2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.40 2005/04/27 14:31:19 hmp Exp $
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/kernel.h>
82 #include <sys/kinfo.h>
84 #include <sys/malloc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signalvar.h>
87 #include <sys/timex.h>
88 #include <sys/timepps.h>
92 #include <vm/vm_map.h>
93 #include <sys/sysctl.h>
94 #include <sys/thread2.h>
96 #include <machine/cpu.h>
97 #include <machine/limits.h>
98 #include <machine/smp.h>
101 #include <sys/gmon.h>
104 #ifdef DEVICE_POLLING
105 extern void init_device_poll(void);
106 extern void hardclock_device_poll(void);
107 #endif /* DEVICE_POLLING */
109 static void initclocks (void *dummy
);
110 SYSINIT(clocks
, SI_SUB_CLOCKS
, SI_ORDER_FIRST
, initclocks
, NULL
)
113 * Some of these don't belong here, but it's easiest to concentrate them.
114 * Note that cpu_time counts in microseconds, but most userland programs
115 * just compare relative times against the total by delta.
117 struct kinfo_cputime cputime_percpu
[MAXCPU
];
120 sysctl_cputime(SYSCTL_HANDLER_ARGS
)
123 size_t size
= sizeof(struct kinfo_cputime
);
125 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
126 if ((error
= SYSCTL_OUT(req
, &cputime_percpu
[cpu
], size
)))
132 SYSCTL_PROC(_kern
, OID_AUTO
, cputime
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
133 sysctl_cputime
, "S,kinfo_cputime", "CPU time statistics");
135 SYSCTL_STRUCT(_kern
, OID_AUTO
, cputime
, CTLFLAG_RD
, &cpu_time
, kinfo_cputime
,
136 "CPU time statistics");
140 * boottime is used to calculate the 'real' uptime. Do not confuse this with
141 * microuptime(). microtime() is not drift compensated. The real uptime
142 * with compensation is nanotime() - bootime. boottime is recalculated
143 * whenever the real time is set based on the compensated elapsed time
144 * in seconds (gd->gd_time_seconds).
146 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
147 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
150 struct timespec boottime
; /* boot time (realtime) for reference only */
151 time_t time_second
; /* read-only 'passive' uptime in seconds */
154 * basetime is used to calculate the compensated real time of day. The
155 * basetime can be modified on a per-tick basis by the adjtime(),
156 * ntp_adjtime(), and sysctl-based time correction APIs.
158 * Note that frequency corrections can also be made by adjusting
161 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
162 * used on both SMP and UP systems to avoid MP races between cpu's and
163 * interrupt races on UP systems.
165 #define BASETIME_ARYSIZE 16
166 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
167 static struct timespec basetime
[BASETIME_ARYSIZE
];
168 static volatile int basetime_index
;
171 sysctl_get_basetime(SYSCTL_HANDLER_ARGS
)
176 bt
= &basetime
[basetime_index
];
177 error
= SYSCTL_OUT(req
, bt
, sizeof(*bt
));
181 SYSCTL_STRUCT(_kern
, KERN_BOOTTIME
, boottime
, CTLFLAG_RD
,
182 &boottime
, timespec
, "System boottime");
183 SYSCTL_PROC(_kern
, OID_AUTO
, basetime
, CTLTYPE_STRUCT
|CTLFLAG_RD
, 0, 0,
184 sysctl_get_basetime
, "S,timespec", "System basetime");
186 static void hardclock(systimer_t info
, struct intrframe
*frame
);
187 static void statclock(systimer_t info
, struct intrframe
*frame
);
188 static void schedclock(systimer_t info
, struct intrframe
*frame
);
189 static void getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
);
191 int ticks
; /* system master ticks at hz */
192 int clocks_running
; /* tsleep/timeout clocks operational */
193 int64_t nsec_adj
; /* ntpd per-tick adjustment in nsec << 32 */
194 int64_t nsec_acc
; /* accumulator */
196 /* NTPD time correction fields */
197 int64_t ntp_tick_permanent
; /* per-tick adjustment in nsec << 32 */
198 int64_t ntp_tick_acc
; /* accumulator for per-tick adjustment */
199 int64_t ntp_delta
; /* one-time correction in nsec */
200 int64_t ntp_big_delta
= 1000000000;
201 int32_t ntp_tick_delta
; /* current adjustment rate */
202 int32_t ntp_default_tick_delta
; /* adjustment rate for ntp_delta */
203 time_t ntp_leap_second
; /* time of next leap second */
204 int ntp_leap_insert
; /* whether to insert or remove a second */
207 * Finish initializing clock frequencies and start all clocks running.
