More -Wwrite-strings cleanup and make sure you can actually play it.
[dragonfly.git] / sys / kern / kern_clock.c
blob39c6407944ee233b38e4eb0f50d24ce94e57c05c
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.40 2005/04/27 14:31:19 hmp Exp $
76 #include "opt_ntp.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/kernel.h>
82 #include <sys/kinfo.h>
83 #include <sys/proc.h>
84 #include <sys/malloc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signalvar.h>
87 #include <sys/timex.h>
88 #include <sys/timepps.h>
89 #include <vm/vm.h>
90 #include <sys/lock.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <sys/sysctl.h>
94 #include <sys/thread2.h>
96 #include <machine/cpu.h>
97 #include <machine/limits.h>
98 #include <machine/smp.h>
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
104 #ifdef DEVICE_POLLING
105 extern void init_device_poll(void);
106 extern void hardclock_device_poll(void);
107 #endif /* DEVICE_POLLING */
109 static void initclocks (void *dummy);
110 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
113 * Some of these don't belong here, but it's easiest to concentrate them.
114 * Note that cpu_time counts in microseconds, but most userland programs
115 * just compare relative times against the total by delta.
117 struct kinfo_cputime cputime_percpu[MAXCPU];
118 #ifdef SMP
119 static int
120 sysctl_cputime(SYSCTL_HANDLER_ARGS)
122 int cpu, error = 0;
123 size_t size = sizeof(struct kinfo_cputime);
125 for (cpu = 0; cpu < ncpus; ++cpu) {
126 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
127 break;
130 return (error);
132 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
133 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
134 #else
135 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
136 "CPU time statistics");
137 #endif
140 * boottime is used to calculate the 'real' uptime. Do not confuse this with
141 * microuptime(). microtime() is not drift compensated. The real uptime
142 * with compensation is nanotime() - bootime. boottime is recalculated
143 * whenever the real time is set based on the compensated elapsed time
144 * in seconds (gd->gd_time_seconds).
146 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
147 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
148 * the real time.
150 struct timespec boottime; /* boot time (realtime) for reference only */
151 time_t time_second; /* read-only 'passive' uptime in seconds */
154 * basetime is used to calculate the compensated real time of day. The
155 * basetime can be modified on a per-tick basis by the adjtime(),
156 * ntp_adjtime(), and sysctl-based time correction APIs.
158 * Note that frequency corrections can also be made by adjusting
159 * gd_cpuclock_base.
161 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
162 * used on both SMP and UP systems to avoid MP races between cpu's and
163 * interrupt races on UP systems.
165 #define BASETIME_ARYSIZE 16
166 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
167 static struct timespec basetime[BASETIME_ARYSIZE];
168 static volatile int basetime_index;
170 static int
171 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
173 struct timespec *bt;
174 int error;
176 bt = &basetime[basetime_index];
177 error = SYSCTL_OUT(req, bt, sizeof(*bt));
178 return (error);
181 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
182 &boottime, timespec, "System boottime");
183 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
184 sysctl_get_basetime, "S,timespec", "System basetime");
186 static void hardclock(systimer_t info, struct intrframe *frame);
187 static void statclock(systimer_t info, struct intrframe *frame);
188 static void schedclock(systimer_t info, struct intrframe *frame);
189 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
191 int ticks; /* system master ticks at hz */
192 int clocks_running; /* tsleep/timeout clocks operational */
193 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
194 int64_t nsec_acc; /* accumulator */
196 /* NTPD time correction fields */
197 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
198 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
199 int64_t ntp_delta; /* one-time correction in nsec */
200 int64_t ntp_big_delta = 1000000000;
201 int32_t ntp_tick_delta; /* current adjustment rate */
202 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
203 time_t ntp_leap_second; /* time of next leap second */
204 int ntp_leap_insert; /* whether to insert or remove a second */
207 * Finish initializing clock frequencies and start all clocks running.
