2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
25 * DOC: Panel Self Refresh (PSR/SRD)
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
34 * Panel Self Refresh must be supported by both Hardware (source) and
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
56 #include "intel_drv.h"
59 static bool is_edp_psr(struct intel_dp
*intel_dp
)
61 return intel_dp
->psr_dpcd
[0] & DP_PSR_IS_SUPPORTED
;
64 static bool vlv_is_psr_active_on_pipe(struct drm_device
*dev
, int pipe
)
66 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
69 val
= I915_READ(VLV_PSRSTAT(pipe
)) &
70 VLV_EDP_PSR_CURR_STATE_MASK
;
71 return (val
== VLV_EDP_PSR_ACTIVE_NORFB_UP
) ||
72 (val
== VLV_EDP_PSR_ACTIVE_SF_UPDATE
);
75 static void intel_psr_write_vsc(struct intel_dp
*intel_dp
,
76 const struct edp_vsc_psr
*vsc_psr
)
78 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
79 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
80 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
81 struct intel_crtc
*crtc
= to_intel_crtc(dig_port
->base
.base
.crtc
);
82 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
83 u32 ctl_reg
= HSW_TVIDEO_DIP_CTL(cpu_transcoder
);
84 const uint32_t *data
= (const uint32_t *) vsc_psr
;
87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 the video DIP being updated before program video DIP data buffer
89 registers for DIP being updated. */
90 I915_WRITE(ctl_reg
, 0);
91 POSTING_READ(ctl_reg
);
93 for (i
= 0; i
< sizeof(*vsc_psr
); i
+= 4) {
94 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder
,
98 for (; i
< VIDEO_DIP_VSC_DATA_SIZE
; i
+= 4)
99 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder
,
102 I915_WRITE(ctl_reg
, VIDEO_DIP_ENABLE_VSC_HSW
);
103 POSTING_READ(ctl_reg
);
106 static void vlv_psr_setup_vsc(struct intel_dp
*intel_dp
)
108 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
109 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
110 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
111 struct drm_crtc
*crtc
= intel_dig_port
->base
.base
.crtc
;
112 enum i915_pipe pipe
= to_intel_crtc(crtc
)->pipe
;
115 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 val
= I915_READ(VLV_VSCSDP(pipe
));
117 val
&= ~VLV_EDP_PSR_SDP_FREQ_MASK
;
118 val
|= VLV_EDP_PSR_SDP_FREQ_EVFRAME
;
119 I915_WRITE(VLV_VSCSDP(pipe
), val
);
122 static void skl_psr_setup_su_vsc(struct intel_dp
*intel_dp
)
124 struct edp_vsc_psr psr_vsc
;
126 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 memset(&psr_vsc
, 0, sizeof(psr_vsc
));
128 psr_vsc
.sdp_header
.HB0
= 0;
129 psr_vsc
.sdp_header
.HB1
= 0x7;
130 psr_vsc
.sdp_header
.HB2
= 0x3;
131 psr_vsc
.sdp_header
.HB3
= 0xb;
132 intel_psr_write_vsc(intel_dp
, &psr_vsc
);
135 static void hsw_psr_setup_vsc(struct intel_dp
*intel_dp
)
137 struct edp_vsc_psr psr_vsc
;
139 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 memset(&psr_vsc
, 0, sizeof(psr_vsc
));
141 psr_vsc
.sdp_header
.HB0
= 0;
142 psr_vsc
.sdp_header
.HB1
= 0x7;
143 psr_vsc
.sdp_header
.HB2
= 0x2;
144 psr_vsc
.sdp_header
.HB3
= 0x8;
145 intel_psr_write_vsc(intel_dp
, &psr_vsc
);
148 static void vlv_psr_enable_sink(struct intel_dp
*intel_dp
)
150 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_PSR_EN_CFG
,
151 DP_PSR_ENABLE
| DP_PSR_MAIN_LINK_ACTIVE
);
154 static void hsw_psr_enable_sink(struct intel_dp
*intel_dp
)
156 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
157 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
158 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
159 uint32_t aux_clock_divider
;
160 uint32_t aux_data_reg
, aux_ctl_reg
;
162 static const uint8_t aux_msg
[] = {
163 [0] = DP_AUX_NATIVE_WRITE
<< 4,
164 [1] = DP_SET_POWER
>> 8,
165 [2] = DP_SET_POWER
& 0xff,
167 [4] = DP_SET_POWER_D0
,
171 BUILD_BUG_ON(sizeof(aux_msg
) > 20);
173 aux_clock_divider
= intel_dp
->get_aux_clock_divider(intel_dp
, 0);
175 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_PSR_EN_CFG
,
176 DP_PSR_ENABLE
& ~DP_PSR_MAIN_LINK_ACTIVE
);
178 /* Enable AUX frame sync at sink */
179 if (dev_priv
->psr
.aux_frame_sync
)
180 drm_dp_dpcd_writeb(&intel_dp
->aux
,
181 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF
,
182 DP_AUX_FRAME_SYNC_ENABLE
);
184 aux_data_reg
= (INTEL_INFO(dev
)->gen
>= 9) ?