211 initclocks(void *dummy
)
214 #ifdef DEVICE_POLLING
217 /*psratio = profhz / stathz;*/
223 * Called on a per-cpu basis
226 initclocks_pcpu(void)
228 struct globaldata
*gd
= mycpu
;
231 if (gd
->gd_cpuid
== 0) {
232 gd
->gd_time_seconds
= 1;
233 gd
->gd_cpuclock_base
= cputimer_count();
236 gd
->gd_time_seconds
= globaldata_find(0)->gd_time_seconds
;
237 gd
->gd_cpuclock_base
= globaldata_find(0)->gd_cpuclock_base
;
241 * Use a non-queued periodic systimer to prevent multiple ticks from
242 * building up if the sysclock jumps forward (8254 gets reset). The
243 * sysclock will never jump backwards. Our time sync is based on
244 * the actual sysclock, not the ticks count.
246 systimer_init_periodic_nq(&gd
->gd_hardclock
, hardclock
, NULL
, hz
);
247 systimer_init_periodic_nq(&gd
->gd_statclock
, statclock
, NULL
, stathz
);
248 /* XXX correct the frequency for scheduler / estcpu tests */
249 systimer_init_periodic_nq(&gd
->gd_schedclock
, schedclock
,
255 * This sets the current real time of day. Timespecs are in seconds and
256 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
257 * instead we adjust basetime so basetime + gd_* results in the current
258 * time of day. This way the gd_* fields are guarenteed to represent
259 * a monotonically increasing 'uptime' value.
261 * When set_timeofday() is called from userland, the system call forces it
262 * onto cpu #0 since only cpu #0 can update basetime_index.
265 set_timeofday(struct timespec
*ts
)
267 struct timespec
*nbt
;
271 * XXX SMP / non-atomic basetime updates
274 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
277 nbt
->tv_sec
= ts
->tv_sec
- nbt
->tv_sec
;
278 nbt
->tv_nsec
= ts
->tv_nsec
- nbt
->tv_nsec
;
279 if (nbt
->tv_nsec
< 0) {
280 nbt
->tv_nsec
+= 1000000000;
285 * Note that basetime diverges from boottime as the clock drift is
286 * compensated for, so we cannot do away with boottime. When setting
287 * the absolute time of day the drift is 0 (for an instant) and we
288 * can simply assign boottime to basetime.
290 * Note that nanouptime() is based on gd_time_seconds which is drift
291 * compensated up to a point (it is guarenteed to remain monotonically
292 * increasing). gd_time_seconds is thus our best uptime guess and
293 * suitable for use in the boottime calculation. It is already taken
294 * into account in the basetime calculation above.
296 boottime
.tv_sec
= nbt
->tv_sec
;
300 * We now have a new basetime, update the index.
309 * Each cpu has its own hardclock, but we only increments ticks and softticks
312 * NOTE! systimer! the MP lock might not be held here. We can only safely
313 * manipulate objects owned by the current cpu.
316 hardclock(systimer_t info
, struct intrframe
*frame
)
320 struct pstats
*pstats
;
321 struct globaldata
*gd
= mycpu
;
324 * Realtime updates are per-cpu. Note that timer corrections as
325 * returned by microtime() and friends make an additional adjustment
326 * using a system-wise 'basetime', but the running time is always
327 * taken from the per-cpu globaldata area. Since the same clock
328 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
331 * Note that we never allow info->time (aka gd->gd_hardclock.time)
332 * to reverse index gd_cpuclock_base, but that it is possible for
333 * it to temporarily get behind in the seconds if something in the
334 * system locks interrupts for a long period of time. Since periodic
335 * timers count events, though everything should resynch again
338 cputicks
= info
->time
- gd
->gd_cpuclock_base
;
339 if (cputicks
>= cputimer_freq
) {
340 ++gd
->gd_time_seconds
;
341 gd
->gd_cpuclock_base
+= cputimer_freq
;
345 * The system-wide ticks counter and NTP related timedelta/tickdelta
346 * adjustments only occur on cpu #0. NTP adjustments are accomplished
347 * by updating basetime.