209 /* ARGSUSED*/
210 static void
211 initclocks(void *dummy)
213 cpu_initclocks();
214 #ifdef DEVICE_POLLING
215 init_device_poll();
216 #endif
217 /*psratio = profhz / stathz;*/
218 initclocks_pcpu();
219 clocks_running = 1;
223 * Called on a per-cpu basis
225 void
226 initclocks_pcpu(void)
228 struct globaldata *gd = mycpu;
230 crit_enter();
231 if (gd->gd_cpuid == 0) {
232 gd->gd_time_seconds = 1;
233 gd->gd_cpuclock_base = cputimer_count();
234 } else {
235 /* XXX */
236 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
237 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
241 * Use a non-queued periodic systimer to prevent multiple ticks from
242 * building up if the sysclock jumps forward (8254 gets reset). The
243 * sysclock will never jump backwards. Our time sync is based on
244 * the actual sysclock, not the ticks count.
246 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
247 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
248 /* XXX correct the frequency for scheduler / estcpu tests */
249 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
250 NULL, ESTCPUFREQ);
251 crit_exit();
255 * This sets the current real time of day. Timespecs are in seconds and
256 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
257 * instead we adjust basetime so basetime + gd_* results in the current
258 * time of day. This way the gd_* fields are guarenteed to represent
259 * a monotonically increasing 'uptime' value.
261 * When set_timeofday() is called from userland, the system call forces it
262 * onto cpu #0 since only cpu #0 can update basetime_index.
264 void
265 set_timeofday(struct timespec *ts)
267 struct timespec *nbt;
268 int ni;
271 * XXX SMP / non-atomic basetime updates
273 crit_enter();
274 ni = (basetime_index + 1) & BASETIME_ARYMASK;
275 nbt = &basetime[ni];
276 nanouptime(nbt);
277 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
278 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
279 if (nbt->tv_nsec < 0) {
280 nbt->tv_nsec += 1000000000;
281 --nbt->tv_sec;
285 * Note that basetime diverges from boottime as the clock drift is
286 * compensated for, so we cannot do away with boottime. When setting
287 * the absolute time of day the drift is 0 (for an instant) and we
288 * can simply assign boottime to basetime.
290 * Note that nanouptime() is based on gd_time_seconds which is drift
291 * compensated up to a point (it is guarenteed to remain monotonically
292 * increasing). gd_time_seconds is thus our best uptime guess and
293 * suitable for use in the boottime calculation. It is already taken
294 * into account in the basetime calculation above.
296 boottime.tv_sec = nbt->tv_sec;
297 ntp_delta = 0;
300 * We now have a new basetime, update the index.
302 cpu_mb1();
303 basetime_index = ni;
305 crit_exit();
309 * Each cpu has its own hardclock, but we only increments ticks and softticks
310 * on cpu #0.
312 * NOTE! systimer! the MP lock might not be held here. We can only safely
313 * manipulate objects owned by the current cpu.
315 static void
316 hardclock(systimer_t info, struct intrframe *frame)
318 sysclock_t cputicks;
319 struct proc *p;
320 struct pstats *pstats;
321 struct globaldata *gd = mycpu;
324 * Realtime updates are per-cpu. Note that timer corrections as
325 * returned by microtime() and friends make an additional adjustment
326 * using a system-wise 'basetime', but the running time is always
327 * taken from the per-cpu globaldata area. Since the same clock
328 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
329 * stay in synch.
331 * Note that we never allow info->time (aka gd->gd_hardclock.time)
332 * to reverse index gd_cpuclock_base, but that it is possible for
333 * it to temporarily get behind in the seconds if something in the
334 * system locks interrupts for a long period of time. Since periodic
335 * timers count events, though everything should resynch again
336 * immediately.
338 cputicks = info->time - gd->gd_cpuclock_base;
339 if (cputicks >= cputimer_freq) {
340 ++gd->gd_time_seconds;
341 gd->gd_cpuclock_base += cputimer_freq;
345 * The system-wide ticks counter and NTP related timedelta/tickdelta
346 * adjustments only occur on cpu #0. NTP adjustments are accomplished
347 * by updating basetime.