185 DPA_AUX_CH_DATA1
: EDP_PSR_AUX_DATA1(dev
);
186 aux_ctl_reg
= (INTEL_INFO(dev
)->gen
>= 9) ?
187 DPA_AUX_CH_CTL
: EDP_PSR_AUX_CTL(dev
);
189 /* Setup AUX registers */
190 for (i
= 0; i
< sizeof(aux_msg
); i
+= 4)
191 I915_WRITE(aux_data_reg
+ i
,
192 intel_dp_pack_aux(&aux_msg
[i
], sizeof(aux_msg
) - i
));
194 if (INTEL_INFO(dev
)->gen
>= 9) {
197 val
= I915_READ(aux_ctl_reg
);
198 val
&= ~DP_AUX_CH_CTL_TIME_OUT_MASK
;
199 val
|= DP_AUX_CH_CTL_TIME_OUT_1600us
;
200 val
&= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK
;
201 val
|= (sizeof(aux_msg
) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
);
202 /* Use hardcoded data values for PSR, frame sync and GTC */
203 val
&= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL
;
204 val
&= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL
;
205 val
&= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL
;
206 I915_WRITE(aux_ctl_reg
, val
);
208 I915_WRITE(aux_ctl_reg
,
209 DP_AUX_CH_CTL_TIME_OUT_400us
|
210 (sizeof(aux_msg
) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
) |
211 (precharge
<< DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT
) |
212 (aux_clock_divider
<< DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT
));
215 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_PSR_EN_CFG
, DP_PSR_ENABLE
);
218 static void vlv_psr_enable_source(struct intel_dp
*intel_dp
)
220 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
221 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
222 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
223 struct drm_crtc
*crtc
= dig_port
->base
.base
.crtc
;
224 enum i915_pipe pipe
= to_intel_crtc(crtc
)->pipe
;
226 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
227 I915_WRITE(VLV_PSRCTL(pipe
),
228 VLV_EDP_PSR_MODE_SW_TIMER
|
229 VLV_EDP_PSR_SRC_TRANSMITTER_STATE
|
233 static void vlv_psr_activate(struct intel_dp
*intel_dp
)
235 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
236 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
237 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
238 struct drm_crtc
*crtc
= dig_port
->base
.base
.crtc
;
239 enum i915_pipe pipe
= to_intel_crtc(crtc
)->pipe
;
241 /* Let's do the transition from PSR_state 1 to PSR_state 2
242 * that is PSR transition to active - static frame transmission.
243 * Then Hardware is responsible for the transition to PSR_state 3
244 * that is PSR active - no Remote Frame Buffer (RFB) update.
246 I915_WRITE(VLV_PSRCTL(pipe
), I915_READ(VLV_PSRCTL(pipe
)) |
247 VLV_EDP_PSR_ACTIVE_ENTRY
);
250 static void hsw_psr_enable_source(struct intel_dp
*intel_dp
)
252 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
253 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
254 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
256 uint32_t max_sleep_time
= 0x1f;
257 /* Lately it was identified that depending on panel idle frame count
258 * calculated at HW can be off by 1. So let's use what came
260 * There are also other cases where panel demands at least 4
261 * but VBT is not being set. To cover these 2 cases lets use
262 * at least 5 when VBT isn't set to be on the safest side.
