The first commit of a series of 6 commits for the amd64 port.
[dragonfly.git] / sys / kern / kern_synch.c
blob1ce1637a0acf0c539e13a6a74468245a95f8c3f6
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
39 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40 * $DragonFly: src/sys/kern/kern_synch.c,v 1.87 2007/08/11 18:18:30 dillon Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
65 #include <machine/cpu.h>
66 #include <machine/smp.h>
68 TAILQ_HEAD(tslpque, thread);
70 static void sched_setup (void *dummy);
71 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 int hogticks;
74 int lbolt;
75 int lbolt_syncer;
76 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
77 int ncpus;
78 int ncpus2, ncpus2_shift, ncpus2_mask;
79 int ncpus_fit, ncpus_fit_mask;
80 int safepri;
81 int tsleep_now_works;
83 static struct callout loadav_callout;
84 static struct callout schedcpu_callout;
85 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
87 #if !defined(KTR_TSLEEP)
88 #define KTR_TSLEEP KTR_ALL
89 #endif
90 KTR_INFO_MASTER(tsleep);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
96 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
97 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
99 struct loadavg averunnable =
100 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
102 * Constants for averages over 1, 5, and 15 minutes
103 * when sampling at 5 second intervals.
105 static fixpt_t cexp[3] = {
106 0.9200444146293232 * FSCALE, /* exp(-1/12) */
107 0.9834714538216174 * FSCALE, /* exp(-1/60) */
108 0.9944598480048967 * FSCALE, /* exp(-1/180) */
111 static void endtsleep (void *);
112 static void unsleep_and_wakeup_thread(struct thread *td);
113 static void loadav (void *arg);
114 static void schedcpu (void *arg);
117 * Adjust the scheduler quantum. The quantum is specified in microseconds.
118 * Note that 'tick' is in microseconds per tick.
120 static int
121 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
123 int error, new_val;
125 new_val = sched_quantum * tick;
126 error = sysctl_handle_int(oidp, &new_val, 0, req);
127 if (error != 0 || req->newptr == NULL)
128 return (error);
129 if (new_val < tick)
130 return (EINVAL);
131 sched_quantum = new_val / tick;
132 hogticks = 2 * sched_quantum;
133 return (0);
136 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
137 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
140 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
141 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
142 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
144 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
145 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
147 * If you don't want to bother with the faster/more-accurate formula, you
148 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
149 * (more general) method of calculating the %age of CPU used by a process.
151 * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
153 #define CCPU_SHIFT 11
155 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
156 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
159 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
161 int fscale __unused = FSCALE; /* exported to systat */
162 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
165 * Recompute process priorities, once a second.
167 * Since the userland schedulers are typically event oriented, if the
168 * estcpu calculation at wakeup() time is not sufficient to make a
169 * process runnable relative to other processes in the system we have
170 * a 1-second recalc to help out.
172 * This code also allows us to store sysclock_t data in the process structure
173 * without fear of an overrun, since sysclock_t are guarenteed to hold
174 * several seconds worth of count.
176 * WARNING! callouts can preempt normal threads. However, they will not
177 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
179 static int schedcpu_stats(struct proc *p, void *data __unused);
180 static int schedcpu_resource(struct proc *p, void *data __unused);
182 static void
183 schedcpu(void *arg)
185 allproc_scan(schedcpu_stats, NULL);
186 allproc_scan(schedcpu_resource, NULL);
187 wakeup((caddr_t)&lbolt);
188 wakeup((caddr_t)&lbolt_syncer);
189 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
193 * General process statistics once a second
195 static int
196 schedcpu_stats(struct proc *p, void *data __unused)
198 struct lwp *lp;
200 crit_enter();
201 p->p_swtime++;
202 FOREACH_LWP_IN_PROC(lp, p) {
203 if (lp->lwp_stat == LSSLEEP)
204 lp->lwp_slptime++;
207 * Only recalculate processes that are active or have slept
208 * less then 2 seconds. The schedulers understand this.
