The first commit of a series of 6 commits for the amd64 port.
[dragonfly.git] / sys / kern / vfs_subr.c
blobfd23da6eb5777f59f1c4959a8f13e254f627777c
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.106 2007/07/31 01:14:50 dillon Exp $
44 * External virtual filesystem routines
46 #include "opt_ddb.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
71 #include <machine/limits.h>
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 #include <sys/sysref2.h>
88 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
90 int numvnodes;
91 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
92 int vfs_fastdev = 1;
93 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
95 enum vtype iftovt_tab[16] = {
96 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 int vttoif_tab[9] = {
100 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 S_IFSOCK, S_IFIFO, S_IFMT,
104 static int reassignbufcalls;
105 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
106 &reassignbufcalls, 0, "");
107 static int reassignbufloops;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
109 &reassignbufloops, 0, "");
110 static int reassignbufsortgood;
111 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
112 &reassignbufsortgood, 0, "");
113 static int reassignbufsortbad;
114 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
115 &reassignbufsortbad, 0, "");
116 static int reassignbufmethod = 1;
117 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
118 &reassignbufmethod, 0, "");
120 int nfs_mount_type = -1;
121 static struct lwkt_token spechash_token;
122 struct nfs_public nfs_pub; /* publicly exported FS */
124 int desiredvnodes;
125 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
126 &desiredvnodes, 0, "Maximum number of vnodes");
128 static void vfs_free_addrlist (struct netexport *nep);
129 static int vfs_free_netcred (struct radix_node *rn, void *w);
130 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
131 struct export_args *argp);
133 extern int dev_ref_debug;
136 * Red black tree functions
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
145 if (b1->b_loffset < b2->b_loffset)
146 return(-1);
147 if (b1->b_loffset > b2->b_loffset)
148 return(1);
149 return(0);
153 * Returns non-zero if the vnode is a candidate for lazy msyncing.
155 static __inline int
156 vshouldmsync(struct vnode *vp)
158 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
159 return (0); /* other holders */
160 if (vp->v_object &&
161 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
162 return (0);
164 return (1);
168 * Initialize the vnode management data structures.
170 * Called from vfsinit()
172 void
173 vfs_subr_init(void)
176 * Desired vnodes is a result of the physical page count
177 * and the size of kernel's heap. It scales in proportion
178 * to the amount of available physical memory. This can
179 * cause trouble on 64-bit and large memory platforms.
181 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
182 desiredvnodes =
183 min(maxproc + vmstats.v_page_count / 4,
184 2 * KvaSize /
185 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
187 lwkt_token_init(&spechash_token);
191 * Knob to control the precision of file timestamps:
193 * 0 = seconds only; nanoseconds zeroed.
194 * 1 = seconds and nanoseconds, accurate within 1/HZ.
195 * 2 = seconds and nanoseconds, truncated to microseconds.
196 * >=3 = seconds and nanoseconds, maximum precision.
198 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
200 static int timestamp_precision = TSP_SEC;
201 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
202 &timestamp_precision, 0, "");
205 * Get a current timestamp.
207 void
208 vfs_timestamp(struct timespec *tsp)
210 struct timeval tv;
212 switch (timestamp_precision) {
213 case TSP_SEC:
214 tsp->tv_sec = time_second;
215 tsp->tv_nsec = 0;
216 break;
217 case TSP_HZ:
218 getnanotime(tsp);
219 break;
220 case TSP_USEC:
221 microtime(&tv);
222 TIMEVAL_TO_TIMESPEC(&tv, tsp);
223 break;
224 case TSP_NSEC:
225 default:
226 nanotime(tsp);
227 break;
232 * Set vnode attributes to VNOVAL
234 void
235 vattr_null(struct vattr *vap)
237 vap->va_type = VNON;
238 vap->va_size = VNOVAL;
239 vap->va_bytes = VNOVAL;
240 vap->va_mode = VNOVAL;
241 vap->va_nlink = VNOVAL;
242 vap->va_uid = VNOVAL;
243 vap->va_gid = VNOVAL;
244 vap->va_fsid = VNOVAL;
245 vap->va_fileid = VNOVAL;
246 vap->va_blocksize = VNOVAL;
247 vap->va_rmajor = VNOVAL;
248 vap->va_rminor = VNOVAL;
249 vap->va_atime.tv_sec = VNOVAL;
250 vap->va_atime.tv_nsec = VNOVAL;
251 vap->va_mtime.tv_sec = VNOVAL;
252 vap->va_mtime.tv_nsec = VNOVAL;
253 vap->va_ctime.tv_sec = VNOVAL;
254 vap->va_ctime.tv_nsec = VNOVAL;
255 vap->va_flags = VNOVAL;
256 vap->va_gen = VNOVAL;
257 vap->va_vaflags = 0;
258 vap->va_fsmid = VNOVAL;
262 * Flush out and invalidate all buffers associated with a vnode.
264 * vp must be locked.
266 static int vinvalbuf_bp(struct buf *bp, void *data);
268 struct vinvalbuf_bp_info {
269 struct vnode *vp;
270 int slptimeo;
271 int lkflags;
272 int flags;
275 void
276 vupdatefsmid(struct vnode *vp)
278 atomic_set_int(&vp->v_flag, VFSMID);
282 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
284 struct vinvalbuf_bp_info info;
285 int error;
286 vm_object_t object;
289 * If we are being asked to save, call fsync to ensure that the inode
290 * is updated.
292 if (flags & V_SAVE) {
293 crit_enter();
294 while (vp->v_track_write.bk_active) {
295 vp->v_track_write.bk_waitflag = 1;
296 error = tsleep(&vp->v_track_write, slpflag,
297 "vinvlbuf", slptimeo);
298 if (error) {
299 crit_exit();
300 return (error);
303 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
304 crit_exit();
305 if ((error = VOP_FSYNC(vp, MNT_WAIT)) != 0)
306 return (error);
307 crit_enter();
308 if (vp->v_track_write.bk_active > 0 ||
309 !RB_EMPTY(&vp->v_rbdirty_tree))
310 panic("vinvalbuf: dirty bufs");
312 crit_exit();
314 crit_enter();
315 info.slptimeo = slptimeo;
316 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
317 if (slpflag & PCATCH)
318 info.lkflags |= LK_PCATCH;
319 info.flags = flags;
320 info.vp = vp;
323 * Flush the buffer cache until nothing is left.