349 if (gd
->gd_cpuid
== 0) {
350 struct timespec
*nbt
;
357 #ifdef DEVICE_POLLING
358 hardclock_device_poll(); /* mpsafe, short and quick */
359 #endif /* DEVICE_POLLING */
362 if (tco
->tc_poll_pps
)
363 tco
->tc_poll_pps(tco
);
367 * Calculate the new basetime index. We are in a critical section
368 * on cpu #0 and can safely play with basetime_index. Start
369 * with the current basetime and then make adjustments.
371 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
373 *nbt
= basetime
[basetime_index
];
376 * Apply adjtime corrections. (adjtime() API)
378 * adjtime() only runs on cpu #0 so our critical section is
379 * sufficient to access these variables.
381 if (ntp_delta
!= 0) {
382 nbt
->tv_nsec
+= ntp_tick_delta
;
383 ntp_delta
-= ntp_tick_delta
;
384 if ((ntp_delta
> 0 && ntp_delta
< ntp_tick_delta
) ||
385 (ntp_delta
< 0 && ntp_delta
> ntp_tick_delta
)) {
386 ntp_tick_delta
= ntp_delta
;
391 * Apply permanent frequency corrections. (sysctl API)
393 if (ntp_tick_permanent
!= 0) {
394 ntp_tick_acc
+= ntp_tick_permanent
;
395 if (ntp_tick_acc
>= (1LL << 32)) {
396 nbt
->tv_nsec
+= ntp_tick_acc
>> 32;
397 ntp_tick_acc
-= (ntp_tick_acc
>> 32) << 32;
398 } else if (ntp_tick_acc
<= -(1LL << 32)) {
399 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
400 nbt
->tv_nsec
-= (-ntp_tick_acc
) >> 32;
401 ntp_tick_acc
+= ((-ntp_tick_acc
) >> 32) << 32;
405 if (nbt
->tv_nsec
>= 1000000000) {
407 nbt
->tv_nsec
-= 1000000000;
408 } else if (nbt
->tv_nsec
< 0) {
410 nbt
->tv_nsec
+= 1000000000;
414 * Another per-tick compensation. (for ntp_adjtime() API)
417 nsec_acc
+= nsec_adj
;
418 if (nsec_acc
>= 0x100000000LL
) {
419 nbt
->tv_nsec
+= nsec_acc
>> 32;
420 nsec_acc
= (nsec_acc
& 0xFFFFFFFFLL
);
421 } else if (nsec_acc
<= -0x100000000LL
) {
422 nbt
->tv_nsec
-= -nsec_acc
>> 32;
423 nsec_acc
= -(-nsec_acc
& 0xFFFFFFFFLL
);
425 if (nbt
->tv_nsec
>= 1000000000) {
426 nbt
->tv_nsec
-= 1000000000;
428 } else if (nbt
->tv_nsec
< 0) {
429 nbt
->tv_nsec
+= 1000000000;
434 /************************************************************
435 * LEAP SECOND CORRECTION *
436 ************************************************************
438 * Taking into account all the corrections made above, figure
439 * out the new real time. If the seconds field has changed
440 * then apply any pending leap-second corrections.
442 getnanotime_nbt(nbt
, &nts
);
444 if (time_second
!= nts
.tv_sec
) {
446 * Apply leap second (sysctl API). Adjust nts for changes
447 * so we do not have to call getnanotime_nbt again.