264 uint32_t idle_frames
= dev_priv
->vbt
.psr
.idle_frames
?
265 dev_priv
->vbt
.psr
.idle_frames
+ 1 : 5;
267 const uint32_t link_entry_time
= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES
;
269 if (intel_dp
->psr_dpcd
[1] & DP_PSR_NO_TRAIN_ON_EXIT
) {
270 /* It doesn't mean we shouldn't send TPS patters, so let's
271 send the minimal TP1 possible and skip TP2. */
272 val
|= EDP_PSR_TP1_TIME_100us
;
273 val
|= EDP_PSR_TP2_TP3_TIME_0us
;
274 val
|= EDP_PSR_SKIP_AUX_EXIT
;
275 /* Sink should be able to train with the 5 or 6 idle patterns */
279 I915_WRITE(EDP_PSR_CTL(dev
), val
|
280 (IS_BROADWELL(dev
) ? 0 : link_entry_time
) |
281 max_sleep_time
<< EDP_PSR_MAX_SLEEP_TIME_SHIFT
|
282 idle_frames
<< EDP_PSR_IDLE_FRAME_SHIFT
|
285 if (dev_priv
->psr
.psr2_support
)
286 I915_WRITE(EDP_PSR2_CTL
, EDP_PSR2_ENABLE
|
287 EDP_SU_TRACK_ENABLE
| EDP_PSR2_TP2_TIME_100
);
290 static bool intel_psr_match_conditions(struct intel_dp
*intel_dp
)
292 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
293 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
294 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
295 struct drm_crtc
*crtc
= dig_port
->base
.base
.crtc
;
296 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
298 lockdep_assert_held(&dev_priv
->psr
.lock
);
299 WARN_ON(!drm_modeset_is_locked(&dev
->mode_config
.connection_mutex
));
300 WARN_ON(!drm_modeset_is_locked(&crtc
->mutex
));
302 dev_priv
->psr
.source_ok
= false;
304 if (IS_HASWELL(dev
) && dig_port
->port
!= PORT_A
) {
305 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
309 if (!i915
.enable_psr
) {
310 DRM_DEBUG_KMS("PSR disable by flag\n");
314 if (IS_HASWELL(dev
) &&
315 I915_READ(HSW_STEREO_3D_CTL(intel_crtc
->config
->cpu_transcoder
)) &
317 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
321 if (IS_HASWELL(dev
) &&
322 intel_crtc
->config
->base
.adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
) {
323 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
327 if (!IS_VALLEYVIEW(dev
) && ((dev_priv
->vbt
.psr
.full_link
) ||
328 (dig_port
->port
!= PORT_A
))) {
329 DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n");
333 dev_priv
->psr
.source_ok
= true;
337 static void intel_psr_activate(struct intel_dp
*intel_dp
)
339 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
340 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
341 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
343 WARN_ON(I915_READ(EDP_PSR_CTL(dev
)) & EDP_PSR_ENABLE
);
344 WARN_ON(dev_priv
->psr
.active
);
345 lockdep_assert_held(&dev_priv
->psr
.lock
);
347 /* Enable/Re-enable PSR on the host */
349 /* On HSW+ after we enable PSR on source it will activate it
350 * as soon as it match configure idle_frame count. So
351 * we just actually enable it here on activation time.
353 hsw_psr_enable_source(intel_dp
);
355 vlv_psr_activate(intel_dp
);
357 dev_priv
->psr
.active
= true;
361 * intel_psr_enable - Enable PSR
362 * @intel_dp: Intel DP
364 * This function can only be called after the pipe is fully trained and enabled.