349 if (gd->gd_cpuid == 0) {
350 struct timespec *nbt;
351 struct timespec nts;
352 int leap;
353 int ni;
355 ++ticks;
357 #ifdef DEVICE_POLLING
358 hardclock_device_poll(); /* mpsafe, short and quick */
359 #endif /* DEVICE_POLLING */
361 #if 0
362 if (tco->tc_poll_pps)
363 tco->tc_poll_pps(tco);
364 #endif
367 * Calculate the new basetime index. We are in a critical section
368 * on cpu #0 and can safely play with basetime_index. Start
369 * with the current basetime and then make adjustments.
371 ni = (basetime_index + 1) & BASETIME_ARYMASK;
372 nbt = &basetime[ni];
373 *nbt = basetime[basetime_index];
376 * Apply adjtime corrections. (adjtime() API)
378 * adjtime() only runs on cpu #0 so our critical section is
379 * sufficient to access these variables.
381 if (ntp_delta != 0) {
382 nbt->tv_nsec += ntp_tick_delta;
383 ntp_delta -= ntp_tick_delta;
384 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
385 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
386 ntp_tick_delta = ntp_delta;
391 * Apply permanent frequency corrections. (sysctl API)
393 if (ntp_tick_permanent != 0) {
394 ntp_tick_acc += ntp_tick_permanent;
395 if (ntp_tick_acc >= (1LL << 32)) {
396 nbt->tv_nsec += ntp_tick_acc >> 32;
397 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
398 } else if (ntp_tick_acc <= -(1LL << 32)) {
399 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
400 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
401 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
405 if (nbt->tv_nsec >= 1000000000) {
406 nbt->tv_sec++;
407 nbt->tv_nsec -= 1000000000;
408 } else if (nbt->tv_nsec < 0) {
409 nbt->tv_sec--;
410 nbt->tv_nsec += 1000000000;
414 * Another per-tick compensation. (for ntp_adjtime() API)
416 if (nsec_adj != 0) {
417 nsec_acc += nsec_adj;
418 if (nsec_acc >= 0x100000000LL) {
419 nbt->tv_nsec += nsec_acc >> 32;
420 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
421 } else if (nsec_acc <= -0x100000000LL) {
422 nbt->tv_nsec -= -nsec_acc >> 32;
423 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
425 if (nbt->tv_nsec >= 1000000000) {
426 nbt->tv_nsec -= 1000000000;
427 ++nbt->tv_sec;
428 } else if (nbt->tv_nsec < 0) {
429 nbt->tv_nsec += 1000000000;
430 --nbt->tv_sec;
434 /************************************************************
435 * LEAP SECOND CORRECTION *
436 ************************************************************
438 * Taking into account all the corrections made above, figure
439 * out the new real time. If the seconds field has changed
440 * then apply any pending leap-second corrections.
442 getnanotime_nbt(nbt, &nts);
444 if (time_second != nts.tv_sec) {
446 * Apply leap second (sysctl API). Adjust nts for changes
447 * so we do not have to call getnanotime_nbt again.
449 if (ntp_leap_second) {
450 if (ntp_leap_second == nts.tv_sec) {
451 if (ntp_leap_insert) {
452 nbt->tv_sec++;
453 nts.tv_sec++;
454 } else {
455 nbt->tv_sec--;
456 nts.tv_sec--;
458 ntp_leap_second--;
463 * Apply leap second (ntp_adjtime() API), calculate a new
464 * nsec_adj field. ntp_update_second() returns nsec_adj
465 * as a per-second value but we need it as a per-tick value.
467 leap = ntp_update_second(time_second, &nsec_adj);
468 nsec_adj /= hz;
469 nbt->tv_sec += leap;
470 nts.tv_sec += leap;
473 * Update the time_second 'approximate time' global.
475 time_second = nts.tv_sec;
479 * Finally, our new basetime is ready to go live!
481 cpu_mb1();
482 basetime_index = ni;
486 * softticks are handled for all cpus
488 hardclock_softtick(gd);
491 * ITimer handling is per-tick, per-cpu. I don't think psignal()
492 * is mpsafe on curproc, so XXX get the mplock.
