arcmsr(4): Use MSI if it is supported by the device.
[dragonfly.git] / sys / netinet / tcp_syncache.c
blobca8ad15de42b441af7dfa46165a535507115b031
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
57 * permission.
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h> /* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
94 #include <net/if.h>
95 #include <net/route.h>
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
118 #ifdef IPSEC
119 #include <netinet6/ipsec.h>
120 #ifdef INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netproto/key/key.h>
124 #endif /*IPSEC*/
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #ifdef INET6
129 #include <netproto/ipsec/ipsec6.h>
130 #endif
131 #include <netproto/ipsec/key.h>
132 #define IPSEC
133 #endif /*FAST_IPSEC*/
135 static int tcp_syncookies = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
137 &tcp_syncookies, 0,
138 "Use TCP SYN cookies if the syncache overflows");
140 static void syncache_drop(struct syncache *, struct syncache_head *);
141 static void syncache_free(struct syncache *);
142 static void syncache_insert(struct syncache *, struct syncache_head *);
143 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
144 static int syncache_respond(struct syncache *, struct mbuf *);
145 static struct socket *syncache_socket(struct syncache *, struct socket *,
146 struct mbuf *);
147 static void syncache_timer(void *);
148 static u_int32_t syncookie_generate(struct syncache *);
149 static struct syncache *syncookie_lookup(struct in_conninfo *,
150 struct tcphdr *, struct socket *);
153 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
155 * the odds are that the user has given up attempting to connect by then.
157 #define SYNCACHE_MAXREXMTS 3
159 /* Arbitrary values */
160 #define TCP_SYNCACHE_HASHSIZE 512
161 #define TCP_SYNCACHE_BUCKETLIMIT 30
163 struct netmsg_sc_timer {
164 struct netmsg_base base;
165 struct msgrec *nm_mrec; /* back pointer to containing msgrec */
168 struct msgrec {
169 struct netmsg_sc_timer msg;
170 lwkt_port_t port; /* constant after init */
171 int slot; /* constant after init */
174 static void syncache_timer_handler(netmsg_t);
176 struct tcp_syncache {
177 u_int hashsize;
178 u_int hashmask;
179 u_int bucket_limit;
180 u_int cache_limit;
181 u_int rexmt_limit;
182 u_int hash_secret;
184 static struct tcp_syncache tcp_syncache;
186 TAILQ_HEAD(syncache_list, syncache);
188 struct tcp_syncache_percpu {
189 struct syncache_head *hashbase;
190 u_int cache_count;
191 struct syncache_list timerq[SYNCACHE_MAXREXMTS + 1];
192 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
193 struct msgrec mrec[SYNCACHE_MAXREXMTS + 1];
195 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
197 static struct lwkt_port syncache_null_rport;
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
201 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
202 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
204 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
205 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
207 /* XXX JH */
208 #if 0
209 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
210 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
211 #endif
213 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
214 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
217 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
219 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221 #define SYNCACHE_HASH(inc, mask) \
222 ((tcp_syncache.hash_secret ^ \
223 (inc)->inc_faddr.s_addr ^ \
224 ((inc)->inc_faddr.s_addr >> 16) ^ \
225 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227 #define SYNCACHE_HASH6(inc, mask) \
228 ((tcp_syncache.hash_secret ^ \
229 (inc)->inc6_faddr.s6_addr32[0] ^ \
230 (inc)->inc6_faddr.s6_addr32[3] ^ \
231 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233 #define ENDPTS_EQ(a, b) ( \
234 (a)->ie_fport == (b)->ie_fport && \
235 (a)->ie_lport == (b)->ie_lport && \
236 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
237 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
240 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
242 static __inline void
243 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
244 struct syncache *sc, int slot)
246 if (slot > 0) {
248 * Record that SYN|ACK was lost.
249 * Needed by RFC3390 and RFC6298.
251 sc->sc_flags |= SCF_SYN_WASLOST;
253 sc->sc_rxtslot = slot;
254 sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
255 TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
256 if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
257 callout_reset(&syncache_percpu->tt_timerq[slot],
258 TCPTV_RTOBASE * tcp_backoff[slot],
259 syncache_timer,
260 &syncache_percpu->mrec[slot]);
264 static void
265 syncache_free(struct syncache *sc)
267 struct rtentry *rt;
268 #ifdef INET6
269 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
270 #else
271 const boolean_t isipv6 = FALSE;
272 #endif
274 if (sc->sc_ipopts)
275 m_free(sc->sc_ipopts);
277 rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
278 if (rt != NULL) {
280 * If this is the only reference to a protocol-cloned
281 * route, remove it immediately.
