hammer2 - Fix bulkfree bugs
[dragonfly.git] / sys / vfs / hammer2 / hammer2_flush.c
blobc2ddc325b87aaaa4ba8c45f547cf75ca238b4b17
1 /*
2 * Copyright (c) 2011-2015 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
36 * TRANSACTION AND FLUSH HANDLING
38 * Deceptively simple but actually fairly difficult to implement properly is
39 * how I would describe it.
41 * Flushing generally occurs bottom-up but requires a top-down scan to
42 * locate chains with MODIFIED and/or UPDATE bits set. The ONFLUSH flag
43 * tells how to recurse downward to find these chains.
46 #include <sys/cdefs.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/types.h>
50 #include <sys/lock.h>
51 #include <sys/uuid.h>
53 #include "hammer2.h"
55 #define FLUSH_DEBUG 0
57 #define HAMMER2_FLUSH_DEPTH_LIMIT 10 /* stack recursion limit */
61 * Recursively flush the specified chain. The chain is locked and
62 * referenced by the caller and will remain so on return. The chain
63 * will remain referenced throughout but can temporarily lose its
64 * lock during the recursion to avoid unnecessarily stalling user
65 * processes.
67 struct hammer2_flush_info {
68 hammer2_chain_t *parent;
69 int depth;
70 int diddeferral;
71 int cache_index;
72 int flags;
73 struct h2_flush_list flushq;
74 hammer2_chain_t *debug;
77 typedef struct hammer2_flush_info hammer2_flush_info_t;
79 static void hammer2_flush_core(hammer2_flush_info_t *info,
80 hammer2_chain_t *chain, int flags);
81 static int hammer2_flush_recurse(hammer2_chain_t *child, void *data);
84 * Any per-pfs transaction initialization goes here.
86 void
87 hammer2_trans_manage_init(hammer2_pfs_t *pmp)
92 * Transaction support for any modifying operation. Transactions are used
93 * in the pmp layer by the frontend and in the spmp layer by the backend.
95 * 0 - Normal transaction, interlocked against flush
96 * transaction.
98 * TRANS_ISFLUSH - Flush transaction, interlocked against normal
99 * transaction.
101 * TRANS_BUFCACHE - Buffer cache transaction, no interlock.
103 * Initializing a new transaction allocates a transaction ID. Typically
104 * passed a pmp (hmp passed as NULL), indicating a cluster transaction. Can
105 * be passed a NULL pmp and non-NULL hmp to indicate a transaction on a single
106 * media target. The latter mode is used by the recovery code.
108 * TWO TRANSACTION IDs can run concurrently, where one is a flush and the
109 * other is a set of any number of concurrent filesystem operations. We
110 * can either have <running_fs_ops> + <waiting_flush> + <blocked_fs_ops>
111 * or we can have <running_flush> + <concurrent_fs_ops>.
113 * During a flush, new fs_ops are only blocked until the fs_ops prior to
114 * the flush complete. The new fs_ops can then run concurrent with the flush.
116 * Buffer-cache transactions operate as fs_ops but never block. A
117 * buffer-cache flush will run either before or after the current pending
118 * flush depending on its state.
120 void
121 hammer2_trans_init(hammer2_pfs_t *pmp, uint32_t flags)
123 uint32_t oflags;
124 uint32_t nflags;
125 int dowait;
127 for (;;) {
128 oflags = pmp->trans.flags;
129 cpu_ccfence();
130 dowait = 0;
132 if (flags & HAMMER2_TRANS_ISFLUSH) {
134 * Requesting flush transaction. Wait for all
135 * currently running transactions to finish.
136 * Afterwords, normal transactions will be
137 * interlocked.
139 if (oflags & HAMMER2_TRANS_MASK) {
140 nflags = oflags | HAMMER2_TRANS_FPENDING |
141 HAMMER2_TRANS_WAITING;
142 dowait = 1;
143 } else {
144 nflags = (oflags | flags) + 1;
146 } else if (flags & HAMMER2_TRANS_BUFCACHE) {
148 * Requesting strategy transaction from buffer-cache,
149 * or a VM getpages/putpages through the buffer cache.
150 * We must allow such transactions in all situations
151 * to avoid deadlocks.
153 nflags = (oflags | flags) + 1;
154 #if 0
156 * (old) previous code interlocked against the main
157 * flush pass.