494 if ((p = curproc) != NULL && try_mplock()) {
495 pstats = p->p_stats;
496 if (frame && CLKF_USERMODE(frame) &&
497 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
498 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
499 psignal(p, SIGVTALRM);
500 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
501 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
502 psignal(p, SIGPROF);
503 rel_mplock();
505 setdelayed();
509 * The statistics clock typically runs at a 125Hz rate, and is intended
510 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
512 * NOTE! systimer! the MP lock might not be held here. We can only safely
513 * manipulate objects owned by the current cpu.
515 * The stats clock is responsible for grabbing a profiling sample.
516 * Most of the statistics are only used by user-level statistics programs.
517 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
518 * p->p_estcpu.
520 * Like the other clocks, the stat clock is called from what is effectively
521 * a fast interrupt, so the context should be the thread/process that got
522 * interrupted.
524 static void
525 statclock(systimer_t info, struct intrframe *frame)
527 #ifdef GPROF
528 struct gmonparam *g;
529 int i;
530 #endif
531 thread_t td;
532 struct proc *p;
533 int bump;
534 struct timeval tv;
535 struct timeval *stv;
538 * How big was our timeslice relative to the last time?
540 microuptime(&tv); /* mpsafe */
541 stv = &mycpu->gd_stattv;
542 if (stv->tv_sec == 0) {
543 bump = 1;
544 } else {
545 bump = tv.tv_usec - stv->tv_usec +
546 (tv.tv_sec - stv->tv_sec) * 1000000;
547 if (bump < 0)
548 bump = 0;
549 if (bump > 1000000)
550 bump = 1000000;
552 *stv = tv;
554 td = curthread;
555 p = td->td_proc;
557 if (frame && CLKF_USERMODE(frame)) {
559 * Came from userland, handle user time and deal with
560 * possible process.
562 if (p && (p->p_flag & P_PROFIL))
563 addupc_intr(p, CLKF_PC(frame), 1);
564 td->td_uticks += bump;
567 * Charge the time as appropriate
569 if (p && p->p_nice > NZERO)
570 cpu_time.cp_nice += bump;
571 else
572 cpu_time.cp_user += bump;
573 } else {
574 #ifdef GPROF
576 * Kernel statistics are just like addupc_intr, only easier.
578 g = &_gmonparam;
579 if (g->state == GMON_PROF_ON && frame) {
580 i = CLKF_PC(frame) - g->lowpc;
581 if (i < g->textsize) {
582 i /= HISTFRACTION * sizeof(*g->kcount);
583 g->kcount[i]++;
586 #endif
588 * Came from kernel mode, so we were:
589 * - handling an interrupt,
590 * - doing syscall or trap work on behalf of the current
591 * user process, or
592 * - spinning in the idle loop.
593 * Whichever it is, charge the time as appropriate.
594 * Note that we charge interrupts to the current process,
595 * regardless of whether they are ``for'' that process,
596 * so that we know how much of its real time was spent
597 * in ``non-process'' (i.e., interrupt) work.
599 * XXX assume system if frame is NULL. A NULL frame
600 * can occur if ipi processing is done from an splx().
602 if (frame && CLKF_INTR(frame))
603 td->td_iticks += bump;
604 else
605 td->td_sticks += bump;
607 if (frame && CLKF_INTR(frame)) {
608 cpu_time.cp_intr += bump;
609 } else {
610 if (td == &mycpu->gd_idlethread)
611 cpu_time.cp_idle += bump;
612 else
613 cpu_time.cp_sys += bump;
619 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer,
620 * the MP lock might not be held. We can safely manipulate parts of curproc
621 * but that's about it.