449 if (ntp_leap_second
) {
450 if (ntp_leap_second
== nts
.tv_sec
) {
451 if (ntp_leap_insert
) {
463 * Apply leap second (ntp_adjtime() API), calculate a new
464 * nsec_adj field. ntp_update_second() returns nsec_adj
465 * as a per-second value but we need it as a per-tick value.
467 leap
= ntp_update_second(time_second
, &nsec_adj
);
473 * Update the time_second 'approximate time' global.
475 time_second
= nts
.tv_sec
;
479 * Finally, our new basetime is ready to go live!
486 * softticks are handled for all cpus
488 hardclock_softtick(gd
);
491 * ITimer handling is per-tick, per-cpu. I don't think psignal()
492 * is mpsafe on curproc, so XXX get the mplock.
494 if ((p
= curproc
) != NULL
&& try_mplock()) {
496 if (frame
&& CLKF_USERMODE(frame
) &&
497 timevalisset(&pstats
->p_timer
[ITIMER_VIRTUAL
].it_value
) &&
498 itimerdecr(&pstats
->p_timer
[ITIMER_VIRTUAL
], tick
) == 0)
499 psignal(p
, SIGVTALRM
);
500 if (timevalisset(&pstats
->p_timer
[ITIMER_PROF
].it_value
) &&
501 itimerdecr(&pstats
->p_timer
[ITIMER_PROF
], tick
) == 0)
509 * The statistics clock typically runs at a 125Hz rate, and is intended
510 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
512 * NOTE! systimer! the MP lock might not be held here. We can only safely
513 * manipulate objects owned by the current cpu.
515 * The stats clock is responsible for grabbing a profiling sample.
516 * Most of the statistics are only used by user-level statistics programs.
517 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
520 * Like the other clocks, the stat clock is called from what is effectively
521 * a fast interrupt, so the context should be the thread/process that got
525 statclock(systimer_t info
, struct intrframe
*frame
)
538 * How big was our timeslice relative to the last time?
540 microuptime(&tv
); /* mpsafe */
541 stv
= &mycpu
->gd_stattv
;
542 if (stv
->tv_sec
== 0) {
545 bump
= tv
.tv_usec
- stv
->tv_usec
+
546 (tv
.tv_sec
- stv
->tv_sec
) * 1000000;
557 if (frame
&& CLKF_USERMODE(frame
)) {
559 * Came from userland, handle user time and deal with
562 if (p
&& (p
->p_flag
& P_PROFIL
))
563 addupc_intr(p
, CLKF_PC(frame
), 1);
564 td
->td_uticks
+= bump
;
567 * Charge the time as appropriate
569 if (p
&& p
->p_nice
> NZERO
)
570 cpu_time
.cp_nice
+= bump
;
572 cpu_time
.cp_user
+= bump
;
576 * Kernel statistics are just like addupc_intr, only easier.
579 if (g
->state
== GMON_PROF_ON
&& frame
) {
580 i
= CLKF_PC(frame
) - g
->lowpc
;
581 if (i
< g
->textsize
) {
582 i
/= HISTFRACTION
* sizeof(*g
->kcount
);
588 * Came from kernel mode, so we were:
589 * - handling an interrupt,
590 * - doing syscall or trap work on behalf of the current
592 * - spinning in the idle loop.
593 * Whichever it is, charge the time as appropriate.
594 * Note that we charge interrupts to the current process,
595 * regardless of whether they are ``for'' that process,
596 * so that we know how much of its real time was spent
597 * in ``non-process'' (i.e., interrupt) work.
599 * XXX assume system if frame is NULL. A NULL frame
600 * can occur if ipi processing is done from an splx().
602 if (frame
&& CLKF_INTR(frame
))
603 td
->td_iticks
+= bump
;
605 td
->td_sticks
+= bump
;
607 if (frame
&& CLKF_INTR(frame
)) {
608 cpu_time
.cp_intr
+= bump
;
610 if (td
== &mycpu
->gd_idlethread
)
611 cpu_time
.cp_idle
+= bump
;
613 cpu_time
.cp_sys
+= bump
;
619 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer,
620 * the MP lock might not be held. We can safely manipulate parts of curproc
621 * but that's about it.