283 if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
284 rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
285 rt_mask(rt), rt->rt_flags, NULL);
286 RTFREE(rt);
288 kfree(sc, M_SYNCACHE);
291 void
292 syncache_init(void)
294 int i, cpu;
296 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
297 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
298 tcp_syncache.cache_limit =
299 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
300 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
301 tcp_syncache.hash_secret = karc4random();
303 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
304 &tcp_syncache.hashsize);
305 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
306 &tcp_syncache.cache_limit);
307 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
308 &tcp_syncache.bucket_limit);
309 if (!powerof2(tcp_syncache.hashsize)) {
310 kprintf("WARNING: syncache hash size is not a power of 2.\n");
311 tcp_syncache.hashsize = 512; /* safe default */
313 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
315 lwkt_initport_replyonly_null(&syncache_null_rport);
317 for (cpu = 0; cpu < ncpus2; cpu++) {
318 struct tcp_syncache_percpu *syncache_percpu;
320 syncache_percpu = &tcp_syncache_percpu[cpu];
321 /* Allocate the hash table. */
322 syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize * sizeof(struct syncache_head),
323 M_SYNCACHE, M_WAITOK);
325 /* Initialize the hash buckets. */
326 for (i = 0; i < tcp_syncache.hashsize; i++) {
327 struct syncache_head *bucket;
329 bucket = &syncache_percpu->hashbase[i];
330 TAILQ_INIT(&bucket->sch_bucket);
331 bucket->sch_length = 0;
334 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
335 /* Initialize the timer queues. */
336 TAILQ_INIT(&syncache_percpu->timerq[i]);
337 callout_init_mp(&syncache_percpu->tt_timerq[i]);
339 syncache_percpu->mrec[i].slot = i;
340 syncache_percpu->mrec[i].port = cpu_portfn(cpu);
341 syncache_percpu->mrec[i].msg.nm_mrec =
342 &syncache_percpu->mrec[i];
343 netmsg_init(&syncache_percpu->mrec[i].msg.base,
344 NULL, &syncache_null_rport,
345 0, syncache_timer_handler);
350 static void
351 syncache_insert(struct syncache *sc, struct syncache_head *sch)
353 struct tcp_syncache_percpu *syncache_percpu;
354 struct syncache *sc2;
355 int i;
357 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
360 * Make sure that we don't overflow the per-bucket
361 * limit or the total cache size limit.
363 if (sch->sch_length >= tcp_syncache.bucket_limit) {
365 * The bucket is full, toss the oldest element.
367 sc2 = TAILQ_FIRST(&sch->sch_bucket);
368 sc2->sc_tp->ts_recent = ticks;
369 syncache_drop(sc2, sch);
370 tcpstat.tcps_sc_bucketoverflow++;
371 } else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
373 * The cache is full. Toss the oldest entry in the
374 * entire cache. This is the front entry in the
375 * first non-empty timer queue with the largest
376 * timeout value.
378 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
379 sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
380 while (sc2 && (sc2->sc_flags & SCF_MARKER))
381 sc2 = TAILQ_NEXT(sc2, sc_timerq);
382 if (sc2 != NULL)
383 break;
385 sc2->sc_tp->ts_recent = ticks;
386 syncache_drop(sc2, NULL);
387 tcpstat.tcps_sc_cacheoverflow++;
390 /* Initialize the entry's timer. */
391 syncache_timeout(syncache_percpu, sc, 0);
393 /* Put it into the bucket. */
394 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
395 sch->sch_length++;
396 syncache_percpu->cache_count++;
397 tcpstat.tcps_sc_added++;
400 void
401 syncache_destroy(struct tcpcb *tp)
403 struct tcp_syncache_percpu *syncache_percpu;
404 struct syncache_head *bucket;
405 struct syncache *sc;
406 int i;
408 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
409 sc = NULL;
411 for (i = 0; i < tcp_syncache.hashsize; i++) {
412 bucket = &syncache_percpu->hashbase[i];
413 TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
414 if (sc->sc_tp == tp)
415 sc->sc_tp = NULL;
420 static void
421 syncache_drop(struct syncache *sc, struct syncache_head *sch)
423 struct tcp_syncache_percpu *syncache_percpu;
424 #ifdef INET6
425 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
426 #else
427 const boolean_t isipv6 = FALSE;
428 #endif
430 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
432 if (sch == NULL) {
433 if (isipv6) {
434 sch = &syncache_percpu->hashbase[
435 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
436 } else {
437 sch = &syncache_percpu->hashbase[
438 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
442 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
443 sch->sch_length--;
444 syncache_percpu->cache_count--;
447 * Cleanup
449 if (sc->sc_tp)
450 sc->sc_tp = NULL;
453 * Remove the entry from the syncache timer/timeout queue. Note
454 * that we do not try to stop any running timer since we do not know
455 * whether the timer's message is in-transit or not. Since timeouts
456 * are fairly long, taking an unneeded callout does not detrimentally
457 * effect performance.
459 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
461 syncache_free(sc);
465 * Place a timeout message on the TCP thread's message queue.
466 * This routine runs in soft interrupt context.
468 * An invariant is for this routine to be called, the callout must
469 * have been active. Note that the callout is not deactivated until
470 * after the message has been processed in syncache_timer_handler() below.
472 static void
473 syncache_timer(void *p)
475 struct netmsg_sc_timer *msg = p;
477 lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
481 * Service a timer message queued by timer expiration.
482 * This routine runs in the TCP protocol thread.
484 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
485 * If we have retransmitted an entry the maximum number of times, expire it.