325 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
326 !RB_EMPTY(&vp->v_rbdirty_tree)) {
327 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
328 vinvalbuf_bp, &info);
329 if (error == 0) {
330 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
331 vinvalbuf_bp, &info);
336 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
337 * have write I/O in-progress but if there is a VM object then the
338 * VM object can also have read-I/O in-progress.
340 do {
341 while (vp->v_track_write.bk_active > 0) {
342 vp->v_track_write.bk_waitflag = 1;
343 tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
345 if ((object = vp->v_object) != NULL) {
346 while (object->paging_in_progress)
347 vm_object_pip_sleep(object, "vnvlbx");
349 } while (vp->v_track_write.bk_active > 0);
351 crit_exit();
354 * Destroy the copy in the VM cache, too.
356 if ((object = vp->v_object) != NULL) {
357 vm_object_page_remove(object, 0, 0,
358 (flags & V_SAVE) ? TRUE : FALSE);
361 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
362 panic("vinvalbuf: flush failed");
363 if (!RB_EMPTY(&vp->v_rbhash_tree))
364 panic("vinvalbuf: flush failed, buffers still present");
365 return (0);
368 static int
369 vinvalbuf_bp(struct buf *bp, void *data)
371 struct vinvalbuf_bp_info *info = data;
372 int error;
374 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
375 error = BUF_TIMELOCK(bp, info->lkflags,
376 "vinvalbuf", info->slptimeo);
377 if (error == 0) {
378 BUF_UNLOCK(bp);
379 error = ENOLCK;
381 if (error == ENOLCK)
382 return(0);
383 return (-error);
386 KKASSERT(bp->b_vp == info->vp);
389 * XXX Since there are no node locks for NFS, I
390 * believe there is a slight chance that a delayed
391 * write will occur while sleeping just above, so
392 * check for it. Note that vfs_bio_awrite expects
393 * buffers to reside on a queue, while bwrite() and
394 * brelse() do not.
396 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
397 (info->flags & V_SAVE)) {
398 if (bp->b_vp == info->vp) {
399 if (bp->b_flags & B_CLUSTEROK) {
400 vfs_bio_awrite(bp);
401 } else {
402 bremfree(bp);
403 bp->b_flags |= B_ASYNC;
404 bwrite(bp);
406 } else {
407 bremfree(bp);
408 bwrite(bp);
410 } else if (info->flags & V_SAVE) {
412 * Cannot set B_NOCACHE on a clean buffer as this will
413 * destroy the VM backing store which might actually
414 * be dirty (and unsynchronized).
416 bremfree(bp);
417 bp->b_flags |= (B_INVAL | B_RELBUF);
418 bp->b_flags &= ~B_ASYNC;
419 brelse(bp);
420 } else {
421 bremfree(bp);
422 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
423 bp->b_flags &= ~B_ASYNC;
424 brelse(bp);
426 return(0);
430 * Truncate a file's buffer and pages to a specified length. This
431 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
432 * sync activity.
434 * The vnode must be locked.
436 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
437 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
438 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
439 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
442 vtruncbuf(struct vnode *vp, off_t length, int blksize)
444 off_t truncloffset;
445 int count;
446 const char *filename;
449 * Round up to the *next* block, then destroy the buffers in question.
450 * Since we are only removing some of the buffers we must rely on the
451 * scan count to determine whether a loop is necessary.
453 if ((count = (int)(length % blksize)) != 0)
454 truncloffset = length + (blksize - count);
455 else
456 truncloffset = length;
458 crit_enter();
459 do {
460 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
461 vtruncbuf_bp_trunc_cmp,
462 vtruncbuf_bp_trunc, &truncloffset);
463 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
464 vtruncbuf_bp_trunc_cmp,
465 vtruncbuf_bp_trunc, &truncloffset);
466 } while(count);
469 * For safety, fsync any remaining metadata if the file is not being
470 * truncated to 0. Since the metadata does not represent the entire
471 * dirty list we have to rely on the hit count to ensure that we get
472 * all of it.
474 if (length > 0) {
475 do {
476 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
477 vtruncbuf_bp_metasync_cmp,
478 vtruncbuf_bp_metasync, vp);
479 } while (count);
483 * Clean out any left over VM backing store.
485 crit_exit();
487 vnode_pager_setsize(vp, length);
489 crit_enter();
492 * It is possible to have in-progress I/O from buffers that were
493 * not part of the truncation. This should not happen if we
494 * are truncating to 0-length.
496 filename = TAILQ_FIRST(&vp->v_namecache) ?
497 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
499 while ((count = vp->v_track_write.bk_active) > 0) {
500 vp->v_track_write.bk_waitflag = 1;
501 tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
502 if (length == 0) {
503 kprintf("Warning: vtruncbuf(): Had to wait for "
504 "%d buffer I/Os to finish in %s\n",
505 count, filename);
510 * Make sure no buffers were instantiated while we were trying
511 * to clean out the remaining VM pages. This could occur due
512 * to busy dirty VM pages being flushed out to disk.
514 do {
515 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
516 vtruncbuf_bp_trunc_cmp,
517 vtruncbuf_bp_trunc, &truncloffset);
518 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
519 vtruncbuf_bp_trunc_cmp,
520 vtruncbuf_bp_trunc, &truncloffset);
521 if (count) {
522 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
523 "left over buffers in %s\n", count, filename);
525 } while(count);
527 crit_exit();
529 return (0);
533 * The callback buffer is beyond the new file EOF and must be destroyed.
534 * Note that the compare function must conform to the RB_SCAN's requirements.
536 static
538 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
540 if (bp->b_loffset >= *(off_t *)data)
541 return(0);
542 return(-1);
545 static
546 int
547 vtruncbuf_bp_trunc(struct buf *bp, void *data)
550 * Do not try to use a buffer we cannot immediately lock, but sleep
551 * anyway to prevent a livelock. The code will loop until all buffers
552 * can be acted upon.
554 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
555 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
556 BUF_UNLOCK(bp);
557 } else {
558 bremfree(bp);
559 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
560 bp->b_flags &= ~B_ASYNC;
561 brelse(bp);
563 return(1);
567 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
568 * blocks (with a negative loffset) are scanned.
569 * Note that the compare function must conform to the RB_SCAN's requirements.