624 schedclock(systimer_t info
, struct intrframe
*frame
)
627 struct pstats
*pstats
;
632 schedulerclock(NULL
); /* mpsafe */
633 if ((p
= curproc
) != NULL
) {
634 /* Update resource usage integrals and maximums. */
635 if ((pstats
= p
->p_stats
) != NULL
&&
636 (ru
= &pstats
->p_ru
) != NULL
&&
637 (vm
= p
->p_vmspace
) != NULL
) {
638 ru
->ru_ixrss
+= pgtok(vm
->vm_tsize
);
639 ru
->ru_idrss
+= pgtok(vm
->vm_dsize
);
640 ru
->ru_isrss
+= pgtok(vm
->vm_ssize
);
641 rss
= pgtok(vmspace_resident_count(vm
));
642 if (ru
->ru_maxrss
< rss
)
649 * Compute number of ticks for the specified amount of time. The
650 * return value is intended to be used in a clock interrupt timed
651 * operation and guarenteed to meet or exceed the requested time.
652 * If the representation overflows, return INT_MAX. The minimum return
653 * value is 1 ticks and the function will average the calculation up.
654 * If any value greater then 0 microseconds is supplied, a value
655 * of at least 2 will be returned to ensure that a near-term clock
656 * interrupt does not cause the timeout to occur (degenerately) early.
658 * Note that limit checks must take into account microseconds, which is
659 * done simply by using the smaller signed long maximum instead of
660 * the unsigned long maximum.
662 * If ints have 32 bits, then the maximum value for any timeout in
663 * 10ms ticks is 248 days.
666 tvtohz_high(struct timeval
*tv
)
683 printf("tvotohz: negative time difference %ld sec %ld usec\n",
687 } else if (sec
<= INT_MAX
/ hz
) {
688 ticks
= (int)(sec
* hz
+
689 ((u_long
)usec
+ (tick
- 1)) / tick
) + 1;
697 * Compute number of ticks for the specified amount of time, erroring on
698 * the side of it being too low to ensure that sleeping the returned number
699 * of ticks will not result in a late return.
701 * The supplied timeval may not be negative and should be normalized. A
702 * return value of 0 is possible if the timeval converts to less then
705 * If ints have 32 bits, then the maximum value for any timeout in
706 * 10ms ticks is 248 days.
709 tvtohz_low(struct timeval
*tv
)
715 if (sec
<= INT_MAX
/ hz
)
716 ticks
= (int)(sec
* hz
+ (u_long
)tv
->tv_usec
/ tick
);
724 * Start profiling on a process.
726 * Kernel profiling passes proc0 which never exits and hence
727 * keeps the profile clock running constantly.
730 startprofclock(struct proc
*p
)
732 if ((p
->p_flag
& P_PROFIL
) == 0) {
733 p
->p_flag
|= P_PROFIL
;
735 if (++profprocs
== 1 && stathz
!= 0) {
738 setstatclockrate(profhz
);
746 * Stop profiling on a process.
749 stopprofclock(struct proc
*p
)
751 if (p
->p_flag
& P_PROFIL
) {
752 p
->p_flag
&= ~P_PROFIL
;
754 if (--profprocs
== 0 && stathz
!= 0) {
757 setstatclockrate(stathz
);
765 * Return information about system clocks.
768 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS
)
770 struct kinfo_clockinfo clkinfo
;
772 * Construct clockinfo structure.
775 clkinfo
.ci_tick
= tick
;
776 clkinfo
.ci_tickadj
= ntp_default_tick_delta
/ 1000;
777 clkinfo
.ci_profhz
= profhz
;
778 clkinfo
.ci_stathz
= stathz
? stathz
: hz
;
779 return (sysctl_handle_opaque(oidp
, &clkinfo
, sizeof clkinfo
, req
));
782 SYSCTL_PROC(_kern
, KERN_CLOCKRATE
, clockrate
, CTLTYPE_STRUCT
|CTLFLAG_RD
,
783 0, 0, sysctl_kern_clockrate
, "S,clockinfo","");
786 * We have eight functions for looking at the clock, four for
787 * microseconds and four for nanoseconds. For each there is fast
788 * but less precise version "get{nano|micro}[up]time" which will
789 * return a time which is up to 1/HZ previous to the call, whereas
790 * the raw version "{nano|micro}[up]time" will return a timestamp
791 * which is as precise as possible. The "up" variants return the
792 * time relative to system boot, these are well suited for time
793 * interval measurements.