487 * When we finish processing timed-out entries, we restart the timer if there
488 * are any entries still on the queue and deactivate it otherwise. Only after
489 * a timer has been deactivated here can it be restarted by syncache_timeout().
491 static void
492 syncache_timer_handler(netmsg_t msg)
494 struct tcp_syncache_percpu *syncache_percpu;
495 struct syncache *sc;
496 struct syncache marker;
497 struct syncache_list *list;
498 struct inpcb *inp;
499 int slot;
501 slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
502 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
504 list = &syncache_percpu->timerq[slot];
507 * Use a marker to keep our place in the scan. syncache_drop()
508 * can block and cause any next pointer we cache to become stale.
510 marker.sc_flags = SCF_MARKER;
511 TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
513 while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
515 * Move the marker.
517 TAILQ_REMOVE(list, &marker, sc_timerq);
518 TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
520 if (sc->sc_flags & SCF_MARKER)
521 continue;
523 if (ticks < sc->sc_rxttime)
524 break; /* finished because timerq sorted by time */
525 if (sc->sc_tp == NULL) {
526 syncache_drop(sc, NULL);
527 tcpstat.tcps_sc_stale++;
528 continue;
530 inp = sc->sc_tp->t_inpcb;
531 if (slot == SYNCACHE_MAXREXMTS ||
532 slot >= tcp_syncache.rexmt_limit ||
533 inp == NULL ||
534 inp->inp_gencnt != sc->sc_inp_gencnt) {
535 syncache_drop(sc, NULL);
536 tcpstat.tcps_sc_stale++;
537 continue;
540 * syncache_respond() may call back into the syncache to
541 * to modify another entry, so do not obtain the next
542 * entry on the timer chain until it has completed.
544 syncache_respond(sc, NULL);
545 tcpstat.tcps_sc_retransmitted++;
546 TAILQ_REMOVE(list, sc, sc_timerq);
547 syncache_timeout(syncache_percpu, sc, slot + 1);
549 TAILQ_REMOVE(list, &marker, sc_timerq);
551 if (sc != NULL) {
552 callout_reset(&syncache_percpu->tt_timerq[slot],
553 sc->sc_rxttime - ticks, syncache_timer,
554 &syncache_percpu->mrec[slot]);
555 } else {
556 callout_deactivate(&syncache_percpu->tt_timerq[slot]);
558 lwkt_replymsg(&msg->base.lmsg, 0);
562 * Find an entry in the syncache.
564 struct syncache *
565 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
567 struct tcp_syncache_percpu *syncache_percpu;
568 struct syncache *sc;
569 struct syncache_head *sch;
571 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
572 #ifdef INET6
573 if (inc->inc_isipv6) {
574 sch = &syncache_percpu->hashbase[
575 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
576 *schp = sch;
577 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
578 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
579 return (sc);
580 } else
581 #endif
583 sch = &syncache_percpu->hashbase[
584 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
585 *schp = sch;
586 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
587 #ifdef INET6
588 if (sc->sc_inc.inc_isipv6)
589 continue;
590 #endif
591 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
592 return (sc);
595 return (NULL);
599 * This function is called when we get a RST for a
600 * non-existent connection, so that we can see if the
601 * connection is in the syn cache. If it is, zap it.
603 void
604 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
606 struct syncache *sc;
607 struct syncache_head *sch;
609 sc = syncache_lookup(inc, &sch);
610 if (sc == NULL) {
611 return;
614 * If the RST bit is set, check the sequence number to see
615 * if this is a valid reset segment.
616 * RFC 793 page 37:
617 * In all states except SYN-SENT, all reset (RST) segments
618 * are validated by checking their SEQ-fields. A reset is
619 * valid if its sequence number is in the window.
621 * The sequence number in the reset segment is normally an
622 * echo of our outgoing acknowlegement numbers, but some hosts
623 * send a reset with the sequence number at the rightmost edge
624 * of our receive window, and we have to handle this case.
626 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
627 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
628 syncache_drop(sc, sch);
629 tcpstat.tcps_sc_reset++;
633 void
634 syncache_badack(struct in_conninfo *inc)
636 struct syncache *sc;
637 struct syncache_head *sch;
639 sc = syncache_lookup(inc, &sch);
640 if (sc != NULL) {
641 syncache_drop(sc, sch);
642 tcpstat.tcps_sc_badack++;
646 void
647 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
649 struct syncache *sc;
650 struct syncache_head *sch;
652 /* we are called at splnet() here */
653 sc = syncache_lookup(inc, &sch);
654 if (sc == NULL)
655 return;
657 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
658 if (ntohl(th->th_seq) != sc->sc_iss)
659 return;
662 * If we've rertransmitted 3 times and this is our second error,
663 * we remove the entry. Otherwise, we allow it to continue on.
664 * This prevents us from incorrectly nuking an entry during a
665 * spurious network outage.
667 * See tcp_notify().
669 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
670 sc->sc_flags |= SCF_UNREACH;
671 return;
673 syncache_drop(sc, sch);
674 tcpstat.tcps_sc_unreach++;
678 * Build a new TCP socket structure from a syncache entry.