159 if ((oflags & (HAMMER2_TRANS_ISFLUSH |
160 HAMMER2_TRANS_PREFLUSH)) ==
161 HAMMER2_TRANS_ISFLUSH) {
162 nflags = oflags | HAMMER2_TRANS_WAITING;
163 dowait = 1;
164 } else {
165 nflags = (oflags | flags) + 1;
167 #endif
168 } else {
170 * Requesting normal modifying transaction (read-only
171 * operations do not use transactions). Waits for
172 * any flush to finish before allowing. Multiple
173 * modifying transactions can run concurrently.
175 if (oflags & HAMMER2_TRANS_ISFLUSH) {
176 nflags = oflags | HAMMER2_TRANS_WAITING;
177 dowait = 1;
178 } else {
179 nflags = (oflags | flags) + 1;
182 if (dowait)
183 tsleep_interlock(&pmp->trans.sync_wait, 0);
184 if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
185 if (dowait == 0)
186 break;
187 tsleep(&pmp->trans.sync_wait, PINTERLOCKED,
188 "h2trans", hz);
189 } else {
190 cpu_pause();
192 /* retry */
197 * Start a sub-transaction, there is no 'subdone' function. This will
198 * issue a new modify_tid (mtid) for the current transaction, which is a
199 * CLC (cluster level change) id and not a per-node id.
201 * This function must be called for each XOP when multiple XOPs are run in
202 * sequence within a transaction.
204 * Callers typically update the inode with the transaction mtid manually
205 * to enforce sequencing.
207 hammer2_tid_t
208 hammer2_trans_sub(hammer2_pfs_t *pmp)
210 hammer2_tid_t mtid;
212 mtid = atomic_fetchadd_64(&pmp->modify_tid, 1);
214 return (mtid);
217 void
218 hammer2_trans_done(hammer2_pfs_t *pmp)
220 uint32_t oflags;
221 uint32_t nflags;
223 for (;;) {
224 oflags = pmp->trans.flags;
225 cpu_ccfence();
226 KKASSERT(oflags & HAMMER2_TRANS_MASK);
227 if ((oflags & HAMMER2_TRANS_MASK) == 1) {
229 * This was the last transaction
231 nflags = (oflags - 1) & ~(HAMMER2_TRANS_ISFLUSH |
232 HAMMER2_TRANS_BUFCACHE |
233 HAMMER2_TRANS_FPENDING |
234 HAMMER2_TRANS_WAITING);
235 } else {
237 * Still transactions pending
239 nflags = oflags - 1;
241 if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
242 if ((nflags & HAMMER2_TRANS_MASK) == 0 &&
243 (oflags & HAMMER2_TRANS_WAITING)) {
244 wakeup(&pmp->trans.sync_wait);
246 break;
247 } else {
248 cpu_pause();
250 /* retry */
255 * Obtain new, unique inode number (not serialized by caller).
257 hammer2_tid_t
258 hammer2_trans_newinum(hammer2_pfs_t *pmp)
260 hammer2_tid_t tid;
262 tid = atomic_fetchadd_64(&pmp->inode_tid, 1);
264 return tid;
268 * Assert that a strategy call is ok here. Currently we allow strategy
269 * calls in all situations, including during flushes. Previously:
270 * (old) (1) In a normal transaction.
271 * (old) (2) In a flush transaction only if PREFLUSH is also set.
273 void
274 hammer2_trans_assert_strategy(hammer2_pfs_t *pmp)
276 #if 0
277 KKASSERT((pmp->trans.flags & HAMMER2_TRANS_ISFLUSH) == 0 ||
278 (pmp->trans.flags & HAMMER2_TRANS_PREFLUSH));
279 #endif
284 * Chains undergoing destruction are removed from the in-memory topology.
285 * To avoid getting lost these chains are placed on the delayed flush
286 * queue which will properly dispose of them.
288 * We do this instead of issuing an immediate flush in order to give
289 * recursive deletions (rm -rf, etc) a chance to remove more of the
290 * hierarchy, potentially allowing an enormous amount of write I/O to
291 * be avoided.
293 void
294 hammer2_delayed_flush(hammer2_chain_t *chain)
296 if ((chain->flags & HAMMER2_CHAIN_DELAYED) == 0) {
297 hammer2_spin_ex(&chain->hmp->list_spin);
298 if ((chain->flags & (HAMMER2_CHAIN_DELAYED |
299 HAMMER2_CHAIN_DEFERRED)) == 0) {
300 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELAYED |
301 HAMMER2_CHAIN_DEFERRED);
302 TAILQ_INSERT_TAIL(&chain->hmp->flushq,
303 chain, flush_node);
304 hammer2_chain_ref(chain);
306 hammer2_spin_unex(&chain->hmp->list_spin);
307 hammer2_voldata_modify(chain->hmp);
312 * Flush the chain and all modified sub-chains through the specified
313 * synchronization point, propagating blockref updates back up. As
314 * part of this propagation, mirror_tid and inode/data usage statistics
315 * propagates back upward.