210 if (lp->lwp_slptime <= 1) {
211 p->p_usched->recalculate(lp);
212 } else {
213 lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
216 crit_exit();
217 return(0);
221 * Resource checks. XXX break out since ksignal/killproc can block,
222 * limiting us to one process killed per second. There is probably
223 * a better way.
225 static int
226 schedcpu_resource(struct proc *p, void *data __unused)
228 u_int64_t ttime;
229 struct lwp *lp;
231 crit_enter();
232 if (p->p_stat == SIDL ||
233 p->p_stat == SZOMB ||
234 p->p_limit == NULL
236 crit_exit();
237 return(0);
240 ttime = 0;
241 FOREACH_LWP_IN_PROC(lp, p) {
243 * We may have caught an lp in the middle of being
244 * created, lwp_thread can be NULL.
246 if (lp->lwp_thread) {
247 ttime += lp->lwp_thread->td_sticks;
248 ttime += lp->lwp_thread->td_uticks;
252 switch(plimit_testcpulimit(p->p_limit, ttime)) {
253 case PLIMIT_TESTCPU_KILL:
254 killproc(p, "exceeded maximum CPU limit");
255 break;
256 case PLIMIT_TESTCPU_XCPU:
257 if ((p->p_flag & P_XCPU) == 0) {
258 p->p_flag |= P_XCPU;
259 ksignal(p, SIGXCPU);
261 break;
262 default:
263 break;
265 crit_exit();
266 return(0);
270 * This is only used by ps. Generate a cpu percentage use over
271 * a period of one second.
273 * MPSAFE
275 void
276 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
278 fixpt_t acc;
279 int remticks;
281 acc = (cpticks << FSHIFT) / ttlticks;
282 if (ttlticks >= ESTCPUFREQ) {
283 lp->lwp_pctcpu = acc;
284 } else {
285 remticks = ESTCPUFREQ - ttlticks;
286 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
287 ESTCPUFREQ;
292 * tsleep/wakeup hash table parameters. Try to find the sweet spot for
293 * like addresses being slept on.
295 #define TABLESIZE 1024
296 #define LOOKUP(x) (((intptr_t)(x) >> 6) & (TABLESIZE - 1))
298 static cpumask_t slpque_cpumasks[TABLESIZE];
301 * General scheduler initialization. We force a reschedule 25 times
302 * a second by default. Note that cpu0 is initialized in early boot and
303 * cannot make any high level calls.
305 * Each cpu has its own sleep queue.
307 void
308 sleep_gdinit(globaldata_t gd)
310 static struct tslpque slpque_cpu0[TABLESIZE];
311 int i;
313 if (gd->gd_cpuid == 0) {
314 sched_quantum = (hz + 24) / 25;
315 hogticks = 2 * sched_quantum;
317 gd->gd_tsleep_hash = slpque_cpu0;
318 } else {
319 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
320 M_TSLEEP, M_WAITOK | M_ZERO);
322 for (i = 0; i < TABLESIZE; ++i)
323 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
327 * General sleep call. Suspends the current process until a wakeup is
328 * performed on the specified identifier. The process will then be made
329 * runnable with the specified priority. Sleeps at most timo/hz seconds
330 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
331 * before and after sleeping, else signals are not checked. Returns 0 if
332 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
333 * signal needs to be delivered, ERESTART is returned if the current system
334 * call should be restarted if possible, and EINTR is returned if the system
335 * call should be interrupted by the signal (return EINTR).
337 * Note that if we are a process, we release_curproc() before messing with
338 * the LWKT scheduler.
340 * During autoconfiguration or after a panic, a sleep will simply
341 * lower the priority briefly to allow interrupts, then return.
344 tsleep(void *ident, int flags, const char *wmesg, int timo)
346 struct thread *td = curthread;
347 struct lwp *lp = td->td_lwp;
348 struct proc *p = td->td_proc; /* may be NULL */
349 globaldata_t gd;
350 int sig;
351 int catch;
352 int id;
353 int error;
354 int oldpri;
355 struct callout thandle;
358 * NOTE: removed KTRPOINT, it could cause races due to blocking
359 * even in stable. Just scrap it for now.