680 * This is called from the context of the SYN+ACK
682 static struct socket *
683 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
685 struct inpcb *inp = NULL, *linp;
686 struct socket *so;
687 struct tcpcb *tp, *ltp;
688 lwkt_port_t port;
689 #ifdef INET6
690 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
691 #else
692 const boolean_t isipv6 = FALSE;
693 #endif
694 struct sockaddr_in sin_faddr;
695 struct sockaddr_in6 sin6_faddr;
696 struct sockaddr *faddr;
698 if (isipv6) {
699 faddr = (struct sockaddr *)&sin6_faddr;
700 sin6_faddr.sin6_family = AF_INET6;
701 sin6_faddr.sin6_len = sizeof(sin6_faddr);
702 sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
703 sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
704 sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
705 } else {
706 faddr = (struct sockaddr *)&sin_faddr;
707 sin_faddr.sin_family = AF_INET;
708 sin_faddr.sin_len = sizeof(sin_faddr);
709 sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
710 sin_faddr.sin_port = sc->sc_inc.inc_fport;
711 bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
715 * Ok, create the full blown connection, and set things up
716 * as they would have been set up if we had created the
717 * connection when the SYN arrived. If we can't create
718 * the connection, abort it.
720 * Set the protocol processing port for the socket to the current
721 * port (that the connection came in on).
723 so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr);
724 if (so == NULL) {
726 * Drop the connection; we will send a RST if the peer
727 * retransmits the ACK,
729 tcpstat.tcps_listendrop++;
730 goto abort;
734 * Insert new socket into hash list.
736 inp = so->so_pcb;
737 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
738 if (isipv6) {
739 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
740 } else {
741 #ifdef INET6
742 inp->inp_vflag &= ~INP_IPV6;
743 inp->inp_vflag |= INP_IPV4;
744 inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
745 #endif
746 inp->inp_laddr = sc->sc_inc.inc_laddr;
748 inp->inp_lport = sc->sc_inc.inc_lport;
749 if (in_pcbinsporthash(inp) != 0) {
751 * Undo the assignments above if we failed to
752 * put the PCB on the hash lists.
754 if (isipv6)
755 inp->in6p_laddr = kin6addr_any;
756 else
757 inp->inp_laddr.s_addr = INADDR_ANY;
758 inp->inp_lport = 0;
759 goto abort;
761 linp = lso->so_pcb;
762 #ifdef IPSEC
763 /* copy old policy into new socket's */
764 if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
765 kprintf("syncache_expand: could not copy policy\n");
766 #endif
767 if (isipv6) {
768 struct in6_addr laddr6;
770 * Inherit socket options from the listening socket.
771 * Note that in6p_inputopts are not (and should not be)
772 * copied, since it stores previously received options and is
773 * used to detect if each new option is different than the
774 * previous one and hence should be passed to a user.
775 * If we copied in6p_inputopts, a user would not be able to
776 * receive options just after calling the accept system call.
778 inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
779 if (linp->in6p_outputopts)
780 inp->in6p_outputopts =
781 ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
782 inp->in6p_route = sc->sc_route6;
783 sc->sc_route6.ro_rt = NULL;
785 laddr6 = inp->in6p_laddr;
786 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
787 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
788 if (in6_pcbconnect(inp, faddr, &thread0)) {
789 inp->in6p_laddr = laddr6;
790 goto abort;
792 } else {
793 struct in_addr laddr;
795 inp->inp_options = ip_srcroute(m);
796 if (inp->inp_options == NULL) {
797 inp->inp_options = sc->sc_ipopts;
798 sc->sc_ipopts = NULL;
800 inp->inp_route = sc->sc_route;
801 sc->sc_route.ro_rt = NULL;
803 laddr = inp->inp_laddr;
804 if (inp->inp_laddr.s_addr == INADDR_ANY)
805 inp->inp_laddr = sc->sc_inc.inc_laddr;
806 if (in_pcbconnect(inp, faddr, &thread0)) {
807 inp->inp_laddr = laddr;
808 goto abort;
813 * The current port should be in the context of the SYN+ACK and
814 * so should match the tcp address port.
816 * XXX we may be running on the netisr thread instead of a tcp
817 * thread, in which case port will not match
818 * curthread->td_msgport.
