kernel - Intel user/kernel separation MMU bug fix part 2/3
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
blobdc9833f4095be1d157d67bdddb4e5d386f7870aa
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2017 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_pmap.h"
50 #endif
51 #include "opt_msgbuf.h"
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/proc.h>
56 #include <sys/msgbuf.h>
57 #include <sys/vmmeter.h>
58 #include <sys/mman.h>
59 #include <sys/systm.h>
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <sys/sysctl.h>
64 #include <sys/lock.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_pager.h>
72 #include <vm/vm_zone.h>
74 #include <sys/user.h>
75 #include <sys/thread2.h>
76 #include <sys/spinlock2.h>
77 #include <vm/vm_page2.h>
79 #include <machine/cputypes.h>
80 #include <machine/md_var.h>
81 #include <machine/specialreg.h>
82 #include <machine/smp.h>
83 #include <machine_base/apic/apicreg.h>
84 #include <machine/globaldata.h>
85 #include <machine/pmap.h>
86 #include <machine/pmap_inval.h>
87 #include <machine/inttypes.h>
89 #include <ddb/ddb.h>
91 #define PMAP_KEEP_PDIRS
92 #ifndef PMAP_SHPGPERPROC
93 #define PMAP_SHPGPERPROC 2000
94 #endif
96 #if defined(DIAGNOSTIC)
97 #define PMAP_DIAGNOSTIC
98 #endif
100 #define MINPV 2048
103 * pmap debugging will report who owns a pv lock when blocking.
105 #ifdef PMAP_DEBUG
107 #define PMAP_DEBUG_DECL ,const char *func, int lineno
108 #define PMAP_DEBUG_ARGS , __func__, __LINE__
109 #define PMAP_DEBUG_COPY , func, lineno
111 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp \
112 PMAP_DEBUG_ARGS)
113 #define pv_lock(pv) _pv_lock(pv \
114 PMAP_DEBUG_ARGS)
115 #define pv_hold_try(pv) _pv_hold_try(pv \
116 PMAP_DEBUG_ARGS)
117 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
118 PMAP_DEBUG_ARGS)
120 #define pv_free(pv, pvp) _pv_free(pv, pvp PMAP_DEBUG_ARGS)
122 #else
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
128 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp)
129 #define pv_lock(pv) _pv_lock(pv)
130 #define pv_hold_try(pv) _pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
132 #define pv_free(pv, pvp) _pv_free(pv, pvp)
134 #endif
137 * Get PDEs and PTEs for user/kernel address space
139 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
141 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
142 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
143 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
144 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
145 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
148 * Given a map and a machine independent protection code,
149 * convert to a vax protection code.
151 #define pte_prot(m, p) \
152 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
153 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
155 struct pmap kernel_pmap;
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
159 vm_paddr_t avail_start; /* PA of first available physical page */
160 vm_paddr_t avail_end; /* PA of last available physical page */
161 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart; /* VA start of KVA space */
166 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize; /* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
169 //static int pgeflag; /* PG_G or-in */
170 uint64_t PatMsr;
172 static int ndmpdp;
173 static vm_paddr_t dmaplimit;
174 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
176 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
177 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
179 static uint64_t KPTbase;
180 static uint64_t KPTphys;
181 static uint64_t KPDphys; /* phys addr of kernel level 2 */
182 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
183 uint64_t KPDPphys; /* phys addr of kernel level 3 */
184 uint64_t KPML4phys; /* phys addr of kernel level 4 */
186 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
187 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
190 * Data for the pv entry allocation mechanism
192 static vm_zone_t pvzone;
193 static struct vm_zone pvzone_store;
194 static vm_pindex_t pv_entry_max=0, pv_entry_high_water=0;
195 static int pmap_pagedaemon_waken = 0;
196 static struct pv_entry *pvinit;
199 * All those kernel PT submaps that BSD is so fond of
201 pt_entry_t *CMAP1 = NULL, *ptmmap;
202 caddr_t CADDR1 = NULL, ptvmmap = NULL;
203 static pt_entry_t *msgbufmap;
204 struct msgbuf *msgbufp=NULL;
207 * PMAP default PG_* bits. Needed to be able to add
208 * EPT/NPT pagetable pmap_bits for the VMM module
210 uint64_t pmap_bits_default[] = {
211 REGULAR_PMAP, /* TYPE_IDX 0 */
212 X86_PG_V, /* PG_V_IDX 1 */
213 X86_PG_RW, /* PG_RW_IDX 2 */
214 X86_PG_U, /* PG_U_IDX 3 */
215 X86_PG_A, /* PG_A_IDX 4 */
216 X86_PG_M, /* PG_M_IDX 5 */
217 X86_PG_PS, /* PG_PS_IDX3 6 */
218 X86_PG_G, /* PG_G_IDX 7 */
219 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
220 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
221 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
222 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
223 X86_PG_NX, /* PG_NX_IDX 12 */
226 * Crashdump maps.
228 static pt_entry_t *pt_crashdumpmap;
229 static caddr_t crashdumpmap;
231 static int pmap_debug = 0;
232 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
233 &pmap_debug, 0, "Debug pmap's");
234 #ifdef PMAP_DEBUG2
235 static int pmap_enter_debug = 0;
236 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
237 &pmap_enter_debug, 0, "Debug pmap_enter's");
238 #endif
239 static int pmap_yield_count = 64;
240 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
241 &pmap_yield_count, 0, "Yield during init_pt/release");
242 static int pmap_mmu_optimize = 0;
243 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
244 &pmap_mmu_optimize, 0, "Share page table pages when possible");
245 int pmap_fast_kernel_cpusync = 0;
246 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
247 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
248 int pmap_dynamic_delete = 0;
249 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
250 &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
251 int pmap_lock_delay = 100;
252 SYSCTL_INT(_machdep, OID_AUTO, pmap_lock_delay, CTLFLAG_RW,
253 &pmap_lock_delay, 0, "Spin loops");
254 static int vm_isolated_user_pmap = 0;
255 SYSCTL_INT(_vm, OID_AUTO, isolated_user_pmap, CTLFLAG_RW,
256 &vm_isolated_user_pmap, 0, "Userland pmap isolation");
258 static int pmap_nx_enable = 0;
259 /* needs manual TUNABLE in early probe, see below */
261 /* Standard user access funtions */
262 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
263 size_t *lencopied);
264 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
265 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
266 extern int std_fubyte (const uint8_t *base);
267 extern int std_subyte (uint8_t *base, uint8_t byte);
268 extern int32_t std_fuword32 (const uint32_t *base);
269 extern int64_t std_fuword64 (const uint64_t *base);
270 extern int std_suword64 (uint64_t *base, uint64_t word);
271 extern int std_suword32 (uint32_t *base, int word);
272 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
273 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
275 static void pv_hold(pv_entry_t pv);
276 static int _pv_hold_try(pv_entry_t pv
277 PMAP_DEBUG_DECL);
278 static void pv_drop(pv_entry_t pv);
279 static void _pv_lock(pv_entry_t pv
280 PMAP_DEBUG_DECL);
281 static void pv_unlock(pv_entry_t pv);
282 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
283 PMAP_DEBUG_DECL);
284 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
285 PMAP_DEBUG_DECL);
286 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
287 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
288 vm_pindex_t **pmarkp, int *errorp);
289 static void pv_put(pv_entry_t pv);
290 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
291 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
292 pv_entry_t *pvpp);
293 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
294 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
295 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
296 pmap_inval_bulk_t *bulk, int destroy);
297 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
298 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
299 pmap_inval_bulk_t *bulk);
301 struct pmap_scan_info;
302 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
303 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
304 pv_entry_t pt_pv, int sharept,
305 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
306 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
307 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
308 pv_entry_t pt_pv, int sharept,
309 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
311 static void x86_64_protection_init (void);
312 static void create_pagetables(vm_paddr_t *firstaddr);
313 static void pmap_remove_all (vm_page_t m);
314 static boolean_t pmap_testbit (vm_page_t m, int bit);
316 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
317 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
319 static void pmap_pinit_defaults(struct pmap *pmap);
320 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
321 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
323 static int
324 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
326 if (pv1->pv_pindex < pv2->pv_pindex)
327 return(-1);
328 if (pv1->pv_pindex > pv2->pv_pindex)
329 return(1);
330 return(0);
333 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
334 pv_entry_compare, vm_pindex_t, pv_pindex);
336 static __inline
337 void
338 pmap_page_stats_adding(vm_page_t m)
340 globaldata_t gd = mycpu;
342 if (TAILQ_EMPTY(&m->md.pv_list)) {
343 ++gd->gd_vmtotal.t_arm;
344 } else if (TAILQ_FIRST(&m->md.pv_list) ==
345 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
346 ++gd->gd_vmtotal.t_armshr;
347 ++gd->gd_vmtotal.t_avmshr;
348 } else {
349 ++gd->gd_vmtotal.t_avmshr;
353 static __inline
354 void
355 pmap_page_stats_deleting(vm_page_t m)
357 globaldata_t gd = mycpu;
359 if (TAILQ_EMPTY(&m->md.pv_list)) {
360 --gd->gd_vmtotal.t_arm;
361 } else if (TAILQ_FIRST(&m->md.pv_list) ==
362 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
363 --gd->gd_vmtotal.t_armshr;
364 --gd->gd_vmtotal.t_avmshr;
365 } else {
366 --gd->gd_vmtotal.t_avmshr;
371 * This is an ineligent crowbar to prevent heavily threaded programs
372 * from creating long live-locks in the pmap code when pmap_mmu_optimize
373 * is enabled. Without it a pmap-local page table page can wind up being
374 * constantly created and destroyed (without injury, but also without
375 * progress) as the optimization tries to switch to the object's shared page
376 * table page.
378 static __inline void
379 pmap_softwait(pmap_t pmap)
381 while (pmap->pm_softhold) {
382 tsleep_interlock(&pmap->pm_softhold, 0);
383 if (pmap->pm_softhold)
384 tsleep(&pmap->pm_softhold, PINTERLOCKED, "mmopt", 0);
388 static __inline void
389 pmap_softhold(pmap_t pmap)
391 while (atomic_swap_int(&pmap->pm_softhold, 1) == 1) {
392 tsleep_interlock(&pmap->pm_softhold, 0);
393 if (atomic_swap_int(&pmap->pm_softhold, 1) == 1)
394 tsleep(&pmap->pm_softhold, PINTERLOCKED, "mmopt", 0);
398 static __inline void
399 pmap_softdone(pmap_t pmap)
401 atomic_swap_int(&pmap->pm_softhold, 0);
402 wakeup(&pmap->pm_softhold);
406 * Move the kernel virtual free pointer to the next
407 * 2MB. This is used to help improve performance
408 * by using a large (2MB) page for much of the kernel
409 * (.text, .data, .bss)
411 static
412 vm_offset_t
413 pmap_kmem_choose(vm_offset_t addr)
415 vm_offset_t newaddr = addr;
417 newaddr = roundup2(addr, NBPDR);
418 return newaddr;
422 * Returns the pindex of a page table entry (representing a terminal page).
423 * There are NUPTE_TOTAL page table entries possible (a huge number)
425 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
426 * We want to properly translate negative KVAs.
428 static __inline
429 vm_pindex_t
430 pmap_pte_pindex(vm_offset_t va)
432 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
436 * Returns the pindex of a page table.
438 static __inline
439 vm_pindex_t
440 pmap_pt_pindex(vm_offset_t va)
442 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
446 * Returns the pindex of a page directory.
448 static __inline
449 vm_pindex_t
450 pmap_pd_pindex(vm_offset_t va)
452 return (NUPTE_TOTAL + NUPT_TOTAL +
453 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
456 static __inline
457 vm_pindex_t
458 pmap_pdp_pindex(vm_offset_t va)
460 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
461 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
464 static __inline
465 vm_pindex_t
466 pmap_pml4_pindex(void)
468 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
472 * Return various clipped indexes for a given VA
474 * Returns the index of a pt in a page directory, representing a page
475 * table.
477 static __inline
478 vm_pindex_t
479 pmap_pt_index(vm_offset_t va)
481 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
485 * Returns the index of a pd in a page directory page, representing a page
486 * directory.
488 static __inline
489 vm_pindex_t
490 pmap_pd_index(vm_offset_t va)
492 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
496 * Returns the index of a pdp in the pml4 table, representing a page
497 * directory page.
499 static __inline
500 vm_pindex_t
501 pmap_pdp_index(vm_offset_t va)
503 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
507 * Locate the requested pt_entry
509 static __inline
510 pv_entry_t
511 pv_entry_lookup(pmap_t pmap, vm_pindex_t pindex)
513 pv_entry_t pv;
515 if (pindex < pmap_pt_pindex(0))
516 pv = pmap->pm_pvhint_pte;
517 else if (pindex < pmap_pd_pindex(0))
518 pv = pmap->pm_pvhint_pt;
519 else
520 pv = NULL;
521 cpu_ccfence();
522 if (pv == NULL || pv->pv_pmap != pmap) {
523 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
524 pindex);
525 } else if (pv->pv_pindex != pindex) {
526 pv = pv_entry_rb_tree_RB_LOOKUP_REL(&pmap->pm_pvroot,
527 pindex, pv);
529 return pv;
533 * pmap_pte_quick:
535 * Super fast pmap_pte routine best used when scanning the pv lists.
536 * This eliminates many course-grained invltlb calls. Note that many of
537 * the pv list scans are across different pmaps and it is very wasteful
538 * to do an entire invltlb when checking a single mapping.
540 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
542 static
543 pt_entry_t *
544 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
546 return pmap_pte(pmap, va);
550 * The placemarker hash must be broken up into four zones so lock
551 * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
553 * Placemarkers are used to 'lock' page table indices that do not have
554 * a pv_entry. This allows the pmap to support managed and unmanaged
555 * pages and shared page tables.
557 #define PM_PLACE_BASE (PM_PLACEMARKS >> 2)
559 static __inline
560 vm_pindex_t *
561 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
563 int hi;
565 if (pindex < pmap_pt_pindex(0)) /* zone 0 - PTE */
566 hi = 0;
567 else if (pindex < pmap_pd_pindex(0)) /* zone 1 - PT */
568 hi = PM_PLACE_BASE;
569 else if (pindex < pmap_pdp_pindex(0)) /* zone 2 - PD */
570 hi = PM_PLACE_BASE << 1;
571 else /* zone 3 - PDP (and PML4E) */
572 hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
573 hi += pindex & (PM_PLACE_BASE - 1);
575 return (&pmap->pm_placemarks[hi]);
580 * Generic procedure to index a pte from a pt, pd, or pdp.
582 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
583 * a page table page index but is instead of PV lookup index.
585 static
586 void *
587 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
589 pt_entry_t *pte;
591 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
592 return(&pte[pindex]);
596 * Return pointer to PDP slot in the PML4
598 static __inline
599 pml4_entry_t *
600 pmap_pdp(pmap_t pmap, vm_offset_t va)
602 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
606 * Return pointer to PD slot in the PDP given a pointer to the PDP
608 static __inline
609 pdp_entry_t *
610 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
612 pdp_entry_t *pd;
614 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
615 return (&pd[pmap_pd_index(va)]);
619 * Return pointer to PD slot in the PDP.
621 static __inline
622 pdp_entry_t *
623 pmap_pd(pmap_t pmap, vm_offset_t va)
625 pml4_entry_t *pdp;
627 pdp = pmap_pdp(pmap, va);
628 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
629 return NULL;
630 return (pmap_pdp_to_pd(*pdp, va));
634 * Return pointer to PT slot in the PD given a pointer to the PD
636 static __inline
637 pd_entry_t *
638 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
640 pd_entry_t *pt;
642 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
643 return (&pt[pmap_pt_index(va)]);
647 * Return pointer to PT slot in the PD
649 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
650 * so we cannot lookup the PD via the PDP. Instead we
651 * must look it up via the pmap.
653 static __inline
654 pd_entry_t *
655 pmap_pt(pmap_t pmap, vm_offset_t va)
657 pdp_entry_t *pd;
658 pv_entry_t pv;
659 vm_pindex_t pd_pindex;
660 vm_paddr_t phys;
662 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
663 pd_pindex = pmap_pd_pindex(va);
664 spin_lock_shared(&pmap->pm_spin);
665 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
666 if (pv == NULL || pv->pv_m == NULL) {
667 spin_unlock_shared(&pmap->pm_spin);
668 return NULL;
670 phys = VM_PAGE_TO_PHYS(pv->pv_m);
671 spin_unlock_shared(&pmap->pm_spin);
672 return (pmap_pd_to_pt(phys, va));
673 } else {
674 pd = pmap_pd(pmap, va);
675 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
676 return NULL;
677 return (pmap_pd_to_pt(*pd, va));
682 * Return pointer to PTE slot in the PT given a pointer to the PT
684 static __inline
685 pt_entry_t *
686 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
688 pt_entry_t *pte;
690 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
691 return (&pte[pmap_pte_index(va)]);
695 * Return pointer to PTE slot in the PT
697 static __inline
698 pt_entry_t *
699 pmap_pte(pmap_t pmap, vm_offset_t va)
701 pd_entry_t *pt;
703 pt = pmap_pt(pmap, va);
704 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
705 return NULL;
706 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
707 return ((pt_entry_t *)pt);
708 return (pmap_pt_to_pte(*pt, va));
712 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
713 * the PT layer. This will speed up core pmap operations considerably.
715 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
716 * must be in a known associated state (typically by being locked when
717 * the pmap spinlock isn't held). We allow the race for that case.
719 * NOTE: pm_pvhint* is only accessed (read) with the spin-lock held, using
720 * cpu_ccfence() to prevent compiler optimizations from reloading the
721 * field.
723 static __inline
724 void
725 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
727 if (pindex < pmap_pt_pindex(0)) {
728 if (pv->pv_pmap)
729 pv->pv_pmap->pm_pvhint_pte = pv;
730 } else if (pindex < pmap_pd_pindex(0)) {
731 if (pv->pv_pmap)
732 pv->pv_pmap->pm_pvhint_pt = pv;
738 * Return address of PT slot in PD (KVM only)
740 * Cannot be used for user page tables because it might interfere with
741 * the shared page-table-page optimization (pmap_mmu_optimize).
743 static __inline
744 pd_entry_t *
745 vtopt(vm_offset_t va)
747 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
748 NPML4EPGSHIFT)) - 1);
750 return (PDmap + ((va >> PDRSHIFT) & mask));
754 * KVM - return address of PTE slot in PT
756 static __inline
757 pt_entry_t *
758 vtopte(vm_offset_t va)
760 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
761 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
763 return (PTmap + ((va >> PAGE_SHIFT) & mask));
767 * Returns the physical address translation from va for a user address.
768 * (vm_paddr_t)-1 is returned on failure.
770 vm_paddr_t
771 uservtophys(vm_offset_t va)
773 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
774 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
775 vm_paddr_t pa;
776 pt_entry_t pte;
777 pmap_t pmap;
779 pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
780 pa = (vm_paddr_t)-1;
781 if (va < VM_MAX_USER_ADDRESS) {
782 pte = kreadmem64(PTmap + ((va >> PAGE_SHIFT) & mask));
783 if (pte & pmap->pmap_bits[PG_V_IDX])
784 pa = (pte & PG_FRAME) | (va & PAGE_MASK);
786 return pa;
789 static uint64_t
790 allocpages(vm_paddr_t *firstaddr, long n)
792 uint64_t ret;
794 ret = *firstaddr;
795 bzero((void *)ret, n * PAGE_SIZE);
796 *firstaddr += n * PAGE_SIZE;
797 return (ret);
800 static
801 void
802 create_pagetables(vm_paddr_t *firstaddr)
804 long i; /* must be 64 bits */
805 long nkpt_base;
806 long nkpt_phys;
807 long nkpd_phys;
808 int j;
811 * We are running (mostly) V=P at this point
813 * Calculate how many 1GB PD entries in our PDP pages are needed
814 * for the DMAP. This is only allocated if the system does not
815 * support 1GB pages. Otherwise ndmpdp is simply a count of
816 * the number of 1G terminal entries in our PDP pages are needed.
818 * NOTE: Maxmem is in pages
820 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
821 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
822 ndmpdp = 4;
823 KKASSERT(ndmpdp <= NDMPML4E * NPML4EPG);
826 * Starting at KERNBASE - map all 2G worth of page table pages.
827 * KERNBASE is offset -2G from the end of kvm. This will accomodate
828 * all KVM allocations above KERNBASE, including the SYSMAPs below.
830 * We do this by allocating 2*512 PT pages. Each PT page can map
831 * 2MB, for 2GB total.
833 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
836 * Starting at the beginning of kvm (VM_MIN_KERNEL_ADDRESS),
837 * Calculate how many page table pages we need to preallocate
838 * for early vm_map allocations.
840 * A few extra won't hurt, they will get used up in the running
841 * system.
843 * vm_page array
844 * initial pventry's
846 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
847 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
848 nkpt_phys += 128; /* a few extra */
851 * The highest value nkpd_phys can be set to is
852 * NKPDPE - (NPDPEPG - KPDPI) (i.e. NKPDPE - 2).
854 * Doing so would cause all PD pages to be pre-populated for
855 * a maximal KVM space (approximately 16*512 pages, or 32MB.
856 * We can save memory by not doing this.
858 nkpd_phys = (nkpt_phys + NPDPEPG - 1) / NPDPEPG;
861 * Allocate pages
863 * Normally NKPML4E=1-16 (1-16 kernel PDP page)
864 * Normally NKPDPE= NKPML4E*512-1 (511 min kernel PD pages)
866 * Only allocate enough PD pages
867 * NOTE: We allocate all kernel PD pages up-front, typically
868 * ~511G of KVM, requiring 511 PD pages.
870 KPTbase = allocpages(firstaddr, nkpt_base); /* KERNBASE to end */
871 KPTphys = allocpages(firstaddr, nkpt_phys); /* KVA start */
872 KPML4phys = allocpages(firstaddr, 1); /* recursive PML4 map */
873 KPDPphys = allocpages(firstaddr, NKPML4E); /* kernel PDP pages */
874 KPDphys = allocpages(firstaddr, nkpd_phys); /* kernel PD pages */
877 * Alloc PD pages for the area starting at KERNBASE.
