
2952 vm_object_pip_wakeupn(obj, 0);
2956 * For asynchronous completions, release the buffer now. The brelse
2957 * will do a wakeup there if necessary - so no need to do a wakeup
2958 * here in the async case. The sync case always needs to do a wakeup.
2961 if (bp->b_flags & B_ASYNC) {
2962 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2963 brelse(bp);
2964 else
2965 bqrelse(bp);
2966 } else {
2967 wakeup(bp);
2969 splx(s);
2973 * This routine is called in lieu of iodone in the case of
2974 * incomplete I/O. This keeps the busy status for pages
2975 * consistant.
2977 void
2978 vfs_unbusy_pages(struct buf *bp)
2980 int i;
2982 runningbufwakeup(bp);
2983 if (bp->b_flags & B_VMIO) {
2984 struct vnode *vp = bp->b_vp;
2985 vm_object_t obj;
2987 VOP_GETVOBJECT(vp, &obj);
2989 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2990 vm_page_t m = bp->b_xio.xio_pages[i];
2993 * When restoring bogus changes the original pages
2994 * should still be wired, so we are in no danger of
2995 * losing the object association and do not need
2996 * spl protection particularly.
2998 if (m == bogus_page) {
2999 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3000 if (!m) {
3001 panic("vfs_unbusy_pages: page missing");
3003 bp->b_xio.xio_pages[i] = m;
3004 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3005 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3007 vm_object_pip_subtract(obj, 1);
3008 vm_page_flag_clear(m, PG_ZERO);
3009 vm_page_io_finish(m);
3011 vm_object_pip_wakeupn(obj, 0);
3016 * vfs_page_set_valid:
3018 * Set the valid bits in a page based on the supplied offset. The
3019 * range is restricted to the buffer's size.
3021 * This routine is typically called after a read completes.
3023 static void
3024 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3026 vm_ooffset_t soff, eoff;
3029 * Start and end offsets in buffer. eoff - soff may not cross a
3030 * page boundry or cross the end of the buffer. The end of the
3031 * buffer, in this case, is our file EOF, not the allocation size
3032 * of the buffer.
3034 soff = off;
3035 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3036 if (eoff > bp->b_offset + bp->b_bcount)
3037 eoff = bp->b_offset + bp->b_bcount;
3040 * Set valid range. This is typically the entire buffer and thus the
3041 * entire page.
3043 if (eoff > soff) {
3044 vm_page_set_validclean(
3046 (vm_offset_t) (soff & PAGE_MASK),
3047 (vm_offset_t) (eoff - soff)
3053 * This routine is called before a device strategy routine.
3054 * It is used to tell the VM system that paging I/O is in
3055 * progress, and treat the pages associated with the buffer
3056 * almost as being PG_BUSY. Also the object paging_in_progress
3057 * flag is handled to make sure that the object doesn't become
3058 * inconsistant.
3060 * Since I/O has not been initiated yet, certain buffer flags
3061 * such as B_ERROR or B_INVAL may be in an inconsistant state
3062 * and should be ignored.
3064 void
3065 vfs_busy_pages(struct buf *bp, int clear_modify)
3067 int i, bogus;
3069 if (bp->b_flags & B_VMIO) {
3070 struct vnode *vp = bp->b_vp;
3071 vm_object_t obj;
3072 vm_ooffset_t foff;
3074 VOP_GETVOBJECT(vp, &obj);
3075 foff = bp->b_offset;
3076 KASSERT(bp->b_offset != NOOFFSET,
3077 ("vfs_busy_pages: no buffer offset"));
3078 vfs_setdirty(bp);
3080 retry:
3081 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3082 vm_page_t m = bp->b_xio.xio_pages[i];
3083 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3084 goto retry;
3087 bogus = 0;
3088 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3089 vm_page_t m = bp->b_xio.xio_pages[i];
3091 vm_page_flag_clear(m, PG_ZERO);
3092 if ((bp->b_flags & B_CLUSTER) == 0) {
3093 vm_object_pip_add(obj, 1);
3094 vm_page_io_start(m);
3098 * When readying a buffer for a read ( i.e
3099 * clear_modify == 0 ), it is important to do
3100 * bogus_page replacement for valid pages in
3101 * partially instantiated buffers. Partially
3102 * instantiated buffers can, in turn, occur when
3103 * reconstituting a buffer from its VM backing store
3104 * base. We only have to do this if B_CACHE is
3105 * clear ( which causes the I/O to occur in the
3106 * first place ). The replacement prevents the read
3107 * I/O from overwriting potentially dirty VM-backed
3108 * pages. XXX bogus page replacement is, uh, bogus.
3109 * It may not work properly with small-block devices.
3110 * We need to find a better way.