571 static int
572 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
574 if (bp->b_loffset < 0)
575 return(0);
576 return(1);
579 static int
580 vtruncbuf_bp_metasync(struct buf *bp, void *data)
582 struct vnode *vp = data;
584 if (bp->b_flags & B_DELWRI) {
586 * Do not try to use a buffer we cannot immediately lock,
587 * but sleep anyway to prevent a livelock. The code will
588 * loop until all buffers can be acted upon.
590 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
591 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
592 BUF_UNLOCK(bp);
593 } else {
594 bremfree(bp);
595 if (bp->b_vp == vp) {
596 bp->b_flags |= B_ASYNC;
597 } else {
598 bp->b_flags &= ~B_ASYNC;
600 bwrite(bp);
602 return(1);
603 } else {
604 return(0);
609 * vfsync - implements a multipass fsync on a file which understands
610 * dependancies and meta-data. The passed vnode must be locked. The
611 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
613 * When fsyncing data asynchronously just do one consolidated pass starting
614 * with the most negative block number. This may not get all the data due
615 * to dependancies.
617 * When fsyncing data synchronously do a data pass, then a metadata pass,
618 * then do additional data+metadata passes to try to get all the data out.
620 static int vfsync_wait_output(struct vnode *vp,
621 int (*waitoutput)(struct vnode *, struct thread *));
622 static int vfsync_data_only_cmp(struct buf *bp, void *data);
623 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
624 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
625 static int vfsync_bp(struct buf *bp, void *data);
627 struct vfsync_info {
628 struct vnode *vp;
629 int synchronous;
630 int syncdeps;
631 int lazycount;
632 int lazylimit;
633 int skippedbufs;
634 int (*checkdef)(struct buf *);
638 vfsync(struct vnode *vp, int waitfor, int passes,
639 int (*checkdef)(struct buf *),
640 int (*waitoutput)(struct vnode *, struct thread *))
642 struct vfsync_info info;
643 int error;
645 bzero(&info, sizeof(info));
646 info.vp = vp;
647 if ((info.checkdef = checkdef) == NULL)
648 info.syncdeps = 1;
650 crit_enter_id("vfsync");
652 switch(waitfor) {
653 case MNT_LAZY:
655 * Lazy (filesystem syncer typ) Asynchronous plus limit the
656 * number of data (not meta) pages we try to flush to 1MB.
657 * A non-zero return means that lazy limit was reached.
659 info.lazylimit = 1024 * 1024;
660 info.syncdeps = 1;
661 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
662 vfsync_lazy_range_cmp, vfsync_bp, &info);
663 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
664 vfsync_meta_only_cmp, vfsync_bp, &info);
665 if (error == 0)
666 vp->v_lazyw = 0;
667 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
668 vn_syncer_add_to_worklist(vp, 1);
669 error = 0;
670 break;
671 case MNT_NOWAIT:
673 * Asynchronous. Do a data-only pass and a meta-only pass.
675 info.syncdeps = 1;
676 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
677 vfsync_bp, &info);
678 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
679 vfsync_bp, &info);
680 error = 0;
681 break;
682 default:
684 * Synchronous. Do a data-only pass, then a meta-data+data
685 * pass, then additional integrated passes to try to get
686 * all the dependancies flushed.
688 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
689 vfsync_bp, &info);
690 error = vfsync_wait_output(vp, waitoutput);
691 if (error == 0) {
692 info.skippedbufs = 0;
693 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
694 vfsync_bp, &info);
695 error = vfsync_wait_output(vp, waitoutput);
696 if (info.skippedbufs)
697 kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
699 while (error == 0 && passes > 0 &&
700 !RB_EMPTY(&vp->v_rbdirty_tree)) {
701 if (--passes == 0) {
702 info.synchronous = 1;
703 info.syncdeps = 1;
705 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
706 vfsync_bp, &info);
707 if (error < 0)
708 error = -error;
709 info.syncdeps = 1;
710 if (error == 0)
711 error = vfsync_wait_output(vp, waitoutput);
713 break;
715 crit_exit_id("vfsync");
716 return(error);
719 static int
720 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
722 int error = 0;
724 while (vp->v_track_write.bk_active) {
725 vp->v_track_write.bk_waitflag = 1;
726 tsleep(&vp->v_track_write, 0, "fsfsn", 0);
728 if (waitoutput)
729 error = waitoutput(vp, curthread);
730 return(error);
733 static int
734 vfsync_data_only_cmp(struct buf *bp, void *data)
736 if (bp->b_loffset < 0)
737 return(-1);
738 return(0);
741 static int
742 vfsync_meta_only_cmp(struct buf *bp, void *data)
744 if (bp->b_loffset < 0)
745 return(0);
746 return(1);
749 static int
750 vfsync_lazy_range_cmp(struct buf *bp, void *data)
752 struct vfsync_info *info = data;
753 if (bp->b_loffset < info->vp->v_lazyw)
754 return(-1);
755 return(0);
758 static int
759 vfsync_bp(struct buf *bp, void *data)
761 struct vfsync_info *info = data;
762 struct vnode *vp = info->vp;
763 int error;
766 * if syncdeps is not set we do not try to write buffers which have
767 * dependancies.
769 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
770 return(0);
773 * Ignore buffers that we cannot immediately lock. XXX
775 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
776 kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
777 ++info->skippedbufs;
778 return(0);
780 if ((bp->b_flags & B_DELWRI) == 0)
781 panic("vfsync_bp: buffer not dirty");
782 if (vp != bp->b_vp)
783 panic("vfsync_bp: buffer vp mismatch");
786 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
787 * has been written but an additional handshake with the device
788 * is required before we can dispose of the buffer. We have no idea
789 * how to do this so we have to skip these buffers.
791 if (bp->b_flags & B_NEEDCOMMIT) {
792 BUF_UNLOCK(bp);
793 return(0);
796 if (info->synchronous) {
798 * Synchronous flushing. An error may be returned.
800 bremfree(bp);
801 crit_exit_id("vfsync");
802 error = bwrite(bp);
803 crit_enter_id("vfsync");
804 } else {
806 * Asynchronous flushing. A negative return value simply
807 * stops the scan and is not considered an error. We use
808 * this to support limited MNT_LAZY flushes.