879 KPDbase = allocpages(firstaddr, NPDPEPG - KPDPI);
882 * Stuff for our DMAP
884 DMPDPphys = allocpages(firstaddr, NDMPML4E);
885 if ((amd_feature & AMDID_PAGE1GB) == 0)
886 DMPDphys = allocpages(firstaddr, ndmpdp);
887 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
890 * Fill in the underlying page table pages for the area around
891 * KERNBASE. This remaps low physical memory to KERNBASE.
893 * Read-only from zero to physfree
894 * XXX not fully used, underneath 2M pages
896 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
897 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
898 ((pt_entry_t *)KPTbase)[i] |=
899 pmap_bits_default[PG_RW_IDX] |
900 pmap_bits_default[PG_V_IDX] |
901 pmap_bits_default[PG_G_IDX];
905 * Now map the initial kernel page tables. One block of page
906 * tables is placed at the beginning of kernel virtual memory,
907 * and another block is placed at KERNBASE to map the kernel binary,
908 * data, bss, and initial pre-allocations.
910 for (i = 0; i < nkpt_base; i++) {
911 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
912 ((pd_entry_t *)KPDbase)[i] |=
913 pmap_bits_default[PG_RW_IDX] |
914 pmap_bits_default[PG_V_IDX];
916 for (i = 0; i < nkpt_phys; i++) {
917 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
918 ((pd_entry_t *)KPDphys)[i] |=
919 pmap_bits_default[PG_RW_IDX] |
920 pmap_bits_default[PG_V_IDX];
924 * Map from zero to end of allocations using 2M pages as an
925 * optimization. This will bypass some of the KPTBase pages
926 * above in the KERNBASE area.
928 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
929 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
930 ((pd_entry_t *)KPDbase)[i] |=
931 pmap_bits_default[PG_RW_IDX] |
932 pmap_bits_default[PG_V_IDX] |
933 pmap_bits_default[PG_PS_IDX] |
934 pmap_bits_default[PG_G_IDX];
938 * Load PD addresses into the PDP pages for primary KVA space to
939 * cover existing page tables. PD's for KERNBASE are handled in
940 * the next loop.
942 * expected to pre-populate all of its PDs. See NKPDPE in vmparam.h.
944 for (i = 0; i < nkpd_phys; i++) {
945 ((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] =
946 KPDphys + (i << PAGE_SHIFT);
947 ((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] |=
948 pmap_bits_default[PG_RW_IDX] |
949 pmap_bits_default[PG_V_IDX] |
950 pmap_bits_default[PG_U_IDX];
954 * Load PDs for KERNBASE to the end
956 i = (NKPML4E - 1) * NPDPEPG + KPDPI;
957 for (j = 0; j < NPDPEPG - KPDPI; ++j) {
958 ((pdp_entry_t *)KPDPphys)[i + j] =
959 KPDbase + (j << PAGE_SHIFT);
960 ((pdp_entry_t *)KPDPphys)[i + j] |=
961 pmap_bits_default[PG_RW_IDX] |
962 pmap_bits_default[PG_V_IDX] |
963 pmap_bits_default[PG_U_IDX];
967 * Now set up the direct map space using either 2MB or 1GB pages
968 * Preset PG_M and PG_A because demotion expects it.
970 * When filling in entries in the PD pages make sure any excess
971 * entries are set to zero as we allocated enough PD pages
973 if ((amd_feature & AMDID_PAGE1GB) == 0) {
974 for (i = 0; i < NPDEPG * ndmpdp; i++) {
975 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
976 ((pd_entry_t *)DMPDphys)[i] |=
977 pmap_bits_default[PG_RW_IDX] |
978 pmap_bits_default[PG_V_IDX] |
979 pmap_bits_default[PG_PS_IDX] |
980 pmap_bits_default[PG_G_IDX] |
981 pmap_bits_default[PG_M_IDX] |
982 pmap_bits_default[PG_A_IDX];
986 * And the direct map space's PDP
988 for (i = 0; i < ndmpdp; i++) {
989 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
990 (i << PAGE_SHIFT);
991 ((pdp_entry_t *)DMPDPphys)[i] |=
992 pmap_bits_default[PG_RW_IDX] |
993 pmap_bits_default[PG_V_IDX] |
994 pmap_bits_default[PG_U_IDX];
996 } else {
997 for (i = 0; i < ndmpdp; i++) {
998 ((pdp_entry_t *)DMPDPphys)[i] =
999 (vm_paddr_t)i << PDPSHIFT;
1000 ((pdp_entry_t *)DMPDPphys)[i] |=
1001 pmap_bits_default[PG_RW_IDX] |
1002 pmap_bits_default[PG_V_IDX] |
1003 pmap_bits_default[PG_PS_IDX] |
1004 pmap_bits_default[PG_G_IDX] |
1005 pmap_bits_default[PG_M_IDX] |
1006 pmap_bits_default[PG_A_IDX];
1010 /* And recursively map PML4 to itself in order to get PTmap */
1011 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
1012 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
1013 pmap_bits_default[PG_RW_IDX] |
1014 pmap_bits_default[PG_V_IDX] |
1015 pmap_bits_default[PG_U_IDX];
1018 * Connect the Direct Map slots up to the PML4
1020 for (j = 0; j < NDMPML4E; ++j) {
1021 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
1022 (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
1023 pmap_bits_default[PG_RW_IDX] |
1024 pmap_bits_default[PG_V_IDX] |
1025 pmap_bits_default[PG_U_IDX];
1029 * Connect the KVA slot up to the PML4
1031 for (j = 0; j < NKPML4E; ++j) {
1032 ((pdp_entry_t *)KPML4phys)[KPML4I + j] =
1033 KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT);
1034 ((pdp_entry_t *)KPML4phys)[KPML4I + j] |=
1035 pmap_bits_default[PG_RW_IDX] |
1036 pmap_bits_default[PG_V_IDX] |
1037 pmap_bits_default[PG_U_IDX];
1039 cpu_mfence();
1040 cpu_invltlb();
1044 * Bootstrap the system enough to run with virtual memory.
1046 * On x86_64 this is called after mapping has already been enabled
1047 * and just syncs the pmap module with what has already been done.
1048 * [We can't call it easily with mapping off since the kernel is not
1049 * mapped with PA == VA, hence we would have to relocate every address
1050 * from the linked base (virtual) address "KERNBASE" to the actual
1051 * (physical) address starting relative to 0]
1053 void
1054 pmap_bootstrap(vm_paddr_t *firstaddr)
1056 vm_offset_t va;
1057 pt_entry_t *pte;
1058 int i;
1060 KvaStart = VM_MIN_KERNEL_ADDRESS;
1061 KvaEnd = VM_MAX_KERNEL_ADDRESS;
1062 KvaSize = KvaEnd - KvaStart;
1064 avail_start = *firstaddr;
1067 * Create an initial set of page tables to run the kernel in.
1069 create_pagetables(firstaddr);
1071 virtual2_start = KvaStart;
1072 virtual2_end = PTOV_OFFSET;
1074 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
1075 virtual_start = pmap_kmem_choose(virtual_start);
1077 virtual_end = VM_MAX_KERNEL_ADDRESS;
1079 /* XXX do %cr0 as well */
1080 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1081 load_cr3(KPML4phys);
1084 * Initialize protection array.
1086 x86_64_protection_init();
1089 * The kernel's pmap is statically allocated so we don't have to use
1090 * pmap_create, which is unlikely to work correctly at this part of
1091 * the boot sequence (XXX and which no longer exists).
1093 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
1094 kernel_pmap.pm_count = 1;
1095 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
1096 RB_INIT(&kernel_pmap.pm_pvroot);
1097 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
1098 for (i = 0; i < PM_PLACEMARKS; ++i)
1099 kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
1102 * Reserve some special page table entries/VA space for temporary
1103 * mapping of pages.
1105 #define SYSMAP(c, p, v, n) \
1106 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1108 va = virtual_start;
1109 pte = vtopte(va);
1112 * CMAP1/CMAP2 are used for zeroing and copying pages.
1114 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
1117 * Crashdump maps.
1119 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
1122 * ptvmmap is used for reading arbitrary physical pages via
1123 * /dev/mem.
1125 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
1128 * msgbufp is used to map the system message buffer.
1129 * XXX msgbufmap is not used.
1131 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
1132 atop(round_page(MSGBUF_SIZE)))
1134 virtual_start = va;
1135 virtual_start = pmap_kmem_choose(virtual_start);
1137 *CMAP1 = 0;
1140 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1141 * cases rather then invl1pg. Actually, I don't even know why it
1142 * works under UP because self-referential page table mappings
1144 // pgeflag = 0;
1146 cpu_invltlb();
1148 /* Initialize the PAT MSR */
1149 pmap_init_pat();
1150 pmap_pinit_defaults(&kernel_pmap);
1152 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1153 &pmap_fast_kernel_cpusync);
1158 * Setup the PAT MSR.
1160 void
1161 pmap_init_pat(void)
1163 uint64_t pat_msr;
1164 u_long cr0, cr4;
1167 * Default values mapping PATi,PCD,PWT bits at system reset.
1168 * The default values effectively ignore the PATi bit by
1169 * repeating the encodings for 0-3 in 4-7, and map the PCD
1170 * and PWT bit combinations to the expected PAT types.
1172 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1173 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1174 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1175 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1176 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1177 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1178 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1179 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1180 pat_pte_index[PAT_WRITE_BACK] = 0;
1181 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1182 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1183 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1184 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1185 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1187 if (cpu_feature & CPUID_PAT) {
1189 * If we support the PAT then set-up entries for
1190 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1191 * 5 and 6.
1193 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1194 PAT_VALUE(5, PAT_WRITE_PROTECTED);
1195 pat_msr = (pat_msr & ~PAT_MASK(6)) |
1196 PAT_VALUE(6, PAT_WRITE_COMBINING);
1197 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1198 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1201 * Then enable the PAT
1204 /* Disable PGE. */
1205 cr4 = rcr4();
1206 load_cr4(cr4 & ~CR4_PGE);
1208 /* Disable caches (CD = 1, NW = 0). */
1209 cr0 = rcr0();
1210 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1212 /* Flushes caches and TLBs. */
1213 wbinvd();
1214 cpu_invltlb();
1216 /* Update PAT and index table. */
1217 wrmsr(MSR_PAT, pat_msr);
1219 /* Flush caches and TLBs again. */
1220 wbinvd();
1221 cpu_invltlb();
1223 /* Restore caches and PGE. */
1224 load_cr0(cr0);
1225 load_cr4(cr4);
1226 PatMsr = pat_msr;
1231 * Set 4mb pdir for mp startup
1233 void
1234 pmap_set_opt(void)
1236 if (cpu_feature & CPUID_PSE) {
1237 load_cr4(rcr4() | CR4_PSE);
1238 if (mycpu->gd_cpuid == 0) /* only on BSP */
1239 cpu_invltlb();
1244 * Initialize the pmap module.
1245 * Called by vm_init, to initialize any structures that the pmap
1246 * system needs to map virtual memory.
1247 * pmap_init has been enhanced to support in a fairly consistant
1248 * way, discontiguous physical memory.
1250 void
1251 pmap_init(void)
1253 vm_pindex_t initial_pvs;
1254 vm_pindex_t i;
1257 * Allocate memory for random pmap data structures. Includes the
1258 * pv_head_table.
1261 for (i = 0; i < vm_page_array_size; i++) {
1262 vm_page_t m;
1264 m = &vm_page_array[i];
1265 TAILQ_INIT(&m->md.pv_list);
1269 * init the pv free list
1271 initial_pvs = vm_page_array_size;
1272 if (initial_pvs < MINPV)
1273 initial_pvs = MINPV;
1274 pvzone = &pvzone_store;
1275 pvinit = (void *)kmem_alloc(&kernel_map,
1276 initial_pvs * sizeof (struct pv_entry),
1277 VM_SUBSYS_PVENTRY);
1278 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1279 pvinit, initial_pvs);
1282 * Now it is safe to enable pv_table recording.
1284 pmap_initialized = TRUE;
1288 * Initialize the address space (zone) for the pv_entries. Set a
1289 * high water mark so that the system can recover from excessive
1290 * numbers of pv entries.
1292 void
1293 pmap_init2(void)
1295 vm_pindex_t shpgperproc = PMAP_SHPGPERPROC;
1296 vm_pindex_t entry_max;
1298 TUNABLE_LONG_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1299 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1300 TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1301 pv_entry_high_water = 9 * (pv_entry_max / 10);
1304 * Subtract out pages already installed in the zone (hack)
1306 entry_max = pv_entry_max - vm_page_array_size;
1307 if (entry_max <= 0)
1308 entry_max = 1;
1310 zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1313 * Enable dynamic deletion of empty higher-level page table pages
1314 * by default only if system memory is < 8GB (use 7GB for slop).
1315 * This can save a little memory, but imposes significant
1316 * performance overhead for things like bulk builds, and for programs
1317 * which do a lot of memory mapping and memory unmapping.
1319 if (pmap_dynamic_delete < 0) {
1320 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1321 pmap_dynamic_delete = 1;
1322 else
1323 pmap_dynamic_delete = 0;
1328 * Typically used to initialize a fictitious page by vm/device_pager.c
1330 void
1331 pmap_page_init(struct vm_page *m)
1333 vm_page_init(m);
1334 TAILQ_INIT(&m->md.pv_list);
1337 /***************************************************
1338 * Low level helper routines.....
1339 ***************************************************/
1342 * this routine defines the region(s) of memory that should
1343 * not be tested for the modified bit.
1345 static __inline
1347 pmap_track_modified(vm_pindex_t pindex)
1349 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1350 if ((va < clean_sva) || (va >= clean_eva))
1351 return 1;
1352 else
1353 return 0;
1357 * Extract the physical page address associated with the map/VA pair.
1358 * The page must be wired for this to work reliably.
1360 vm_paddr_t
1361 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1363 vm_paddr_t rtval;
1364 pv_entry_t pt_pv;
1365 pt_entry_t *ptep;
1367 rtval = 0;
1368 if (va >= VM_MAX_USER_ADDRESS) {
1370 * Kernel page directories might be direct-mapped and
1371 * there is typically no PV tracking of pte's
1373 pd_entry_t *pt;
1375 pt = pmap_pt(pmap, va);
1376 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1377 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1378 rtval = *pt & PG_PS_FRAME;
1379 rtval |= va & PDRMASK;
1380 } else {
1381 ptep = pmap_pt_to_pte(*pt, va);
1382 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1383 rtval = *ptep & PG_FRAME;
1384 rtval |= va & PAGE_MASK;
1388 if (handlep)
1389 *handlep = NULL;
1390 } else {
1392 * User pages currently do not direct-map the page directory
1393 * and some pages might not used managed PVs. But all PT's
1394 * will have a PV.
1396 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1397 if (pt_pv) {
1398 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1399 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1400 rtval = *ptep & PG_FRAME;
1401 rtval |= va & PAGE_MASK;
1403 if (handlep)
1404 *handlep = pt_pv; /* locked until done */
1405 else
1406 pv_put (pt_pv);
1407 } else if (handlep) {
1408 *handlep = NULL;
1411 return rtval;
1414 void
1415 pmap_extract_done(void *handle)
1417 if (handle)
1418 pv_put((pv_entry_t)handle);
1422 * Similar to extract but checks protections, SMP-friendly short-cut for
1423 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1424 * fall-through to the real fault code. Does not work with HVM page
1425 * tables.
1427 * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1429 * If busyp is not NULL and this function sets *busyp non-zero, the returned
1430 * page is busied (and not held).
1432 * If busyp is not NULL and this function sets *busyp to zero, the returned
1433 * page is held (and not busied).
1435 * If VM_PROT_WRITE is set in prot, and the pte is already writable, the
1436 * returned page will be dirtied. If the pte is not already writable NULL
1437 * is returned. In otherwords, if the bit is set and a vm_page_t is returned,
1438 * any COW will already have happened and that page can be written by the
1439 * caller.
1441 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1442 * OR WRITING AS-IS.
1444 vm_page_t
1445 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1447 if (pmap &&
1448 va < VM_MAX_USER_ADDRESS &&
1449 (pmap->pm_flags & PMAP_HVM) == 0) {
1450 pv_entry_t pt_pv;
1451 pv_entry_t pte_pv;
1452 pt_entry_t *ptep;
1453 pt_entry_t req;
1454 vm_page_t m;
1455 int error;
1457 req = pmap->pmap_bits[PG_V_IDX] |
1458 pmap->pmap_bits[PG_U_IDX];
1459 if (prot & VM_PROT_WRITE)
1460 req |= pmap->pmap_bits[PG_RW_IDX];
1462 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1463 if (pt_pv == NULL)
1464 return (NULL);
1465 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1466 if ((*ptep & req) != req) {
1467 pv_put(pt_pv);
1468 return (NULL);
1470 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1471 if (pte_pv && error == 0) {
1472 m = pte_pv->pv_m;
1473 if (prot & VM_PROT_WRITE) {
1474 /* interlocked by presence of pv_entry */
1475 vm_page_dirty(m);
1477 if (busyp) {
1478 if (prot & VM_PROT_WRITE) {
1479 if (vm_page_busy_try(m, TRUE))
1480 m = NULL;
1481 *busyp = 1;
1482 } else {
1483 vm_page_hold(m);
1484 *busyp = 0;
1486 } else {
1487 vm_page_hold(m);
1489 pv_put(pte_pv);
1490 } else if (pte_pv) {
1491 pv_drop(pte_pv);
1492 m = NULL;
1493 } else {
1494 /* error, since we didn't request a placemarker */
1495 m = NULL;
1497 pv_put(pt_pv);
1498 return(m);
1499 } else {
1500 return(NULL);
1505 * Extract the physical page address associated kernel virtual address.
1507 vm_paddr_t
1508 pmap_kextract(vm_offset_t va)
1510 pd_entry_t pt; /* pt entry in pd */
1511 vm_paddr_t pa;
1513 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1514 pa = DMAP_TO_PHYS(va);
1515 } else {
1516 pt = *vtopt(va);
1517 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1518 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1519 } else {
1521 * Beware of a concurrent promotion that changes the
1522 * PDE at this point! For example, vtopte() must not
1523 * be used to access the PTE because it would use the
1524 * new PDE. It is, however, safe to use the old PDE
1525 * because the page table page is preserved by the
1526 * promotion.
1528 pa = *pmap_pt_to_pte(pt, va);
1529 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1532 return pa;
1535 /***************************************************
1536 * Low level mapping routines.....
1537 ***************************************************/
1540 * Routine: pmap_kenter
1541 * Function:
1542 * Add a wired page to the KVA
1543 * NOTE! note that in order for the mapping to take effect -- you
1544 * should do an invltlb after doing the pmap_kenter().
1546 void
1547 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1549 pt_entry_t *ptep;
1550 pt_entry_t npte;
1552 npte = pa |
1553 kernel_pmap.pmap_bits[PG_RW_IDX] |
1554 kernel_pmap.pmap_bits[PG_V_IDX];
1555 // pgeflag;
1556 ptep = vtopte(va);
1557 #if 1
1558 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1559 #else
1560 /* FUTURE */
1561 if (*ptep)
1562 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1563 else
1564 *ptep = npte;
1565 #endif
1569 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1570 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1571 * (caller can conditionalize calling smp_invltlb()).
1574 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1576 pt_entry_t *ptep;
1577 pt_entry_t npte;
1578 int res;
1580 npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1581 kernel_pmap.pmap_bits[PG_V_IDX];
1582 // npte |= pgeflag;
1583 ptep = vtopte(va);
1584 #if 1
1585 res = 1;
1586 #else
1587 /* FUTURE */
1588 res = (*ptep != 0);
1589 #endif
1590 atomic_swap_long(ptep, npte);
1591 cpu_invlpg((void *)va);
1593 return res;
1597 * Enter addresses into the kernel pmap but don't bother
1598 * doing any tlb invalidations. Caller will do a rollup
1599 * invalidation via pmap_rollup_inval().
1602 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1604 pt_entry_t *ptep;
1605 pt_entry_t npte;
1606 int res;
1608 npte = pa |
1609 kernel_pmap.pmap_bits[PG_RW_IDX] |
1610 kernel_pmap.pmap_bits[PG_V_IDX];
1611 // pgeflag;
1612 ptep = vtopte(va);
1613 #if 1
1614 res = 1;
1615 #else
1616 /* FUTURE */
1617 res = (*ptep != 0);
1618 #endif
1619 atomic_swap_long(ptep, npte);
1620 cpu_invlpg((void *)va);
1622 return res;
1626 * remove a page from the kernel pagetables
1628 void
1629 pmap_kremove(vm_offset_t va)
1631 pt_entry_t *ptep;
1633 ptep = vtopte(va);
1634 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1637 void
1638 pmap_kremove_quick(vm_offset_t va)
1640 pt_entry_t *ptep;
1642 ptep = vtopte(va);
1643 (void)pte_load_clear(ptep);
1644 cpu_invlpg((void *)va);
1648 * Remove addresses from the kernel pmap but don't bother
1649 * doing any tlb invalidations. Caller will do a rollup
1650 * invalidation via pmap_rollup_inval().
1652 void
1653 pmap_kremove_noinval(vm_offset_t va)
1655 pt_entry_t *ptep;
1657 ptep = vtopte(va);
1658 (void)pte_load_clear(ptep);
1662 * XXX these need to be recoded. They are not used in any critical path.
1664 void
1665 pmap_kmodify_rw(vm_offset_t va)
1667 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1668 cpu_invlpg((void *)va);
1671 /* NOT USED
1672 void
1673 pmap_kmodify_nc(vm_offset_t va)
1675 atomic_set_long(vtopte(va), PG_N);
1676 cpu_invlpg((void *)va);
1681 * Used to map a range of physical addresses into kernel virtual
1682 * address space during the low level boot, typically to map the
1683 * dump bitmap, message buffer, and vm_page_array.
1685 * These mappings are typically made at some pointer after the end of the
1686 * kernel text+data.
1688 * We could return PHYS_TO_DMAP(start) here and not allocate any
1689 * via (*virtp), but then kmem from userland and kernel dumps won't
1690 * have access to the related pointers.
1692 vm_offset_t
1693 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1695 vm_offset_t va;
1696 vm_offset_t va_start;
1698 /*return PHYS_TO_DMAP(start);*/
1700 va_start = *virtp;
1701 va = va_start;
1703 while (start < end) {
1704 pmap_kenter_quick(va, start);
1705 va += PAGE_SIZE;
1706 start += PAGE_SIZE;
1708 *virtp = va;
1709 return va_start;
1712 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1715 * Remove the specified set of pages from the data and instruction caches.