366 void intel_psr_enable(struct intel_dp
*intel_dp
)
368 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
369 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
370 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
371 struct intel_crtc
*crtc
= to_intel_crtc(intel_dig_port
->base
.base
.crtc
);
374 DRM_DEBUG_KMS("PSR not supported on this platform\n");
378 if (!is_edp_psr(intel_dp
)) {
379 DRM_DEBUG_KMS("PSR not supported by this panel\n");
383 mutex_lock(&dev_priv
->psr
.lock
);
384 if (dev_priv
->psr
.enabled
) {
385 DRM_DEBUG_KMS("PSR already in use\n");
389 if (!intel_psr_match_conditions(intel_dp
))
392 dev_priv
->psr
.busy_frontbuffer_bits
= 0;
395 hsw_psr_setup_vsc(intel_dp
);
397 if (dev_priv
->psr
.psr2_support
) {
398 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
399 if (crtc
->config
->pipe_src_w
> 3200 ||
400 crtc
->config
->pipe_src_h
> 2000)
401 dev_priv
->psr
.psr2_support
= false;
403 skl_psr_setup_su_vsc(intel_dp
);
406 /* Avoid continuous PSR exit by masking memup and hpd */
407 I915_WRITE(EDP_PSR_DEBUG_CTL(dev
), EDP_PSR_DEBUG_MASK_MEMUP
|
408 EDP_PSR_DEBUG_MASK_HPD
);
410 /* Enable PSR on the panel */
411 hsw_psr_enable_sink(intel_dp
);
413 if (INTEL_INFO(dev
)->gen
>= 9)
414 intel_psr_activate(intel_dp
);
416 vlv_psr_setup_vsc(intel_dp
);
418 /* Enable PSR on the panel */
419 vlv_psr_enable_sink(intel_dp
);
421 /* On HSW+ enable_source also means go to PSR entry/active
422 * state as soon as idle_frame achieved and here would be
423 * to soon. However on VLV enable_source just enable PSR
424 * but let it on inactive state. So we might do this prior
425 * to active transition, i.e. here.
427 vlv_psr_enable_source(intel_dp
);
430 dev_priv
->psr
.enabled
= intel_dp
;
432 mutex_unlock(&dev_priv
->psr
.lock
);
435 static void vlv_psr_disable(struct intel_dp
*intel_dp
)
437 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
438 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
439 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
440 struct intel_crtc
*intel_crtc
=
441 to_intel_crtc(intel_dig_port
->base
.base
.crtc
);
444 if (dev_priv
->psr
.active
) {
445 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
446 if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc
->pipe
)) &
447 VLV_EDP_PSR_IN_TRANS
) == 0, 1))
448 WARN(1, "PSR transition took longer than expected\n");
450 val
= I915_READ(VLV_PSRCTL(intel_crtc
->pipe
));
451 val
&= ~VLV_EDP_PSR_ACTIVE_ENTRY
;
452 val
&= ~VLV_EDP_PSR_ENABLE
;
453 val
&= ~VLV_EDP_PSR_MODE_MASK
;
454 I915_WRITE(VLV_PSRCTL(intel_crtc
->pipe
), val
);
456 dev_priv
->psr
.active
= false;
458 WARN_ON(vlv_is_psr_active_on_pipe(dev
, intel_crtc
->pipe
));
462 static void hsw_psr_disable(struct intel_dp
*intel_dp
)
464 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
465 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
466 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
468 if (dev_priv
->psr
.active
) {
469 I915_WRITE(EDP_PSR_CTL(dev
),
470 I915_READ(EDP_PSR_CTL(dev
)) & ~EDP_PSR_ENABLE
);
472 /* Wait till PSR is idle */
473 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev
)) &
474 EDP_PSR_STATUS_STATE_MASK
) == 0, 2000, 10))
475 DRM_ERROR("Timed out waiting for PSR Idle State\n");
477 dev_priv
->psr
.active
= false;
479 WARN_ON(I915_READ(EDP_PSR_CTL(dev
)) & EDP_PSR_ENABLE
);
484 * intel_psr_disable - Disable PSR
485 * @intel_dp: Intel DP
487 * This function needs to be called before disabling pipe.
489 void intel_psr_disable(struct intel_dp
*intel_dp
)
491 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
492 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
493 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
495 mutex_lock(&dev_priv
->psr
.lock
);
496 if (!dev_priv
->psr
.enabled
) {
497 mutex_unlock(&dev_priv
->psr
.lock
);
502 hsw_psr_disable(intel_dp
);
504 vlv_psr_disable(intel_dp
);
506 dev_priv
->psr
.enabled
= NULL
;
507 mutex_unlock(&dev_priv
->psr
.lock
);
509 cancel_delayed_work_sync(&dev_priv
->psr
.work
);
512 static void intel_psr_work(struct work_struct
*work
)
514 struct drm_i915_private
*dev_priv
=
515 container_of(work
, typeof(*dev_priv
), psr
.work
.work
);
516 struct intel_dp
*intel_dp
= dev_priv
->psr
.enabled
;
517 struct drm_crtc
*crtc
= dp_to_dig_port(intel_dp
)->base
.base
.crtc
;
518 enum i915_pipe pipe
= to_intel_crtc(crtc
)->pipe
;
520 /* We have to make sure PSR is ready for re-enable
521 * otherwise it keeps disabled until next full enable/disable cycle.