810 vp->v_lazyw = bp->b_loffset;
811 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
812 info->lazycount += vfs_bio_awrite(bp);
813 } else {
814 info->lazycount += bp->b_bufsize;
815 bremfree(bp);
816 crit_exit_id("vfsync");
817 bawrite(bp);
818 crit_enter_id("vfsync");
820 if (info->lazylimit && info->lazycount >= info->lazylimit)
821 error = 1;
822 else
823 error = 0;
825 return(-error);
829 * Associate a buffer with a vnode.
831 void
832 bgetvp(struct vnode *vp, struct buf *bp)
834 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
835 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
837 vhold(vp);
839 * Insert onto list for new vnode.
841 crit_enter();
842 bp->b_vp = vp;
843 bp->b_flags |= B_HASHED;
844 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
845 panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
847 bp->b_flags |= B_VNCLEAN;
848 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
849 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
850 crit_exit();
854 * Disassociate a buffer from a vnode.
856 void
857 brelvp(struct buf *bp)
859 struct vnode *vp;
861 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
864 * Delete from old vnode list, if on one.
866 vp = bp->b_vp;
867 crit_enter();
868 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
869 if (bp->b_flags & B_VNDIRTY)
870 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
871 else
872 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
873 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
875 if (bp->b_flags & B_HASHED) {
876 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
877 bp->b_flags &= ~B_HASHED;
879 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
880 vp->v_flag &= ~VONWORKLST;
881 LIST_REMOVE(vp, v_synclist);
883 crit_exit();
884 bp->b_vp = NULL;
885 vdrop(vp);
889 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
890 * This routine is called when the state of the B_DELWRI bit is changed.
892 void
893 reassignbuf(struct buf *bp)
895 struct vnode *vp = bp->b_vp;
896 int delay;
898 KKASSERT(vp != NULL);
899 ++reassignbufcalls;
902 * B_PAGING flagged buffers cannot be reassigned because their vp
903 * is not fully linked in.
905 if (bp->b_flags & B_PAGING)
906 panic("cannot reassign paging buffer");
908 crit_enter();
909 if (bp->b_flags & B_DELWRI) {
911 * Move to the dirty list, add the vnode to the worklist
913 if (bp->b_flags & B_VNCLEAN) {
914 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
915 bp->b_flags &= ~B_VNCLEAN;
917 if ((bp->b_flags & B_VNDIRTY) == 0) {
918 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
919 panic("reassignbuf: dup lblk vp %p bp %p",
920 vp, bp);
922 bp->b_flags |= B_VNDIRTY;
924 if ((vp->v_flag & VONWORKLST) == 0) {
925 switch (vp->v_type) {
926 case VDIR:
927 delay = dirdelay;
928 break;
929 case VCHR:
930 case VBLK:
931 if (vp->v_rdev &&
932 vp->v_rdev->si_mountpoint != NULL) {
933 delay = metadelay;
934 break;
936 /* fall through */
937 default:
938 delay = filedelay;
940 vn_syncer_add_to_worklist(vp, delay);
942 } else {
944 * Move to the clean list, remove the vnode from the worklist
945 * if no dirty blocks remain.
947 if (bp->b_flags & B_VNDIRTY) {
948 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
949 bp->b_flags &= ~B_VNDIRTY;
951 if ((bp->b_flags & B_VNCLEAN) == 0) {
952 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
953 panic("reassignbuf: dup lblk vp %p bp %p",
954 vp, bp);
956 bp->b_flags |= B_VNCLEAN;
958 if ((vp->v_flag & VONWORKLST) &&
959 RB_EMPTY(&vp->v_rbdirty_tree)) {
960 vp->v_flag &= ~VONWORKLST;
961 LIST_REMOVE(vp, v_synclist);
964 crit_exit();
968 * Create a vnode for a block device.
969 * Used for mounting the root file system.
972 bdevvp(cdev_t dev, struct vnode **vpp)
974 struct vnode *vp;
975 struct vnode *nvp;
976 int error;
978 if (dev == NULL) {
979 *vpp = NULLVP;
980 return (ENXIO);
982 error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops_p, &nvp, 0, 0);
983 if (error) {
984 *vpp = NULLVP;
985 return (error);
987 vp = nvp;
988 vp->v_type = VCHR;
989 vp->v_umajor = dev->si_umajor;
990 vp->v_uminor = dev->si_uminor;
991 vx_unlock(vp);
992 *vpp = vp;
993 return (0);
997 v_associate_rdev(struct vnode *vp, cdev_t dev)
999 lwkt_tokref ilock;
1001 if (dev == NULL)
1002 return(ENXIO);
1003 if (dev_is_good(dev) == 0)
1004 return(ENXIO);
1005 KKASSERT(vp->v_rdev == NULL);
1006 if (dev_ref_debug)
1007 kprintf("Z1");
1008 vp->v_rdev = reference_dev(dev);
1009 lwkt_gettoken(&ilock, &spechash_token);
1010 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1011 lwkt_reltoken(&ilock);
1012 return(0);
1015 void
1016 v_release_rdev(struct vnode *vp)
1018 lwkt_tokref ilock;
1019 cdev_t dev;
1021 if ((dev = vp->v_rdev) != NULL) {
1022 lwkt_gettoken(&ilock, &spechash_token);
1023 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1024 vp->v_rdev = NULL;
1025 release_dev(dev);
1026 lwkt_reltoken(&ilock);
1031 * Add a vnode to the alias list hung off the cdev_t. We only associate
1032 * the device number with the vnode. The actual device is not associated
1033 * until the vnode is opened (usually in spec_open()), and will be
1034 * disassociated on last close.
1036 void
1037 addaliasu(struct vnode *nvp, int x, int y)
1039 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1040 panic("addaliasu on non-special vnode");
1041 nvp->v_umajor = x;
1042 nvp->v_uminor = y;
1046 * Disassociate a vnode from its underlying filesystem.
1048 * The vnode must be VX locked and referenced. In all normal situations
1049 * there are no active references. If vclean_vxlocked() is called while
1050 * there are active references, the vnode is being ripped out and we have
1051 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1053 void
1054 vclean_vxlocked(struct vnode *vp, int flags)
1056 int active;
1057 int n;
1058 vm_object_t object;
1061 * If the vnode has already been reclaimed we have nothing to do.