361 if (tsleep_now_works == 0 || panicstr) {
363 * After a panic, or before we actually have an operational
364 * softclock, just give interrupts a chance, then just return;
366 * don't run any other procs or panic below,
367 * in case this is the idle process and already asleep.
369 splz();
370 oldpri = td->td_pri & TDPRI_MASK;
371 lwkt_setpri_self(safepri);
372 lwkt_switch();
373 lwkt_setpri_self(oldpri);
374 return (0);
376 logtsleep2(tsleep_beg, ident);
377 gd = td->td_gd;
378 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
381 * NOTE: all of this occurs on the current cpu, including any
382 * callout-based wakeups, so a critical section is a sufficient
383 * interlock.
385 * The entire sequence through to where we actually sleep must
386 * run without breaking the critical section.
388 id = LOOKUP(ident);
389 catch = flags & PCATCH;
390 error = 0;
391 sig = 0;
393 crit_enter_quick(td);
395 KASSERT(ident != NULL, ("tsleep: no ident"));
396 KASSERT(lp == NULL ||
397 lp->lwp_stat == LSRUN || /* Obvious */
398 lp->lwp_stat == LSSTOP, /* Set in tstop */
399 ("tsleep %p %s %d",
400 ident, wmesg, lp->lwp_stat));
403 * Setup for the current process (if this is a process).
405 if (lp) {
406 if (catch) {
408 * Early termination if PCATCH was set and a
409 * signal is pending, interlocked with the
410 * critical section.
412 * Early termination only occurs when tsleep() is
413 * entered while in a normal LSRUN state.
415 if ((sig = CURSIG(lp)) != 0)
416 goto resume;
419 * Early termination if PCATCH was set and a
420 * mailbox signal was possibly delivered prior to
421 * the system call even being made, in order to
422 * allow the user to interlock without having to
423 * make additional system calls.
425 if (p->p_flag & P_MAILBOX)
426 goto resume;
429 * Causes ksignal to wake us up when.
431 lp->lwp_flag |= LWP_SINTR;
435 * Make sure the current process has been untangled from
436 * the userland scheduler and initialize slptime to start
437 * counting.
439 if (flags & PNORESCHED)
440 td->td_flags |= TDF_NORESCHED;
441 p->p_usched->release_curproc(lp);
442 lp->lwp_slptime = 0;
446 * Move our thread to the correct queue and setup our wchan, etc.
448 lwkt_deschedule_self(td);
449 td->td_flags |= TDF_TSLEEPQ;
450 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
451 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
453 td->td_wchan = ident;
454 td->td_wmesg = wmesg;
455 td->td_wdomain = flags & PDOMAIN_MASK;
458 * Setup the timeout, if any
460 if (timo) {
461 callout_init(&thandle);
462 callout_reset(&thandle, timo, endtsleep, td);
466 * Beddy bye bye.
468 if (lp) {
470 * Ok, we are sleeping. Place us in the SSLEEP state.
472 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
474 * tstop() sets LSSTOP, so don't fiddle with that.
476 if (lp->lwp_stat != LSSTOP)
477 lp->lwp_stat = LSSLEEP;
478 lp->lwp_ru.ru_nvcsw++;
479 lwkt_switch();
482 * And when we are woken up, put us back in LSRUN. If we
483 * slept for over a second, recalculate our estcpu.
485 lp->lwp_stat = LSRUN;
486 if (lp->lwp_slptime)
487 p->p_usched->recalculate(lp);
488 lp->lwp_slptime = 0;
489 } else {
490 lwkt_switch();
494 * Make sure we haven't switched cpus while we were asleep. It's
495 * not supposed to happen. Cleanup our temporary flags.
497 KKASSERT(gd == td->td_gd);
498 td->td_flags &= ~TDF_NORESCHED;
501 * Cleanup the timeout.