820 if (isipv6) {
821 port = tcp6_addrport();
822 } else {
823 port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
824 inp->inp_laddr.s_addr, inp->inp_lport);
826 if (port != &curthread->td_msgport) {
827 print_backtrace(-1);
828 kprintf("TCP PORT MISMATCH %p vs %p\n",
829 port, &curthread->td_msgport);
831 /*KKASSERT(port == &curthread->td_msgport);*/
833 tp = intotcpcb(inp);
834 tp->t_state = TCPS_SYN_RECEIVED;
835 tp->iss = sc->sc_iss;
836 tp->irs = sc->sc_irs;
837 tcp_rcvseqinit(tp);
838 tcp_sendseqinit(tp);
839 tp->snd_wl1 = sc->sc_irs;
840 tp->rcv_up = sc->sc_irs + 1;
841 tp->rcv_wnd = sc->sc_wnd;
842 tp->rcv_adv += tp->rcv_wnd;
844 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
845 if (sc->sc_flags & SCF_NOOPT)
846 tp->t_flags |= TF_NOOPT;
847 if (sc->sc_flags & SCF_WINSCALE) {
848 tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
849 tp->requested_s_scale = sc->sc_requested_s_scale;
850 tp->request_r_scale = sc->sc_request_r_scale;
852 if (sc->sc_flags & SCF_TIMESTAMP) {
853 tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
854 tp->ts_recent = sc->sc_tsrecent;
855 tp->ts_recent_age = ticks;
857 if (sc->sc_flags & SCF_SACK_PERMITTED)
858 tp->t_flags |= TF_SACK_PERMITTED;
859 if (sc->sc_flags & SCF_SYN_WASLOST)
860 tp->t_flags |= TF_SYN_WASLOST;
862 #ifdef TCP_SIGNATURE
863 if (sc->sc_flags & SCF_SIGNATURE)
864 tp->t_flags |= TF_SIGNATURE;
865 #endif /* TCP_SIGNATURE */
867 tcp_mss(tp, sc->sc_peer_mss);
870 * Inherit some properties from the listen socket
872 ltp = intotcpcb(linp);
873 tp->t_keepinit = ltp->t_keepinit;
874 tp->t_keepidle = ltp->t_keepidle;
875 tp->t_keepintvl = ltp->t_keepintvl;
876 tp->t_keepcnt = ltp->t_keepcnt;
877 tp->t_maxidle = ltp->t_maxidle;
879 tcp_create_timermsg(tp, port);
880 tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
882 tcpstat.tcps_accepts++;
883 return (so);
885 abort:
886 if (so != NULL)
887 soabort_oncpu(so);
888 return (NULL);
892 * This function gets called when we receive an ACK for a
893 * socket in the LISTEN state. We look up the connection
894 * in the syncache, and if its there, we pull it out of
895 * the cache and turn it into a full-blown connection in
896 * the SYN-RECEIVED state.
899 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
900 struct mbuf *m)
902 struct syncache *sc;
903 struct syncache_head *sch;
904 struct socket *so;
906 sc = syncache_lookup(inc, &sch);
907 if (sc == NULL) {
909 * There is no syncache entry, so see if this ACK is
910 * a returning syncookie. To do this, first:
911 * A. See if this socket has had a syncache entry dropped in
912 * the past. We don't want to accept a bogus syncookie
913 * if we've never received a SYN.
914 * B. check that the syncookie is valid. If it is, then
915 * cobble up a fake syncache entry, and return.
917 if (!tcp_syncookies)
918 return (0);
919 sc = syncookie_lookup(inc, th, *sop);
920 if (sc == NULL)
921 return (0);
922 sch = NULL;
923 tcpstat.tcps_sc_recvcookie++;
927 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
929 if (th->th_ack != sc->sc_iss + 1)
930 return (0);
932 so = syncache_socket(sc, *sop, m);
933 if (so == NULL) {
934 #if 0
935 resetandabort:
936 /* XXXjlemon check this - is this correct? */
937 tcp_respond(NULL, m, m, th,
938 th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
939 #endif
940 m_freem(m); /* XXX only needed for above */
941 tcpstat.tcps_sc_aborted++;
942 } else {
943 tcpstat.tcps_sc_completed++;
945 if (sch == NULL)
946 syncache_free(sc);
947 else
948 syncache_drop(sc, sch);
949 *sop = so;
950 return (1);
954 * Given a LISTEN socket and an inbound SYN request, add
955 * this to the syn cache, and send back a segment:
956 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
957 * to the source.
959 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
960 * Doing so would require that we hold onto the data and deliver it
961 * to the application. However, if we are the target of a SYN-flood
962 * DoS attack, an attacker could send data which would eventually
963 * consume all available buffer space if it were ACKed. By not ACKing
964 * the data, we avoid this DoS scenario.
967 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
968 struct socket *so, struct mbuf *m)
970 struct tcp_syncache_percpu *syncache_percpu;
971 struct tcpcb *tp;
972 struct syncache *sc = NULL;
973 struct syncache_head *sch;
974 struct mbuf *ipopts = NULL;
975 int win;
977 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
978 tp = sototcpcb(so);
981 * Remember the IP options, if any.
983 #ifdef INET6
984 if (!inc->inc_isipv6)
985 #endif
986 ipopts = ip_srcroute(m);
989 * See if we already have an entry for this connection.
990 * If we do, resend the SYN,ACK, and reset the retransmit timer.
992 * XXX
993 * The syncache should be re-initialized with the contents
994 * of the new SYN which may have different options.
996 sc = syncache_lookup(inc, &sch);
997 if (sc != NULL) {
998 tcpstat.tcps_sc_dupsyn++;
999 if (ipopts) {
1001 * If we were remembering a previous source route,
1002 * forget it and use the new one we've been given.
1004 if (sc->sc_ipopts)
1005 m_free(sc->sc_ipopts);
1006 sc->sc_ipopts = ipopts;
1009 * Update timestamp if present.