1063 if (vp->v_flag & VRECLAIMED)
1064 return;
1065 vp->v_flag |= VRECLAIMED;
1068 * Scrap the vfs cache
1070 while (cache_inval_vp(vp, 0) != 0) {
1071 kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1072 tsleep(vp, 0, "vclninv", 2);
1076 * Check to see if the vnode is in use. If so we have to reference it
1077 * before we clean it out so that its count cannot fall to zero and
1078 * generate a race against ourselves to recycle it.
1080 active = sysref_isactive(&vp->v_sysref);
1083 * Clean out any buffers associated with the vnode and destroy its
1084 * object, if it has one.
1086 vinvalbuf(vp, V_SAVE, 0, 0);
1089 * If purging an active vnode (typically during a forced unmount
1090 * or reboot), it must be closed and deactivated before being
1091 * reclaimed. This isn't really all that safe, but what can
1092 * we do? XXX.
1094 * Note that neither of these routines unlocks the vnode.
1096 if (active && (flags & DOCLOSE)) {
1097 while ((n = vp->v_opencount) != 0) {
1098 if (vp->v_writecount)
1099 VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1100 else
1101 VOP_CLOSE(vp, FNONBLOCK);
1102 if (vp->v_opencount == n) {
1103 kprintf("Warning: unable to force-close"
1104 " vnode %p\n", vp);
1105 break;
1111 * If the vnode has not be deactivated, deactivated it. Deactivation
1112 * can create new buffers and VM pages so we have to call vinvalbuf()
1113 * again to make sure they all get flushed.
1115 * This can occur if a file with a link count of 0 needs to be
1116 * truncated.
1118 if ((vp->v_flag & VINACTIVE) == 0) {
1119 vp->v_flag |= VINACTIVE;
1120 VOP_INACTIVE(vp);
1121 vinvalbuf(vp, V_SAVE, 0, 0);
1125 * If the vnode has an object, destroy it.
1127 if ((object = vp->v_object) != NULL) {
1128 if (object->ref_count == 0) {
1129 if ((object->flags & OBJ_DEAD) == 0)
1130 vm_object_terminate(object);
1131 } else {
1132 vm_pager_deallocate(object);
1134 vp->v_flag &= ~VOBJBUF;
1136 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1140 * Reclaim the vnode.
1142 if (VOP_RECLAIM(vp))
1143 panic("vclean: cannot reclaim");
1146 * Done with purge, notify sleepers of the grim news.
1148 vp->v_ops = &dead_vnode_vops_p;
1149 vn_pollgone(vp);
1150 vp->v_tag = VT_NON;
1154 * Eliminate all activity associated with the requested vnode
1155 * and with all vnodes aliased to the requested vnode.
1157 * The vnode must be referenced and vx_lock()'d
1159 * revoke { struct vnode *a_vp, int a_flags }
1162 vop_stdrevoke(struct vop_revoke_args *ap)
1164 struct vnode *vp, *vq;
1165 lwkt_tokref ilock;
1166 cdev_t dev;
1168 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1170 vp = ap->a_vp;
1173 * If the vnode is already dead don't try to revoke it
1175 if (vp->v_flag & VRECLAIMED)
1176 return (0);
1179 * If the vnode has a device association, scrap all vnodes associated
1180 * with the device. Don't let the device disappear on us while we
1181 * are scrapping the vnodes.
1183 * The passed vp will probably show up in the list, do not VX lock
1184 * it twice!
1186 if (vp->v_type != VCHR)
1187 return(0);
1188 if ((dev = vp->v_rdev) == NULL) {
1189 if ((dev = get_dev(vp->v_umajor, vp->v_uminor)) == NULL)
1190 return(0);
1192 reference_dev(dev);
1193 lwkt_gettoken(&ilock, &spechash_token);
1194 while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1195 if (vp != vq)
1196 vx_get(vq);
1197 if (vq == SLIST_FIRST(&dev->si_hlist))
1198 vgone_vxlocked(vq);
1199 if (vp != vq)
1200 vx_put(vq);
1202 lwkt_reltoken(&ilock);
1203 release_dev(dev);
1204 return (0);
1208 * This is called when the object underlying a vnode is being destroyed,
1209 * such as in a remove(). Try to recycle the vnode immediately if the
1210 * only active reference is our reference.
1213 vrecycle(struct vnode *vp)
1215 if (vp->v_sysref.refcnt <= 1) {
1216 vgone_vxlocked(vp);
1217 return (1);
1219 return (0);
1223 * Eliminate all activity associated with a vnode in preparation for reuse.
1225 * The vnode must be VX locked and refd and will remain VX locked and refd
1226 * on return. This routine may be called with the vnode in any state, as
1227 * long as it is VX locked. The vnode will be cleaned out and marked
1228 * VRECLAIMED but will not actually be reused until all existing refs and
1229 * holds go away.
1231 * NOTE: This routine may be called on a vnode which has not yet been
1232 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1233 * already been reclaimed.
1235 * This routine is not responsible for placing us back on the freelist.
1236 * Instead, it happens automatically when the caller releases the VX lock
1237 * (assuming there aren't any other references).
1240 void
1241 vgone_vxlocked(struct vnode *vp)
1244 * assert that the VX lock is held. This is an absolute requirement
1245 * now for vgone_vxlocked() to be called.
1247 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1250 * Clean out the filesystem specific data and set the VRECLAIMED
1251 * bit. Also deactivate the vnode if necessary.
1253 vclean_vxlocked(vp, DOCLOSE);
1256 * Delete from old mount point vnode list, if on one.
1258 if (vp->v_mount != NULL)
1259 insmntque(vp, NULL);
1262 * If special device, remove it from special device alias list
1263 * if it is on one. This should normally only occur if a vnode is
1264 * being revoked as the device should otherwise have been released
1265 * naturally.
1267 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1268 v_release_rdev(vp);
1272 * Set us to VBAD
1274 vp->v_type = VBAD;
1278 * Lookup a vnode by device number.
1281 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1283 lwkt_tokref ilock;
1284 struct vnode *vp;
1286 lwkt_gettoken(&ilock, &spechash_token);
1287 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1288 if (type == vp->v_type) {
1289 *vpp = vp;
1290 lwkt_reltoken(&ilock);
1291 return (1);
1294 lwkt_reltoken(&ilock);
1295 return (0);
1299 * Calculate the total number of references to a special device. This
1300 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1301 * an overloaded field. Since udev2dev can now return NULL, we have
1302 * to check for a NULL v_rdev.