522 * PSR might take some time to get fully disabled
523 * and be ready for re-enable.
525 if (HAS_DDI(dev_priv
->dev
)) {
526 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv
->dev
)) &
527 EDP_PSR_STATUS_STATE_MASK
) == 0, 50)) {
528 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
532 if (wait_for((I915_READ(VLV_PSRSTAT(pipe
)) &
533 VLV_EDP_PSR_IN_TRANS
) == 0, 1)) {
534 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
538 mutex_lock(&dev_priv
->psr
.lock
);
539 intel_dp
= dev_priv
->psr
.enabled
;
545 * The delayed work can race with an invalidate hence we need to
546 * recheck. Since psr_flush first clears this and then reschedules we
547 * won't ever miss a flush when bailing out here.
549 if (dev_priv
->psr
.busy_frontbuffer_bits
)
552 intel_psr_activate(intel_dp
);
554 mutex_unlock(&dev_priv
->psr
.lock
);
557 static void intel_psr_exit(struct drm_device
*dev
)
559 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
560 struct intel_dp
*intel_dp
= dev_priv
->psr
.enabled
;
561 struct drm_crtc
*crtc
= dp_to_dig_port(intel_dp
)->base
.base
.crtc
;
562 enum i915_pipe pipe
= to_intel_crtc(crtc
)->pipe
;
565 if (!dev_priv
->psr
.active
)
569 val
= I915_READ(EDP_PSR_CTL(dev
));
571 WARN_ON(!(val
& EDP_PSR_ENABLE
));
573 I915_WRITE(EDP_PSR_CTL(dev
), val
& ~EDP_PSR_ENABLE
);
575 val
= I915_READ(VLV_PSRCTL(pipe
));
577 /* Here we do the transition from PSR_state 3 to PSR_state 5
578 * directly once PSR State 4 that is active with single frame
579 * update can be skipped. PSR_state 5 that is PSR exit then
580 * Hardware is responsible to transition back to PSR_state 1
581 * that is PSR inactive. Same state after
582 * vlv_edp_psr_enable_source.
584 val
&= ~VLV_EDP_PSR_ACTIVE_ENTRY
;
585 I915_WRITE(VLV_PSRCTL(pipe
), val
);
587 /* Send AUX wake up - Spec says after transitioning to PSR
588 * active we have to send AUX wake up by writing 01h in DPCD
589 * 600h of sink device.
590 * XXX: This might slow down the transition, but without this
591 * HW doesn't complete the transition to PSR_state 1 and we
592 * never get the screen updated.
594 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_SET_POWER
,
598 dev_priv
->psr
.active
= false;
602 * intel_psr_single_frame_update - Single Frame Update
604 * @frontbuffer_bits: frontbuffer plane tracking bits
606 * Some platforms support a single frame update feature that is used to
607 * send and update only one frame on Remote Frame Buffer.
608 * So far it is only implemented for Valleyview and Cherryview because
609 * hardware requires this to be done before a page flip.
611 void intel_psr_single_frame_update(struct drm_device
*dev
,
612 unsigned frontbuffer_bits
)
614 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
615 struct drm_crtc
*crtc
;
620 * Single frame update is already supported on BDW+ but it requires
621 * many W/A and it isn't really needed.
623 if (!IS_VALLEYVIEW(dev
))
626 mutex_lock(&dev_priv
->psr
.lock
);
627 if (!dev_priv
->psr
.enabled
) {
628 mutex_unlock(&dev_priv
->psr
.lock
);
632 crtc
= dp_to_dig_port(dev_priv
->psr
.enabled
)->base
.base
.crtc
;
633 pipe
= to_intel_crtc(crtc
)->pipe
;
635 if (frontbuffer_bits
& INTEL_FRONTBUFFER_ALL_MASK(pipe
)) {
636 val
= I915_READ(VLV_PSRCTL(pipe
));
639 * We need to set this bit before writing registers for a flip.