795 * Each cpu independantly maintains the current time of day, so all
796 * we need to do to protect ourselves from changes is to do a loop
797 * check on the seconds field changing out from under us.
799 * The system timer maintains a 32 bit count and due to various issues
800 * it is possible for the calculated delta to occassionally exceed
801 * cputimer_freq. If this occurs the cputimer_freq64_nsec multiplication
802 * can easily overflow, so we deal with the case. For uniformity we deal
803 * with the case in the usec case too.
806 getmicrouptime(struct timeval
*tvp
)
808 struct globaldata
*gd
= mycpu
;
812 tvp
->tv_sec
= gd
->gd_time_seconds
;
813 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
814 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
816 if (delta
>= cputimer_freq
) {
817 tvp
->tv_sec
+= delta
/ cputimer_freq
;
818 delta
%= cputimer_freq
;
820 tvp
->tv_usec
= (cputimer_freq64_usec
* delta
) >> 32;
821 if (tvp
->tv_usec
>= 1000000) {
822 tvp
->tv_usec
-= 1000000;
828 getnanouptime(struct timespec
*tsp
)
830 struct globaldata
*gd
= mycpu
;
834 tsp
->tv_sec
= gd
->gd_time_seconds
;
835 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
836 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
838 if (delta
>= cputimer_freq
) {
839 tsp
->tv_sec
+= delta
/ cputimer_freq
;
840 delta
%= cputimer_freq
;
842 tsp
->tv_nsec
= (cputimer_freq64_nsec
* delta
) >> 32;
846 microuptime(struct timeval
*tvp
)
848 struct globaldata
*gd
= mycpu
;
852 tvp
->tv_sec
= gd
->gd_time_seconds
;
853 delta
= cputimer_count() - gd
->gd_cpuclock_base
;
854 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
856 if (delta
>= cputimer_freq
) {
857 tvp
->tv_sec
+= delta
/ cputimer_freq
;
858 delta
%= cputimer_freq
;
860 tvp
->tv_usec
= (cputimer_freq64_usec
* delta
) >> 32;
864 nanouptime(struct timespec
*tsp
)
866 struct globaldata
*gd
= mycpu
;
870 tsp
->tv_sec
= gd
->gd_time_seconds
;
871 delta
= cputimer_count() - gd
->gd_cpuclock_base
;
872 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
874 if (delta
>= cputimer_freq
) {
875 tsp
->tv_sec
+= delta
/ cputimer_freq
;
876 delta
%= cputimer_freq
;
878 tsp
->tv_nsec
= (cputimer_freq64_nsec
* delta
) >> 32;
886 getmicrotime(struct timeval
*tvp
)
888 struct globaldata
*gd
= mycpu
;
893 tvp
->tv_sec
= gd
->gd_time_seconds
;
894 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
895 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
897 if (delta
>= cputimer_freq
) {
898 tvp
->tv_sec
+= delta
/ cputimer_freq
;
899 delta
%= cputimer_freq
;
901 tvp
->tv_usec
= (cputimer_freq64_usec
* delta
) >> 32;
903 bt
= &basetime
[basetime_index
];
904 tvp
->tv_sec
+= bt
->tv_sec
;
905 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
906 while (tvp
->tv_usec
>= 1000000) {
907 tvp
->tv_usec
-= 1000000;
913 getnanotime(struct timespec
*tsp
)
915 struct globaldata
*gd
= mycpu
;
920 tsp
->tv_sec
= gd
->gd_time_seconds