1305 count_dev(cdev_t dev)
1307 lwkt_tokref ilock;
1308 struct vnode *vp;
1309 int count = 0;
1311 if (SLIST_FIRST(&dev->si_hlist)) {
1312 lwkt_gettoken(&ilock, &spechash_token);
1313 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1314 if (vp->v_sysref.refcnt > 0)
1315 count += vp->v_sysref.refcnt;
1317 lwkt_reltoken(&ilock);
1319 return(count);
1323 count_udev(int x, int y)
1325 cdev_t dev;
1327 if ((dev = get_dev(x, y)) == NULL)
1328 return(0);
1329 return(count_dev(dev));
1333 vcount(struct vnode *vp)
1335 if (vp->v_rdev == NULL)
1336 return(0);
1337 return(count_dev(vp->v_rdev));
1341 * Initialize VMIO for a vnode. This routine MUST be called before a
1342 * VFS can issue buffer cache ops on a vnode. It is typically called
1343 * when a vnode is initialized from its inode.
1346 vinitvmio(struct vnode *vp, off_t filesize)
1348 vm_object_t object;
1349 int error = 0;
1351 retry:
1352 if ((object = vp->v_object) == NULL) {
1353 object = vnode_pager_alloc(vp, filesize, 0, 0);
1355 * Dereference the reference we just created. This assumes
1356 * that the object is associated with the vp.
1358 object->ref_count--;
1359 vrele(vp);
1360 } else {
1361 if (object->flags & OBJ_DEAD) {
1362 vn_unlock(vp);
1363 vm_object_dead_sleep(object, "vodead");
1364 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1365 goto retry;
1368 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1369 vp->v_flag |= VOBJBUF;
1370 return (error);
1375 * Print out a description of a vnode.
1377 static char *typename[] =
1378 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1380 void
1381 vprint(char *label, struct vnode *vp)
1383 char buf[96];
1385 if (label != NULL)
1386 kprintf("%s: %p: ", label, (void *)vp);
1387 else
1388 kprintf("%p: ", (void *)vp);
1389 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1390 typename[vp->v_type],
1391 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1392 buf[0] = '\0';
1393 if (vp->v_flag & VROOT)
1394 strcat(buf, "|VROOT");
1395 if (vp->v_flag & VTEXT)
1396 strcat(buf, "|VTEXT");
1397 if (vp->v_flag & VSYSTEM)
1398 strcat(buf, "|VSYSTEM");
1399 if (vp->v_flag & VFREE)
1400 strcat(buf, "|VFREE");
1401 if (vp->v_flag & VOBJBUF)
1402 strcat(buf, "|VOBJBUF");
1403 if (buf[0] != '\0')
1404 kprintf(" flags (%s)", &buf[1]);
1405 if (vp->v_data == NULL) {
1406 kprintf("\n");
1407 } else {
1408 kprintf("\n\t");
1409 VOP_PRINT(vp);
1413 #ifdef DDB
1414 #include <ddb/ddb.h>
1416 static int db_show_locked_vnodes(struct mount *mp, void *data);
1419 * List all of the locked vnodes in the system.
1420 * Called when debugging the kernel.
1422 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1424 kprintf("Locked vnodes\n");
1425 mountlist_scan(db_show_locked_vnodes, NULL,
1426 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1429 static int
1430 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1432 struct vnode *vp;
1434 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1435 if (vn_islocked(vp))
1436 vprint((char *)0, vp);
1438 return(0);
1440 #endif
1443 * Top level filesystem related information gathering.
1445 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1447 static int
1448 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1450 int *name = (int *)arg1 - 1; /* XXX */
1451 u_int namelen = arg2 + 1; /* XXX */
1452 struct vfsconf *vfsp;
1454 #if 1 || defined(COMPAT_PRELITE2)
1455 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1456 if (namelen == 1)
1457 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1458 #endif
1460 #ifdef notyet
1461 /* all sysctl names at this level are at least name and field */
1462 if (namelen < 2)
1463 return (ENOTDIR); /* overloaded */
1464 if (name[0] != VFS_GENERIC) {
1465 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1466 if (vfsp->vfc_typenum == name[0])
1467 break;
1468 if (vfsp == NULL)
1469 return (EOPNOTSUPP);
1470 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1471 oldp, oldlenp, newp, newlen, p));
1473 #endif
1474 switch (name[1]) {
1475 case VFS_MAXTYPENUM:
1476 if (namelen != 2)
1477 return (ENOTDIR);
1478 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1479 case VFS_CONF:
1480 if (namelen != 3)
1481 return (ENOTDIR); /* overloaded */
1482 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1483 if (vfsp->vfc_typenum == name[2])
1484 break;
1485 if (vfsp == NULL)
1486 return (EOPNOTSUPP);
1487 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1489 return (EOPNOTSUPP);
1492 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1493 "Generic filesystem");
1495 #if 1 || defined(COMPAT_PRELITE2)
1497 static int
1498 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1500 int error;
1501 struct vfsconf *vfsp;
1502 struct ovfsconf ovfs;
1504 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1505 bzero(&ovfs, sizeof(ovfs));
1506 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1507 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1508 ovfs.vfc_index = vfsp->vfc_typenum;
1509 ovfs.vfc_refcount = vfsp->vfc_refcount;
1510 ovfs.vfc_flags = vfsp->vfc_flags;
1511 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1512 if (error)
1513 return error;
1515 return 0;
1518 #endif /* 1 || COMPAT_PRELITE2 */
1521 * Check to see if a filesystem is mounted on a block device.
1524 vfs_mountedon(struct vnode *vp)
1526 cdev_t dev;
1528 if ((dev = vp->v_rdev) == NULL) {
1529 if (vp->v_type != VBLK)
1530 dev = get_dev(vp->v_uminor, vp->v_umajor);
1532 if (dev != NULL && dev->si_mountpoint)
1533 return (EBUSY);
1534 return (0);
1538 * Unmount all filesystems. The list is traversed in reverse order
1539 * of mounting to avoid dependencies.