317 * modify_tid (clc - cluster level change) is not propagated.
319 * update_tid (clc) is used for validation and is not propagated by this
320 * function.
322 * This routine can be called from several places but the most important
323 * is from VFS_SYNC (frontend) via hammer2_inode_xop_flush (backend).
325 * chain is locked on call and will remain locked on return. The chain's
326 * UPDATE flag indicates that its parent's block table (which is not yet
327 * part of the flush) should be updated. The chain may be replaced by
328 * the call if it was modified.
330 void
331 hammer2_flush(hammer2_chain_t *chain, int flags)
333 hammer2_chain_t *scan;
334 hammer2_flush_info_t info;
335 hammer2_dev_t *hmp;
336 int loops;
339 * Execute the recursive flush and handle deferrals.
341 * Chains can be ridiculously long (thousands deep), so to
342 * avoid blowing out the kernel stack the recursive flush has a
343 * depth limit. Elements at the limit are placed on a list
344 * for re-execution after the stack has been popped.
346 bzero(&info, sizeof(info));
347 TAILQ_INIT(&info.flushq);
348 info.cache_index = -1;
349 info.flags = flags & ~HAMMER2_FLUSH_TOP;
352 * Calculate parent (can be NULL), if not NULL the flush core
353 * expects the parent to be referenced so it can easily lock/unlock
354 * it without it getting ripped up.
356 if ((info.parent = chain->parent) != NULL)
357 hammer2_chain_ref(info.parent);
360 * Extra ref needed because flush_core expects it when replacing
361 * chain.
363 hammer2_chain_ref(chain);
364 hmp = chain->hmp;
365 loops = 0;
367 for (;;) {
369 * Move hmp->flushq to info.flushq if non-empty so it can
370 * be processed.
372 if (TAILQ_FIRST(&hmp->flushq) != NULL) {
373 hammer2_spin_ex(&chain->hmp->list_spin);
374 TAILQ_CONCAT(&info.flushq, &hmp->flushq, flush_node);
375 hammer2_spin_unex(&chain->hmp->list_spin);
379 * Unwind deep recursions which had been deferred. This
380 * can leave the FLUSH_* bits set for these chains, which
381 * will be handled when we [re]flush chain after the unwind.
383 while ((scan = TAILQ_FIRST(&info.flushq)) != NULL) {
384 KKASSERT(scan->flags & HAMMER2_CHAIN_DEFERRED);
385 TAILQ_REMOVE(&info.flushq, scan, flush_node);
386 atomic_clear_int(&scan->flags, HAMMER2_CHAIN_DEFERRED |
387 HAMMER2_CHAIN_DELAYED);
390 * Now that we've popped back up we can do a secondary
391 * recursion on the deferred elements.
393 * NOTE: hammer2_flush() may replace scan.
395 if (hammer2_debug & 0x0040)
396 kprintf("deferred flush %p\n", scan);
397 hammer2_chain_lock(scan, HAMMER2_RESOLVE_MAYBE);
398 hammer2_flush(scan, flags & ~HAMMER2_FLUSH_TOP);
399 hammer2_chain_unlock(scan);
400 hammer2_chain_drop(scan); /* ref from deferral */
404 * [re]flush chain.
406 info.diddeferral = 0;
407 hammer2_flush_core(&info, chain, flags);
410 * Only loop if deep recursions have been deferred.
412 if (TAILQ_EMPTY(&info.flushq))
413 break;
415 if (++loops % 1000 == 0) {
416 kprintf("hammer2_flush: excessive loops on %p\n",
417 chain);
418 if (hammer2_debug & 0x100000)
419 Debugger("hell4");
422 hammer2_chain_drop(chain);
423 if (info.parent)
424 hammer2_chain_drop(info.parent);
428 * This is the core of the chain flushing code. The chain is locked by the
429 * caller and must also have an extra ref on it by the caller, and remains
430 * locked and will have an extra ref on return. info.parent is referenced
431 * but not locked.
433 * Upon return, the caller can test the UPDATE bit on the chain to determine
434 * if the parent needs updating.
436 * (1) Determine if this node is a candidate for the flush, return if it is
437 * not. fchain and vchain are always candidates for the flush.