1011 if (sc->sc_flags & SCF_TIMESTAMP)
1012 sc->sc_tsrecent = to->to_tsval;
1014 /* Just update the TOF_SACK_PERMITTED for now. */
1015 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1016 sc->sc_flags |= SCF_SACK_PERMITTED;
1017 else
1018 sc->sc_flags &= ~SCF_SACK_PERMITTED;
1021 * PCB may have changed, pick up new values.
1023 sc->sc_tp = tp;
1024 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1025 if (syncache_respond(sc, m) == 0) {
1026 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1027 sc, sc_timerq);
1028 syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1029 tcpstat.tcps_sndacks++;
1030 tcpstat.tcps_sndtotal++;
1032 return (1);
1036 * Fill in the syncache values.
1038 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1039 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1040 sc->sc_ipopts = ipopts;
1041 sc->sc_inc.inc_fport = inc->inc_fport;
1042 sc->sc_inc.inc_lport = inc->inc_lport;
1043 sc->sc_tp = tp;
1044 #ifdef INET6
1045 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1046 if (inc->inc_isipv6) {
1047 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1048 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1049 sc->sc_route6.ro_rt = NULL;
1050 } else
1051 #endif
1053 sc->sc_inc.inc_faddr = inc->inc_faddr;
1054 sc->sc_inc.inc_laddr = inc->inc_laddr;
1055 sc->sc_route.ro_rt = NULL;
1057 sc->sc_irs = th->th_seq;
1058 sc->sc_flags = 0;
1059 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1060 if (tcp_syncookies)
1061 sc->sc_iss = syncookie_generate(sc);
1062 else
1063 sc->sc_iss = karc4random();
1065 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1066 win = ssb_space(&so->so_rcv);
1067 win = imax(win, 0);
1068 win = imin(win, TCP_MAXWIN);
1069 sc->sc_wnd = win;
1071 if (tcp_do_rfc1323) {
1073 * A timestamp received in a SYN makes
1074 * it ok to send timestamp requests and replies.
1076 if (to->to_flags & TOF_TS) {
1077 sc->sc_tsrecent = to->to_tsval;
1078 sc->sc_flags |= SCF_TIMESTAMP;
1080 if (to->to_flags & TOF_SCALE) {
1081 int wscale = TCP_MIN_WINSHIFT;
1083 /* Compute proper scaling value from buffer space */
1084 while (wscale < TCP_MAX_WINSHIFT &&
1085 (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1086 wscale++;
1088 sc->sc_request_r_scale = wscale;
1089 sc->sc_requested_s_scale = to->to_requested_s_scale;
1090 sc->sc_flags |= SCF_WINSCALE;
1093 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1094 sc->sc_flags |= SCF_SACK_PERMITTED;
1095 if (tp->t_flags & TF_NOOPT)
1096 sc->sc_flags = SCF_NOOPT;
1097 #ifdef TCP_SIGNATURE
1099 * If listening socket requested TCP digests, and received SYN
1100 * contains the option, flag this in the syncache so that
1101 * syncache_respond() will do the right thing with the SYN+ACK.
1102 * XXX Currently we always record the option by default and will
1103 * attempt to use it in syncache_respond().
1105 if (to->to_flags & TOF_SIGNATURE)
1106 sc->sc_flags = SCF_SIGNATURE;
1107 #endif /* TCP_SIGNATURE */
1109 if (syncache_respond(sc, m) == 0) {
1110 syncache_insert(sc, sch);
1111 tcpstat.tcps_sndacks++;
1112 tcpstat.tcps_sndtotal++;
1113 } else {
1114 syncache_free(sc);
1115 tcpstat.tcps_sc_dropped++;
1117 return (1);
1120 static int
1121 syncache_respond(struct syncache *sc, struct mbuf *m)
1123 u_int8_t *optp;
1124 int optlen, error;
1125 u_int16_t tlen, hlen, mssopt;
1126 struct ip *ip = NULL;
1127 struct rtentry *rt;
1128 struct tcphdr *th;
1129 struct ip6_hdr *ip6 = NULL;
1130 #ifdef INET6
1131 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1132 #else
1133 const boolean_t isipv6 = FALSE;
1134 #endif
1136 if (isipv6) {
1137 rt = tcp_rtlookup6(&sc->sc_inc);
1138 if (rt != NULL)
1139 mssopt = rt->rt_ifp->if_mtu -
1140 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1141 else
1142 mssopt = tcp_v6mssdflt;
1143 hlen = sizeof(struct ip6_hdr);
1144 } else {
1145 rt = tcp_rtlookup(&sc->sc_inc);
1146 if (rt != NULL)
1147 mssopt = rt->rt_ifp->if_mtu -
1148 (sizeof(struct ip) + sizeof(struct tcphdr));
1149 else
1150 mssopt = tcp_mssdflt;
1151 hlen = sizeof(struct ip);
1154 /* Compute the size of the TCP options. */
1155 if (sc->sc_flags & SCF_NOOPT) {
1156 optlen = 0;
1157 } else {
1158 optlen = TCPOLEN_MAXSEG +
1159 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1160 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1161 ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1162 TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1163 #ifdef TCP_SIGNATURE
1164 optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1165 (TCPOLEN_SIGNATURE + 2) : 0);
1166 #endif /* TCP_SIGNATURE */
1168 tlen = hlen + sizeof(struct tcphdr) + optlen;
1171 * XXX
1172 * assume that the entire packet will fit in a header mbuf
1174 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1177 * XXX shouldn't this reuse the mbuf if possible ?