623 static void
624 schedclock(systimer_t info, struct intrframe *frame)
626 struct proc *p;
627 struct pstats *pstats;
628 struct rusage *ru;
629 struct vmspace *vm;
630 long rss;
632 schedulerclock(NULL); /* mpsafe */
633 if ((p = curproc) != NULL) {
634 /* Update resource usage integrals and maximums. */
635 if ((pstats = p->p_stats) != NULL &&
636 (ru = &pstats->p_ru) != NULL &&
637 (vm = p->p_vmspace) != NULL) {
638 ru->ru_ixrss += pgtok(vm->vm_tsize);
639 ru->ru_idrss += pgtok(vm->vm_dsize);
640 ru->ru_isrss += pgtok(vm->vm_ssize);
641 rss = pgtok(vmspace_resident_count(vm));
642 if (ru->ru_maxrss < rss)
643 ru->ru_maxrss = rss;
649 * Compute number of ticks for the specified amount of time. The
650 * return value is intended to be used in a clock interrupt timed
651 * operation and guarenteed to meet or exceed the requested time.
652 * If the representation overflows, return INT_MAX. The minimum return
653 * value is 1 ticks and the function will average the calculation up.
654 * If any value greater then 0 microseconds is supplied, a value
655 * of at least 2 will be returned to ensure that a near-term clock
656 * interrupt does not cause the timeout to occur (degenerately) early.
658 * Note that limit checks must take into account microseconds, which is
659 * done simply by using the smaller signed long maximum instead of
660 * the unsigned long maximum.
662 * If ints have 32 bits, then the maximum value for any timeout in
663 * 10ms ticks is 248 days.
666 tvtohz_high(struct timeval *tv)
668 int ticks;
669 long sec, usec;
671 sec = tv->tv_sec;
672 usec = tv->tv_usec;
673 if (usec < 0) {
674 sec--;
675 usec += 1000000;
677 if (sec < 0) {
678 #ifdef DIAGNOSTIC
679 if (usec > 0) {
680 sec++;
681 usec -= 1000000;
683 printf("tvotohz: negative time difference %ld sec %ld usec\n",
684 sec, usec);
685 #endif
686 ticks = 1;
687 } else if (sec <= INT_MAX / hz) {
688 ticks = (int)(sec * hz +
689 ((u_long)usec + (tick - 1)) / tick) + 1;
690 } else {
691 ticks = INT_MAX;
693 return (ticks);
697 * Compute number of ticks for the specified amount of time, erroring on
698 * the side of it being too low to ensure that sleeping the returned number
699 * of ticks will not result in a late return.
701 * The supplied timeval may not be negative and should be normalized. A
702 * return value of 0 is possible if the timeval converts to less then
703 * 1 tick.
705 * If ints have 32 bits, then the maximum value for any timeout in
706 * 10ms ticks is 248 days.
709 tvtohz_low(struct timeval *tv)
711 int ticks;
712 long sec;
714 sec = tv->tv_sec;
715 if (sec <= INT_MAX / hz)
716 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
717 else
718 ticks = INT_MAX;
719 return (ticks);
724 * Start profiling on a process.
726 * Kernel profiling passes proc0 which never exits and hence
727 * keeps the profile clock running constantly.
729 void
730 startprofclock(struct proc *p)
732 if ((p->p_flag & P_PROFIL) == 0) {
733 p->p_flag |= P_PROFIL;
734 #if 0 /* XXX */
735 if (++profprocs == 1 && stathz != 0) {
736 s = splstatclock();
737 psdiv = psratio;
738 setstatclockrate(profhz);
739 splx(s);
741 #endif
746 * Stop profiling on a process.
748 void
749 stopprofclock(struct proc *p)
751 if (p->p_flag & P_PROFIL) {
752 p->p_flag &= ~P_PROFIL;
753 #if 0 /* XXX */
754 if (--profprocs == 0 && stathz != 0) {
755 s = splstatclock();
756 psdiv = 1;
757 setstatclockrate(stathz);
758 splx(s);
760 #endif
765 * Return information about system clocks.
767 static int
768 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
770 struct kinfo_clockinfo clkinfo;
772 * Construct clockinfo structure.
774 clkinfo.ci_hz = hz;
775 clkinfo.ci_tick = tick;
776 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
777 clkinfo.ci_profhz = profhz;
778 clkinfo.ci_stathz = stathz ? stathz : hz;
779 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
782 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
783 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
786 * We have eight functions for looking at the clock, four for
787 * microseconds and four for nanoseconds. For each there is fast
788 * but less precise version "get{nano|micro}[up]time" which will
789 * return a time which is up to 1/HZ previous to the call, whereas
790 * the raw version "{nano|micro}[up]time" will return a timestamp
791 * which is as precise as possible. The "up" variants return the
792 * time relative to system boot, these are well suited for time
793 * interval measurements.