1717 * In contrast to pmap_invalidate_cache_range(), this function does not
1718 * rely on the CPU's self-snoop feature, because it is intended for use
1719 * when moving pages into a different cache domain.
1721 void
1722 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1724 vm_offset_t daddr, eva;
1725 int i;
1727 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1728 (cpu_feature & CPUID_CLFSH) == 0)
1729 wbinvd();
1730 else {
1731 cpu_mfence();
1732 for (i = 0; i < count; i++) {
1733 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1734 eva = daddr + PAGE_SIZE;
1735 for (; daddr < eva; daddr += cpu_clflush_line_size)
1736 clflush(daddr);
1738 cpu_mfence();
1742 void
1743 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1745 KASSERT((sva & PAGE_MASK) == 0,
1746 ("pmap_invalidate_cache_range: sva not page-aligned"));
1747 KASSERT((eva & PAGE_MASK) == 0,
1748 ("pmap_invalidate_cache_range: eva not page-aligned"));
1750 if (cpu_feature & CPUID_SS) {
1751 ; /* If "Self Snoop" is supported, do nothing. */
1752 } else {
1753 /* Globally invalidate caches */
1754 cpu_wbinvd_on_all_cpus();
1759 * Invalidate the specified range of virtual memory on all cpus associated
1760 * with the pmap.
1762 void
1763 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1765 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1769 * Add a list of wired pages to the kva. This routine is used for temporary
1770 * kernel mappings such as those found in buffer cache buffer. Page
1771 * modifications and accesses are not tracked or recorded.
1773 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1774 * semantics as previous mappings may have been zerod without any
1775 * invalidation.
1777 * The page *must* be wired.
1779 static __inline void
1780 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
1782 vm_offset_t end_va;
1783 vm_offset_t va;
1785 end_va = beg_va + count * PAGE_SIZE;
1787 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1788 pt_entry_t pte;
1789 pt_entry_t *ptep;
1791 ptep = vtopte(va);
1792 pte = VM_PAGE_TO_PHYS(*m) |
1793 kernel_pmap.pmap_bits[PG_RW_IDX] |
1794 kernel_pmap.pmap_bits[PG_V_IDX] |
1795 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1796 // pgeflag;
1797 atomic_swap_long(ptep, pte);
1798 m++;
1800 if (doinval)
1801 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1804 void
1805 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1807 _pmap_qenter(beg_va, m, count, 1);
1810 void
1811 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1813 _pmap_qenter(beg_va, m, count, 0);
1817 * This routine jerks page mappings from the kernel -- it is meant only
1818 * for temporary mappings such as those found in buffer cache buffers.
1819 * No recording modified or access status occurs.
1821 * MPSAFE, INTERRUPT SAFE (cluster callback)
1823 void
1824 pmap_qremove(vm_offset_t beg_va, int count)
1826 vm_offset_t end_va;
1827 vm_offset_t va;
1829 end_va = beg_va + count * PAGE_SIZE;
1831 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1832 pt_entry_t *pte;
1834 pte = vtopte(va);
1835 (void)pte_load_clear(pte);
1836 cpu_invlpg((void *)va);
1838 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1842 * This routine removes temporary kernel mappings, only invalidating them
1843 * on the current cpu. It should only be used under carefully controlled
1844 * conditions.
1846 void
1847 pmap_qremove_quick(vm_offset_t beg_va, int count)
1849 vm_offset_t end_va;
1850 vm_offset_t va;
1852 end_va = beg_va + count * PAGE_SIZE;
1854 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1855 pt_entry_t *pte;
1857 pte = vtopte(va);
1858 (void)pte_load_clear(pte);
1859 cpu_invlpg((void *)va);
1864 * This routine removes temporary kernel mappings *without* invalidating
1865 * the TLB. It can only be used on permanent kva reservations such as those
1866 * found in buffer cache buffers, under carefully controlled circumstances.
1868 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1869 * (pmap_qenter() does unconditional invalidation).
1871 void
1872 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1874 vm_offset_t end_va;
1875 vm_offset_t va;
1877 end_va = beg_va + count * PAGE_SIZE;
1879 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1880 pt_entry_t *pte;
1882 pte = vtopte(va);
1883 (void)pte_load_clear(pte);
1888 * Create a new thread and optionally associate it with a (new) process.
1889 * NOTE! the new thread's cpu may not equal the current cpu.
1891 void
1892 pmap_init_thread(thread_t td)
1894 /* enforce pcb placement & alignment */
1895 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1896 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1897 td->td_savefpu = &td->td_pcb->pcb_save;
1898 td->td_sp = (char *)td->td_pcb; /* no -16 */
1902 * This routine directly affects the fork perf for a process.
1904 void
1905 pmap_init_proc(struct proc *p)
1909 static void
1910 pmap_pinit_defaults(struct pmap *pmap)
1912 bcopy(pmap_bits_default, pmap->pmap_bits,
1913 sizeof(pmap_bits_default));
1914 bcopy(protection_codes, pmap->protection_codes,
1915 sizeof(protection_codes));
1916 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1917 sizeof(pat_pte_index));
1918 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1919 pmap->copyinstr = std_copyinstr;
1920 pmap->copyin = std_copyin;
1921 pmap->copyout = std_copyout;
1922 pmap->fubyte = std_fubyte;
1923 pmap->subyte = std_subyte;
1924 pmap->fuword32 = std_fuword32;
1925 pmap->fuword64 = std_fuword64;
1926 pmap->suword32 = std_suword32;
1927 pmap->suword64 = std_suword64;
1928 pmap->swapu32 = std_swapu32;
1929 pmap->swapu64 = std_swapu64;
1932 * Initialize pmap0/vmspace0.
1934 * On architectures where the kernel pmap is not integrated into the user
1935 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1936 * kernel_pmap should be used to directly access the kernel_pmap.
1938 void
1939 pmap_pinit0(struct pmap *pmap)
1941 int i;
1943 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1944 pmap->pm_count = 1;
1945 CPUMASK_ASSZERO(pmap->pm_active);
1946 pmap->pm_pvhint_pt = NULL;
1947 pmap->pm_pvhint_pte = NULL;
1948 RB_INIT(&pmap->pm_pvroot);
1949 spin_init(&pmap->pm_spin, "pmapinit0");
1950 for (i = 0; i < PM_PLACEMARKS; ++i)
1951 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1952 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1953 pmap_pinit_defaults(pmap);
1957 * Initialize a preallocated and zeroed pmap structure,
1958 * such as one in a vmspace structure.
1960 static void
1961 pmap_pinit_simple(struct pmap *pmap)
1963 int i;
1966 * Misc initialization
1968 pmap->pm_count = 1;
1969 CPUMASK_ASSZERO(pmap->pm_active);
1970 pmap->pm_pvhint_pt = NULL;
1971 pmap->pm_pvhint_pte = NULL;
1972 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1974 pmap_pinit_defaults(pmap);
1977 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1978 * for this).
1980 if (pmap->pm_pmlpv == NULL) {
1981 RB_INIT(&pmap->pm_pvroot);
1982 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1983 spin_init(&pmap->pm_spin, "pmapinitsimple");
1984 for (i = 0; i < PM_PLACEMARKS; ++i)
1985 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1989 void
1990 pmap_pinit(struct pmap *pmap)
1992 pv_entry_t pv;
1993 int j;
1995 if (pmap->pm_pmlpv) {
1996 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1997 pmap_puninit(pmap);
2001 pmap_pinit_simple(pmap);
2002 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
2005 * No need to allocate page table space yet but we do need a valid
2006 * page directory table.
2008 if (pmap->pm_pml4 == NULL) {
2009 pmap->pm_pml4 =
2010 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
2011 PAGE_SIZE * 2,
2012 VM_SUBSYS_PML4);
2013 pmap->pm_pml4_iso = (void *)((char *)pmap->pm_pml4 + PAGE_SIZE);
2017 * Allocate the PML4e table, which wires it even though it isn't
2018 * being entered into some higher level page table (it being the
2019 * highest level). If one is already cached we don't have to do
2020 * anything.
2022 if ((pv = pmap->pm_pmlpv) == NULL) {
2023 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2024 pmap->pm_pmlpv = pv;
2025 pmap_kenter((vm_offset_t)pmap->pm_pml4,
2026 VM_PAGE_TO_PHYS(pv->pv_m));
2027 pv_put(pv);
2030 * Install DMAP and KMAP.
2032 for (j = 0; j < NDMPML4E; ++j) {
2033 pmap->pm_pml4[DMPML4I + j] =
2034 (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2035 pmap->pmap_bits[PG_RW_IDX] |
2036 pmap->pmap_bits[PG_V_IDX] |
2037 pmap->pmap_bits[PG_U_IDX];
2039 for (j = 0; j < NKPML4E; ++j) {
2040 pmap->pm_pml4[KPML4I + j] =
2041 (KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2042 pmap->pmap_bits[PG_RW_IDX] |
2043 pmap->pmap_bits[PG_V_IDX] |
2044 pmap->pmap_bits[PG_U_IDX];
2048 * install self-referential address mapping entry
2050 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
2051 pmap->pmap_bits[PG_V_IDX] |
2052 pmap->pmap_bits[PG_RW_IDX] |
2053 pmap->pmap_bits[PG_A_IDX] |
2054 pmap->pmap_bits[PG_M_IDX];
2055 } else {
2056 KKASSERT(pv->pv_m->flags & PG_MAPPED);
2057 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2059 KKASSERT(pmap->pm_pml4[255] == 0);
2062 * When implementing an isolated userland pmap, a second PML4e table
2063 * is needed. We use pmap_pml4_pindex() + 1 for convenience, but
2064 * note that we do not operate on this table using our API functions
2065 * so handling of the + 1 case is mostly just to prevent implosions.
2067 if ((pv = pmap->pm_pmlpv_iso) == NULL && vm_isolated_user_pmap) {
2068 pv = pmap_allocpte(pmap, pmap_pml4_pindex() + 1, NULL);
2069 pmap->pm_pmlpv_iso = pv;
2070 pmap_kenter((vm_offset_t)pmap->pm_pml4_iso,
2071 VM_PAGE_TO_PHYS(pv->pv_m));
2072 pv_put(pv);
2075 * Install just enough KMAP for our trampoline. DMAP not
2076 * needed at all. XXX
2078 for (j = 0; j < NKPML4E; ++j) {
2079 pmap->pm_pml4_iso[KPML4I + j] =
2080 (KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2081 pmap->pmap_bits[PG_RW_IDX] |
2082 pmap->pmap_bits[PG_V_IDX] |
2083 pmap->pmap_bits[PG_U_IDX];
2085 KKASSERT(pmap->pm_pml4_iso[255] == 0);
2086 } else if (pv) {
2087 KKASSERT(pv->pv_m->flags & PG_MAPPED);
2088 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2093 * Clean up a pmap structure so it can be physically freed. This routine
2094 * is called by the vmspace dtor function. A great deal of pmap data is
2095 * left passively mapped to improve vmspace management so we have a bit
2096 * of cleanup work to do here.
2098 void
2099 pmap_puninit(pmap_t pmap)
2101 pv_entry_t pv;
2102 vm_page_t p;
2104 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
2105 if ((pv = pmap->pm_pmlpv) != NULL) {
2106 if (pv_hold_try(pv) == 0)
2107 pv_lock(pv);
2108 KKASSERT(pv == pmap->pm_pmlpv);
2109 p = pmap_remove_pv_page(pv);
2110 pv_free(pv, NULL);
2111 pv = NULL; /* safety */
2112 pmap_kremove((vm_offset_t)pmap->pm_pml4);
2113 vm_page_busy_wait(p, FALSE, "pgpun");
2114 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
2115 vm_page_unwire(p, 0);
2116 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2117 vm_page_free(p);
2118 pmap->pm_pmlpv = NULL;
2120 if ((pv = pmap->pm_pmlpv_iso) != NULL) {
2121 if (pv_hold_try(pv) == 0)
2122 pv_lock(pv);
2123 KKASSERT(pv == pmap->pm_pmlpv_iso);
2124 p = pmap_remove_pv_page(pv);
2125 pv_free(pv, NULL);
2126 pv = NULL; /* safety */
2127 pmap_kremove((vm_offset_t)pmap->pm_pml4_iso);
2128 vm_page_busy_wait(p, FALSE, "pgpun");
2129 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
2130 vm_page_unwire(p, 0);
2131 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2132 vm_page_free(p);
2133 pmap->pm_pmlpv_iso = NULL;
2135 if (pmap->pm_pml4) {
2136 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
2137 kmem_free(&kernel_map,
2138 (vm_offset_t)pmap->pm_pml4, PAGE_SIZE * 2);
2139 pmap->pm_pml4 = NULL;
2140 pmap->pm_pml4_iso = NULL;
2142 KKASSERT(pmap->pm_stats.resident_count == 0);
2143 KKASSERT(pmap->pm_stats.wired_count == 0);
2147 * This function is now unused (used to add the pmap to the pmap_list)
2149 void
2150 pmap_pinit2(struct pmap *pmap)
2155 * This routine is called when various levels in the page table need to
2156 * be populated. This routine cannot fail.
2158 * This function returns two locked pv_entry's, one representing the
2159 * requested pv and one representing the requested pv's parent pv. If
2160 * an intermediate page table does not exist it will be created, mapped,
2161 * wired, and the parent page table will be given an additional hold
2162 * count representing the presence of the child pv_entry.
2164 static
2165 pv_entry_t
2166 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2168 pt_entry_t *ptep;
2169 pt_entry_t *ptep_iso;
2170 pv_entry_t pv;
2171 pv_entry_t pvp;
2172 pt_entry_t v;
2173 vm_pindex_t pt_pindex;
2174 vm_page_t m;
2175 int isnew;
2176 int ispt;
2179 * If the pv already exists and we aren't being asked for the
2180 * parent page table page we can just return it. A locked+held pv
2181 * is returned. The pv will also have a second hold related to the
2182 * pmap association that we don't have to worry about.
2184 ispt = 0;
2185 pv = pv_alloc(pmap, ptepindex, &isnew);
2186 if (isnew == 0 && pvpp == NULL)
2187 return(pv);
2190 * Special case terminal PVs. These are not page table pages so
2191 * no vm_page is allocated (the caller supplied the vm_page). If
2192 * pvpp is non-NULL we are being asked to also removed the pt_pv
2193 * for this pv.
2195 * Note that pt_pv's are only returned for user VAs. We assert that
2196 * a pt_pv is not being requested for kernel VAs. The kernel
2197 * pre-wires all higher-level page tables so don't overload managed
2198 * higher-level page tables on top of it!
2200 if (ptepindex < pmap_pt_pindex(0)) {
2201 if (ptepindex >= NUPTE_USER) {
2202 /* kernel manages this manually for KVM */
2203 KKASSERT(pvpp == NULL);
2204 } else {
2205 KKASSERT(pvpp != NULL);
2206 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
2207 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
2208 if (isnew)
2209 vm_page_wire_quick(pvp->pv_m);
2210 *pvpp = pvp;
2212 return(pv);
2216 * The kernel never uses managed PT/PD/PDP pages.
2218 KKASSERT(pmap != &kernel_pmap);
2221 * Non-terminal PVs allocate a VM page to represent the page table,
2222 * so we have to resolve pvp and calculate ptepindex for the pvp
2223 * and then for the page table entry index in the pvp for
2224 * fall-through.
2226 if (ptepindex < pmap_pd_pindex(0)) {
2228 * pv is PT, pvp is PD
2230 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2231 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2232 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2235 * PT index in PD
2237 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2238 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2239 ispt = 1;
2240 } else if (ptepindex < pmap_pdp_pindex(0)) {
2242 * pv is PD, pvp is PDP
2244 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2245 * the PD.
2247 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2248 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2250 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2251 KKASSERT(pvpp == NULL);
2252 pvp = NULL;
2253 } else {
2254 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2258 * PD index in PDP
2260 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2261 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2262 } else if (ptepindex < pmap_pml4_pindex()) {
2264 * pv is PDP, pvp is the root pml4 table
2266 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2269 * PDP index in PML4
2271 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2272 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2273 } else {
2275 * pv represents the top-level PML4, there is no parent.
2277 pvp = NULL;
2280 if (isnew == 0)
2281 goto notnew;
2284 * (isnew) is TRUE, pv is not terminal.
2286 * (1) Add a wire count to the parent page table (pvp).
2287 * (2) Allocate a VM page for the page table.
2288 * (3) Enter the VM page into the parent page table.
2290 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2292 if (pvp)
2293 vm_page_wire_quick(pvp->pv_m);
2295 for (;;) {
2296 m = vm_page_alloc(NULL, pv->pv_pindex,
2297 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2298 VM_ALLOC_INTERRUPT);
2299 if (m)
2300 break;
2301 vm_wait(0);
2303 vm_page_wire(m); /* wire for mapping in parent */
2304 vm_page_unmanage(m); /* m must be spinunlocked */
2305 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2306 m->valid = VM_PAGE_BITS_ALL;
2308 vm_page_spin_lock(m);
2309 pmap_page_stats_adding(m);
2310 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2311 pv->pv_m = m;
2312 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2313 vm_page_spin_unlock(m);
2316 * (isnew) is TRUE, pv is not terminal.
2318 * Wire the page into pvp. Bump the resident_count for the pmap.
2319 * There is no pvp for the top level, address the pm_pml4[] array
2320 * directly.
2322 * If the caller wants the parent we return it, otherwise
2323 * we just put it away.
2325 * No interlock is needed for pte 0 -> non-zero.
2327 * In the situation where *ptep is valid we might have an unmanaged
2328 * page table page shared from another page table which we need to
2329 * unshare before installing our private page table page.
2331 if (pvp) {
2332 v = VM_PAGE_TO_PHYS(m) |
2333 (pmap->pmap_bits[PG_U_IDX] |
2334 pmap->pmap_bits[PG_RW_IDX] |
2335 pmap->pmap_bits[PG_V_IDX] |
2336 pmap->pmap_bits[PG_A_IDX] |
2337 pmap->pmap_bits[PG_M_IDX]);
2338 ptep = pv_pte_lookup(pvp, ptepindex);
2339 if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso)
2340 ptep_iso = pv_pte_lookup(pmap->pm_pmlpv_iso, ptepindex);
2341 else
2342 ptep_iso = NULL;
2343 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2344 pt_entry_t pte;
2346 if (ispt == 0) {
2347 panic("pmap_allocpte: unexpected pte %p/%d",
2348 pvp, (int)ptepindex);
2350 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1,
2351 ptep, v);
2352 if (ptep_iso) {
2353 pmap_inval_smp(pmap, (vm_offset_t)-1, 1,
2354 ptep_iso, v);
2356 if (vm_page_unwire_quick(
2357 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2358 panic("pmap_allocpte: shared pgtable "
2359 "pg bad wirecount");
2361 } else {
2362 pt_entry_t pte;
2364 pte = atomic_swap_long(ptep, v);
2365 if (ptep_iso)
2366 atomic_swap_long(ptep_iso, v);
2367 if (pte != 0) {
2368 kprintf("install pgtbl mixup 0x%016jx "
2369 "old/new 0x%016jx/0x%016jx\n",
2370 (intmax_t)ptepindex, pte, v);
2374 vm_page_wakeup(m);
2377 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2379 notnew:
2380 if (pvp) {
2381 KKASSERT(pvp->pv_m != NULL);
2382 ptep = pv_pte_lookup(pvp, ptepindex);
2383 v = VM_PAGE_TO_PHYS(pv->pv_m) |
2384 (pmap->pmap_bits[PG_U_IDX] |
2385 pmap->pmap_bits[PG_RW_IDX] |
2386 pmap->pmap_bits[PG_V_IDX] |
2387 pmap->pmap_bits[PG_A_IDX] |
2388 pmap->pmap_bits[PG_M_IDX]);
2389 if (*ptep != v) {
2390 kprintf("mismatched upper level pt %016jx/%016jx\n",
2391 *ptep, v);
2394 if (pvpp)
2395 *pvpp = pvp;
2396 else if (pvp)
2397 pv_put(pvp);
2398 return (pv);
2402 * This version of pmap_allocpte() checks for possible segment optimizations
2403 * that would allow page-table sharing. It can be called for terminal
2404 * page or page table page ptepindex's.
2406 * The function is called with page table page ptepindex's for fictitious
2407 * and unmanaged terminal pages. That is, we don't want to allocate a
2408 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2409 * for this case.
2411 * This function can return a pv and *pvpp associated with the passed in pmap
2412 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2413 * an unmanaged page table page will be entered into the pass in pmap.
2415 static
2416 pv_entry_t
2417 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2418 vm_map_entry_t entry, vm_offset_t va)
2420 vm_object_t object;
2421 pmap_t obpmap;
2422 pmap_t *obpmapp;
2423 vm_pindex_t *pt_placemark;
2424 vm_offset_t b;
2425 pv_entry_t pte_pv; /* in original or shared pmap */
2426 pv_entry_t pt_pv; /* in original or shared pmap */
2427 pv_entry_t proc_pd_pv; /* in original pmap */
2428 pv_entry_t proc_pt_pv; /* in original pmap */
2429 pv_entry_t xpv; /* PT in shared pmap */
2430 pd_entry_t *pt; /* PT entry in PD of original pmap */
2431 pd_entry_t opte; /* contents of *pt */
2432 pd_entry_t npte; /* contents of *pt */
2433 vm_page_t m;
2434 int softhold;
2437 * Basic tests, require a non-NULL vm_map_entry, require proper
2438 * alignment and type for the vm_map_entry, require that the
2439 * underlying object already be allocated.
2441 * We allow almost any type of object to use this optimization.
2442 * The object itself does NOT have to be sized to a multiple of the
2443 * segment size, but the memory mapping does.
2445 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2446 * won't work as expected.
2448 if (entry == NULL ||
2449 pmap_mmu_optimize == 0 || /* not enabled */
2450 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2451 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2452 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2453 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2454 entry->object.vm_object == NULL || /* needs VM object */
2455 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2456 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2457 (entry->offset & SEG_MASK) || /* must be aligned */
2458 (entry->start & SEG_MASK)) {
2459 return(pmap_allocpte(pmap, ptepindex, pvpp));
2463 * Make sure the full segment can be represented.