1178 * Create the IP+TCP header from scratch.
1180 if (m)
1181 m_freem(m);
1183 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1184 if (m == NULL)
1185 return (ENOBUFS);
1186 m->m_data += max_linkhdr;
1187 m->m_len = tlen;
1188 m->m_pkthdr.len = tlen;
1189 m->m_pkthdr.rcvif = NULL;
1191 if (isipv6) {
1192 ip6 = mtod(m, struct ip6_hdr *);
1193 ip6->ip6_vfc = IPV6_VERSION;
1194 ip6->ip6_nxt = IPPROTO_TCP;
1195 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1196 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1197 ip6->ip6_plen = htons(tlen - hlen);
1198 /* ip6_hlim is set after checksum */
1199 /* ip6_flow = ??? */
1201 th = (struct tcphdr *)(ip6 + 1);
1202 } else {
1203 ip = mtod(m, struct ip *);
1204 ip->ip_v = IPVERSION;
1205 ip->ip_hl = sizeof(struct ip) >> 2;
1206 ip->ip_len = tlen;
1207 ip->ip_id = 0;
1208 ip->ip_off = 0;
1209 ip->ip_sum = 0;
1210 ip->ip_p = IPPROTO_TCP;
1211 ip->ip_src = sc->sc_inc.inc_laddr;
1212 ip->ip_dst = sc->sc_inc.inc_faddr;
1213 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1214 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1217 * See if we should do MTU discovery. Route lookups are
1218 * expensive, so we will only unset the DF bit if:
1220 * 1) path_mtu_discovery is disabled
1221 * 2) the SCF_UNREACH flag has been set
1223 if (path_mtu_discovery
1224 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1225 ip->ip_off |= IP_DF;
1228 th = (struct tcphdr *)(ip + 1);
1230 th->th_sport = sc->sc_inc.inc_lport;
1231 th->th_dport = sc->sc_inc.inc_fport;
1233 th->th_seq = htonl(sc->sc_iss);
1234 th->th_ack = htonl(sc->sc_irs + 1);
1235 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1236 th->th_x2 = 0;
1237 th->th_flags = TH_SYN | TH_ACK;
1238 th->th_win = htons(sc->sc_wnd);
1239 th->th_urp = 0;
1241 /* Tack on the TCP options. */
1242 if (optlen == 0)
1243 goto no_options;
1244 optp = (u_int8_t *)(th + 1);
1245 *optp++ = TCPOPT_MAXSEG;
1246 *optp++ = TCPOLEN_MAXSEG;
1247 *optp++ = (mssopt >> 8) & 0xff;
1248 *optp++ = mssopt & 0xff;
1250 if (sc->sc_flags & SCF_WINSCALE) {
1251 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1252 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1253 sc->sc_request_r_scale);
1254 optp += 4;
1257 if (sc->sc_flags & SCF_TIMESTAMP) {
1258 u_int32_t *lp = (u_int32_t *)(optp);
1260 /* Form timestamp option as shown in appendix A of RFC 1323. */
1261 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1262 *lp++ = htonl(ticks);
1263 *lp = htonl(sc->sc_tsrecent);
1264 optp += TCPOLEN_TSTAMP_APPA;
1267 #ifdef TCP_SIGNATURE
1269 * Handle TCP-MD5 passive opener response.
1271 if (sc->sc_flags & SCF_SIGNATURE) {
1272 u_int8_t *bp = optp;
1273 int i;
1275 *bp++ = TCPOPT_SIGNATURE;
1276 *bp++ = TCPOLEN_SIGNATURE;
1277 for (i = 0; i < TCP_SIGLEN; i++)
1278 *bp++ = 0;
1279 tcpsignature_compute(m, 0, optlen,
1280 optp + 2, IPSEC_DIR_OUTBOUND);
1281 *bp++ = TCPOPT_NOP;
1282 *bp++ = TCPOPT_EOL;
1283 optp += TCPOLEN_SIGNATURE + 2;
1285 #endif /* TCP_SIGNATURE */
1287 if (sc->sc_flags & SCF_SACK_PERMITTED) {
1288 *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1289 optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1292 no_options:
1293 if (isipv6) {
1294 struct route_in6 *ro6 = &sc->sc_route6;
1296 th->th_sum = 0;
1297 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1298 ip6->ip6_hlim = in6_selecthlim(NULL,
1299 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1300 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1301 sc->sc_tp->t_inpcb);
1302 } else {
1303 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1304 htons(tlen - hlen + IPPROTO_TCP));
1305 m->m_pkthdr.csum_flags = CSUM_TCP;
1306 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1307 error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1308 IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1310 return (error);
1314 * cookie layers:
1316 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1317 * | peer iss |
1318 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1319 * | 0 |(A)| |
1320 * (A): peer mss index
1324 * The values below are chosen to minimize the size of the tcp_secret
1325 * table, as well as providing roughly a 16 second lifetime for the cookie.