795 * Each cpu independantly maintains the current time of day, so all
796 * we need to do to protect ourselves from changes is to do a loop
797 * check on the seconds field changing out from under us.
799 * The system timer maintains a 32 bit count and due to various issues
800 * it is possible for the calculated delta to occassionally exceed
801 * cputimer_freq. If this occurs the cputimer_freq64_nsec multiplication
802 * can easily overflow, so we deal with the case. For uniformity we deal
803 * with the case in the usec case too.
805 void
806 getmicrouptime(struct timeval *tvp)
808 struct globaldata *gd = mycpu;
809 sysclock_t delta;
811 do {
812 tvp->tv_sec = gd->gd_time_seconds;
813 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
814 } while (tvp->tv_sec != gd->gd_time_seconds);
816 if (delta >= cputimer_freq) {
817 tvp->tv_sec += delta / cputimer_freq;
818 delta %= cputimer_freq;
820 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
821 if (tvp->tv_usec >= 1000000) {
822 tvp->tv_usec -= 1000000;
823 ++tvp->tv_sec;
827 void
828 getnanouptime(struct timespec *tsp)
830 struct globaldata *gd = mycpu;
831 sysclock_t delta;
833 do {
834 tsp->tv_sec = gd->gd_time_seconds;
835 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
836 } while (tsp->tv_sec != gd->gd_time_seconds);
838 if (delta >= cputimer_freq) {
839 tsp->tv_sec += delta / cputimer_freq;
840 delta %= cputimer_freq;
842 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
845 void
846 microuptime(struct timeval *tvp)
848 struct globaldata *gd = mycpu;
849 sysclock_t delta;
851 do {
852 tvp->tv_sec = gd->gd_time_seconds;
853 delta = cputimer_count() - gd->gd_cpuclock_base;
854 } while (tvp->tv_sec != gd->gd_time_seconds);
856 if (delta >= cputimer_freq) {
857 tvp->tv_sec += delta / cputimer_freq;
858 delta %= cputimer_freq;
860 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
863 void
864 nanouptime(struct timespec *tsp)
866 struct globaldata *gd = mycpu;
867 sysclock_t delta;
869 do {
870 tsp->tv_sec = gd->gd_time_seconds;
871 delta = cputimer_count() - gd->gd_cpuclock_base;
872 } while (tsp->tv_sec != gd->gd_time_seconds);
874 if (delta >= cputimer_freq) {
875 tsp->tv_sec += delta / cputimer_freq;
876 delta %= cputimer_freq;
878 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
882 * realtime routines
885 void
886 getmicrotime(struct timeval *tvp)
888 struct globaldata *gd = mycpu;
889 struct timespec *bt;
890 sysclock_t delta;
892 do {
893 tvp->tv_sec = gd->gd_time_seconds;
894 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
895 } while (tvp->tv_sec != gd->gd_time_seconds);
897 if (delta >= cputimer_freq) {
898 tvp->tv_sec += delta / cputimer_freq;
899 delta %= cputimer_freq;
901 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
903 bt = &basetime[basetime_index];