2465 b = va & ~(vm_offset_t)SEG_MASK;
2466 if (b < entry->start || b + SEG_SIZE > entry->end)
2467 return(pmap_allocpte(pmap, ptepindex, pvpp));
2470 * If the full segment can be represented dive the VM object's
2471 * shared pmap, allocating as required.
2473 object = entry->object.vm_object;
2475 if (entry->protection & VM_PROT_WRITE)
2476 obpmapp = &object->md.pmap_rw;
2477 else
2478 obpmapp = &object->md.pmap_ro;
2480 #ifdef PMAP_DEBUG2
2481 if (pmap_enter_debug > 0) {
2482 --pmap_enter_debug;
2483 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2484 "obpmapp %p %p\n",
2485 va, entry->protection, object,
2486 obpmapp, *obpmapp);
2487 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2488 entry, entry->start, entry->end);
2490 #endif
2493 * We allocate what appears to be a normal pmap but because portions
2494 * of this pmap are shared with other unrelated pmaps we have to
2495 * set pm_active to point to all cpus.
2497 * XXX Currently using pmap_spin to interlock the update, can't use
2498 * vm_object_hold/drop because the token might already be held
2499 * shared OR exclusive and we don't know.
2501 while ((obpmap = *obpmapp) == NULL) {
2502 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2503 pmap_pinit_simple(obpmap);
2504 pmap_pinit2(obpmap);
2505 spin_lock(&pmap_spin);
2506 if (*obpmapp != NULL) {
2508 * Handle race
2510 spin_unlock(&pmap_spin);
2511 pmap_release(obpmap);
2512 pmap_puninit(obpmap);
2513 kfree(obpmap, M_OBJPMAP);
2514 obpmap = *obpmapp; /* safety */
2515 } else {
2516 obpmap->pm_active = smp_active_mask;
2517 obpmap->pm_flags |= PMAP_SEGSHARED;
2518 *obpmapp = obpmap;
2519 spin_unlock(&pmap_spin);
2524 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2525 * pte/pt using the shared pmap from the object but also adjust
2526 * the process pmap's page table page as a side effect.
2530 * Resolve the terminal PTE and PT in the shared pmap. This is what
2531 * we will return. This is true if ptepindex represents a terminal
2532 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2533 * the PD.
2535 pt_pv = NULL;
2536 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2537 softhold = 0;
2538 retry:
2539 if (ptepindex >= pmap_pt_pindex(0))
2540 xpv = pte_pv;
2541 else
2542 xpv = pt_pv;
2545 * Resolve the PD in the process pmap so we can properly share the
2546 * page table page. Lock order is bottom-up (leaf first)!
2548 * NOTE: proc_pt_pv can be NULL.
2550 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), &pt_placemark);
2551 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2552 #ifdef PMAP_DEBUG2
2553 if (pmap_enter_debug > 0) {
2554 --pmap_enter_debug;
2555 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2556 proc_pt_pv,
2557 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2558 proc_pd_pv,
2559 va);
2561 #endif
2564 * xpv is the page table page pv from the shared object
2565 * (for convenience), from above.
2567 * Calculate the pte value for the PT to load into the process PD.
2568 * If we have to change it we must properly dispose of the previous
2569 * entry.
2571 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2572 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2573 (pmap->pmap_bits[PG_U_IDX] |
2574 pmap->pmap_bits[PG_RW_IDX] |
2575 pmap->pmap_bits[PG_V_IDX] |
2576 pmap->pmap_bits[PG_A_IDX] |
2577 pmap->pmap_bits[PG_M_IDX]);
2580 * Dispose of previous page table page if it was local to the
2581 * process pmap. If the old pt is not empty we cannot dispose of it
2582 * until we clean it out. This case should not arise very often so
2583 * it is not optimized.
2585 * Leave pt_pv and pte_pv (in our object pmap) locked and intact
2586 * for the retry.
2588 if (proc_pt_pv) {
2589 pmap_inval_bulk_t bulk;
2591 if (proc_pt_pv->pv_m->wire_count != 1) {
2593 * The page table has a bunch of stuff in it
2594 * which we have to scrap.
2596 if (softhold == 0) {
2597 softhold = 1;
2598 pmap_softhold(pmap);
2600 pv_put(proc_pd_pv);
2601 pv_put(proc_pt_pv);
2602 pmap_remove(pmap,
2603 va & ~(vm_offset_t)SEG_MASK,
2604 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2605 } else {
2607 * The page table is empty and can be destroyed.
2608 * However, doing so leaves the pt slot unlocked,
2609 * so we have to loop-up to handle any races until
2610 * we get a NULL proc_pt_pv and a proper pt_placemark.
2612 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2613 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2614 pmap_inval_bulk_flush(&bulk);
2615 pv_put(proc_pd_pv);
2617 goto retry;
2621 * Handle remaining cases. We are holding pt_placemark to lock
2622 * the page table page in the primary pmap while we manipulate
2623 * it.
2625 if (*pt == 0) {
2626 atomic_swap_long(pt, npte);
2627 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2628 vm_page_wire_quick(proc_pd_pv->pv_m); /* proc pd for sh pt */
2629 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2630 } else if (*pt != npte) {
2631 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2633 #if 0
2634 opte = pte_load_clear(pt);
2635 KKASSERT(opte && opte != npte);
2637 *pt = npte;
2638 #endif
2639 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2642 * Clean up opte, bump the wire_count for the process
2643 * PD page representing the new entry if it was
2644 * previously empty.
2646 * If the entry was not previously empty and we have
2647 * a PT in the proc pmap then opte must match that
2648 * pt. The proc pt must be retired (this is done
2649 * later on in this procedure).
2651 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2652 * stays the same.
2654 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2655 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2656 if (vm_page_unwire_quick(m)) {
2657 panic("pmap_allocpte_seg: "
2658 "bad wire count %p",
2663 if (softhold)
2664 pmap_softdone(pmap);
2667 * Remove our earmark on the page table page.
2669 pv_placemarker_wakeup(pmap, pt_placemark);
2672 * The existing process page table was replaced and must be destroyed
2673 * here.
2675 if (proc_pd_pv)
2676 pv_put(proc_pd_pv);
2677 if (pvpp)
2678 *pvpp = pt_pv;
2679 else
2680 pv_put(pt_pv);
2681 return (pte_pv);
2685 * Release any resources held by the given physical map.
2687 * Called when a pmap initialized by pmap_pinit is being released. Should
2688 * only be called if the map contains no valid mappings.
2690 struct pmap_release_info {
2691 pmap_t pmap;
2692 int retry;
2693 pv_entry_t pvp;
2696 static int pmap_release_callback(pv_entry_t pv, void *data);
2698 void
2699 pmap_release(struct pmap *pmap)
2701 struct pmap_release_info info;
2703 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2704 ("pmap still active! %016jx",
2705 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2708 * There is no longer a pmap_list, if there were we would remove the
2709 * pmap from it here.
2713 * Pull pv's off the RB tree in order from low to high and release
2714 * each page.
2716 info.pmap = pmap;
2717 do {
2718 info.retry = 0;
2719 info.pvp = NULL;
2721 spin_lock(&pmap->pm_spin);
2722 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2723 pmap_release_callback, &info);
2724 spin_unlock(&pmap->pm_spin);
2726 if (info.pvp)
2727 pv_put(info.pvp);
2728 } while (info.retry);
2732 * One resident page (the pml4 page) should remain. Two if
2733 * the pmap has implemented an isolated userland PML4E table.
2734 * No wired pages should remain.
2736 int expected_res = 0;
2738 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0)
2739 ++expected_res;
2740 if (pmap->pm_pmlpv_iso)
2741 ++expected_res;
2743 #if 1
2744 if (pmap->pm_stats.resident_count != expected_res ||
2745 pmap->pm_stats.wired_count != 0) {
2746 kprintf("fatal pmap problem - pmap %p flags %08x "
2747 "rescnt=%jd wirecnt=%jd\n",
2748 pmap,
2749 pmap->pm_flags,
2750 pmap->pm_stats.resident_count,
2751 pmap->pm_stats.wired_count);
2752 tsleep(pmap, 0, "DEAD", 0);
2754 #else
2755 KKASSERT(pmap->pm_stats.resident_count == expected_res);
2756 KKASSERT(pmap->pm_stats.wired_count == 0);
2757 #endif
2761 * Called from low to high. We must cache the proper parent pv so we
2762 * can adjust its wired count.
2764 static int
2765 pmap_release_callback(pv_entry_t pv, void *data)
2767 struct pmap_release_info *info = data;
2768 pmap_t pmap = info->pmap;
2769 vm_pindex_t pindex;
2770 int r;
2773 * Acquire a held and locked pv, check for release race
2775 pindex = pv->pv_pindex;
2776 if (info->pvp == pv) {
2777 spin_unlock(&pmap->pm_spin);
2778 info->pvp = NULL;
2779 } else if (pv_hold_try(pv)) {
2780 spin_unlock(&pmap->pm_spin);
2781 } else {
2782 spin_unlock(&pmap->pm_spin);
2783 pv_lock(pv);
2784 pv_put(pv);
2785 info->retry = 1;
2786 spin_lock(&pmap->pm_spin);
2788 return -1;
2790 KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2792 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2794 * I am PTE, parent is PT
2796 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2797 pindex += NUPTE_TOTAL;
2798 } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2800 * I am PT, parent is PD
2802 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2803 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2804 } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2806 * I am PD, parent is PDP
2808 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2809 NPDPEPGSHIFT;
2810 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2811 } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2813 * I am PDP, parent is PML4. We always calculate the
2814 * normal PML4 here, not the isolated PML4.
2816 pindex = pmap_pml4_pindex();
2817 } else {
2819 * parent is NULL
2821 if (info->pvp) {
2822 pv_put(info->pvp);
2823 info->pvp = NULL;
2825 pindex = 0;
2827 if (pindex) {
2828 if (info->pvp && info->pvp->pv_pindex != pindex) {
2829 pv_put(info->pvp);
2830 info->pvp = NULL;
2832 if (info->pvp == NULL)
2833 info->pvp = pv_get(pmap, pindex, NULL);
2834 } else {
2835 if (info->pvp) {
2836 pv_put(info->pvp);
2837 info->pvp = NULL;
2840 r = pmap_release_pv(pv, info->pvp, NULL);
2841 spin_lock(&pmap->pm_spin);
2843 return(r);
2847 * Called with held (i.e. also locked) pv. This function will dispose of
2848 * the lock along with the pv.
2850 * If the caller already holds the locked parent page table for pv it
2851 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2852 * pass NULL for pvp.
2854 static int
2855 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2857 vm_page_t p;
2860 * The pmap is currently not spinlocked, pv is held+locked.
2861 * Remove the pv's page from its parent's page table. The
2862 * parent's page table page's wire_count will be decremented.
2864 * This will clean out the pte at any level of the page table.
2865 * If smp != 0 all cpus are affected.
2867 * Do not tear-down recursively, its faster to just let the
2868 * release run its course.
2870 pmap_remove_pv_pte(pv, pvp, bulk, 0);
2873 * Terminal pvs are unhooked from their vm_pages. Because
2874 * terminal pages aren't page table pages they aren't wired
2875 * by us, so we have to be sure not to unwire them either.
2877 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2878 pmap_remove_pv_page(pv);
2879 goto skip;
2883 * We leave the top-level page table page cached, wired, and
2884 * mapped in the pmap until the dtor function (pmap_puninit())
2885 * gets called.
2887 * Since we are leaving the top-level pv intact we need
2888 * to break out of what would otherwise be an infinite loop.
2890 * This covers both the normal and the isolated PML4 page.
2892 if (pv->pv_pindex >= pmap_pml4_pindex()) {
2893 pv_put(pv);
2894 return(-1);
2898 * For page table pages (other than the top-level page),
2899 * remove and free the vm_page. The representitive mapping
2900 * removed above by pmap_remove_pv_pte() did not undo the
2901 * last wire_count so we have to do that as well.
2903 p = pmap_remove_pv_page(pv);
2904 vm_page_busy_wait(p, FALSE, "pmaprl");
2905 if (p->wire_count != 1) {
2906 kprintf("p->wire_count was %016lx %d\n",
2907 pv->pv_pindex, p->wire_count);
2909 KKASSERT(p->wire_count == 1);
2910 KKASSERT(p->flags & PG_UNMANAGED);
2912 vm_page_unwire(p, 0);
2913 KKASSERT(p->wire_count == 0);
2915 vm_page_free(p);
2916 skip:
2917 pv_free(pv, pvp);
2919 return 0;
2923 * This function will remove the pte associated with a pv from its parent.
2924 * Terminal pv's are supported. All cpus specified by (bulk) are properly
2925 * invalidated.
2927 * The wire count will be dropped on the parent page table. The wire
2928 * count on the page being removed (pv->pv_m) from the parent page table
2929 * is NOT touched. Note that terminal pages will not have any additional
2930 * wire counts while page table pages will have at least one representing
2931 * the mapping, plus others representing sub-mappings.
2933 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2934 * pages and user page table and terminal pages.
2936 * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2937 * be freshly allocated and not imply that the pte is managed. In this
2938 * case pv->pv_m should be NULL.
2940 * The pv must be locked. The pvp, if supplied, must be locked. All
2941 * supplied pv's will remain locked on return.
2943 * XXX must lock parent pv's if they exist to remove pte XXX
2945 static
2946 void
2947 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2948 int destroy)
2950 vm_pindex_t ptepindex = pv->pv_pindex;
2951 pmap_t pmap = pv->pv_pmap;
2952 vm_page_t p;
2953 int gotpvp = 0;
2955 KKASSERT(pmap);
2957 if (ptepindex >= pmap_pml4_pindex()) {
2959 * We are the top level PML4E table, there is no parent.
2961 * This is either the normal or isolated PML4E table.
2962 * Only the normal is used in regular operation, the isolated
2963 * is only passed in when breaking down the whole pmap.
2965 p = pmap->pm_pmlpv->pv_m;
2966 KKASSERT(pv->pv_m == p); /* debugging */
2967 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2969 * Remove a PDP page from the PML4E. This can only occur
2970 * with user page tables. We do not have to lock the
2971 * pml4 PV so just ignore pvp.
2973 vm_pindex_t pml4_pindex;
2974 vm_pindex_t pdp_index;
2975 pml4_entry_t *pdp;
2976 pml4_entry_t *pdp_iso;
2978 pdp_index = ptepindex - pmap_pdp_pindex(0);
2979 if (pvp == NULL) {
2980 pml4_pindex = pmap_pml4_pindex();
2981 pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2982 KKASSERT(pvp);
2983 gotpvp = 1;
2986 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2987 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2988 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2989 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2992 * Also remove the PDP from the isolated PML4E if the
2993 * process uses one.
2995 if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso) {
2996 pdp_iso = &pmap->pm_pml4_iso[pdp_index &
2997 ((1ul << NPML4EPGSHIFT) - 1)];
2998 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp_iso, 0);
3000 KKASSERT(pv->pv_m == p); /* debugging */
3001 } else if (ptepindex >= pmap_pd_pindex(0)) {
3003 * Remove a PD page from the PDP
3005 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
3006 * of a simple pmap because it stops at
3007 * the PD page.
3009 vm_pindex_t pdp_pindex;
3010 vm_pindex_t pd_index;
3011 pdp_entry_t *pd;
3013 pd_index = ptepindex - pmap_pd_pindex(0);
3015 if (pvp == NULL) {
3016 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
3017 (pd_index >> NPML4EPGSHIFT);
3018 pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
3019 gotpvp = 1;
3022 if (pvp) {
3023 pd = pv_pte_lookup(pvp, pd_index &
3024 ((1ul << NPDPEPGSHIFT) - 1));
3025 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
3026 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
3027 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
3028 } else {
3029 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
3030 p = pv->pv_m; /* degenerate test later */
3032 KKASSERT(pv->pv_m == p); /* debugging */
3033 } else if (ptepindex >= pmap_pt_pindex(0)) {
3035 * Remove a PT page from the PD
3037 vm_pindex_t pd_pindex;
3038 vm_pindex_t pt_index;
3039 pd_entry_t *pt;
3041 pt_index = ptepindex - pmap_pt_pindex(0);
3043 if (pvp == NULL) {
3044 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
3045 (pt_index >> NPDPEPGSHIFT);
3046 pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
3047 KKASSERT(pvp);
3048 gotpvp = 1;
3051 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
3052 #if 0
3053 KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
3054 ("*pt unexpectedly invalid %016jx "
3055 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
3056 *pt, gotpvp, ptepindex, pt_index, pv, pvp));
3057 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3058 #else
3059 if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
3060 kprintf("*pt unexpectedly invalid %016jx "
3061 "gotpvp=%d ptepindex=%ld ptindex=%ld "
3062 "pv=%p pvp=%p\n",
3063 *pt, gotpvp, ptepindex, pt_index, pv, pvp);
3064 tsleep(pt, 0, "DEAD", 0);
3065 p = pv->pv_m;
3066 } else {
3067 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3069 #endif
3070 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
3071 KKASSERT(pv->pv_m == p); /* debugging */
3072 } else {
3074 * Remove a PTE from the PT page. The PV might exist even if
3075 * the PTE is not managed, in whichcase pv->pv_m should be
3076 * NULL.
3078 * NOTE: Userland pmaps manage the parent PT/PD/PDP page
3079 * table pages but the kernel_pmap does not.
3081 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
3082 * pv is a pte_pv so we can safely lock pt_pv.
3084 * NOTE: FICTITIOUS pages may have multiple physical mappings
3085 * so PHYS_TO_VM_PAGE() will not necessarily work for
3086 * terminal ptes.
3088 vm_pindex_t pt_pindex;
3089 pt_entry_t *ptep;
3090 pt_entry_t pte;
3091 vm_offset_t va;
3093 pt_pindex = ptepindex >> NPTEPGSHIFT;
3094 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
3096 if (ptepindex >= NUPTE_USER) {
3097 ptep = vtopte(ptepindex << PAGE_SHIFT);
3098 KKASSERT(pvp == NULL);
3099 /* pvp remains NULL */
3100 } else {
3101 if (pvp == NULL) {
3102 pt_pindex = NUPTE_TOTAL +
3103 (ptepindex >> NPDPEPGSHIFT);
3104 pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
3105 KKASSERT(pvp);
3106 gotpvp = 1;
3108 ptep = pv_pte_lookup(pvp, ptepindex &
3109 ((1ul << NPDPEPGSHIFT) - 1));
3111 pte = pmap_inval_bulk(bulk, va, ptep, 0);
3112 if (bulk == NULL) /* XXX */
3113 cpu_invlpg((void *)va); /* XXX */
3116 * Now update the vm_page_t
3118 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3119 (pte & pmap->pmap_bits[PG_V_IDX])) {
3121 * Valid managed page, adjust (p).
3123 if (pte & pmap->pmap_bits[PG_DEVICE_IDX]) {
3124 p = pv->pv_m;
3125 } else {
3126 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3127 KKASSERT(pv->pv_m == p);
3129 if (pte & pmap->pmap_bits[PG_M_IDX]) {
3130 if (pmap_track_modified(ptepindex))
3131 vm_page_dirty(p);
3133 if (pte & pmap->pmap_bits[PG_A_IDX]) {
3134 vm_page_flag_set(p, PG_REFERENCED);
3136 } else {
3138 * Unmanaged page, do not try to adjust the vm_page_t.
3139 * pv could be freshly allocated for a pmap_enter(),
3140 * replacing an unmanaged page with a managed one.
3142 * pv->pv_m might reflect the new page and not the
3143 * existing page.
3145 * We could extract p from the physical address and
3146 * adjust it but we explicitly do not for unmanaged
3147 * pages.
3149 p = NULL;
3151 if (pte & pmap->pmap_bits[PG_W_IDX])
3152 atomic_add_long(&pmap->pm_stats.wired_count, -1);
3153 if (pte & pmap->pmap_bits[PG_G_IDX])
3154 cpu_invlpg((void *)va);
3158 * If requested, scrap the underlying pv->pv_m and the underlying
3159 * pv. If this is a page-table-page we must also free the page.
3161 * pvp must be returned locked.
3163 if (destroy == 1) {
3165 * page table page (PT, PD, PDP, PML4), caller was responsible
3166 * for testing wired_count.
3168 KKASSERT(pv->pv_m->wire_count == 1);
3169 p = pmap_remove_pv_page(pv);
3170 pv_free(pv, pvp);
3171 pv = NULL;
3173 vm_page_busy_wait(p, FALSE, "pgpun");
3174 vm_page_unwire(p, 0);
3175 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
3176 vm_page_free(p);
3177 } else if (destroy == 2) {
3179 * Normal page, remove from pmap and leave the underlying
3180 * page untouched.
3182 pmap_remove_pv_page(pv);
3183 pv_free(pv, pvp);
3184 pv = NULL; /* safety */
3188 * If we acquired pvp ourselves then we are responsible for
3189 * recursively deleting it.
3191 if (pvp && gotpvp) {
3193 * Recursively destroy higher-level page tables.
3195 * This is optional. If we do not, they will still
3196 * be destroyed when the process exits.
3198 * NOTE: Do not destroy pv_entry's with extra hold refs,
3199 * a caller may have unlocked it and intends to
3200 * continue to use it.
3202 if (pmap_dynamic_delete &&
3203 pvp->pv_m &&
3204 pvp->pv_m->wire_count == 1 &&
3205 (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
3206 pvp->pv_pindex < pmap_pml4_pindex()) {
3207 if (pmap_dynamic_delete == 2)
3208 kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
3209 if (pmap != &kernel_pmap) {
3210 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3211 pvp = NULL; /* safety */
3212 } else {
3213 kprintf("Attempt to remove kernel_pmap pindex "
3214 "%jd\n", pvp->pv_pindex);
3215 pv_put(pvp);
3217 } else {
3218 pv_put(pvp);
3224 * Remove the vm_page association to a pv. The pv must be locked.
3226 static
3227 vm_page_t
3228 pmap_remove_pv_page(pv_entry_t pv)
3230 vm_page_t m;
3232 m = pv->pv_m;
3233 vm_page_spin_lock(m);
3234 KKASSERT(m && m == pv->pv_m);
3235 pv->pv_m = NULL;
3236 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3237 pmap_page_stats_deleting(m);
3238 if (TAILQ_EMPTY(&m->md.pv_list))
3239 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3240 vm_page_spin_unlock(m);
3242 return(m);
3246 * Grow the number of kernel page table entries, if needed.