503 if (timo) {
504 if (td->td_flags & TDF_TIMEOUT) {
505 td->td_flags &= ~TDF_TIMEOUT;
506 error = EWOULDBLOCK;
507 } else {
508 callout_stop(&thandle);
513 * Since td_threadq is used both for our run queue AND for the
514 * tsleep hash queue, we can't still be on it at this point because
515 * we've gotten cpu back.
517 KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
518 td->td_wchan = NULL;
519 td->td_wmesg = NULL;
520 td->td_wdomain = 0;
523 * Figure out the correct error return. If interrupted by a
524 * signal we want to return EINTR or ERESTART.
526 * If P_MAILBOX is set no automatic system call restart occurs
527 * and we return EINTR. P_MAILBOX is meant to be used as an
528 * interlock, the user must poll it prior to any system call
529 * that it wishes to interlock a mailbox signal against since
530 * the flag is cleared on *any* system call that sleeps.
532 resume:
533 if (p) {
534 if (catch && error == 0) {
535 if ((p->p_flag & P_MAILBOX) && sig == 0) {
536 error = EINTR;
537 } else if (sig != 0 || (sig = CURSIG(lp))) {
538 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
539 error = EINTR;
540 else
541 error = ERESTART;
544 lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
545 p->p_flag &= ~P_MAILBOX;
547 logtsleep1(tsleep_end);
548 crit_exit_quick(td);
549 return (error);
553 * This is a dandy function that allows us to interlock tsleep/wakeup
554 * operations with unspecified upper level locks, such as lockmgr locks,
555 * simply by holding a critical section. The sequence is:
557 * (enter critical section)
558 * (acquire upper level lock)
559 * tsleep_interlock(blah)
560 * (release upper level lock)
561 * tsleep(blah, ...)
562 * (exit critical section)
564 * Basically this function sets our cpumask for the ident which informs
565 * other cpus that our cpu 'might' be waiting (or about to wait on) the
566 * hash index related to the ident. The critical section prevents another
567 * cpu's wakeup() from being processed on our cpu until we are actually
568 * able to enter the tsleep(). Thus, no race occurs between our attempt
569 * to release a resource and sleep, and another cpu's attempt to acquire
570 * a resource and call wakeup.
572 * There isn't much of a point to this function unless you call it while
573 * holding a critical section.
575 static __inline void
576 _tsleep_interlock(globaldata_t gd, void *ident)
578 int id = LOOKUP(ident);
580 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
583 void
584 tsleep_interlock(void *ident)
586 _tsleep_interlock(mycpu, ident);
590 * Interlocked spinlock sleep. An exclusively held spinlock must
591 * be passed to msleep(). The function will atomically release the
592 * spinlock and tsleep on the ident, then reacquire the spinlock and
593 * return.
595 * This routine is fairly important along the critical path, so optimize it
596 * heavily.
599 msleep(void *ident, struct spinlock *spin, int flags,
600 const char *wmesg, int timo)
602 globaldata_t gd = mycpu;
603 int error;
605 crit_enter_gd(gd);
606 _tsleep_interlock(gd, ident);
607 spin_unlock_wr_quick(gd, spin);
608 error = tsleep(ident, flags, wmesg, timo);
609 spin_lock_wr_quick(gd, spin);
610 crit_exit_gd(gd);
612 return (error);
616 * Directly block on the LWKT thread by descheduling it. This
617 * is much faster then tsleep(), but the only legal way to wake
618 * us up is to directly schedule the thread.
620 * Setting TDF_SINTR will cause new signals to directly schedule us.
622 * This routine is typically called while in a critical section.
625 lwkt_sleep(const char *wmesg, int flags)
627 thread_t td = curthread;
628 int sig;
630 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
631 td->td_flags |= TDF_BLOCKED;
632 td->td_wmesg = wmesg;
633 lwkt_deschedule_self(td);
634 lwkt_switch();
635 td->td_wmesg = NULL;
636 td->td_flags &= ~TDF_BLOCKED;
637 return(0);
639 if ((sig = CURSIG(td->td_lwp)) != 0) {
640 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
641 return(EINTR);
642 else
643 return(ERESTART);
646 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
647 td->td_wmesg = wmesg;
648 lwkt_deschedule_self(td);
649 lwkt_switch();
650 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
651 td->td_wmesg = NULL;
652 return(0);
656 * Implement the timeout for tsleep.