904 tvp->tv_sec += bt->tv_sec;
905 tvp->tv_usec += bt->tv_nsec / 1000;
906 while (tvp->tv_usec >= 1000000) {
907 tvp->tv_usec -= 1000000;
908 ++tvp->tv_sec;
912 void
913 getnanotime(struct timespec *tsp)
915 struct globaldata *gd = mycpu;
916 struct timespec *bt;
917 sysclock_t delta;
919 do {
920 tsp->tv_sec = gd->gd_time_seconds;
921 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
922 } while (tsp->tv_sec != gd->gd_time_seconds);
924 if (delta >= cputimer_freq) {
925 tsp->tv_sec += delta / cputimer_freq;
926 delta %= cputimer_freq;
928 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
930 bt = &basetime[basetime_index];
931 tsp->tv_sec += bt->tv_sec;
932 tsp->tv_nsec += bt->tv_nsec;
933 while (tsp->tv_nsec >= 1000000000) {
934 tsp->tv_nsec -= 1000000000;
935 ++tsp->tv_sec;
939 static void
940 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
942 struct globaldata *gd = mycpu;
943 sysclock_t delta;
945 do {
946 tsp->tv_sec = gd->gd_time_seconds;
947 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
948 } while (tsp->tv_sec != gd->gd_time_seconds);
950 if (delta >= cputimer_freq) {
951 tsp->tv_sec += delta / cputimer_freq;
952 delta %= cputimer_freq;
954 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
956 tsp->tv_sec += nbt->tv_sec;
957 tsp->tv_nsec += nbt->tv_nsec;
958 while (tsp->tv_nsec >= 1000000000) {
959 tsp->tv_nsec -= 1000000000;
960 ++tsp->tv_sec;
965 void
966 microtime(struct timeval *tvp)
968 struct globaldata *gd = mycpu;
969 struct timespec *bt;
970 sysclock_t delta;
972 do {
973 tvp->tv_sec = gd->gd_time_seconds;
974 delta = cputimer_count() - gd->gd_cpuclock_base;
975 } while (tvp->tv_sec != gd->gd_time_seconds);
977 if (delta >= cputimer_freq) {
978 tvp->tv_sec += delta / cputimer_freq;
979 delta %= cputimer_freq;
981 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
983 bt = &basetime[basetime_index];
984 tvp->tv_sec += bt->tv_sec;
985 tvp->tv_usec += bt->tv_nsec / 1000;
986 while (tvp->tv_usec >= 1000000) {
987 tvp->tv_usec -= 1000000;
988 ++tvp->tv_sec;
992 void
993 nanotime(struct timespec *tsp)
995 struct globaldata *gd = mycpu;
996 struct timespec *bt;
997 sysclock_t delta;
999 do {
1000 tsp->tv_sec = gd->gd_time_seconds;
1001 delta = cputimer_count() - gd->gd_cpuclock_base;
1002 } while (tsp->tv_sec != gd->gd_time_seconds);
1004 if (delta >= cputimer_freq) {
1005 tsp->tv_sec += delta / cputimer_freq;
1006 delta %= cputimer_freq;
1008 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
1010 bt = &basetime[basetime_index];
1011 tsp->tv_sec += bt->tv_sec;
1012 tsp->tv_nsec += bt->tv_nsec;
1013 while (tsp->tv_nsec >= 1000000000) {
1014 tsp->tv_nsec -= 1000000000;
1015 ++tsp->tv_sec;
1020 * note: this is not exactly synchronized with real time. To do that we
1021 * would have to do what microtime does and check for a nanoseconds overflow.