3248 * This routine is always called to validate any address space
3249 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
3250 * space below KERNBASE.
3252 * kernel_map must be locked exclusively by the caller.
3254 void
3255 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3257 vm_paddr_t paddr;
3258 vm_offset_t ptppaddr;
3259 vm_page_t nkpg;
3260 pd_entry_t *pt, newpt;
3261 pdp_entry_t *pd, newpd;
3262 int update_kernel_vm_end;
3265 * bootstrap kernel_vm_end on first real VM use
3267 if (kernel_vm_end == 0) {
3268 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3270 for (;;) {
3271 pt = pmap_pt(&kernel_pmap, kernel_vm_end);
3272 if (pt == NULL)
3273 break;
3274 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) == 0)
3275 break;
3276 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3277 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3278 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3279 kernel_vm_end = kernel_map.max_offset;
3280 break;
3286 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
3287 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
3288 * do not want to force-fill 128G worth of page tables.
3290 if (kstart < KERNBASE) {
3291 if (kstart > kernel_vm_end)
3292 kstart = kernel_vm_end;
3293 KKASSERT(kend <= KERNBASE);
3294 update_kernel_vm_end = 1;
3295 } else {
3296 update_kernel_vm_end = 0;
3299 kstart = rounddown2(kstart, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3300 kend = roundup2(kend, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3302 if (kend - 1 >= kernel_map.max_offset)
3303 kend = kernel_map.max_offset;
3305 while (kstart < kend) {
3306 pt = pmap_pt(&kernel_pmap, kstart);
3307 if (pt == NULL) {
3309 * We need a new PD entry
3311 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3312 VM_ALLOC_NORMAL |
3313 VM_ALLOC_SYSTEM |
3314 VM_ALLOC_INTERRUPT);
3315 if (nkpg == NULL) {
3316 panic("pmap_growkernel: no memory to grow "
3317 "kernel");
3319 paddr = VM_PAGE_TO_PHYS(nkpg);
3320 pmap_zero_page(paddr);
3321 pd = pmap_pd(&kernel_pmap, kstart);
3323 newpd = (pdp_entry_t)
3324 (paddr |
3325 kernel_pmap.pmap_bits[PG_V_IDX] |
3326 kernel_pmap.pmap_bits[PG_RW_IDX] |
3327 kernel_pmap.pmap_bits[PG_A_IDX] |
3328 kernel_pmap.pmap_bits[PG_M_IDX]);
3329 atomic_swap_long(pd, newpd);
3331 #if 0
3332 kprintf("NEWPD pd=%p pde=%016jx phys=%016jx\n",
3333 pd, newpd, paddr);
3334 #endif
3336 continue; /* try again */
3339 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3340 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3341 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3342 if (kstart - 1 >= kernel_map.max_offset) {
3343 kstart = kernel_map.max_offset;
3344 break;
3346 continue;
3350 * We need a new PT
3352 * This index is bogus, but out of the way
3354 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3355 VM_ALLOC_NORMAL |
3356 VM_ALLOC_SYSTEM |
3357 VM_ALLOC_INTERRUPT);
3358 if (nkpg == NULL)
3359 panic("pmap_growkernel: no memory to grow kernel");
3361 vm_page_wire(nkpg);
3362 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3363 pmap_zero_page(ptppaddr);
3364 newpt = (pd_entry_t)(ptppaddr |
3365 kernel_pmap.pmap_bits[PG_V_IDX] |
3366 kernel_pmap.pmap_bits[PG_RW_IDX] |
3367 kernel_pmap.pmap_bits[PG_A_IDX] |
3368 kernel_pmap.pmap_bits[PG_M_IDX]);
3369 atomic_swap_long(pt, newpt);
3371 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3372 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3374 if (kstart - 1 >= kernel_map.max_offset) {
3375 kstart = kernel_map.max_offset;
3376 break;
3381 * Only update kernel_vm_end for areas below KERNBASE.
3383 if (update_kernel_vm_end && kernel_vm_end < kstart)
3384 kernel_vm_end = kstart;
3388 * Add a reference to the specified pmap.
3390 void
3391 pmap_reference(pmap_t pmap)
3393 if (pmap != NULL)
3394 atomic_add_int(&pmap->pm_count, 1);
3397 /***************************************************
3398 * page management routines.
3399 ***************************************************/
3402 * Hold a pv without locking it
3404 static void
3405 pv_hold(pv_entry_t pv)
3407 atomic_add_int(&pv->pv_hold, 1);
3411 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
3412 * was successfully locked, FALSE if it wasn't. The caller must dispose of
3413 * the pv properly.
3415 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3416 * pv list via its page) must be held by the caller in order to stabilize
3417 * the pv.
3419 static int
3420 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3422 u_int count;
3425 * Critical path shortcut expects pv to already have one ref
3426 * (for the pv->pv_pmap).
3428 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3429 #ifdef PMAP_DEBUG
3430 pv->pv_func = func;
3431 pv->pv_line = lineno;
3432 #endif
3433 return TRUE;
3436 for (;;) {
3437 count = pv->pv_hold;
3438 cpu_ccfence();
3439 if ((count & PV_HOLD_LOCKED) == 0) {
3440 if (atomic_cmpset_int(&pv->pv_hold, count,
3441 (count + 1) | PV_HOLD_LOCKED)) {
3442 #ifdef PMAP_DEBUG
3443 pv->pv_func = func;
3444 pv->pv_line = lineno;
3445 #endif
3446 return TRUE;
3448 } else {
3449 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3450 return FALSE;
3452 /* retry */
3457 * Drop a previously held pv_entry which could not be locked, allowing its
3458 * destruction.
3460 * Must not be called with a spinlock held as we might zfree() the pv if it
3461 * is no longer associated with a pmap and this was the last hold count.
3463 static void
3464 pv_drop(pv_entry_t pv)
3466 u_int count;
3468 for (;;) {
3469 count = pv->pv_hold;
3470 cpu_ccfence();
3471 KKASSERT((count & PV_HOLD_MASK) > 0);
3472 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3473 (PV_HOLD_LOCKED | 1));
3474 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3475 if ((count & PV_HOLD_MASK) == 1) {
3476 #ifdef PMAP_DEBUG2
3477 if (pmap_enter_debug > 0) {
3478 --pmap_enter_debug;
3479 kprintf("pv_drop: free pv %p\n", pv);
3481 #endif
3482 KKASSERT(count == 1);
3483 KKASSERT(pv->pv_pmap == NULL);
3484 zfree(pvzone, pv);
3486 return;
3488 /* retry */
3493 * Find or allocate the requested PV entry, returning a locked, held pv.
3495 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3496 * for the caller and one representing the pmap and vm_page association.
3498 * If (*isnew) is zero, the returned pv will have only one hold count.
3500 * Since both associations can only be adjusted while the pv is locked,
3501 * together they represent just one additional hold.
3503 static
3504 pv_entry_t
3505 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3507 struct mdglobaldata *md = mdcpu;
3508 pv_entry_t pv;
3509 pv_entry_t pnew;
3510 int pmap_excl = 0;
3512 pnew = NULL;
3513 if (md->gd_newpv) {
3514 #if 1
3515 pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3516 #else
3517 crit_enter();
3518 pnew = md->gd_newpv; /* might race NULL */
3519 md->gd_newpv = NULL;
3520 crit_exit();
3521 #endif
3523 if (pnew == NULL)
3524 pnew = zalloc(pvzone);
3526 spin_lock_shared(&pmap->pm_spin);
3527 for (;;) {
3529 * Shortcut cache
3531 pv = pv_entry_lookup(pmap, pindex);
3532 if (pv == NULL) {
3533 vm_pindex_t *pmark;
3536 * Requires exclusive pmap spinlock
3538 if (pmap_excl == 0) {
3539 pmap_excl = 1;
3540 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3541 spin_unlock_shared(&pmap->pm_spin);
3542 spin_lock(&pmap->pm_spin);
3543 continue;
3548 * We need to block if someone is holding our
3549 * placemarker. As long as we determine the
3550 * placemarker has not been aquired we do not
3551 * need to get it as acquision also requires
3552 * the pmap spin lock.
3554 * However, we can race the wakeup.
3556 pmark = pmap_placemarker_hash(pmap, pindex);
3558 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3559 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3560 tsleep_interlock(pmark, 0);
3561 if (((*pmark ^ pindex) &
3562 ~PM_PLACEMARK_WAKEUP) == 0) {
3563 spin_unlock(&pmap->pm_spin);
3564 tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3565 spin_lock(&pmap->pm_spin);
3567 continue;
3571 * Setup the new entry
3573 pnew->pv_pmap = pmap;
3574 pnew->pv_pindex = pindex;
3575 pnew->pv_hold = PV_HOLD_LOCKED | 2;
3576 #ifdef PMAP_DEBUG
3577 pnew->pv_func = func;
3578 pnew->pv_line = lineno;
3579 if (pnew->pv_line_lastfree > 0) {
3580 pnew->pv_line_lastfree =
3581 -pnew->pv_line_lastfree;
3583 #endif
3584 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3585 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3586 spin_unlock(&pmap->pm_spin);
3587 *isnew = 1;
3589 KKASSERT(pv == NULL);
3590 return(pnew);
3594 * We already have an entry, cleanup the staged pnew if
3595 * we can get the lock, otherwise block and retry.
3597 if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3598 if (pmap_excl)
3599 spin_unlock(&pmap->pm_spin);
3600 else
3601 spin_unlock_shared(&pmap->pm_spin);
3602 #if 1
3603 pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3604 if (pnew)
3605 zfree(pvzone, pnew);
3606 #else
3607 crit_enter();
3608 if (md->gd_newpv == NULL)
3609 md->gd_newpv = pnew;
3610 else
3611 zfree(pvzone, pnew);
3612 crit_exit();
3613 #endif
3614 KKASSERT(pv->pv_pmap == pmap &&
3615 pv->pv_pindex == pindex);
3616 *isnew = 0;
3617 return(pv);
3619 if (pmap_excl) {
3620 spin_unlock(&pmap->pm_spin);
3621 _pv_lock(pv PMAP_DEBUG_COPY);
3622 pv_put(pv);
3623 spin_lock(&pmap->pm_spin);
3624 } else {
3625 spin_unlock_shared(&pmap->pm_spin);
3626 _pv_lock(pv PMAP_DEBUG_COPY);
3627 pv_put(pv);
3628 spin_lock_shared(&pmap->pm_spin);
3631 /* NOT REACHED */
3635 * Find the requested PV entry, returning a locked+held pv or NULL
3637 static
3638 pv_entry_t
3639 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3641 pv_entry_t pv;
3642 int pmap_excl = 0;
3644 spin_lock_shared(&pmap->pm_spin);
3645 for (;;) {
3647 * Shortcut cache
3649 pv = pv_entry_lookup(pmap, pindex);
3650 if (pv == NULL) {
3652 * Block if there is ANY placemarker. If we are to
3653 * return it, we must also aquire the spot, so we
3654 * have to block even if the placemarker is held on
3655 * a different address.
3657 * OPTIMIZATION: If pmarkp is passed as NULL the
3658 * caller is just probing (or looking for a real
3659 * pv_entry), and in this case we only need to check
3660 * to see if the placemarker matches pindex.
3662 vm_pindex_t *pmark;
3665 * Requires exclusive pmap spinlock
3667 if (pmap_excl == 0) {
3668 pmap_excl = 1;
3669 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3670 spin_unlock_shared(&pmap->pm_spin);
3671 spin_lock(&pmap->pm_spin);
3672 continue;
3676 pmark = pmap_placemarker_hash(pmap, pindex);
3678 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3679 ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3680 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3681 tsleep_interlock(pmark, 0);
3682 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3683 ((*pmark ^ pindex) &
3684 ~PM_PLACEMARK_WAKEUP) == 0) {
3685 spin_unlock(&pmap->pm_spin);
3686 tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3687 spin_lock(&pmap->pm_spin);
3689 continue;
3691 if (pmarkp) {
3692 if (atomic_swap_long(pmark, pindex) !=
3693 PM_NOPLACEMARK) {
3694 panic("_pv_get: pmark race");
3696 *pmarkp = pmark;
3698 spin_unlock(&pmap->pm_spin);
3699 return NULL;
3701 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3702 pv_cache(pv, pindex);
3703 if (pmap_excl)
3704 spin_unlock(&pmap->pm_spin);
3705 else
3706 spin_unlock_shared(&pmap->pm_spin);
3707 KKASSERT(pv->pv_pmap == pmap &&
3708 pv->pv_pindex == pindex);
3709 return(pv);
3711 if (pmap_excl) {
3712 spin_unlock(&pmap->pm_spin);
3713 _pv_lock(pv PMAP_DEBUG_COPY);
3714 pv_put(pv);
3715 spin_lock(&pmap->pm_spin);
3716 } else {
3717 spin_unlock_shared(&pmap->pm_spin);
3718 _pv_lock(pv PMAP_DEBUG_COPY);
3719 pv_put(pv);
3720 spin_lock_shared(&pmap->pm_spin);
3726 * Lookup, hold, and attempt to lock (pmap,pindex).
3728 * If the entry does not exist NULL is returned and *errorp is set to 0
3730 * If the entry exists and could be successfully locked it is returned and
3731 * errorp is set to 0.
3733 * If the entry exists but could NOT be successfully locked it is returned
3734 * held and *errorp is set to 1.
3736 * If the entry is placemarked by someone else NULL is returned and *errorp
3737 * is set to 1.
3739 static
3740 pv_entry_t
3741 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3743 pv_entry_t pv;
3745 spin_lock_shared(&pmap->pm_spin);
3747 pv = pv_entry_lookup(pmap, pindex);
3748 if (pv == NULL) {
3749 vm_pindex_t *pmark;
3751 pmark = pmap_placemarker_hash(pmap, pindex);
3753 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3754 *errorp = 1;
3755 } else if (pmarkp &&
3756 atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3757 *errorp = 0;
3758 } else {
3760 * Can't set a placemark with a NULL pmarkp, or if
3761 * pmarkp is non-NULL but we failed to set our
3762 * placemark.
3764 *errorp = 1;
3766 if (pmarkp)
3767 *pmarkp = pmark;
3768 spin_unlock_shared(&pmap->pm_spin);
3770 return NULL;
3774 * XXX This has problems if the lock is shared, why?
3776 if (pv_hold_try(pv)) {
3777 pv_cache(pv, pindex); /* overwrite ok (shared lock) */
3778 spin_unlock_shared(&pmap->pm_spin);
3779 *errorp = 0;
3780 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3781 return(pv); /* lock succeeded */
3783 spin_unlock_shared(&pmap->pm_spin);
3784 *errorp = 1;
3786 return (pv); /* lock failed */
3790 * Lock a held pv, keeping the hold count
3792 static
3793 void
3794 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3796 u_int count;
3798 for (;;) {
3799 count = pv->pv_hold;
3800 cpu_ccfence();
3801 if ((count & PV_HOLD_LOCKED) == 0) {
3802 if (atomic_cmpset_int(&pv->pv_hold, count,
3803 count | PV_HOLD_LOCKED)) {
3804 #ifdef PMAP_DEBUG
3805 pv->pv_func = func;
3806 pv->pv_line = lineno;
3807 #endif
3808 return;
3810 continue;
3812 tsleep_interlock(pv, 0);
3813 if (atomic_cmpset_int(&pv->pv_hold, count,
3814 count | PV_HOLD_WAITING)) {
3815 #ifdef PMAP_DEBUG2
3816 if (pmap_enter_debug > 0) {
3817 --pmap_enter_debug;
3818 kprintf("pv waiting on %s:%d\n",
3819 pv->pv_func, pv->pv_line);
3821 #endif
3822 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3824 /* retry */
3829 * Unlock a held and locked pv, keeping the hold count.
3831 static
3832 void
3833 pv_unlock(pv_entry_t pv)
3835 u_int count;
3837 for (;;) {
3838 count = pv->pv_hold;
3839 cpu_ccfence();
3840 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3841 (PV_HOLD_LOCKED | 1));
3842 if (atomic_cmpset_int(&pv->pv_hold, count,
3843 count &
3844 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3845 if (count & PV_HOLD_WAITING)
3846 wakeup(pv);
3847 break;
3853 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3854 * and the hold count drops to zero we will free it.
3856 * Caller should not hold any spin locks. We are protected from hold races
3857 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3858 * lock held. A pv cannot be located otherwise.
3860 static
3861 void
3862 pv_put(pv_entry_t pv)
3864 #ifdef PMAP_DEBUG2
3865 if (pmap_enter_debug > 0) {
3866 --pmap_enter_debug;
3867 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3869 #endif
3872 * Normal put-aways must have a pv_m associated with the pv,
3873 * but allow the case where the pv has been destructed due
3874 * to pmap_dynamic_delete.
3876 KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3879 * Fast - shortcut most common condition
3881 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3882 return;
3885 * Slow
3887 pv_unlock(pv);
3888 pv_drop(pv);
3892 * Remove the pmap association from a pv, require that pv_m already be removed,
3893 * then unlock and drop the pv. Any pte operations must have already been
3894 * completed. This call may result in a last-drop which will physically free
3895 * the pv.
3897 * Removing the pmap association entails an additional drop.
3899 * pv must be exclusively locked on call and will be disposed of on return.
3901 static
3902 void
3903 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3905 pmap_t pmap;
3907 #ifdef PMAP_DEBUG
3908 pv->pv_func_lastfree = func;
3909 pv->pv_line_lastfree = lineno;
3910 #endif
3911 KKASSERT(pv->pv_m == NULL);
3912 KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3913 (PV_HOLD_LOCKED|1));
3914 if ((pmap = pv->pv_pmap) != NULL) {
3915 spin_lock(&pmap->pm_spin);
3916 KKASSERT(pv->pv_pmap == pmap);
3917 if (pmap->pm_pvhint_pt == pv)
3918 pmap->pm_pvhint_pt = NULL;
3919 if (pmap->pm_pvhint_pte == pv)
3920 pmap->pm_pvhint_pte = NULL;
3921 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3922 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3923 pv->pv_pmap = NULL;
3924 pv->pv_pindex = 0;
3925 spin_unlock(&pmap->pm_spin);
3928 * Try to shortcut three atomic ops, otherwise fall through
3929 * and do it normally. Drop two refs and the lock all in
3930 * one go.
3932 if (pvp)
3933 vm_page_unwire_quick(pvp->pv_m);
3934 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3935 #ifdef PMAP_DEBUG2
3936 if (pmap_enter_debug > 0) {
3937 --pmap_enter_debug;
3938 kprintf("pv_free: free pv %p\n", pv);
3940 #endif
3941 zfree(pvzone, pv);
3942 return;
3944 pv_drop(pv); /* ref for pv_pmap */
3946 pv_unlock(pv);
3947 pv_drop(pv);
3951 * This routine is very drastic, but can save the system
3952 * in a pinch.
3954 void
3955 pmap_collect(void)
3957 int i;
3958 vm_page_t m;
3959 static int warningdone=0;
3961 if (pmap_pagedaemon_waken == 0)
3962 return;
3963 pmap_pagedaemon_waken = 0;
3964 if (warningdone < 5) {
3965 kprintf("pmap_collect: collecting pv entries -- "
3966 "suggest increasing PMAP_SHPGPERPROC\n");
3967 warningdone++;
3970 for (i = 0; i < vm_page_array_size; i++) {
3971 m = &vm_page_array[i];
3972 if (m->wire_count || m->hold_count)
3973 continue;
3974 if (vm_page_busy_try(m, TRUE) == 0) {
3975 if (m->wire_count == 0 && m->hold_count == 0) {
3976 pmap_remove_all(m);
3978 vm_page_wakeup(m);
3984 * Scan the pmap for active page table entries and issue a callback.
3985 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3986 * its parent page table.
3988 * pte_pv will be NULL if the page or page table is unmanaged.
3989 * pt_pv will point to the page table page containing the pte for the page.
3991 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3992 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3993 * process pmap's PD and page to the callback function. This can be
3994 * confusing because the pt_pv is really a pd_pv, and the target page
3995 * table page is simply aliased by the pmap and not owned by it.
3997 * It is assumed that the start and end are properly rounded to the page size.
3999 * It is assumed that PD pages and above are managed and thus in the RB tree,
4000 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
4002 struct pmap_scan_info {
4003 struct pmap *pmap;
4004 vm_offset_t sva;
4005 vm_offset_t eva;
4006 vm_pindex_t sva_pd_pindex;
4007 vm_pindex_t eva_pd_pindex;
4008 void (*func)(pmap_t, struct pmap_scan_info *,
4009 pv_entry_t, vm_pindex_t *, pv_entry_t,
4010 int, vm_offset_t,
4011 pt_entry_t *, void *);
4012 void *arg;
4013 pmap_inval_bulk_t bulk_core;
4014 pmap_inval_bulk_t *bulk;
4015 int count;
4016 int stop;
4019 static int pmap_scan_cmp(pv_entry_t pv, void *data);
4020 static int pmap_scan_callback(pv_entry_t pv, void *data);
4022 static void
4023 pmap_scan(struct pmap_scan_info *info, int smp_inval)
4025 struct pmap *pmap = info->pmap;
4026 pv_entry_t pd_pv; /* A page directory PV */
4027 pv_entry_t pt_pv; /* A page table PV */
4028 pv_entry_t pte_pv; /* A page table entry PV */
4029 vm_pindex_t *pte_placemark;
4030 vm_pindex_t *pt_placemark;
4031 pt_entry_t *ptep;
4032 pt_entry_t oldpte;
4033 struct pv_entry dummy_pv;
4035 info->stop = 0;
4036 if (pmap == NULL)
4037 return;
4038 if (info->sva == info->eva)
4039 return;
4040 if (smp_inval) {
4041 info->bulk = &info->bulk_core;
4042 pmap_inval_bulk_init(&info->bulk_core, pmap);
4043 } else {
4044 info->bulk = NULL;
4048 * Hold the token for stability; if the pmap is empty we have nothing
4049 * to do.
4051 #if 0
4052 if (pmap->pm_stats.resident_count == 0) {
4053 return;
4055 #endif
4057 info->count = 0;
4060 * Special handling for scanning one page, which is a very common
4061 * operation (it is?).