3113 vm_page_protect(m, VM_PROT_NONE);
3114 if (clear_modify)
3115 vfs_page_set_valid(bp, foff, i, m);
3116 else if (m->valid == VM_PAGE_BITS_ALL &&
3117 (bp->b_flags & B_CACHE) == 0) {
3118 bp->b_xio.xio_pages[i] = bogus_page;
3119 bogus++;
3121 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3123 if (bogus)
3124 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3125 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3129 * This is the easiest place to put the process accounting for the I/O
3130 * for now.
3133 struct proc *p;
3135 if ((p = curthread->td_proc) != NULL) {
3136 if (bp->b_flags & B_READ)
3137 p->p_stats->p_ru.ru_inblock++;
3138 else
3139 p->p_stats->p_ru.ru_oublock++;
3145 * Tell the VM system that the pages associated with this buffer
3146 * are clean. This is used for delayed writes where the data is
3147 * going to go to disk eventually without additional VM intevention.
3149 * Note that while we only really need to clean through to b_bcount, we
3150 * just go ahead and clean through to b_bufsize.
3152 static void
3153 vfs_clean_pages(struct buf *bp)
3155 int i;
3157 if (bp->b_flags & B_VMIO) {
3158 vm_ooffset_t foff;
3160 foff = bp->b_offset;
3161 KASSERT(bp->b_offset != NOOFFSET,
3162 ("vfs_clean_pages: no buffer offset"));
3163 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3164 vm_page_t m = bp->b_xio.xio_pages[i];
3165 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3166 vm_ooffset_t eoff = noff;
3168 if (eoff > bp->b_offset + bp->b_bufsize)
3169 eoff = bp->b_offset + bp->b_bufsize;
3170 vfs_page_set_valid(bp, foff, i, m);
3171 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3172 foff = noff;
3178 * vfs_bio_set_validclean:
3180 * Set the range within the buffer to valid and clean. The range is
3181 * relative to the beginning of the buffer, b_offset. Note that b_offset
3182 * itself may be offset from the beginning of the first page.
3185 void
3186 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3188 if (bp->b_flags & B_VMIO) {
3189 int i;
3190 int n;
3193 * Fixup base to be relative to beginning of first page.
3194 * Set initial n to be the maximum number of bytes in the
3195 * first page that can be validated.
3198 base += (bp->b_offset & PAGE_MASK);
3199 n = PAGE_SIZE - (base & PAGE_MASK);
3201 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3202 vm_page_t m = bp->b_xio.xio_pages[i];
3204 if (n > size)
3205 n = size;
3207 vm_page_set_validclean(m, base & PAGE_MASK, n);
3208 base += n;
3209 size -= n;
3210 n = PAGE_SIZE;
3216 * vfs_bio_clrbuf:
3218 * clear a buffer. This routine essentially fakes an I/O, so we need
3219 * to clear B_ERROR and B_INVAL.
3221 * Note that while we only theoretically need to clear through b_bcount,
3222 * we go ahead and clear through b_bufsize.
3225 void
3226 vfs_bio_clrbuf(struct buf *bp)
3228 int i, mask = 0;
3229 caddr_t sa, ea;
3230 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3231 bp->b_flags &= ~(B_INVAL|B_ERROR);
3232 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3233 (bp->b_offset & PAGE_MASK) == 0) {
3234 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3235 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3236 bp->b_resid = 0;
3237 return;
3239 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3240 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3241 bzero(bp->b_data, bp->b_bufsize);
3242 bp->b_xio.xio_pages[0]->valid |= mask;
3243 bp->b_resid = 0;
3244 return;
3247 ea = sa = bp->b_data;
3248 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3249 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3250 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3251 ea = (caddr_t)(vm_offset_t)ulmin(
3252 (u_long)(vm_offset_t)ea,
3253 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3254 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3255 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3256 continue;
3257 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3258 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3259 bzero(sa, ea - sa);
3261 } else {
3262 for (; sa < ea; sa += DEV_BSIZE, j++) {
3263 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3264 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3265 bzero(sa, DEV_BSIZE);
3268 bp->b_xio.xio_pages[i]->valid |= mask;
3269 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3271 bp->b_resid = 0;
3272 } else {
3273 clrbuf(bp);
3278 * vm_hold_load_pages and vm_hold_unload pages get pages into
3279 * a buffers address space. The pages are anonymous and are
3280 * not associated with a file object.
3282 void
3283 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3285 vm_offset_t pg;
3286 vm_page_t p;
3287 int index;
3289 to = round_page(to);
3290 from = round_page(from);
3291 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3293 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3295 tryagain:
3298 * note: must allocate system pages since blocking here
3299 * could intefere with paging I/O, no matter which
3300 * process we are.