1542 static int vfs_umountall_callback(struct mount *mp, void *data);
1544 void
1545 vfs_unmountall(void)
1547 int count;
1549 do {
1550 count = mountlist_scan(vfs_umountall_callback,
1551 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1552 } while (count);
1555 static
1557 vfs_umountall_callback(struct mount *mp, void *data)
1559 int error;
1561 error = dounmount(mp, MNT_FORCE);
1562 if (error) {
1563 mountlist_remove(mp);
1564 kprintf("unmount of filesystem mounted from %s failed (",
1565 mp->mnt_stat.f_mntfromname);
1566 if (error == EBUSY)
1567 kprintf("BUSY)\n");
1568 else
1569 kprintf("%d)\n", error);
1571 return(1);
1575 * Build hash lists of net addresses and hang them off the mount point.
1576 * Called by ufs_mount() to set up the lists of export addresses.
1578 static int
1579 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1580 struct export_args *argp)
1582 struct netcred *np;
1583 struct radix_node_head *rnh;
1584 int i;
1585 struct radix_node *rn;
1586 struct sockaddr *saddr, *smask = 0;
1587 struct domain *dom;
1588 int error;
1590 if (argp->ex_addrlen == 0) {
1591 if (mp->mnt_flag & MNT_DEFEXPORTED)
1592 return (EPERM);
1593 np = &nep->ne_defexported;
1594 np->netc_exflags = argp->ex_flags;
1595 np->netc_anon = argp->ex_anon;
1596 np->netc_anon.cr_ref = 1;
1597 mp->mnt_flag |= MNT_DEFEXPORTED;
1598 return (0);
1601 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1602 return (EINVAL);
1603 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1604 return (EINVAL);
1606 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1607 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK);
1608 bzero((caddr_t) np, i);
1609 saddr = (struct sockaddr *) (np + 1);
1610 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1611 goto out;
1612 if (saddr->sa_len > argp->ex_addrlen)
1613 saddr->sa_len = argp->ex_addrlen;
1614 if (argp->ex_masklen) {
1615 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1616 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1617 if (error)
1618 goto out;
1619 if (smask->sa_len > argp->ex_masklen)
1620 smask->sa_len = argp->ex_masklen;
1622 i = saddr->sa_family;
1623 if ((rnh = nep->ne_rtable[i]) == 0) {
1625 * Seems silly to initialize every AF when most are not used,
1626 * do so on demand here
1628 SLIST_FOREACH(dom, &domains, dom_next)
1629 if (dom->dom_family == i && dom->dom_rtattach) {
1630 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1631 dom->dom_rtoffset);
1632 break;
1634 if ((rnh = nep->ne_rtable[i]) == 0) {
1635 error = ENOBUFS;
1636 goto out;
1639 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1640 np->netc_rnodes);
1641 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1642 error = EPERM;
1643 goto out;
1645 np->netc_exflags = argp->ex_flags;
1646 np->netc_anon = argp->ex_anon;
1647 np->netc_anon.cr_ref = 1;
1648 return (0);
1649 out:
1650 kfree(np, M_NETADDR);
1651 return (error);
1654 /* ARGSUSED */
1655 static int
1656 vfs_free_netcred(struct radix_node *rn, void *w)
1658 struct radix_node_head *rnh = (struct radix_node_head *) w;
1660 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1661 kfree((caddr_t) rn, M_NETADDR);
1662 return (0);
1666 * Free the net address hash lists that are hanging off the mount points.
1668 static void
1669 vfs_free_addrlist(struct netexport *nep)
1671 int i;
1672 struct radix_node_head *rnh;
1674 for (i = 0; i <= AF_MAX; i++)
1675 if ((rnh = nep->ne_rtable[i])) {
1676 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1677 (caddr_t) rnh);
1678 kfree((caddr_t) rnh, M_RTABLE);
1679 nep->ne_rtable[i] = 0;
1684 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1686 int error;
1688 if (argp->ex_flags & MNT_DELEXPORT) {
1689 if (mp->mnt_flag & MNT_EXPUBLIC) {
1690 vfs_setpublicfs(NULL, NULL, NULL);
1691 mp->mnt_flag &= ~MNT_EXPUBLIC;
1693 vfs_free_addrlist(nep);
1694 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1696 if (argp->ex_flags & MNT_EXPORTED) {
1697 if (argp->ex_flags & MNT_EXPUBLIC) {
1698 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1699 return (error);
1700 mp->mnt_flag |= MNT_EXPUBLIC;
1702 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1703 return (error);
1704 mp->mnt_flag |= MNT_EXPORTED;
1706 return (0);
1711 * Set the publicly exported filesystem (WebNFS). Currently, only
1712 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1715 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1716 struct export_args *argp)
1718 int error;
1719 struct vnode *rvp;
1720 char *cp;
1723 * mp == NULL -> invalidate the current info, the FS is
1724 * no longer exported. May be called from either vfs_export
1725 * or unmount, so check if it hasn't already been done.
1727 if (mp == NULL) {
1728 if (nfs_pub.np_valid) {
1729 nfs_pub.np_valid = 0;
1730 if (nfs_pub.np_index != NULL) {
1731 FREE(nfs_pub.np_index, M_TEMP);
1732 nfs_pub.np_index = NULL;
1735 return (0);
1739 * Only one allowed at a time.
1741 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1742 return (EBUSY);
1745 * Get real filehandle for root of exported FS.
1747 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1748 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1750 if ((error = VFS_ROOT(mp, &rvp)))
1751 return (error);
1753 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1754 return (error);
1756 vput(rvp);
1759 * If an indexfile was specified, pull it in.
1761 if (argp->ex_indexfile != NULL) {
1762 int namelen;
1764 error = vn_get_namelen(rvp, &namelen);
1765 if (error)
1766 return (error);
1767 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1768 M_WAITOK);
1769 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1770 namelen, (size_t *)0);
1771 if (!error) {
1773 * Check for illegal filenames.
1775 for (cp = nfs_pub.np_index; *cp; cp++) {
1776 if (*cp == '/') {
1777 error = EINVAL;
1778 break;
1782 if (error) {
1783 FREE(nfs_pub.np_index, M_TEMP);
1784 return (error);
1788 nfs_pub.np_mount = mp;
1789 nfs_pub.np_valid = 1;
1790 return (0);
1793 struct netcred *
1794 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1795 struct sockaddr *nam)
1797 struct netcred *np;
1798 struct radix_node_head *rnh;
1799 struct sockaddr *saddr;
1801 np = NULL;
1802 if (mp->mnt_flag & MNT_EXPORTED) {
1804 * Lookup in the export list first.