4063 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
4065 if (info->sva + PAGE_SIZE == info->eva) {
4066 if (info->sva >= VM_MAX_USER_ADDRESS) {
4068 * Kernel mappings do not track wire counts on
4069 * page table pages and only maintain pd_pv and
4070 * pte_pv levels so pmap_scan() works.
4072 pt_pv = NULL;
4073 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4074 &pte_placemark);
4075 ptep = vtopte(info->sva);
4076 } else {
4078 * User pages which are unmanaged will not have a
4079 * pte_pv. User page table pages which are unmanaged
4080 * (shared from elsewhere) will also not have a pt_pv.
4081 * The func() callback will pass both pte_pv and pt_pv
4082 * as NULL in that case.
4084 * We hold pte_placemark across the operation for
4085 * unmanaged pages.
4087 * WARNING! We must hold pt_placemark across the
4088 * *ptep test to prevent misintepreting
4089 * a non-zero *ptep as a shared page
4090 * table page. Hold it across the function
4091 * callback as well for SMP safety.
4093 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4094 &pte_placemark);
4095 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
4096 &pt_placemark);
4097 if (pt_pv == NULL) {
4098 KKASSERT(pte_pv == NULL);
4099 pd_pv = pv_get(pmap,
4100 pmap_pd_pindex(info->sva),
4101 NULL);
4102 if (pd_pv) {
4103 ptep = pv_pte_lookup(pd_pv,
4104 pmap_pt_index(info->sva));
4105 if (*ptep) {
4106 info->func(pmap, info,
4107 NULL, pt_placemark,
4108 pd_pv, 1,
4109 info->sva, ptep,
4110 info->arg);
4111 } else {
4112 pv_placemarker_wakeup(pmap,
4113 pt_placemark);
4115 pv_put(pd_pv);
4116 } else {
4117 pv_placemarker_wakeup(pmap,
4118 pt_placemark);
4120 pv_placemarker_wakeup(pmap, pte_placemark);
4121 goto fast_skip;
4123 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
4127 * NOTE: *ptep can't be ripped out from under us if we hold
4128 * pte_pv (or pte_placemark) locked, but bits can
4129 * change.
4131 oldpte = *ptep;
4132 cpu_ccfence();
4133 if (oldpte == 0) {
4134 KKASSERT(pte_pv == NULL);
4135 pv_placemarker_wakeup(pmap, pte_placemark);
4136 } else if (pte_pv) {
4137 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
4138 pmap->pmap_bits[PG_V_IDX])) ==
4139 (pmap->pmap_bits[PG_MANAGED_IDX] |
4140 pmap->pmap_bits[PG_V_IDX]),
4141 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
4142 *ptep, oldpte, info->sva, pte_pv));
4143 info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
4144 info->sva, ptep, info->arg);
4145 } else {
4146 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
4147 pmap->pmap_bits[PG_V_IDX])) ==
4148 pmap->pmap_bits[PG_V_IDX],
4149 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
4150 *ptep, oldpte, info->sva));
4151 info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
4152 info->sva, ptep, info->arg);
4154 if (pt_pv)
4155 pv_put(pt_pv);
4156 fast_skip:
4157 pmap_inval_bulk_flush(info->bulk);
4158 return;
4162 * Nominal scan case, RB_SCAN() for PD pages and iterate from
4163 * there.
4165 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4166 * bounds, resulting in a pd_pindex of 0. To solve the
4167 * problem we use an inclusive range.
4169 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
4170 info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
4172 if (info->sva >= VM_MAX_USER_ADDRESS) {
4174 * The kernel does not currently maintain any pv_entry's for
4175 * higher-level page tables.
4177 bzero(&dummy_pv, sizeof(dummy_pv));
4178 dummy_pv.pv_pindex = info->sva_pd_pindex;
4179 spin_lock(&pmap->pm_spin);
4180 while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
4181 pmap_scan_callback(&dummy_pv, info);
4182 ++dummy_pv.pv_pindex;
4183 if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
4184 break;
4186 spin_unlock(&pmap->pm_spin);
4187 } else {
4189 * User page tables maintain local PML4, PDP, and PD
4190 * pv_entry's at the very least. PT pv's might be
4191 * unmanaged and thus not exist. PTE pv's might be
4192 * unmanaged and thus not exist.
4194 spin_lock(&pmap->pm_spin);
4195 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
4196 pmap_scan_callback, info);
4197 spin_unlock(&pmap->pm_spin);
4199 pmap_inval_bulk_flush(info->bulk);
4203 * WARNING! pmap->pm_spin held
4205 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4206 * bounds, resulting in a pd_pindex of 0. To solve the
4207 * problem we use an inclusive range.
4209 static int
4210 pmap_scan_cmp(pv_entry_t pv, void *data)
4212 struct pmap_scan_info *info = data;
4213 if (pv->pv_pindex < info->sva_pd_pindex)
4214 return(-1);
4215 if (pv->pv_pindex > info->eva_pd_pindex)
4216 return(1);
4217 return(0);
4221 * pmap_scan() by PDs
4223 * WARNING! pmap->pm_spin held
4225 static int
4226 pmap_scan_callback(pv_entry_t pv, void *data)
4228 struct pmap_scan_info *info = data;
4229 struct pmap *pmap = info->pmap;
4230 pv_entry_t pd_pv; /* A page directory PV */
4231 pv_entry_t pt_pv; /* A page table PV */
4232 vm_pindex_t *pt_placemark;
4233 pt_entry_t *ptep;
4234 pt_entry_t oldpte;
4235 vm_offset_t sva;
4236 vm_offset_t eva;
4237 vm_offset_t va_next;
4238 vm_pindex_t pd_pindex;
4239 int error;
4242 * Stop if requested
4244 if (info->stop)
4245 return -1;
4248 * Pull the PD pindex from the pv before releasing the spinlock.
4250 * WARNING: pv is faked for kernel pmap scans.
4252 pd_pindex = pv->pv_pindex;
4253 spin_unlock(&pmap->pm_spin);
4254 pv = NULL; /* invalid after spinlock unlocked */
4257 * Calculate the page range within the PD. SIMPLE pmaps are
4258 * direct-mapped for the entire 2^64 address space. Normal pmaps
4259 * reflect the user and kernel address space which requires
4260 * cannonicalization w/regards to converting pd_pindex's back
4261 * into addresses.
4263 sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4264 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4265 (sva & PML4_SIGNMASK)) {
4266 sva |= PML4_SIGNMASK;
4268 eva = sva + NBPDP; /* can overflow */
4269 if (sva < info->sva)
4270 sva = info->sva;
4271 if (eva < info->sva || eva > info->eva)
4272 eva = info->eva;
4275 * NOTE: kernel mappings do not track page table pages, only
4276 * terminal pages.
4278 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4279 * However, for the scan to be efficient we try to
4280 * cache items top-down.
4282 pd_pv = NULL;
4283 pt_pv = NULL;
4285 for (; sva < eva; sva = va_next) {
4286 if (info->stop)
4287 break;
4288 if (sva >= VM_MAX_USER_ADDRESS) {
4289 if (pt_pv) {
4290 pv_put(pt_pv);
4291 pt_pv = NULL;
4293 goto kernel_skip;
4297 * PD cache, scan shortcut if it doesn't exist.
4299 if (pd_pv == NULL) {
4300 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4301 } else if (pd_pv->pv_pmap != pmap ||
4302 pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4303 pv_put(pd_pv);
4304 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4306 if (pd_pv == NULL) {
4307 va_next = (sva + NBPDP) & ~PDPMASK;
4308 if (va_next < sva)
4309 va_next = eva;
4310 continue;
4314 * PT cache
4316 * NOTE: The cached pt_pv can be removed from the pmap when
4317 * pmap_dynamic_delete is enabled.
4319 if (pt_pv && (pt_pv->pv_pmap != pmap ||
4320 pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4321 pv_put(pt_pv);
4322 pt_pv = NULL;
4324 if (pt_pv == NULL) {
4325 pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4326 &pt_placemark, &error);
4327 if (error) {
4328 pv_put(pd_pv); /* lock order */
4329 pd_pv = NULL;
4330 if (pt_pv) {
4331 pv_lock(pt_pv);
4332 pv_put(pt_pv);
4333 pt_pv = NULL;
4334 } else {
4335 pv_placemarker_wait(pmap, pt_placemark);
4337 va_next = sva;
4338 continue;
4340 /* may have to re-check later if pt_pv is NULL here */
4344 * If pt_pv is NULL we either have an shared page table
4345 * page and must issue a callback specific to that case,
4346 * or there is no page table page.
4348 * Either way we can skip the page table page.
4350 * WARNING! pt_pv can also be NULL due to a pv creation
4351 * race where we find it to be NULL and then
4352 * later see a pte_pv. But its possible the pt_pv
4353 * got created inbetween the two operations, so
4354 * we must check.
4356 if (pt_pv == NULL) {
4358 * Possible unmanaged (shared from another pmap)
4359 * page table page.
4361 * WARNING! We must hold pt_placemark across the
4362 * *ptep test to prevent misintepreting
4363 * a non-zero *ptep as a shared page
4364 * table page. Hold it across the function
4365 * callback as well for SMP safety.
4367 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4368 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4369 info->func(pmap, info, NULL, pt_placemark,
4370 pd_pv, 1,
4371 sva, ptep, info->arg);
4372 } else {
4373 pv_placemarker_wakeup(pmap, pt_placemark);
4377 * Done, move to next page table page.
4379 va_next = (sva + NBPDR) & ~PDRMASK;
4380 if (va_next < sva)
4381 va_next = eva;
4382 continue;
4386 * From this point in the loop testing pt_pv for non-NULL
4387 * means we are in UVM, else if it is NULL we are in KVM.
4389 * Limit our scan to either the end of the va represented
4390 * by the current page table page, or to the end of the
4391 * range being removed.
4393 kernel_skip:
4394 va_next = (sva + NBPDR) & ~PDRMASK;
4395 if (va_next < sva)
4396 va_next = eva;
4397 if (va_next > eva)
4398 va_next = eva;
4401 * Scan the page table for pages. Some pages may not be
4402 * managed (might not have a pv_entry).
4404 * There is no page table management for kernel pages so
4405 * pt_pv will be NULL in that case, but otherwise pt_pv
4406 * is non-NULL, locked, and referenced.
4410 * At this point a non-NULL pt_pv means a UVA, and a NULL
4411 * pt_pv means a KVA.
4413 if (pt_pv)
4414 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4415 else
4416 ptep = vtopte(sva);
4418 while (sva < va_next) {
4419 pv_entry_t pte_pv;
4420 vm_pindex_t *pte_placemark;
4423 * Yield every 64 pages, stop if requested.
4425 if ((++info->count & 63) == 0)
4426 lwkt_user_yield();
4427 if (info->stop)
4428 break;
4431 * We can shortcut our scan if *ptep == 0. This is
4432 * an unlocked check.
4434 if (*ptep == 0) {
4435 sva += PAGE_SIZE;
4436 ++ptep;
4437 continue;
4439 cpu_ccfence();
4442 * Acquire the related pte_pv, if any. If *ptep == 0
4443 * the related pte_pv should not exist, but if *ptep
4444 * is not zero the pte_pv may or may not exist (e.g.
4445 * will not exist for an unmanaged page).
4447 * However a multitude of races are possible here
4448 * so if we cannot lock definite state we clean out
4449 * our cache and break the inner while() loop to
4450 * force a loop up to the top of the for().
4452 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4453 * validity instead of looping up?
4455 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4456 &pte_placemark, &error);
4457 if (error) {
4458 pv_put(pd_pv); /* lock order */
4459 pd_pv = NULL;
4460 if (pt_pv) {
4461 pv_put(pt_pv); /* lock order */
4462 pt_pv = NULL;
4464 if (pte_pv) { /* block */
4465 pv_lock(pte_pv);
4466 pv_put(pte_pv);
4467 pte_pv = NULL;
4468 } else {
4469 pv_placemarker_wait(pmap,
4470 pte_placemark);
4472 va_next = sva; /* retry */
4473 break;
4477 * Reload *ptep after successfully locking the
4478 * pindex. If *ptep == 0 we had better NOT have a
4479 * pte_pv.
4481 cpu_ccfence();
4482 oldpte = *ptep;
4483 if (oldpte == 0) {
4484 if (pte_pv) {
4485 kprintf("Unexpected non-NULL pte_pv "
4486 "%p pt_pv %p "
4487 "*ptep = %016lx/%016lx\n",
4488 pte_pv, pt_pv, *ptep, oldpte);
4489 panic("Unexpected non-NULL pte_pv");
4490 } else {
4491 pv_placemarker_wakeup(pmap, pte_placemark);
4493 sva += PAGE_SIZE;
4494 ++ptep;
4495 continue;
4499 * We can't hold pd_pv across the callback (because
4500 * we don't pass it to the callback and the callback
4501 * might deadlock)
4503 if (pd_pv) {
4504 vm_page_wire_quick(pd_pv->pv_m);
4505 pv_unlock(pd_pv);
4509 * Ready for the callback. The locked pte_pv (if any)
4510 * is consumed by the callback. pte_pv will exist if
4511 * the page is managed, and will not exist if it
4512 * isn't.
4514 if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4516 * Managed pte
4518 KASSERT(pte_pv &&
4519 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4520 ("badC *ptep %016lx/%016lx sva %016lx "
4521 "pte_pv %p",
4522 *ptep, oldpte, sva, pte_pv));
4524 * We must unlock pd_pv across the callback
4525 * to avoid deadlocks on any recursive
4526 * disposal. Re-check that it still exists
4527 * after re-locking.
4529 * Call target disposes of pte_pv and may
4530 * destroy but will not dispose of pt_pv.
4532 info->func(pmap, info, pte_pv, NULL,
4533 pt_pv, 0,
4534 sva, ptep, info->arg);
4535 } else {
4537 * Unmanaged pte
4539 * We must unlock pd_pv across the callback
4540 * to avoid deadlocks on any recursive
4541 * disposal. Re-check that it still exists
4542 * after re-locking.
4544 * Call target disposes of pte_pv or
4545 * pte_placemark and may destroy but will
4546 * not dispose of pt_pv.
4548 KASSERT(pte_pv == NULL &&
4549 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4550 ("badD *ptep %016lx/%016lx sva %016lx "
4551 "pte_pv %p pte_pv->pv_m %p ",
4552 *ptep, oldpte, sva,
4553 pte_pv, (pte_pv ? pte_pv->pv_m : NULL)));
4554 if (pte_pv)
4555 kprintf("RaceD\n");
4556 if (pte_pv) {
4557 info->func(pmap, info,
4558 pte_pv, NULL,
4559 pt_pv, 0,
4560 sva, ptep, info->arg);
4561 } else {
4562 info->func(pmap, info,
4563 NULL, pte_placemark,
4564 pt_pv, 0,
4565 sva, ptep, info->arg);
4568 if (pd_pv) {
4569 pv_lock(pd_pv);
4570 vm_page_unwire_quick(pd_pv->pv_m);
4571 if (pd_pv->pv_pmap == NULL) {
4572 va_next = sva; /* retry */
4573 break;
4578 * NOTE: The cached pt_pv can be removed from the
4579 * pmap when pmap_dynamic_delete is enabled,
4580 * which will cause ptep to become stale.
4582 * This also means that no pages remain under
4583 * the PT, so we can just break out of the inner
4584 * loop and let the outer loop clean everything
4585 * up.
4587 if (pt_pv && pt_pv->pv_pmap != pmap)
4588 break;
4589 pte_pv = NULL;
4590 sva += PAGE_SIZE;
4591 ++ptep;
4594 if (pd_pv) {
4595 pv_put(pd_pv);
4596 pd_pv = NULL;
4598 if (pt_pv) {
4599 pv_put(pt_pv);
4600 pt_pv = NULL;
4602 if ((++info->count & 7) == 0)
4603 lwkt_user_yield();
4606 * Relock before returning.
4608 spin_lock(&pmap->pm_spin);
4609 return (0);
4612 void
4613 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4615 struct pmap_scan_info info;
4617 info.pmap = pmap;
4618 info.sva = sva;
4619 info.eva = eva;
4620 info.func = pmap_remove_callback;
4621 info.arg = NULL;
4622 pmap_scan(&info, 1);
4623 #if 0
4624 cpu_invltlb();
4625 if (eva - sva < 1024*1024) {
4626 while (sva < eva) {
4627 cpu_invlpg((void *)sva);
4628 sva += PAGE_SIZE;
4631 #endif
4634 static void
4635 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4637 struct pmap_scan_info info;
4639 info.pmap = pmap;
4640 info.sva = sva;
4641 info.eva = eva;
4642 info.func = pmap_remove_callback;
4643 info.arg = NULL;
4644 pmap_scan(&info, 0);
4647 static void
4648 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4649 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4650 pv_entry_t pt_pv, int sharept,
4651 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4653 pt_entry_t pte;
4655 if (pte_pv) {
4657 * Managed entry
4659 * This will also drop pt_pv's wire_count. Note that
4660 * terminal pages are not wired based on mmu presence.
4662 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4664 KKASSERT(pte_pv->pv_m != NULL);
4665 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4666 pte_pv = NULL; /* safety */
4669 * Recursively destroy higher-level page tables.
4671 * This is optional. If we do not, they will still
4672 * be destroyed when the process exits.
4674 * NOTE: Do not destroy pv_entry's with extra hold refs,
4675 * a caller may have unlocked it and intends to
4676 * continue to use it.
4678 if (pmap_dynamic_delete &&
4679 pt_pv &&
4680 pt_pv->pv_m &&
4681 pt_pv->pv_m->wire_count == 1 &&
4682 (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4683 pt_pv->pv_pindex < pmap_pml4_pindex()) {
4684 if (pmap_dynamic_delete == 2)
4685 kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4686 pv_hold(pt_pv); /* extra hold */
4687 pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4688 pv_lock(pt_pv); /* prior extra hold + relock */
4690 } else if (sharept == 0) {
4692 * Unmanaged pte (pte_placemark is non-NULL)
4694 * pt_pv's wire_count is still bumped by unmanaged pages
4695 * so we must decrement it manually.
4697 * We have to unwire the target page table page.
4699 pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4700 if (pte & pmap->pmap_bits[PG_W_IDX])
4701 atomic_add_long(&pmap->pm_stats.wired_count, -1);
4702 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4703 if (vm_page_unwire_quick(pt_pv->pv_m))
4704 panic("pmap_remove: insufficient wirecount");
4705 pv_placemarker_wakeup(pmap, pte_placemark);
4706 } else {
4708 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4709 * a shared page table.
4711 * pt_pv is actually the pd_pv for our pmap (not the shared
4712 * object pmap).
4714 * We have to unwire the target page table page and we
4715 * have to unwire our page directory page.
4717 * It is unclear how we can invalidate a segment so we
4718 * invalidate -1 which invlidates the tlb.
4720 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4721 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4722 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4723 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4724 panic("pmap_remove: shared pgtable1 bad wirecount");
4725 if (vm_page_unwire_quick(pt_pv->pv_m))
4726 panic("pmap_remove: shared pgtable2 bad wirecount");
4727 pv_placemarker_wakeup(pmap, pte_placemark);
4732 * Removes this physical page from all physical maps in which it resides.
4733 * Reflects back modify bits to the pager.
4735 * This routine may not be called from an interrupt.
4737 static
4738 void
4739 pmap_remove_all(vm_page_t m)
4741 pv_entry_t pv;
4742 pmap_inval_bulk_t bulk;
4744 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4745 return;
4747 vm_page_spin_lock(m);
4748 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4749 KKASSERT(pv->pv_m == m);
4750 if (pv_hold_try(pv)) {
4751 vm_page_spin_unlock(m);
4752 } else {
4753 vm_page_spin_unlock(m);
4754 pv_lock(pv);
4755 pv_put(pv);
4756 vm_page_spin_lock(m);
4757 continue;
4759 KKASSERT(pv->pv_pmap && pv->pv_m == m);
4762 * Holding no spinlocks, pv is locked. Once we scrap
4763 * pv we can no longer use it as a list iterator (but
4764 * we are doing a TAILQ_FIRST() so we are ok).
4766 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4767 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4768 pv = NULL; /* safety */
4769 pmap_inval_bulk_flush(&bulk);
4770 vm_page_spin_lock(m);
4772 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4773 vm_page_spin_unlock(m);
4777 * Removes the page from a particular pmap
4779 void
4780 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4782 pv_entry_t pv;
4783 pmap_inval_bulk_t bulk;
4785 if (!pmap_initialized)
4786 return;
4788 again:
4789 vm_page_spin_lock(m);
4790 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4791 if (pv->pv_pmap != pmap)
4792 continue;
4793 KKASSERT(pv->pv_m == m);
4794 if (pv_hold_try(pv)) {
4795 vm_page_spin_unlock(m);
4796 } else {
4797 vm_page_spin_unlock(m);
4798 pv_lock(pv);
4799 pv_put(pv);
4800 goto again;
4802 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
4805 * Holding no spinlocks, pv is locked. Once gone it can't
4806 * be used as an iterator. In fact, because we couldn't
4807 * necessarily lock it atomically it may have moved within
4808 * the list and ALSO cannot be used as an iterator.
4810 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4811 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4812 pv = NULL; /* safety */
4813 pmap_inval_bulk_flush(&bulk);
4814 goto again;
4816 vm_page_spin_unlock(m);
4820 * Set the physical protection on the specified range of this map
4821 * as requested. This function is typically only used for debug watchpoints
4822 * and COW pages.
4824 * This function may not be called from an interrupt if the map is
4825 * not the kernel_pmap.
4827 * NOTE! For shared page table pages we just unmap the page.
4829 void
4830 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4832 struct pmap_scan_info info;
4833 /* JG review for NX */
4835 if (pmap == NULL)
4836 return;
4837 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4838 pmap_remove(pmap, sva, eva);
4839 return;
4841 if (prot & VM_PROT_WRITE)
4842 return;
4843 info.pmap = pmap;
4844 info.sva = sva;
4845 info.eva = eva;
4846 info.func = pmap_protect_callback;
4847 info.arg = &prot;
4848 pmap_scan(&info, 1);
4851 static
4852 void
4853 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4854 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4855 pv_entry_t pt_pv, int sharept,
4856 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4858 pt_entry_t pbits;
4859 pt_entry_t cbits;
4860 pt_entry_t pte;
4861 vm_page_t m;
4863 again:
4864 pbits = *ptep;
4865 cbits = pbits;
4866 if (pte_pv) {
4867 KKASSERT(pte_pv->pv_m != NULL);
4868 m = NULL;
4869 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4870 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4871 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4872 KKASSERT(m == pte_pv->pv_m);
4873 vm_page_flag_set(m, PG_REFERENCED);
4875 cbits &= ~pmap->pmap_bits[PG_A_IDX];
4877 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4878 if (pmap_track_modified(pte_pv->pv_pindex)) {
4879 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4880 if (m == NULL) {
4881 m = PHYS_TO_VM_PAGE(pbits &
4882 PG_FRAME);
4884 vm_page_dirty(m);
4886 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4889 } else if (sharept) {
4891 * Unmanaged page table, pt_pv is actually the pd_pv
4892 * for our pmap (not the object's shared pmap).