658 * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
659 * we only call setrunnable if the process is not stopped.
661 * This type of callout timeout is scheduled on the same cpu the process
662 * is sleeping on. Also, at the moment, the MP lock is held.
664 static void
665 endtsleep(void *arg)
667 thread_t td = arg;
668 struct lwp *lp;
670 ASSERT_MP_LOCK_HELD(curthread);
671 crit_enter();
674 * cpu interlock. Thread flags are only manipulated on
675 * the cpu owning the thread. proc flags are only manipulated
676 * by the older of the MP lock. We have both.
678 if (td->td_flags & TDF_TSLEEPQ) {
679 td->td_flags |= TDF_TIMEOUT;
681 if ((lp = td->td_lwp) != NULL) {
682 lp->lwp_flag |= LWP_BREAKTSLEEP;
683 if (lp->lwp_proc->p_stat != SSTOP)
684 setrunnable(lp);
685 } else {
686 unsleep_and_wakeup_thread(td);
689 crit_exit();
693 * Unsleep and wakeup a thread. This function runs without the MP lock
694 * which means that it can only manipulate thread state on the owning cpu,
695 * and cannot touch the process state at all.
697 static
698 void
699 unsleep_and_wakeup_thread(struct thread *td)
701 globaldata_t gd = mycpu;
702 int id;
704 #ifdef SMP
705 if (td->td_gd != gd) {
706 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
707 return;
709 #endif
710 crit_enter();
711 if (td->td_flags & TDF_TSLEEPQ) {
712 td->td_flags &= ~TDF_TSLEEPQ;
713 id = LOOKUP(td->td_wchan);
714 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
715 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
716 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
717 lwkt_schedule(td);
719 crit_exit();
723 * Make all processes sleeping on the specified identifier runnable.
724 * count may be zero or one only.
726 * The domain encodes the sleep/wakeup domain AND the first cpu to check
727 * (which is always the current cpu). As we iterate across cpus
729 * This call may run without the MP lock held. We can only manipulate thread
730 * state on the cpu owning the thread. We CANNOT manipulate process state
731 * at all.
733 static void
734 _wakeup(void *ident, int domain)
736 struct tslpque *qp;
737 struct thread *td;
738 struct thread *ntd;
739 globaldata_t gd;
740 #ifdef SMP
741 cpumask_t mask;
742 cpumask_t tmask;
743 int startcpu;
744 int nextcpu;
745 #endif
746 int id;
748 crit_enter();
749 logtsleep2(wakeup_beg, ident);
750 gd = mycpu;
751 id = LOOKUP(ident);
752 qp = &gd->gd_tsleep_hash[id];
753 restart:
754 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
755 ntd = TAILQ_NEXT(td, td_threadq);
756 if (td->td_wchan == ident &&
757 td->td_wdomain == (domain & PDOMAIN_MASK)
759 KKASSERT(td->td_flags & TDF_TSLEEPQ);
760 td->td_flags &= ~TDF_TSLEEPQ;
761 TAILQ_REMOVE(qp, td, td_threadq);
762 if (TAILQ_FIRST(qp) == NULL) {
763 atomic_clear_int(&slpque_cpumasks[id],
764 gd->gd_cpumask);
766 lwkt_schedule(td);
767 if (domain & PWAKEUP_ONE)
768 goto done;
769 goto restart;
773 #ifdef SMP
775 * We finished checking the current cpu but there still may be
776 * more work to do. Either wakeup_one was requested and no matching
777 * thread was found, or a normal wakeup was requested and we have
778 * to continue checking cpus.
780 * The cpu that started the wakeup sequence is encoded in the domain.
781 * We use this information to determine which cpus still need to be
782 * checked, locate a candidate cpu, and chain the wakeup
783 * asynchronously with an IPI message.