1806 if (nam != NULL) {
1807 saddr = nam;
1808 rnh = nep->ne_rtable[saddr->sa_family];
1809 if (rnh != NULL) {
1810 np = (struct netcred *)
1811 (*rnh->rnh_matchaddr)((char *)saddr,
1812 rnh);
1813 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1814 np = NULL;
1818 * If no address match, use the default if it exists.
1820 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1821 np = &nep->ne_defexported;
1823 return (np);
1827 * perform msync on all vnodes under a mount point. The mount point must
1828 * be locked. This code is also responsible for lazy-freeing unreferenced
1829 * vnodes whos VM objects no longer contain pages.
1831 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1833 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1834 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
1835 * way up in this high level function.
1837 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1838 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1840 void
1841 vfs_msync(struct mount *mp, int flags)
1843 int vmsc_flags;
1845 vmsc_flags = VMSC_GETVP;
1846 if (flags != MNT_WAIT)
1847 vmsc_flags |= VMSC_NOWAIT;
1848 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1849 (void *)flags);
1853 * scan1 is a fast pre-check. There could be hundreds of thousands of
1854 * vnodes, we cannot afford to do anything heavy weight until we have a
1855 * fairly good indication that there is work to do.
1857 static
1859 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1861 int flags = (int)data;
1863 if ((vp->v_flag & VRECLAIMED) == 0) {
1864 if (vshouldmsync(vp))
1865 return(0); /* call scan2 */
1866 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1867 (vp->v_flag & VOBJDIRTY) &&
1868 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
1869 return(0); /* call scan2 */
1874 * do not call scan2, continue the loop
1876 return(-1);
1880 * This callback is handed a locked vnode.
1882 static
1884 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1886 vm_object_t obj;
1887 int flags = (int)data;
1889 if (vp->v_flag & VRECLAIMED)
1890 return(0);
1892 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
1893 if ((obj = vp->v_object) != NULL) {
1894 vm_object_page_clean(obj, 0, 0,
1895 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1898 return(0);
1902 * Record a process's interest in events which might happen to
1903 * a vnode. Because poll uses the historic select-style interface
1904 * internally, this routine serves as both the ``check for any
1905 * pending events'' and the ``record my interest in future events''
1906 * functions. (These are done together, while the lock is held,
1907 * to avoid race conditions.)
1910 vn_pollrecord(struct vnode *vp, int events)
1912 lwkt_tokref ilock;
1914 KKASSERT(curthread->td_proc != NULL);
1916 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1917 if (vp->v_pollinfo.vpi_revents & events) {
1919 * This leaves events we are not interested
1920 * in available for the other process which
1921 * which presumably had requested them
1922 * (otherwise they would never have been
1923 * recorded).
1925 events &= vp->v_pollinfo.vpi_revents;
1926 vp->v_pollinfo.vpi_revents &= ~events;
1928 lwkt_reltoken(&ilock);
1929 return events;
1931 vp->v_pollinfo.vpi_events |= events;
1932 selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
1933 lwkt_reltoken(&ilock);
1934 return 0;
1938 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
1939 * it is possible for us to miss an event due to race conditions, but
1940 * that condition is expected to be rare, so for the moment it is the
1941 * preferred interface.
1943 void
1944 vn_pollevent(struct vnode *vp, int events)
1946 lwkt_tokref ilock;
1948 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1949 if (vp->v_pollinfo.vpi_events & events) {
1951 * We clear vpi_events so that we don't
1952 * call selwakeup() twice if two events are
1953 * posted before the polling process(es) is
1954 * awakened. This also ensures that we take at
1955 * most one selwakeup() if the polling process
1956 * is no longer interested. However, it does
1957 * mean that only one event can be noticed at
1958 * a time. (Perhaps we should only clear those
1959 * event bits which we note?) XXX
1961 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
1962 vp->v_pollinfo.vpi_revents |= events;
1963 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1965 lwkt_reltoken(&ilock);
1969 * Wake up anyone polling on vp because it is being revoked.
1970 * This depends on dead_poll() returning POLLHUP for correct
1971 * behavior.
1973 void
1974 vn_pollgone(struct vnode *vp)
1976 lwkt_tokref ilock;
1978 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1979 if (vp->v_pollinfo.vpi_events) {
1980 vp->v_pollinfo.vpi_events = 0;
1981 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1983 lwkt_reltoken(&ilock);
1987 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
1988 * (or v_rdev might be NULL).
1990 cdev_t
1991 vn_todev(struct vnode *vp)
1993 if (vp->v_type != VBLK && vp->v_type != VCHR)
1994 return (NULL);
1995 KKASSERT(vp->v_rdev != NULL);
1996 return (vp->v_rdev);
2000 * Check if vnode represents a disk device. The vnode does not need to be
2001 * opened.
2004 vn_isdisk(struct vnode *vp, int *errp)
2006 cdev_t dev;
2008 if (vp->v_type != VCHR) {
2009 if (errp != NULL)
2010 *errp = ENOTBLK;
2011 return (0);
2014 if ((dev = vp->v_rdev) == NULL)
2015 dev = get_dev(vp->v_umajor, vp->v_uminor);
2017 if (dev == NULL) {
2018 if (errp != NULL)
2019 *errp = ENXIO;
2020 return (0);
2022 if (dev_is_good(dev) == 0) {
2023 if (errp != NULL)
2024 *errp = ENXIO;
2025 return (0);
2027 if ((dev_dflags(dev) & D_DISK) == 0) {
2028 if (errp != NULL)
2029 *errp = ENOTBLK;
2030 return (0);
2032 if (errp != NULL)
2033 *errp = 0;
2034 return (1);
2038 vn_get_namelen(struct vnode *vp, int *namelen)
2040 int error, retval[2];
2042 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2043 if (error)
2044 return (error);
2045 *namelen = *retval;
2046 return (0);
2050 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2051 uint16_t d_namlen, const char *d_name)
2053 struct dirent *dp;
2054 size_t len;
2056 len = _DIRENT_RECLEN(d_namlen);
2057 if (len > uio->uio_resid)
2058 return(1);
2060 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2062 dp->d_ino = d_ino;
2063 dp->d_namlen = d_namlen;
2064 dp->d_type = d_type;
2065 bcopy(d_name, dp->d_name, d_namlen);
2067 *error = uiomove((caddr_t)dp, len, uio);
2069 kfree(dp, M_TEMP);
2071 return(0);