4894 * When asked to protect something in a shared page table
4895 * page we just unmap the page table page. We have to
4896 * invalidate the tlb in this situation.
4898 * XXX Warning, shared page tables will not be used for
4899 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4900 * so PHYS_TO_VM_PAGE() should be safe here.
4902 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4903 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4904 panic("pmap_protect: pgtable1 pg bad wirecount");
4905 if (vm_page_unwire_quick(pt_pv->pv_m))
4906 panic("pmap_protect: pgtable2 pg bad wirecount");
4907 ptep = NULL;
4909 /* else unmanaged page, adjust bits, no wire changes */
4911 if (ptep) {
4912 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4913 #ifdef PMAP_DEBUG2
4914 if (pmap_enter_debug > 0) {
4915 --pmap_enter_debug;
4916 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4917 "pt_pv=%p cbits=%08lx\n",
4918 va, ptep, pte_pv,
4919 pt_pv, cbits
4922 #endif
4923 if (pbits != cbits) {
4924 vm_offset_t xva;
4926 xva = (sharept) ? (vm_offset_t)-1 : va;
4927 if (!pmap_inval_smp_cmpset(pmap, xva,
4928 ptep, pbits, cbits)) {
4929 goto again;
4933 if (pte_pv)
4934 pv_put(pte_pv);
4935 else
4936 pv_placemarker_wakeup(pmap, pte_placemark);
4940 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4941 * mapping at that address. Set protection and wiring as requested.
4943 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4944 * possible. If it is we enter the page into the appropriate shared pmap
4945 * hanging off the related VM object instead of the passed pmap, then we
4946 * share the page table page from the VM object's pmap into the current pmap.
4948 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4949 * lazy-evaluate.
4951 * NOTE: If (m) is PG_UNMANAGED it may also be a temporary fake vm_page_t.
4952 * never record it.
4954 void
4955 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4956 boolean_t wired, vm_map_entry_t entry)
4958 pv_entry_t pt_pv; /* page table */
4959 pv_entry_t pte_pv; /* page table entry */
4960 vm_pindex_t *pte_placemark;
4961 pt_entry_t *ptep;
4962 vm_paddr_t opa;
4963 pt_entry_t origpte, newpte;
4964 vm_paddr_t pa;
4966 if (pmap == NULL)
4967 return;
4968 va = trunc_page(va);
4969 #ifdef PMAP_DIAGNOSTIC
4970 if (va >= KvaEnd)
4971 panic("pmap_enter: toobig");
4972 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4973 panic("pmap_enter: invalid to pmap_enter page table "
4974 "pages (va: 0x%lx)", va);
4975 #endif
4976 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4977 kprintf("Warning: pmap_enter called on UVA with "
4978 "kernel_pmap\n");
4979 #ifdef DDB
4980 db_print_backtrace();
4981 #endif
4983 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4984 kprintf("Warning: pmap_enter called on KVA without"
4985 "kernel_pmap\n");
4986 #ifdef DDB
4987 db_print_backtrace();
4988 #endif
4992 * Get locked PV entries for our new page table entry (pte_pv or
4993 * pte_placemark) and for its parent page table (pt_pv). We need
4994 * the parent so we can resolve the location of the ptep.
4996 * Only hardware MMU actions can modify the ptep out from
4997 * under us.
4999 * if (m) is fictitious or unmanaged we do not create a managing
5000 * pte_pv for it. Any pre-existing page's management state must
5001 * match (avoiding code complexity).
5003 * If the pmap is still being initialized we assume existing
5004 * page tables.
5006 * Kernel mapppings do not track page table pages (i.e. pt_pv).
5008 * WARNING! If replacing a managed mapping with an unmanaged mapping
5009 * pte_pv will wind up being non-NULL and must be handled
5010 * below.
5012 if (pmap_initialized == FALSE) {
5013 pte_pv = NULL;
5014 pt_pv = NULL;
5015 pte_placemark = NULL;
5016 ptep = vtopte(va);
5017 origpte = *ptep;
5018 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
5019 pmap_softwait(pmap);
5020 pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
5021 KKASSERT(pte_pv == NULL);
5022 if (va >= VM_MAX_USER_ADDRESS) {
5023 pt_pv = NULL;
5024 ptep = vtopte(va);
5025 } else {
5026 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
5027 NULL, entry, va);
5028 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5030 origpte = *ptep;
5031 cpu_ccfence();
5032 KASSERT(origpte == 0 ||
5033 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
5034 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
5035 } else {
5036 pmap_softwait(pmap);
5037 if (va >= VM_MAX_USER_ADDRESS) {
5039 * Kernel map, pv_entry-tracked.
5041 pt_pv = NULL;
5042 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
5043 ptep = vtopte(va);
5044 } else {
5046 * User map
5048 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
5049 &pt_pv, entry, va);
5050 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5052 pte_placemark = NULL; /* safety */
5053 origpte = *ptep;
5054 cpu_ccfence();
5055 KASSERT(origpte == 0 ||
5056 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
5057 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
5060 pa = VM_PAGE_TO_PHYS(m);
5061 opa = origpte & PG_FRAME;
5064 * Calculate the new PTE. Note that pte_pv alone does not mean
5065 * the new pte_pv is managed, it could exist because the old pte
5066 * was managed even if the new one is not.
5068 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
5069 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
5070 if (wired)
5071 newpte |= pmap->pmap_bits[PG_W_IDX];
5072 if (va < VM_MAX_USER_ADDRESS)
5073 newpte |= pmap->pmap_bits[PG_U_IDX];
5074 if (pte_pv && (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) == 0)
5075 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
5076 // if (pmap == &kernel_pmap)
5077 // newpte |= pgeflag;
5078 newpte |= pmap->pmap_cache_bits[m->pat_mode];
5079 if (m->flags & PG_FICTITIOUS)
5080 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
5083 * It is possible for multiple faults to occur in threaded
5084 * environments, the existing pte might be correct.
5086 if (((origpte ^ newpte) &
5087 ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
5088 pmap->pmap_bits[PG_A_IDX])) == 0) {
5089 goto done;
5093 * Ok, either the address changed or the protection or wiring
5094 * changed.
5096 * Clear the current entry, interlocking the removal. For managed
5097 * pte's this will also flush the modified state to the vm_page.
5098 * Atomic ops are mandatory in order to ensure that PG_M events are
5099 * not lost during any transition.
5101 * WARNING: The caller has busied the new page but not the original
5102 * vm_page which we are trying to replace. Because we hold
5103 * the pte_pv lock, but have not busied the page, PG bits
5104 * can be cleared out from under us.
5106 if (opa) {
5107 if (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
5109 * Old page was managed. Expect pte_pv to exist.
5110 * (it might also exist if the old page was unmanaged).
5112 * NOTE: pt_pv won't exist for a kernel page
5113 * (managed or otherwise).
5115 * NOTE: We may be reusing the pte_pv so we do not
5116 * destroy it in pmap_remove_pv_pte().
5118 KKASSERT(pte_pv && pte_pv->pv_m);
5119 if (prot & VM_PROT_NOSYNC) {
5120 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
5121 } else {
5122 pmap_inval_bulk_t bulk;
5124 pmap_inval_bulk_init(&bulk, pmap);
5125 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
5126 pmap_inval_bulk_flush(&bulk);
5128 pmap_remove_pv_page(pte_pv);
5129 /* will either set pte_pv->pv_m or pv_free() later */
5130 } else {
5132 * Old page was not managed. If we have a pte_pv
5133 * it better not have a pv_m assigned to it. If the
5134 * new page is managed the pte_pv will be destroyed
5135 * near the end (we need its interlock).
5137 * NOTE: We leave the wire count on the PT page
5138 * intact for the followup enter, but adjust
5139 * the wired-pages count on the pmap.
5141 KKASSERT(pte_pv == NULL);
5142 if (prot & VM_PROT_NOSYNC) {
5144 * NOSYNC (no mmu sync) requested.
5146 (void)pte_load_clear(ptep);
5147 cpu_invlpg((void *)va);
5148 } else {
5150 * Nominal SYNC
5152 pmap_inval_smp(pmap, va, 1, ptep, 0);
5156 * We must adjust pm_stats manually for unmanaged
5157 * pages.
5159 if (pt_pv) {
5160 atomic_add_long(&pmap->pm_stats.
5161 resident_count, -1);
5163 if (origpte & pmap->pmap_bits[PG_W_IDX]) {
5164 atomic_add_long(&pmap->pm_stats.
5165 wired_count, -1);
5168 KKASSERT(*ptep == 0);
5171 #ifdef PMAP_DEBUG2
5172 if (pmap_enter_debug > 0) {
5173 --pmap_enter_debug;
5174 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
5175 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
5176 va, m,
5177 origpte, newpte, ptep,
5178 pte_pv, pt_pv, opa, prot);
5180 #endif
5182 if ((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5184 * Entering an unmanaged page. We must wire the pt_pv unless
5185 * we retained the wiring from an unmanaged page we had
5186 * removed (if we retained it via pte_pv that will go away
5187 * soon).
5189 if (pt_pv && (opa == 0 ||
5190 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]))) {
5191 vm_page_wire_quick(pt_pv->pv_m);
5193 if (wired)
5194 atomic_add_long(&pmap->pm_stats.wired_count, 1);
5197 * Unmanaged pages need manual resident_count tracking.
5199 if (pt_pv) {
5200 atomic_add_long(&pt_pv->pv_pmap->pm_stats.
5201 resident_count, 1);
5203 if (newpte & pmap->pmap_bits[PG_RW_IDX])
5204 vm_page_flag_set(m, PG_WRITEABLE);
5205 } else {
5207 * Entering a managed page. Our pte_pv takes care of the
5208 * PT wiring, so if we had removed an unmanaged page before
5209 * we must adjust.
5211 * We have to take care of the pmap wired count ourselves.
5213 * Enter on the PV list if part of our managed memory.
5215 KKASSERT(pte_pv && (pte_pv->pv_m == NULL || pte_pv->pv_m == m));
5216 vm_page_spin_lock(m);
5217 pte_pv->pv_m = m;
5218 pmap_page_stats_adding(m);
5219 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
5220 vm_page_flag_set(m, PG_MAPPED);
5221 if (newpte & pmap->pmap_bits[PG_RW_IDX])
5222 vm_page_flag_set(m, PG_WRITEABLE);
5223 vm_page_spin_unlock(m);
5225 if (pt_pv && opa &&
5226 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5227 vm_page_unwire_quick(pt_pv->pv_m);
5231 * Adjust pmap wired pages count for new entry.
5233 if (wired) {
5234 atomic_add_long(&pte_pv->pv_pmap->pm_stats.
5235 wired_count, 1);
5240 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
5242 * User VMAs do not because those will be zero->non-zero, so no
5243 * stale entries to worry about at this point.
5245 * For KVM there appear to still be issues. Theoretically we
5246 * should be able to scrap the interlocks entirely but we
5247 * get crashes.
5249 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
5250 pmap_inval_smp(pmap, va, 1, ptep, newpte);
5251 } else {
5252 origpte = atomic_swap_long(ptep, newpte);
5253 if (origpte & pmap->pmap_bits[PG_M_IDX]) {
5254 kprintf("pmap [M] race @ %016jx\n", va);
5255 atomic_set_long(ptep, pmap->pmap_bits[PG_M_IDX]);
5257 if (pt_pv == NULL)
5258 cpu_invlpg((void *)va);
5262 * Cleanup
5264 done:
5265 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5266 (m->flags & PG_MAPPED));
5269 * Cleanup the pv entry, allowing other accessors. If the new page
5270 * is not managed but we have a pte_pv (which was locking our
5271 * operation), we can free it now. pte_pv->pv_m should be NULL.
5273 if (pte_pv && (newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5274 pv_free(pte_pv, pt_pv);
5275 } else if (pte_pv) {
5276 pv_put(pte_pv);
5277 } else if (pte_placemark) {
5278 pv_placemarker_wakeup(pmap, pte_placemark);
5280 if (pt_pv)
5281 pv_put(pt_pv);
5285 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
5286 * This code also assumes that the pmap has no pre-existing entry for this
5287 * VA.
5289 * This code currently may only be used on user pmaps, not kernel_pmap.
5291 void
5292 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
5294 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
5298 * Make a temporary mapping for a physical address. This is only intended
5299 * to be used for panic dumps.
5301 * The caller is responsible for calling smp_invltlb().
5303 void *
5304 pmap_kenter_temporary(vm_paddr_t pa, long i)
5306 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5307 return ((void *)crashdumpmap);
5310 #define MAX_INIT_PT (96)
5313 * This routine preloads the ptes for a given object into the specified pmap.
5314 * This eliminates the blast of soft faults on process startup and
5315 * immediately after an mmap.
5317 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5319 void
5320 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
5321 vm_object_t object, vm_pindex_t pindex,
5322 vm_size_t size, int limit)
5324 struct rb_vm_page_scan_info info;
5325 struct lwp *lp;
5326 vm_size_t psize;
5329 * We can't preinit if read access isn't set or there is no pmap
5330 * or object.
5332 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5333 return;
5336 * We can't preinit if the pmap is not the current pmap
5338 lp = curthread->td_lwp;
5339 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5340 return;
5343 * Misc additional checks
5345 psize = x86_64_btop(size);
5347 if ((object->type != OBJT_VNODE) ||
5348 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5349 (object->resident_page_count > MAX_INIT_PT))) {
5350 return;
5353 if (pindex + psize > object->size) {
5354 if (object->size < pindex)
5355 return;
5356 psize = object->size - pindex;
5359 if (psize == 0)
5360 return;
5363 * If everything is segment-aligned do not pre-init here. Instead
5364 * allow the normal vm_fault path to pass a segment hint to
5365 * pmap_enter() which will then use an object-referenced shared
5366 * page table page.
5368 if ((addr & SEG_MASK) == 0 &&
5369 (ctob(psize) & SEG_MASK) == 0 &&
5370 (ctob(pindex) & SEG_MASK) == 0) {
5371 return;
5375 * Use a red-black scan to traverse the requested range and load
5376 * any valid pages found into the pmap.
5378 * We cannot safely scan the object's memq without holding the
5379 * object token.
5381 info.start_pindex = pindex;
5382 info.end_pindex = pindex + psize - 1;
5383 info.limit = limit;
5384 info.mpte = NULL;
5385 info.addr = addr;
5386 info.pmap = pmap;
5387 info.object = object;
5390 * By using the NOLK scan, the callback function must be sure
5391 * to return -1 if the VM page falls out of the object.
5393 vm_object_hold_shared(object);
5394 vm_page_rb_tree_RB_SCAN_NOLK(&object->rb_memq, rb_vm_page_scancmp,
5395 pmap_object_init_pt_callback, &info);
5396 vm_object_drop(object);
5399 static
5401 pmap_object_init_pt_callback(vm_page_t p, void *data)
5403 struct rb_vm_page_scan_info *info = data;
5404 vm_pindex_t rel_index;
5405 int hard_busy;
5408 * don't allow an madvise to blow away our really
5409 * free pages allocating pv entries.
5411 if ((info->limit & MAP_PREFAULT_MADVISE) &&
5412 vmstats.v_free_count < vmstats.v_free_reserved) {
5413 return(-1);
5417 * Ignore list markers and ignore pages we cannot instantly
5418 * busy (while holding the object token).
5420 if (p->flags & PG_MARKER)
5421 return 0;
5422 hard_busy = 0;
5423 again:
5424 if (hard_busy) {
5425 if (vm_page_busy_try(p, TRUE))
5426 return 0;
5427 } else {
5428 if (vm_page_sbusy_try(p))
5429 return 0;
5431 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5432 (p->flags & PG_FICTITIOUS) == 0) {
5433 if ((p->queue - p->pc) == PQ_CACHE) {
5434 if (hard_busy == 0) {
5435 vm_page_sbusy_drop(p);
5436 hard_busy = 1;
5437 goto again;
5439 vm_page_deactivate(p);
5441 rel_index = p->pindex - info->start_pindex;
5442 pmap_enter_quick(info->pmap,
5443 info->addr + x86_64_ptob(rel_index), p);
5445 if (hard_busy)
5446 vm_page_wakeup(p);
5447 else
5448 vm_page_sbusy_drop(p);
5451 * We are using an unlocked scan (that is, the scan expects its
5452 * current element to remain in the tree on return). So we have
5453 * to check here and abort the scan if it isn't.
5455 if (p->object != info->object)
5456 return -1;
5457 lwkt_yield();
5458 return(0);
5462 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5463 * address.
5465 * Returns FALSE if it would be non-trivial or if a pte is already loaded
5466 * into the slot.
5468 * XXX This is safe only because page table pages are not freed.
5471 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5473 pt_entry_t *pte;
5475 /*spin_lock(&pmap->pm_spin);*/
5476 if ((pte = pmap_pte(pmap, addr)) != NULL) {
5477 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5478 /*spin_unlock(&pmap->pm_spin);*/
5479 return FALSE;
5482 /*spin_unlock(&pmap->pm_spin);*/
5483 return TRUE;
5487 * Change the wiring attribute for a pmap/va pair. The mapping must already
5488 * exist in the pmap. The mapping may or may not be managed. The wiring in
5489 * the page is not changed, the page is returned so the caller can adjust
5490 * its wiring (the page is not locked in any way).
5492 * Wiring is not a hardware characteristic so there is no need to invalidate
5493 * TLB. However, in an SMP environment we must use a locked bus cycle to
5494 * update the pte (if we are not using the pmap_inval_*() API that is)...
5495 * it's ok to do this for simple wiring changes.
5497 vm_page_t
5498 pmap_unwire(pmap_t pmap, vm_offset_t va)
5500 pt_entry_t *ptep;
5501 pv_entry_t pt_pv;
5502 vm_paddr_t pa;
5503 vm_page_t m;
5505 if (pmap == NULL)
5506 return NULL;
5509 * Assume elements in the kernel pmap are stable
5511 if (pmap == &kernel_pmap) {
5512 if (pmap_pt(pmap, va) == 0)
5513 return NULL;
5514 ptep = pmap_pte_quick(pmap, va);
5515 if (pmap_pte_v(pmap, ptep)) {
5516 if (pmap_pte_w(pmap, ptep))
5517 atomic_add_long(&pmap->pm_stats.wired_count,-1);
5518 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5519 pa = *ptep & PG_FRAME;
5520 m = PHYS_TO_VM_PAGE(pa);
5521 } else {
5522 m = NULL;
5524 } else {
5526 * We can only [un]wire pmap-local pages (we cannot wire
5527 * shared pages)
5529 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5530 if (pt_pv == NULL)
5531 return NULL;
5533 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5534 if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5535 pv_put(pt_pv);
5536 return NULL;
5539 if (pmap_pte_w(pmap, ptep)) {
5540 atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5541 -1);
5543 /* XXX else return NULL so caller doesn't unwire m ? */
5545 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5547 pa = *ptep & PG_FRAME;
5548 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
5549 pv_put(pt_pv);
5551 return m;
5555 * Copy the range specified by src_addr/len from the source map to
5556 * the range dst_addr/len in the destination map.
5558 * This routine is only advisory and need not do anything.
5560 void
5561 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5562 vm_size_t len, vm_offset_t src_addr)
5567 * pmap_zero_page:
5569 * Zero the specified physical page.
5571 * This function may be called from an interrupt and no locking is
5572 * required.
5574 void
5575 pmap_zero_page(vm_paddr_t phys)
5577 vm_offset_t va = PHYS_TO_DMAP(phys);
5579 pagezero((void *)va);
5583 * pmap_zero_page:
5585 * Zero part of a physical page by mapping it into memory and clearing
5586 * its contents with bzero.
5588 * off and size may not cover an area beyond a single hardware page.
5590 void
5591 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5593 vm_offset_t virt = PHYS_TO_DMAP(phys);
5595 bzero((char *)virt + off, size);
5599 * pmap_copy_page:
5601 * Copy the physical page from the source PA to the target PA.
5602 * This function may be called from an interrupt. No locking
5603 * is required.
5605 void
5606 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5608 vm_offset_t src_virt, dst_virt;
5610 src_virt = PHYS_TO_DMAP(src);
5611 dst_virt = PHYS_TO_DMAP(dst);
5612 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5616 * pmap_copy_page_frag:
5618 * Copy the physical page from the source PA to the target PA.
5619 * This function may be called from an interrupt. No locking
5620 * is required.
5622 void
5623 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5625 vm_offset_t src_virt, dst_virt;
5627 src_virt = PHYS_TO_DMAP(src);
5628 dst_virt = PHYS_TO_DMAP(dst);
5630 bcopy((char *)src_virt + (src & PAGE_MASK),
5631 (char *)dst_virt + (dst & PAGE_MASK),
5632 bytes);
5636 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5637 * this page. This count may be changed upwards or downwards in the future;
5638 * it is only necessary that true be returned for a small subset of pmaps
5639 * for proper page aging.
5641 boolean_t
5642 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5644 pv_entry_t pv;
5645 int loops = 0;
5647 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5648 return FALSE;
5650 vm_page_spin_lock(m);
5651 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5652 if (pv->pv_pmap == pmap) {
5653 vm_page_spin_unlock(m);
5654 return TRUE;
5656 loops++;
5657 if (loops >= 16)
5658 break;
5660 vm_page_spin_unlock(m);
5661 return (FALSE);
5665 * Remove all pages from specified address space this aids process exit
5666 * speeds. Also, this code may be special cased for the current process
5667 * only.
5669 void
5670 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5672 pmap_remove_noinval(pmap, sva, eva);
5673 cpu_invltlb();
5677 * pmap_testbit tests bits in pte's note that the testbit/clearbit
5678 * routines are inline, and a lot of things compile-time evaluate.