;
921 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
922 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
924 if (delta
>= cputimer_freq
) {
925 tsp
->tv_sec
+= delta
/ cputimer_freq
;
926 delta
%= cputimer_freq
;
928 tsp
->tv_nsec
= (cputimer_freq64_nsec
* delta
) >> 32;
930 bt
= &basetime
[basetime_index
];
931 tsp
->tv_sec
+= bt
->tv_sec
;
932 tsp
->tv_nsec
+= bt
->tv_nsec
;
933 while (tsp
->tv_nsec
>= 1000000000) {
934 tsp
->tv_nsec
-= 1000000000;
940 getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
)
942 struct globaldata
*gd
= mycpu
;
946 tsp
->tv_sec
= gd
->gd_time_seconds
;
947 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
948 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
950 if (delta
>= cputimer_freq
) {
951 tsp
->tv_sec
+= delta
/ cputimer_freq
;
952 delta
%= cputimer_freq
;
954 tsp
->tv_nsec
= (cputimer_freq64_nsec
* delta
) >> 32;
956 tsp
->tv_sec
+= nbt
->tv_sec
;
957 tsp
->tv_nsec
+= nbt
->tv_nsec
;
958 while (tsp
->tv_nsec
>= 1000000000) {
959 tsp
->tv_nsec
-= 1000000000;
966 microtime(struct timeval
*tvp
)
968 struct globaldata
*gd
= mycpu
;
973 tvp
->tv_sec
= gd
->gd_time_seconds
;
974 delta
= cputimer_count() - gd
->gd_cpuclock_base
;
975 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
977 if (delta
>= cputimer_freq
) {
978 tvp
->tv_sec
+= delta
/ cputimer_freq
;
979 delta
%= cputimer_freq
;
981 tvp
->tv_usec
= (cputimer_freq64_usec
* delta
) >> 32;
983 bt
= &basetime
[basetime_index
];
984 tvp
->tv_sec
+= bt
->tv_sec
;
985 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
986 while (tvp
->tv_usec
>= 1000000) {
987 tvp
->tv_usec
-= 1000000;
993 nanotime(struct timespec
*tsp
)
995 struct globaldata
*gd
= mycpu
;
1000 tsp
->tv_sec
= gd
->gd_time_seconds
;
1001 delta
= cputimer_count() - gd
->gd_cpuclock_base
;
1002 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1004 if (delta
>= cputimer_freq
) {
1005 tsp
->tv_sec
+= delta
/ cputimer_freq
;
1006 delta
%= cputimer_freq
;
1008 tsp
->tv_nsec
= (cputimer_freq64_nsec
* delta
) >> 32;
1010 bt
= &basetime
[basetime_index
];
1011 tsp
->tv_sec
+= bt
->tv_sec
;
1012 tsp
->tv_nsec
+= bt
->tv_nsec
;
1013 while (tsp
->tv_nsec
>= 1000000000) {
1014 tsp
->tv_nsec
-= 1000000000;
1020 * note: this is not exactly synchronized with real time. To do that we
1021 * would have to do what microtime does and check for a nanoseconds overflow.
1024 get_approximate_time_t(void)
1026 struct globaldata
*gd
= mycpu
;
1027 struct timespec
*bt
;
1029 bt
= &basetime
[basetime_index
];
1030 return(gd
->gd_time_seconds
+ bt
->tv_sec
);
1034 pps_ioctl(u_long cmd
, caddr_t data
, struct pps_state
*pps
)
1037 struct pps_fetch_args
*fapi
;
1039 struct pps_kcbind_args
*kapi
;
1043 case PPS_IOC_CREATE
:
1045 case PPS_IOC_DESTROY
:
1047 case PPS_IOC_SETPARAMS
:
1048 app
= (pps_params_t
*)data
;
1049 if (app
->mode
& ~pps
->ppscap
)
1051 pps
->ppsparam
= *app
;