1328 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1329 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1331 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1332 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1333 #define SYNCOOKIE_TIMEOUT \
1334 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1335 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1337 static struct {
1338 u_int32_t ts_secbits[4];
1339 u_int ts_expire;
1340 } tcp_secret[SYNCOOKIE_NSECRETS];
1342 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1344 static MD5_CTX syn_ctx;
1346 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1348 struct md5_add {
1349 u_int32_t laddr, faddr;
1350 u_int32_t secbits[4];
1351 u_int16_t lport, fport;
1354 #ifdef CTASSERT
1355 CTASSERT(sizeof(struct md5_add) == 28);
1356 #endif
1359 * Consider the problem of a recreated (and retransmitted) cookie. If the
1360 * original SYN was accepted, the connection is established. The second
1361 * SYN is inflight, and if it arrives with an ISN that falls within the
1362 * receive window, the connection is killed.
1364 * However, since cookies have other problems, this may not be worth
1365 * worrying about.
1368 static u_int32_t
1369 syncookie_generate(struct syncache *sc)
1371 u_int32_t md5_buffer[4];
1372 u_int32_t data;
1373 int idx, i;
1374 struct md5_add add;
1375 #ifdef INET6
1376 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1377 #else
1378 const boolean_t isipv6 = FALSE;
1379 #endif
1381 idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1382 if (tcp_secret[idx].ts_expire < ticks) {
1383 for (i = 0; i < 4; i++)
1384 tcp_secret[idx].ts_secbits[i] = karc4random();
1385 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1387 for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1388 if (tcp_msstab[data] <= sc->sc_peer_mss)
1389 break;
1390 data = (data << SYNCOOKIE_WNDBITS) | idx;
1391 data ^= sc->sc_irs; /* peer's iss */
1392 MD5Init(&syn_ctx);
1393 if (isipv6) {
1394 MD5Add(sc->sc_inc.inc6_laddr);
1395 MD5Add(sc->sc_inc.inc6_faddr);
1396 add.laddr = 0;
1397 add.faddr = 0;
1398 } else {
1399 add.laddr = sc->sc_inc.inc_laddr.s_addr;
1400 add.faddr = sc->sc_inc.inc_faddr.s_addr;
1402 add.lport = sc->sc_inc.inc_lport;
1403 add.fport = sc->sc_inc.inc_fport;
1404 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1405 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1406 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1407 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1408 MD5Add(add);
1409 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1410 data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1411 return (data);
1414 static struct syncache *
1415 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1417 u_int32_t md5_buffer[4];
1418 struct syncache *sc;
1419 u_int32_t data;
1420 int wnd, idx;
1421 struct md5_add add;
1423 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1424 idx = data & SYNCOOKIE_WNDMASK;
1425 if (tcp_secret[idx].ts_expire < ticks ||
1426 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1427 return (NULL);
1428 MD5Init(&syn_ctx);
1429 #ifdef INET6
1430 if (inc->inc_isipv6) {
1431 MD5Add(inc->inc6_laddr);
1432 MD5Add(inc->inc6_faddr);
1433 add.laddr = 0;
1434 add.faddr = 0;
1435 } else
1436 #endif
1438 add.laddr = inc->inc_laddr.s_addr;
1439 add.faddr = inc->inc_faddr.s_addr;
1441 add.lport = inc->inc_lport;
1442 add.fport = inc->inc_fport;
1443 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1444 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1445 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1446 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1447 MD5Add(add);
1448 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1449 data ^= md5_buffer[0];
1450 if (data & ~SYNCOOKIE_DATAMASK)
1451 return (NULL);
1452 data = data >> SYNCOOKIE_WNDBITS;
1455 * Fill in the syncache values.
1456 * XXX duplicate code from syncache_add
1458 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1459 sc->sc_ipopts = NULL;
1460 sc->sc_inc.inc_fport = inc->inc_fport;
1461 sc->sc_inc.inc_lport = inc->inc_lport;
1462 #ifdef INET6
1463 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1464 if (inc->inc_isipv6) {
1465 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1466 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1467 sc->sc_route6.ro_rt = NULL;
1468 } else
1469 #endif
1471 sc->sc_inc.inc_faddr = inc->inc_faddr;
1472 sc->sc_inc.inc_laddr = inc->inc_laddr;
1473 sc->sc_route.ro_rt = NULL;
1475 sc->sc_irs = th->th_seq - 1;
1476 sc->sc_iss = th->th_ack - 1;
1477 wnd = ssb_space(&so->so_rcv);
1478 wnd = imax(wnd, 0);
1479 wnd = imin(wnd, TCP_MAXWIN);
1480 sc->sc_wnd = wnd;
1481 sc->sc_flags = 0;
1482 sc->sc_rxtslot = 0;
1483 sc->sc_peer_mss = tcp_msstab[data];
1484 return (sc);