5681 static
5682 boolean_t
5683 pmap_testbit(vm_page_t m, int bit)
5685 pv_entry_t pv;
5686 pt_entry_t *pte;
5687 pmap_t pmap;
5689 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5690 return FALSE;
5692 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5693 return FALSE;
5694 vm_page_spin_lock(m);
5695 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5696 vm_page_spin_unlock(m);
5697 return FALSE;
5700 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5701 #if defined(PMAP_DIAGNOSTIC)
5702 if (pv->pv_pmap == NULL) {
5703 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5704 pv->pv_pindex);
5705 continue;
5707 #endif
5708 pmap = pv->pv_pmap;
5711 * If the bit being tested is the modified bit, then
5712 * mark clean_map and ptes as never
5713 * modified.
5715 * WARNING! Because we do not lock the pv, *pte can be in a
5716 * state of flux. Despite this the value of *pte
5717 * will still be related to the vm_page in some way
5718 * because the pv cannot be destroyed as long as we
5719 * hold the vm_page spin lock.
5721 if (bit == PG_A_IDX || bit == PG_M_IDX) {
5722 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5723 if (!pmap_track_modified(pv->pv_pindex))
5724 continue;
5727 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5728 if (*pte & pmap->pmap_bits[bit]) {
5729 vm_page_spin_unlock(m);
5730 return TRUE;
5733 vm_page_spin_unlock(m);
5734 return (FALSE);
5738 * This routine is used to modify bits in ptes. Only one bit should be
5739 * specified. PG_RW requires special handling.
5741 * Caller must NOT hold any spin locks
5743 static __inline
5744 void
5745 pmap_clearbit(vm_page_t m, int bit_index)
5747 pv_entry_t pv;
5748 pt_entry_t *pte;
5749 pt_entry_t pbits;
5750 pmap_t pmap;
5752 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5753 if (bit_index == PG_RW_IDX)
5754 vm_page_flag_clear(m, PG_WRITEABLE);
5755 return;
5759 * PG_M or PG_A case
5761 * Loop over all current mappings setting/clearing as appropos If
5762 * setting RO do we need to clear the VAC?
5764 * NOTE: When clearing PG_M we could also (not implemented) drop
5765 * through to the PG_RW code and clear PG_RW too, forcing
5766 * a fault on write to redetect PG_M for virtual kernels, but
5767 * it isn't necessary since virtual kernels invalidate the
5768 * pte when they clear the VPTE_M bit in their virtual page
5769 * tables.
5771 * NOTE: Does not re-dirty the page when clearing only PG_M.
5773 * NOTE: Because we do not lock the pv, *pte can be in a state of
5774 * flux. Despite this the value of *pte is still somewhat
5775 * related while we hold the vm_page spin lock.
5777 * *pte can be zero due to this race. Since we are clearing
5778 * bits we basically do no harm when this race occurs.
5780 if (bit_index != PG_RW_IDX) {
5781 vm_page_spin_lock(m);
5782 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5783 #if defined(PMAP_DIAGNOSTIC)
5784 if (pv->pv_pmap == NULL) {
5785 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5786 pv->pv_pindex);
5787 continue;
5789 #endif
5790 pmap = pv->pv_pmap;
5791 pte = pmap_pte_quick(pv->pv_pmap,
5792 pv->pv_pindex << PAGE_SHIFT);
5793 pbits = *pte;
5794 if (pbits & pmap->pmap_bits[bit_index])
5795 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5797 vm_page_spin_unlock(m);
5798 return;
5802 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
5803 * was set.
5805 restart:
5806 vm_page_spin_lock(m);
5807 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5809 * don't write protect pager mappings
5811 if (!pmap_track_modified(pv->pv_pindex))
5812 continue;
5814 #if defined(PMAP_DIAGNOSTIC)
5815 if (pv->pv_pmap == NULL) {
5816 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5817 pv->pv_pindex);
5818 continue;
5820 #endif
5821 pmap = pv->pv_pmap;
5824 * Skip pages which do not have PG_RW set.
5826 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5827 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5828 continue;
5831 * We must lock the PV to be able to safely test the pte.
5833 if (pv_hold_try(pv)) {
5834 vm_page_spin_unlock(m);
5835 } else {
5836 vm_page_spin_unlock(m);
5837 pv_lock(pv); /* held, now do a blocking lock */
5838 pv_put(pv);
5839 goto restart;
5843 * Reload pte after acquiring pv.
5845 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5846 #if 0
5847 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0) {
5848 pv_put(pv);
5849 goto restart;
5851 #endif
5853 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
5854 for (;;) {
5855 pt_entry_t nbits;
5857 pbits = *pte;
5858 cpu_ccfence();
5859 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5860 pmap->pmap_bits[PG_M_IDX]);
5861 if (pmap_inval_smp_cmpset(pmap,
5862 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5863 pte, pbits, nbits)) {
5864 break;
5866 cpu_pause();
5870 * If PG_M was found to be set while we were clearing PG_RW
5871 * we also clear PG_M (done above) and mark the page dirty.
5872 * Callers expect this behavior.
5874 * we lost pv so it cannot be used as an iterator. In fact,
5875 * because we couldn't necessarily lock it atomically it may
5876 * have moved within the list and ALSO cannot be used as an
5877 * iterator.
5879 vm_page_spin_lock(m);
5880 if (pbits & pmap->pmap_bits[PG_M_IDX])
5881 vm_page_dirty(m);
5882 vm_page_spin_unlock(m);
5883 pv_put(pv);
5884 goto restart;
5886 if (bit_index == PG_RW_IDX)
5887 vm_page_flag_clear(m, PG_WRITEABLE);
5888 vm_page_spin_unlock(m);
5892 * Lower the permission for all mappings to a given page.
5894 * Page must be busied by caller. Because page is busied by caller this
5895 * should not be able to race a pmap_enter().
5897 void
5898 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5900 /* JG NX support? */
5901 if ((prot & VM_PROT_WRITE) == 0) {
5902 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5904 * NOTE: pmap_clearbit(.. PG_RW) also clears
5905 * the PG_WRITEABLE flag in (m).
5907 pmap_clearbit(m, PG_RW_IDX);
5908 } else {
5909 pmap_remove_all(m);
5914 vm_paddr_t
5915 pmap_phys_address(vm_pindex_t ppn)
5917 return (x86_64_ptob(ppn));
5921 * Return a count of reference bits for a page, clearing those bits.
5922 * It is not necessary for every reference bit to be cleared, but it
5923 * is necessary that 0 only be returned when there are truly no
5924 * reference bits set.
5926 * XXX: The exact number of bits to check and clear is a matter that
5927 * should be tested and standardized at some point in the future for
5928 * optimal aging of shared pages.
5930 * This routine may not block.
5933 pmap_ts_referenced(vm_page_t m)
5935 pv_entry_t pv;
5936 pt_entry_t *pte;
5937 pmap_t pmap;
5938 int rtval = 0;
5940 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5941 return (rtval);
5943 vm_page_spin_lock(m);
5944 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5945 if (!pmap_track_modified(pv->pv_pindex))
5946 continue;
5947 pmap = pv->pv_pmap;
5948 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5949 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5950 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5951 rtval++;
5952 if (rtval > 4)
5953 break;
5956 vm_page_spin_unlock(m);
5957 return (rtval);
5961 * pmap_is_modified:
5963 * Return whether or not the specified physical page was modified
5964 * in any physical maps.
5966 boolean_t
5967 pmap_is_modified(vm_page_t m)
5969 boolean_t res;
5971 res = pmap_testbit(m, PG_M_IDX);
5972 return (res);
5976 * Clear the modify bits on the specified physical page.
5978 void
5979 pmap_clear_modify(vm_page_t m)
5981 pmap_clearbit(m, PG_M_IDX);
5985 * pmap_clear_reference:
5987 * Clear the reference bit on the specified physical page.
5989 void
5990 pmap_clear_reference(vm_page_t m)
5992 pmap_clearbit(m, PG_A_IDX);
5996 * Miscellaneous support routines follow
5999 static
6000 void
6001 x86_64_protection_init(void)
6003 uint64_t *kp;
6004 int prot;
6007 * NX supported? (boot time loader.conf override only)
6009 TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
6010 if (pmap_nx_enable == 0 || (amd_feature & AMDID_NX) == 0)
6011 pmap_bits_default[PG_NX_IDX] = 0;
6014 * 0 is basically read-only access, but also set the NX (no-execute)
6015 * bit when VM_PROT_EXECUTE is not specified.
6017 kp = protection_codes;
6018 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
6019 switch (prot) {
6020 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
6022 * This case handled elsewhere
6024 *kp++ = 0;
6025 break;
6026 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
6028 * Read-only is 0|NX
6030 *kp++ = pmap_bits_default[PG_NX_IDX];
6031 break;
6032 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
6033 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
6035 * Execute requires read access
6037 *kp++ = 0;
6038 break;
6039 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
6040 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
6042 * Write without execute is RW|NX
6044 *kp++ = pmap_bits_default[PG_RW_IDX] |
6045 pmap_bits_default[PG_NX_IDX];
6046 break;
6047 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
6048 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
6050 * Write with execute is RW
6052 *kp++ = pmap_bits_default[PG_RW_IDX];
6053 break;
6059 * Map a set of physical memory pages into the kernel virtual
6060 * address space. Return a pointer to where it is mapped. This
6061 * routine is intended to be used for mapping device memory,
6062 * NOT real memory.
6064 * NOTE: We can't use pgeflag unless we invalidate the pages one at
6065 * a time.
6067 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
6068 * work whether the cpu supports PAT or not. The remaining PAT
6069 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
6070 * supports PAT.
6072 void *
6073 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
6075 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6078 void *
6079 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
6081 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
6084 void *
6085 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
6087 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6091 * Map a set of physical memory pages into the kernel virtual
6092 * address space. Return a pointer to where it is mapped. This
6093 * routine is intended to be used for mapping device memory,
6094 * NOT real memory.
6096 void *
6097 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
6099 vm_offset_t va, tmpva, offset;
6100 pt_entry_t *pte;
6101 vm_size_t tmpsize;
6103 offset = pa & PAGE_MASK;
6104 size = roundup(offset + size, PAGE_SIZE);
6106 va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
6107 if (va == 0)
6108 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
6110 pa = pa & ~PAGE_MASK;
6111 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
6112 pte = vtopte(tmpva);
6113 *pte = pa |
6114 kernel_pmap.pmap_bits[PG_RW_IDX] |
6115 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
6116 kernel_pmap.pmap_cache_bits[mode];
6117 tmpsize -= PAGE_SIZE;
6118 tmpva += PAGE_SIZE;
6119 pa += PAGE_SIZE;
6121 pmap_invalidate_range(&kernel_pmap, va, va + size);
6122 pmap_invalidate_cache_range(va, va + size);
6124 return ((void *)(va + offset));
6127 void
6128 pmap_unmapdev(vm_offset_t va, vm_size_t size)
6130 vm_offset_t base, offset;
6132 base = va & ~PAGE_MASK;
6133 offset = va & PAGE_MASK;
6134 size = roundup(offset + size, PAGE_SIZE);
6135 pmap_qremove(va, size >> PAGE_SHIFT);
6136 kmem_free(&kernel_map, base, size);
6140 * Sets the memory attribute for the specified page.
6142 void
6143 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6146 m->pat_mode = ma;
6149 * If "m" is a normal page, update its direct mapping. This update
6150 * can be relied upon to perform any cache operations that are
6151 * required for data coherence.
6153 if ((m->flags & PG_FICTITIOUS) == 0)
6154 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
6158 * Change the PAT attribute on an existing kernel memory map. Caller
6159 * must ensure that the virtual memory in question is not accessed
6160 * during the adjustment.
6162 void
6163 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
6165 pt_entry_t *pte;
6166 vm_offset_t base;
6167 int changed = 0;
6169 if (va == 0)
6170 panic("pmap_change_attr: va is NULL");
6171 base = trunc_page(va);
6173 while (count) {
6174 pte = vtopte(va);
6175 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
6176 kernel_pmap.pmap_cache_bits[mode];
6177 --count;
6178 va += PAGE_SIZE;
6181 changed = 1; /* XXX: not optimal */
6184 * Flush CPU caches if required to make sure any data isn't cached that
6185 * shouldn't be, etc.
6187 if (changed) {
6188 pmap_invalidate_range(&kernel_pmap, base, va);
6189 pmap_invalidate_cache_range(base, va);
6194 * perform the pmap work for mincore
6197 pmap_mincore(pmap_t pmap, vm_offset_t addr)
6199 pt_entry_t *ptep, pte;
6200 vm_page_t m;
6201 int val = 0;
6203 ptep = pmap_pte(pmap, addr);
6205 if (ptep && (pte = *ptep) != 0) {
6206 vm_offset_t pa;
6208 val = MINCORE_INCORE;
6209 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
6210 goto done;
6212 pa = pte & PG_FRAME;
6214 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
6215 m = NULL;
6216 else
6217 m = PHYS_TO_VM_PAGE(pa);
6220 * Modified by us
6222 if (pte & pmap->pmap_bits[PG_M_IDX])
6223 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
6225 * Modified by someone
6227 else if (m && (m->dirty || pmap_is_modified(m)))
6228 val |= MINCORE_MODIFIED_OTHER;
6230 * Referenced by us
6232 if (pte & pmap->pmap_bits[PG_A_IDX])
6233 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
6236 * Referenced by someone
6238 else if (m && ((m->flags & PG_REFERENCED) ||
6239 pmap_ts_referenced(m))) {
6240 val |= MINCORE_REFERENCED_OTHER;
6241 vm_page_flag_set(m, PG_REFERENCED);
6244 done:
6246 return val;
6250 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
6251 * vmspace will be ref'd and the old one will be deref'd.
6253 * The vmspace for all lwps associated with the process will be adjusted
6254 * and cr3 will be reloaded if any lwp is the current lwp.
6256 * The process must hold the vmspace->vm_map.token for oldvm and newvm
6258 void
6259 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
6261 struct vmspace *oldvm;
6262 struct lwp *lp;
6264 oldvm = p->p_vmspace;
6265 if (oldvm != newvm) {
6266 if (adjrefs)
6267 vmspace_ref(newvm);
6268 p->p_vmspace = newvm;
6269 KKASSERT(p->p_nthreads == 1);
6270 lp = RB_ROOT(&p->p_lwp_tree);
6271 pmap_setlwpvm(lp, newvm);
6272 if (adjrefs)
6273 vmspace_rel(oldvm);
6278 * Set the vmspace for a LWP. The vmspace is almost universally set the
6279 * same as the process vmspace, but virtual kernels need to swap out contexts
6280 * on a per-lwp basis.
6282 * Caller does not necessarily hold any vmspace tokens. Caller must control
6283 * the lwp (typically be in the context of the lwp). We use a critical
6284 * section to protect against statclock and hardclock (statistics collection).
6286 void
6287 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
6289 struct vmspace *oldvm;
6290 struct pmap *pmap;
6291 thread_t td;
6293 oldvm = lp->lwp_vmspace;
6295 if (oldvm != newvm) {
6296 crit_enter();
6297 td = curthread;
6298 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
6299 lp->lwp_vmspace = newvm;
6300 if (td->td_lwp == lp) {
6301 pmap = vmspace_pmap(newvm);
6302 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
6303 if (pmap->pm_active_lock & CPULOCK_EXCL)
6304 pmap_interlock_wait(newvm);
6305 #if defined(SWTCH_OPTIM_STATS)
6306 tlb_flush_count++;
6307 #endif
6308 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6309 td->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6310 if (vm_isolated_user_pmap &&
6311 pmap->pm_pmlpv_iso) {
6312 td->td_pcb->pcb_cr3_iso =
6313 vtophys(pmap->pm_pml4_iso);
6314 td->td_pcb->pcb_flags |= PCB_ISOMMU;
6315 } else {
6316 td->td_pcb->pcb_cr3_iso = 0;
6317 td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
6319 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6320 td->td_pcb->pcb_cr3 = KPML4phys;
6321 td->td_pcb->pcb_cr3_iso = 0;
6322 td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
6323 } else {
6324 panic("pmap_setlwpvm: unknown pmap type\n");
6328 * The MMU separation fields needs to be updated.
6329 * (it can't access the pcb directly from the
6330 * restricted user pmap).
6332 if (td == curthread) {
6333 struct trampframe *tramp;
6335 tramp = &pscpu->trampoline;
6336 tramp->tr_pcb_cr3 = td->td_pcb->pcb_cr3;
6337 tramp->tr_pcb_cr3_iso = td->td_pcb->pcb_cr3_iso;
6338 tramp->tr_pcb_flags = td->td_pcb->pcb_flags;
6339 /* tr_pcb_rsp doesn't change */
6343 * In kernel-land we always use the normal PML4E
6344 * so the kernel is fully mapped and can also access
6345 * user memory.
6347 load_cr3(td->td_pcb->pcb_cr3);
6348 pmap = vmspace_pmap(oldvm);
6349 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6350 mycpu->gd_cpuid);
6352 crit_exit();
6357 * Called when switching to a locked pmap, used to interlock against pmaps
6358 * undergoing modifications to prevent us from activating the MMU for the
6359 * target pmap until all such modifications have completed. We have to do
6360 * this because the thread making the modifications has already set up its
6361 * SMP synchronization mask.
6363 * This function cannot sleep!
6365 * No requirements.
6367 void
6368 pmap_interlock_wait(struct vmspace *vm)
6370 struct pmap *pmap = &vm->vm_pmap;
6372 if (pmap->pm_active_lock & CPULOCK_EXCL) {
6373 crit_enter();
6374 KKASSERT(curthread->td_critcount >= 2);
6375 DEBUG_PUSH_INFO("pmap_interlock_wait");
6376 while (pmap->pm_active_lock & CPULOCK_EXCL) {
6377 cpu_ccfence();
6378 lwkt_process_ipiq();
6380 DEBUG_POP_INFO();
6381 crit_exit();
6385 vm_offset_t
6386 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6389 if ((obj == NULL) || (size < NBPDR) ||
6390 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6391 return addr;
6394 addr = roundup2(addr, NBPDR);
6395 return addr;
6399 * Used by kmalloc/kfree, page already exists at va
6401 vm_page_t
6402 pmap_kvtom(vm_offset_t va)
6404 pt_entry_t *ptep = vtopte(va);
6406 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
6407 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6411 * Initialize machine-specific shared page directory support. This
6412 * is executed when a VM object is created.
6414 void
6415 pmap_object_init(vm_object_t object)
6417 object->md.pmap_rw = NULL;
6418 object->md.pmap_ro = NULL;
6422 * Clean up machine-specific shared page directory support. This
6423 * is executed when a VM object is destroyed.
6425 void
6426 pmap_object_free(vm_object_t object)
6428 pmap_t pmap;
6430 if ((pmap = object->md.pmap_rw) != NULL) {
6431 object->md.pmap_rw = NULL;
6432 pmap_remove_noinval(pmap,
6433 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6434 CPUMASK_ASSZERO(pmap->pm_active);
6435 pmap_release(pmap);
6436 pmap_puninit(pmap);
6437 kfree(pmap, M_OBJPMAP);
6439 if ((pmap = object->md.pmap_ro) != NULL) {
6440 object->md.pmap_ro = NULL;
6441 pmap_remove_noinval(pmap,
6442 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6443 CPUMASK_ASSZERO(pmap->pm_active);
6444 pmap_release(pmap);
6445 pmap_puninit(pmap);
6446 kfree(pmap, M_OBJPMAP);
6451 * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6452 * VM page and issue a pginfo->callback.
6454 * We are expected to dispose of any non-NULL pte_pv.
6456 static
6457 void
6458 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6459 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
6460 pv_entry_t pt_pv, int sharept,
6461 vm_offset_t va, pt_entry_t *ptep, void *arg)
6463 struct pmap_pgscan_info *pginfo = arg;
6464 vm_page_t m;
6466 if (pte_pv) {
6468 * Try to busy the page while we hold the pte_pv locked.
6470 KKASSERT(pte_pv->pv_m);
6471 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6472 if (vm_page_busy_try(m, TRUE) == 0) {
6473 if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6475 * The callback is issued with the pte_pv
6476 * unlocked and put away, and the pt_pv
6477 * unlocked.
6479 pv_put(pte_pv);
6480 if (pt_pv) {
6481 vm_page_wire_quick(pt_pv->pv_m);
6482 pv_unlock(pt_pv);
6484 if (pginfo->callback(pginfo, va, m) < 0)
6485 info->stop = 1;
6486 if (pt_pv) {
6487 pv_lock(pt_pv);
6488 vm_page_unwire_quick(pt_pv->pv_m);
6490 } else {
6491 vm_page_wakeup(m);
6492 pv_put(pte_pv);
6494 } else {
6495 ++pginfo->busycount;
6496 pv_put(pte_pv);
6498 } else {
6500 * Shared page table or unmanaged page (sharept or !sharept)
6502 pv_placemarker_wakeup(pmap, pte_placemark);
6506 void
6507 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6509 struct pmap_scan_info info;
6511 pginfo->offset = pginfo->beg_addr;
6512 info.pmap = pginfo->pmap;
6513 info.sva = pginfo->beg_addr;
6514 info.eva = pginfo->end_addr;
6515 info.func = pmap_pgscan_callback;
6516 info.arg = pginfo;
6517 pmap_scan(&info, 0);
6518 if (info.stop == 0)
6519 pginfo->offset = pginfo->end_addr;
6523 * Wait for a placemarker that we do not own to clear. The placemarker
6524 * in question is not necessarily set to the pindex we want, we may have
6525 * to wait on the element because we want to reserve it ourselves.
6527 * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6528 * PM_NOPLACEMARK, so it does not interfere with placemarks
6529 * which have already been woken up.
6531 static
6532 void
6533 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6535 if (*pmark != PM_NOPLACEMARK) {
6536 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
6537 tsleep_interlock(pmark, 0);
6538 if (*pmark != PM_NOPLACEMARK)
6539 tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6544 * Wakeup a placemarker that we own. Replace the entry with
6545 * PM_NOPLACEMARK and issue a wakeup() if necessary.
6547 static
6548 void
6549 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6551 vm_pindex_t pindex;
6553 pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6554 KKASSERT(pindex != PM_NOPLACEMARK);
6555 if (pindex & PM_PLACEMARK_WAKEUP)
6556 wakeup(pmark);