785 * It should be noted that this scheme is actually less expensive then
786 * the old scheme when waking up multiple threads, since we send
787 * only one IPI message per target candidate which may then schedule
788 * multiple threads. Before we could have wound up sending an IPI
789 * message for each thread on the target cpu (!= current cpu) that
790 * needed to be woken up.
792 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
793 * should be ok since we are passing idents in the IPI rather then
794 * thread pointers.
796 if ((domain & PWAKEUP_MYCPU) == 0 &&
797 (mask = slpque_cpumasks[id]) != 0
800 * Look for a cpu that might have work to do. Mask out cpus
801 * which have already been processed.
803 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
804 * ^ ^ ^
805 * start currentcpu start
806 * case2 case1
807 * * * *
808 * 11111111111111110000000000000111 case1
809 * 00000000111111110000000000000000 case2
811 * case1: We started at start_case1 and processed through
812 * to the current cpu. We have to check any bits
813 * after the current cpu, then check bits before
814 * the starting cpu.
816 * case2: We have already checked all the bits from
817 * start_case2 to the end, and from 0 to the current
818 * cpu. We just have the bits from the current cpu
819 * to start_case2 left to check.
821 startcpu = PWAKEUP_DECODE(domain);
822 if (gd->gd_cpuid >= startcpu) {
824 * CASE1
826 tmask = mask & ~((gd->gd_cpumask << 1) - 1);
827 if (mask & tmask) {
828 nextcpu = bsfl(mask & tmask);
829 lwkt_send_ipiq2(globaldata_find(nextcpu),
830 _wakeup, ident, domain);
831 } else {
832 tmask = (1 << startcpu) - 1;
833 if (mask & tmask) {
834 nextcpu = bsfl(mask & tmask);
835 lwkt_send_ipiq2(
836 globaldata_find(nextcpu),
837 _wakeup, ident, domain);
840 } else {
842 * CASE2
844 tmask = ~((gd->gd_cpumask << 1) - 1) &
845 ((1 << startcpu) - 1);
846 if (mask & tmask) {
847 nextcpu = bsfl(mask & tmask);
848 lwkt_send_ipiq2(globaldata_find(nextcpu),
849 _wakeup, ident, domain);
853 #endif
854 done:
855 logtsleep1(wakeup_end);
856 crit_exit();
860 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
862 void
863 wakeup(void *ident)
865 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
869 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
871 void
872 wakeup_one(void *ident)
874 /* XXX potentially round-robin the first responding cpu */
875 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
879 * Wakeup threads tsleep()ing on the specified ident on the current cpu
880 * only.
882 void
883 wakeup_mycpu(void *ident)
885 _wakeup(ident, PWAKEUP_MYCPU);
889 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
890 * only.
892 void
893 wakeup_mycpu_one(void *ident)
895 /* XXX potentially round-robin the first responding cpu */
896 _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
900 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
901 * only.
903 void
904 wakeup_oncpu(globaldata_t gd, void *ident)
906 #ifdef SMP
907 if (gd == mycpu) {
908 _wakeup(ident, PWAKEUP_MYCPU);
909 } else {
910 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
912 #else
913 _wakeup(ident, PWAKEUP_MYCPU);
914 #endif
918 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
919 * only.
921 void
922 wakeup_oncpu_one(globaldata_t gd, void *ident)
924 #ifdef SMP
925 if (gd == mycpu) {
926 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
927 } else {
928 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
930 #else
931 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
932 #endif
936 * Wakeup all threads waiting on the specified ident that slept using
937 * the specified domain, on all cpus.
939 void
940 wakeup_domain(void *ident, int domain)
942 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
946 * Wakeup one thread waiting on the specified ident that slept using
947 * the specified domain, on any cpu.
949 void
950 wakeup_domain_one(void *ident, int domain)
952 /* XXX potentially round-robin the first responding cpu */
953 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
957 * setrunnable()
959 * Make a process runnable. The MP lock must be held on call. This only
960 * has an effect if we are in SSLEEP. We only break out of the
961 * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
963 * NOTE: With the MP lock held we can only safely manipulate the process
964 * structure. We cannot safely manipulate the thread structure.