3302 p = vm_page_alloc(kernel_object,
3303 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3304 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3305 if (!p) {
3306 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3307 vm_wait();
3308 goto tryagain;
3310 vm_page_wire(p);
3311 p->valid = VM_PAGE_BITS_ALL;
3312 vm_page_flag_clear(p, PG_ZERO);
3313 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3314 bp->b_xio.xio_pages[index] = p;
3315 vm_page_wakeup(p);
3317 bp->b_xio.xio_npages = index;
3320 void
3321 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3323 vm_offset_t pg;
3324 vm_page_t p;
3325 int index, newnpages;
3327 from = round_page(from);
3328 to = round_page(to);
3329 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3331 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3332 p = bp->b_xio.xio_pages[index];
3333 if (p && (index < bp->b_xio.xio_npages)) {
3334 if (p->busy) {
3335 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3336 bp->b_blkno, bp->b_lblkno);
3338 bp->b_xio.xio_pages[index] = NULL;
3339 pmap_kremove(pg);
3340 vm_page_busy(p);
3341 vm_page_unwire(p, 0);
3342 vm_page_free(p);
3345 bp->b_xio.xio_npages = newnpages;
3349 * Map an IO request into kernel virtual address space.
3351 * All requests are (re)mapped into kernel VA space.
3352 * Notice that we use b_bufsize for the size of the buffer
3353 * to be mapped. b_bcount might be modified by the driver.
3356 vmapbuf(struct buf *bp)
3358 caddr_t addr, v, kva;
3359 vm_paddr_t pa;
3360 int pidx;
3361 int i;
3362 struct vm_page *m;
3364 if ((bp->b_flags & B_PHYS) == 0)
3365 panic("vmapbuf");
3366 if (bp->b_bufsize < 0)
3367 return (-1);
3368 for (v = bp->b_saveaddr,
3369 addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3370 pidx = 0;
3371 addr < bp->b_data + bp->b_bufsize;
3372 addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3374 * Do the vm_fault if needed; do the copy-on-write thing
3375 * when reading stuff off device into memory.
3377 retry:
3378 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3379 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3380 if (i < 0) {
3381 for (i = 0; i < pidx; ++i) {
3382 vm_page_unhold(bp->b_xio.xio_pages[i]);
3383 bp->b_xio.xio_pages[i] = NULL;
3385 return(-1);
3389 * WARNING! If sparc support is MFCd in the future this will
3390 * have to be changed from pmap_kextract() to pmap_extract()
3391 * ala -current.
3393 #ifdef __sparc64__
3394 #error "If MFCing sparc support use pmap_extract"
3395 #endif
3396 pa = pmap_kextract((vm_offset_t)addr);
3397 if (pa == 0) {
3398 printf("vmapbuf: warning, race against user address during I/O");
3399 goto retry;
3401 m = PHYS_TO_VM_PAGE(pa);
3402 vm_page_hold(m);
3403 bp->b_xio.xio_pages[pidx] = m;
3405 if (pidx > btoc(MAXPHYS))
3406 panic("vmapbuf: mapped more than MAXPHYS");
3407 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3409 kva = bp->b_saveaddr;
3410 bp->b_xio.xio_npages = pidx;
3411 bp->b_saveaddr = bp->b_data;
3412 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3413 return(0);
3417 * Free the io map PTEs associated with this IO operation.
3418 * We also invalidate the TLB entries and restore the original b_addr.
3420 void
3421 vunmapbuf(struct buf *bp)
3423 int pidx;
3424 int npages;
3425 vm_page_t *m;
3427 if ((bp->b_flags & B_PHYS) == 0)
3428 panic("vunmapbuf");
3430 npages = bp->b_xio.xio_npages;
3431 pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3432 npages);
3433 m = bp->b_xio.xio_pages;
3434 for (pidx = 0; pidx < npages; pidx++)
3435 vm_page_unhold(*m++);
3437 bp->b_data = bp->b_saveaddr;
3440 #include "opt_ddb.h"
3441 #ifdef DDB
3442 #include <ddb/ddb.h>
3444 DB_SHOW_COMMAND(buffer, db_show_buffer)
3446 /* get args */
3447 struct buf *bp = (struct buf *)addr;
3449 if (!have_addr) {
3450 db_printf("usage: show buffer <addr>\n");
3451 return;
3454 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3455 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3456 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3457 "b_blkno = %d, b_pblkno = %d\n",
3458 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3459 major(bp->b_dev), minor(bp->b_dev),
3460 bp->b_data, bp->b_blkno, bp->b_pblkno);
3461 if (bp->b_xio.xio_npages) {
3462 int i;
3463 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3464 bp->b_xio.xio_npages);
3465 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3466 vm_page_t m;
3467 m = bp->b_xio.xio_pages[i];
3468 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3469 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3470 if ((i + 1) < bp->b_xio.xio_npages)
3471 db_printf(",");
3473 db_printf("\n");
3476 #endif /* DDB */