1053 case PPS_IOC_GETPARAMS
:
1054 app
= (pps_params_t
*)data
;
1055 *app
= pps
->ppsparam
;
1056 app
->api_version
= PPS_API_VERS_1
;
1058 case PPS_IOC_GETCAP
:
1059 *(int*)data
= pps
->ppscap
;
1062 fapi
= (struct pps_fetch_args
*)data
;
1063 if (fapi
->tsformat
&& fapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1065 if (fapi
->timeout
.tv_sec
|| fapi
->timeout
.tv_nsec
)
1066 return (EOPNOTSUPP
);
1067 pps
->ppsinfo
.current_mode
= pps
->ppsparam
.mode
;
1068 fapi
->pps_info_buf
= pps
->ppsinfo
;
1070 case PPS_IOC_KCBIND
:
1072 kapi
= (struct pps_kcbind_args
*)data
;
1073 /* XXX Only root should be able to do this */
1074 if (kapi
->tsformat
&& kapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1076 if (kapi
->kernel_consumer
!= PPS_KC_HARDPPS
)
1078 if (kapi
->edge
& ~pps
->ppscap
)
1080 pps
->kcmode
= kapi
->edge
;
1083 return (EOPNOTSUPP
);
1091 pps_init(struct pps_state
*pps
)
1093 pps
->ppscap
|= PPS_TSFMT_TSPEC
;
1094 if (pps
->ppscap
& PPS_CAPTUREASSERT
)
1095 pps
->ppscap
|= PPS_OFFSETASSERT
;
1096 if (pps
->ppscap
& PPS_CAPTURECLEAR
)
1097 pps
->ppscap
|= PPS_OFFSETCLEAR
;
1101 pps_event(struct pps_state
*pps
, sysclock_t count
, int event
)
1103 struct globaldata
*gd
;
1104 struct timespec
*tsp
;
1105 struct timespec
*osp
;
1106 struct timespec
*bt
;
1119 /* Things would be easier with arrays... */
1120 if (event
== PPS_CAPTUREASSERT
) {
1121 tsp
= &pps
->ppsinfo
.assert_timestamp
;
1122 osp
= &pps
->ppsparam
.assert_offset
;
1123 foff
= pps
->ppsparam
.mode
& PPS_OFFSETASSERT
;
1124 fhard
= pps
->kcmode
& PPS_CAPTUREASSERT
;
1125 pcount
= &pps
->ppscount
[0];
1126 pseq
= &pps
->ppsinfo
.assert_sequence
;
1128 tsp
= &pps
->ppsinfo
.clear_timestamp
;
1129 osp
= &pps
->ppsparam
.clear_offset
;
1130 foff
= pps
->ppsparam
.mode
& PPS_OFFSETCLEAR
;
1131 fhard
= pps
->kcmode
& PPS_CAPTURECLEAR
;
1132 pcount
= &pps
->ppscount
[1];
1133 pseq
= &pps
->ppsinfo
.clear_sequence
;
1136 /* Nothing really happened */
1137 if (*pcount
== count
)
1143 ts
.tv_sec
= gd
->gd_time_seconds
;
1144 delta
= count
- gd
->gd_cpuclock_base
;
1145 } while (ts
.tv_sec
!= gd
->gd_time_seconds
);
1147 if (delta
>= cputimer_freq
) {
1148 ts
.tv_sec
+= delta
/ cputimer_freq
;
1149 delta
%= cputimer_freq
;
1151 ts
.tv_nsec
= (cputimer_freq64_nsec
* delta
) >> 32;
1152 bt
= &basetime
[basetime_index
];
1153 ts
.tv_sec
+= bt
->tv_sec
;
1154 ts
.tv_nsec
+= bt
->tv_nsec
;
1155 while (ts
.tv_nsec
>= 1000000000) {
1156 ts
.tv_nsec
-= 1000000000;
1164 timespecadd(tsp
, osp
);
1165 if (tsp
->tv_nsec
< 0) {
1166 tsp
->tv_nsec
+= 1000000000;
1172 /* magic, at its best... */
1173 tcount
= count
- pps
->ppscount
[2];
1174 pps
->ppscount
[2] = count
;
1175 if (tcount
>= cputimer_freq
) {
1176 delta
= (1000000000 * (tcount
/ cputimer_freq
) +
1177 cputimer_freq64_nsec
*
1178 (tcount
% cputimer_freq
)) >> 32;
1180 delta
= (cputimer_freq64_nsec
* tcount
) >> 32;
1182 hardpps(tsp
, delta
);