1023 time_t
1024 get_approximate_time_t(void)
1026 struct globaldata *gd = mycpu;
1027 struct timespec *bt;
1029 bt = &basetime[basetime_index];
1030 return(gd->gd_time_seconds + bt->tv_sec);
1034 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1036 pps_params_t *app;
1037 struct pps_fetch_args *fapi;
1038 #ifdef PPS_SYNC
1039 struct pps_kcbind_args *kapi;
1040 #endif
1042 switch (cmd) {
1043 case PPS_IOC_CREATE:
1044 return (0);
1045 case PPS_IOC_DESTROY:
1046 return (0);
1047 case PPS_IOC_SETPARAMS:
1048 app = (pps_params_t *)data;
1049 if (app->mode & ~pps->ppscap)
1050 return (EINVAL);
1051 pps->ppsparam = *app;
1052 return (0);
1053 case PPS_IOC_GETPARAMS:
1054 app = (pps_params_t *)data;
1055 *app = pps->ppsparam;
1056 app->api_version = PPS_API_VERS_1;
1057 return (0);
1058 case PPS_IOC_GETCAP:
1059 *(int*)data = pps->ppscap;
1060 return (0);
1061 case PPS_IOC_FETCH:
1062 fapi = (struct pps_fetch_args *)data;
1063 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1064 return (EINVAL);
1065 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1066 return (EOPNOTSUPP);
1067 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1068 fapi->pps_info_buf = pps->ppsinfo;
1069 return (0);
1070 case PPS_IOC_KCBIND:
1071 #ifdef PPS_SYNC
1072 kapi = (struct pps_kcbind_args *)data;
1073 /* XXX Only root should be able to do this */
1074 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1075 return (EINVAL);
1076 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1077 return (EINVAL);
1078 if (kapi->edge & ~pps->ppscap)
1079 return (EINVAL);
1080 pps->kcmode = kapi->edge;
1081 return (0);
1082 #else
1083 return (EOPNOTSUPP);
1084 #endif
1085 default:
1086 return (ENOTTY);
1090 void
1091 pps_init(struct pps_state *pps)
1093 pps->ppscap |= PPS_TSFMT_TSPEC;
1094 if (pps->ppscap & PPS_CAPTUREASSERT)
1095 pps->ppscap |= PPS_OFFSETASSERT;
1096 if (pps->ppscap & PPS_CAPTURECLEAR)
1097 pps->ppscap |= PPS_OFFSETCLEAR;
1100 void
1101 pps_event(struct pps_state *pps, sysclock_t count, int event)
1103 struct globaldata *gd;
1104 struct timespec *tsp;
1105 struct timespec *osp;
1106 struct timespec *bt;
1107 struct timespec ts;
1108 sysclock_t *pcount;
1109 #ifdef PPS_SYNC
1110 sysclock_t tcount;
1111 #endif
1112 sysclock_t delta;
1113 pps_seq_t *pseq;
1114 int foff;
1115 int fhard;
1117 gd = mycpu;
1119 /* Things would be easier with arrays... */
1120 if (event == PPS_CAPTUREASSERT) {
1121 tsp = &pps->ppsinfo.assert_timestamp;
1122 osp = &pps->ppsparam.assert_offset;
1123 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1124 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1125 pcount = &pps->ppscount[0];
1126 pseq = &pps->ppsinfo.assert_sequence;
1127 } else {
1128 tsp = &pps->ppsinfo.clear_timestamp;
1129 osp = &pps->ppsparam.clear_offset;
1130 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1131 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1132 pcount = &pps->ppscount[1];
1133 pseq = &pps->ppsinfo.clear_sequence;
1136 /* Nothing really happened */
1137 if (*pcount == count)
1138 return;
1140 *pcount = count;
1142 do {
1143 ts.tv_sec = gd->gd_time_seconds;
1144 delta = count - gd->gd_cpuclock_base;
1145 } while (ts.tv_sec != gd->gd_time_seconds);
1147 if (delta >= cputimer_freq) {
1148 ts.tv_sec += delta / cputimer_freq;
1149 delta %= cputimer_freq;
1151 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
1152 bt = &basetime[basetime_index];
1153 ts.tv_sec += bt->tv_sec;
1154 ts.tv_nsec += bt->tv_nsec;
1155 while (ts.tv_nsec >= 1000000000) {
1156 ts.tv_nsec -= 1000000000;
1157 ++ts.tv_sec;
1160 (*pseq)++;
1161 *tsp = ts;
1163 if (foff) {
1164 timespecadd(tsp, osp);
1165 if (tsp->tv_nsec < 0) {
1166 tsp->tv_nsec += 1000000000;
1167 tsp->tv_sec -= 1;
1170 #ifdef PPS_SYNC
1171 if (fhard) {
1172 /* magic, at its best... */
1173 tcount = count - pps->ppscount[2];
1174 pps->ppscount[2] = count;
1175 if (tcount >= cputimer_freq) {
1176 delta = (1000000000 * (tcount / cputimer_freq) +
1177 cputimer_freq64_nsec *
1178 (tcount % cputimer_freq)) >> 32;
1179 } else {
1180 delta = (cputimer_freq64_nsec * tcount) >> 32;
1182 hardpps(tsp, delta);
1184 #endif