640 * This bit will be self-clear when it gets to the PSR active state.
642 I915_WRITE(VLV_PSRCTL(pipe
), val
| VLV_EDP_PSR_SINGLE_FRAME_UPDATE
);
644 mutex_unlock(&dev_priv
->psr
.lock
);
648 * intel_psr_invalidate - Invalidade PSR
650 * @frontbuffer_bits: frontbuffer plane tracking bits
652 * Since the hardware frontbuffer tracking has gaps we need to integrate
653 * with the software frontbuffer tracking. This function gets called every
654 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
655 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
657 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
659 void intel_psr_invalidate(struct drm_device
*dev
,
660 unsigned frontbuffer_bits
)
662 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
663 struct drm_crtc
*crtc
;
666 mutex_lock(&dev_priv
->psr
.lock
);
667 if (!dev_priv
->psr
.enabled
) {
668 mutex_unlock(&dev_priv
->psr
.lock
);
672 crtc
= dp_to_dig_port(dev_priv
->psr
.enabled
)->base
.base
.crtc
;
673 pipe
= to_intel_crtc(crtc
)->pipe
;
675 frontbuffer_bits
&= INTEL_FRONTBUFFER_ALL_MASK(pipe
);
676 dev_priv
->psr
.busy_frontbuffer_bits
|= frontbuffer_bits
;
678 if (frontbuffer_bits
)
681 mutex_unlock(&dev_priv
->psr
.lock
);
685 * intel_psr_flush - Flush PSR
687 * @frontbuffer_bits: frontbuffer plane tracking bits
688 * @origin: which operation caused the flush
690 * Since the hardware frontbuffer tracking has gaps we need to integrate
691 * with the software frontbuffer tracking. This function gets called every
692 * time frontbuffer rendering has completed and flushed out to memory. PSR
693 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
695 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
697 void intel_psr_flush(struct drm_device
*dev
,
698 unsigned frontbuffer_bits
, enum fb_op_origin origin
)
700 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
701 struct drm_crtc
*crtc
;
703 int delay_ms
= HAS_DDI(dev
) ? 100 : 500;
705 mutex_lock(&dev_priv
->psr
.lock
);
706 if (!dev_priv
->psr
.enabled
) {
707 mutex_unlock(&dev_priv
->psr
.lock
);
711 crtc
= dp_to_dig_port(dev_priv
->psr
.enabled
)->base
.base
.crtc
;
712 pipe
= to_intel_crtc(crtc
)->pipe
;
714 frontbuffer_bits
&= INTEL_FRONTBUFFER_ALL_MASK(pipe
);
715 dev_priv
->psr
.busy_frontbuffer_bits
&= ~frontbuffer_bits
;
719 * By definition every flush should mean invalidate + flush,
720 * however on core platforms let's minimize the
721 * disable/re-enable so we can avoid the invalidate when flip
722 * originated the flush.
724 if (frontbuffer_bits
&& origin
!= ORIGIN_FLIP
)
728 * On Valleyview and Cherryview we don't use hardware tracking
729 * so any plane updates or cursor moves don't result in a PSR
730 * invalidating. Which means we need to manually fake this in
731 * software for all flushes.
733 if (frontbuffer_bits
)
737 if (!dev_priv
->psr
.active
&& !dev_priv
->psr
.busy_frontbuffer_bits
)
738 schedule_delayed_work(&dev_priv
->psr
.work
,
739 msecs_to_jiffies(delay_ms
));
740 mutex_unlock(&dev_priv
->psr
.lock
);
744 * intel_psr_init - Init basic PSR work and mutex.
747 * This function is called only once at driver load to initialize basic
750 void intel_psr_init(struct drm_device
*dev
)
752 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
754 INIT_DELAYED_WORK(&dev_priv
->psr
.work
, intel_psr_work
);
755 lockinit(&dev_priv
->psr
.lock
, "i915dpl", 0, LK_CANRECURSE
);