966 void
967 setrunnable(struct lwp *lp)
969 crit_enter();
970 ASSERT_MP_LOCK_HELD(curthread);
971 if (lp->lwp_stat == LSSTOP)
972 lp->lwp_stat = LSSLEEP;
973 if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
974 unsleep_and_wakeup_thread(lp->lwp_thread);
975 crit_exit();
979 * The process is stopped due to some condition, usually because p_stat is
980 * set to SSTOP, but also possibly due to being traced.
982 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
983 * because the parent may check the child's status before the child actually
984 * gets to this routine.
986 * This routine is called with the current lwp only, typically just
987 * before returning to userland.
989 * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
990 * SIGCONT to break out of the tsleep.
992 void
993 tstop(void)
995 struct lwp *lp = curthread->td_lwp;
996 struct proc *p = lp->lwp_proc;
998 lp->lwp_flag |= LWP_BREAKTSLEEP;
999 lp->lwp_stat = LSSTOP;
1000 crit_enter();
1002 * If LWP_WSTOP is set, we were sleeping
1003 * while our process was stopped. At this point
1004 * we were already counted as stopped.
1006 if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1008 * If we're the last thread to stop, signal
1009 * our parent.
1011 p->p_nstopped++;
1012 lp->lwp_flag |= LWP_WSTOP;
1013 if (p->p_nstopped == p->p_nthreads) {
1014 p->p_flag &= ~P_WAITED;
1015 wakeup(p->p_pptr);
1016 if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1017 ksignal(p->p_pptr, SIGCHLD);
1020 tsleep(lp->lwp_proc, 0, "stop", 0);
1021 p->p_nstopped--;
1022 crit_exit();
1026 * Yield / synchronous reschedule. This is a bit tricky because the trap
1027 * code might have set a lazy release on the switch function. Setting
1028 * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1029 * switch, and that we are given a greater chance of affinity with our
1030 * current cpu.
1032 * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1033 * run queue. lwkt_switch() will also execute any assigned passive release
1034 * (which usually calls release_curproc()), allowing a same/higher priority
1035 * process to be designated as the current process.
1037 * While it is possible for a lower priority process to be designated,
1038 * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1039 * round-robin back to us and we will be able to re-acquire the current
1040 * process designation.
1042 void
1043 uio_yield(void)
1045 struct thread *td = curthread;
1046 struct proc *p = td->td_proc;
1048 lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1049 if (p) {
1050 p->p_flag |= P_PASSIVE_ACQ;
1051 lwkt_switch();
1052 p->p_flag &= ~P_PASSIVE_ACQ;
1053 } else {
1054 lwkt_switch();
1059 * Compute a tenex style load average of a quantity on
1060 * 1, 5 and 15 minute intervals.
1062 static int loadav_count_runnable(struct lwp *p, void *data);
1064 static void
1065 loadav(void *arg)
1067 struct loadavg *avg;
1068 int i, nrun;
1070 nrun = 0;
1071 alllwp_scan(loadav_count_runnable, &nrun);
1072 avg = &averunnable;
1073 for (i = 0; i < 3; i++) {
1074 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1075 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1079 * Schedule the next update to occur after 5 seconds, but add a
1080 * random variation to avoid synchronisation with processes that
1081 * run at regular intervals.
1083 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1084 loadav, NULL);
1087 static int
1088 loadav_count_runnable(struct lwp *lp, void *data)
1090 int *nrunp = data;
1091 thread_t td;
1093 switch (lp->lwp_stat) {
1094 case LSRUN:
1095 if ((td = lp->lwp_thread) == NULL)
1096 break;
1097 if (td->td_flags & TDF_BLOCKED)
1098 break;
1099 ++*nrunp;
1100 break;
1101 default:
1102 break;
1104 return(0);
1107 /* ARGSUSED */
1108 static void
1109 sched_setup(void *dummy)
1111 callout_init(&loadav_callout);
1112 callout_init(&schedcpu_callout);
1114 /* Kick off timeout driven events by calling first time. */
1115 schedcpu(NULL);
1116 loadav(NULL);