439 * (2) If we recurse too deep the chain is entered onto the deferral list and
440 * the current flush stack is aborted until after the deferral list is
441 * run.
443 * (3) Recursively flush live children (rbtree). This can create deferrals.
444 * A successful flush clears the MODIFIED and UPDATE bits on the children
445 * and typically causes the parent to be marked MODIFIED as the children
446 * update the parent's block table. A parent might already be marked
447 * MODIFIED due to a deletion (whos blocktable update in the parent is
448 * handled by the frontend), or if the parent itself is modified by the
449 * frontend for other reasons.
451 * (4) Permanently disconnected sub-trees are cleaned up by the front-end.
452 * Deleted-but-open inodes can still be individually flushed via the
453 * filesystem syncer.
455 * (5) Delete parents on the way back up if they are normal indirect blocks
456 * and have no children.
458 * (6) Note that an unmodified child may still need the block table in its
459 * parent updated (e.g. rename/move). The child will have UPDATE set
460 * in this case.
462 * WARNING ON BREF MODIFY_TID/MIRROR_TID
464 * blockref.modify_tid is consistent only within a PFS, and will not be
465 * consistent during synchronization. mirror_tid is consistent across the
466 * block device regardless of the PFS.
468 static void
469 hammer2_flush_core(hammer2_flush_info_t *info, hammer2_chain_t *chain,
470 int flags)
472 hammer2_chain_t *parent;
473 hammer2_dev_t *hmp;
474 int diddeferral;
477 * (1) Optimize downward recursion to locate nodes needing action.
478 * Nothing to do if none of these flags are set.
480 if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) == 0) {
481 if (hammer2_debug & 0x200) {
482 if (info->debug == NULL)
483 info->debug = chain;
484 } else {
485 return;
489 hmp = chain->hmp;
490 diddeferral = info->diddeferral;
491 parent = info->parent; /* can be NULL */
492 KKASSERT(chain->parent == parent);
495 * Downward search recursion
497 if (chain->flags & (HAMMER2_CHAIN_DEFERRED | HAMMER2_CHAIN_DELAYED)) {
499 * Already deferred.
501 ++info->diddeferral;
502 } else if ((chain->flags & HAMMER2_CHAIN_PFSBOUNDARY) &&
503 (flags & HAMMER2_FLUSH_ALL) == 0 &&
504 (flags & HAMMER2_FLUSH_TOP) == 0) {
506 * If FLUSH_ALL is not specified the caller does not want
507 * to recurse through PFS roots. The typical sequence is
508 * to flush dirty PFS's starting at their root downward,
509 * then flush the device root (vchain). It is this second
510 * flush that typically leaves out the ALL flag.
512 * However we must still process the PFSROOT chains for block
513 * table updates in their parent (which IS part of our flush).
515 * NOTE: The volume root, vchain, does not set PFSBOUNDARY.
517 * NOTE: This test must be done before the depth-limit test,
518 * else it might become the top on a flushq iteration.
520 * NOTE: We must re-set ONFLUSH in the parent to retain if
521 * this chain (that we are skipping) requires work.
523 if (chain->flags & (HAMMER2_CHAIN_ONFLUSH |
524 HAMMER2_CHAIN_DESTROY |
525 HAMMER2_CHAIN_MODIFIED)) {
526 hammer2_chain_setflush(parent);
528 } else if (info->depth == HAMMER2_FLUSH_DEPTH_LIMIT) {
530 * Recursion depth reached.
532 KKASSERT((chain->flags & HAMMER2_CHAIN_DELAYED) == 0);
533 hammer2_chain_ref(chain);
534 TAILQ_INSERT_TAIL(&info->flushq, chain, flush_node);
535 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEFERRED);
536 ++info->diddeferral;
537 } else if (chain->flags & (HAMMER2_CHAIN_ONFLUSH |
538 HAMMER2_CHAIN_DESTROY)) {
540 * Downward recursion search (actual flush occurs bottom-up).
541 * pre-clear ONFLUSH. It can get set again due to races,
542 * which we want so the scan finds us again in the next flush.
544 * We must also recurse if DESTROY is set so we can finally
545 * get rid of the related children, otherwise the node will
546 * just get re-flushed on lastdrop.
548 * WARNING! The recursion will unlock/relock info->parent
549 * (which is 'chain'), potentially allowing it
550 * to be ripped up.
552 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
553 info->parent = chain;
554 hammer2_spin_ex(&chain->core.spin);
555 RB_SCAN(hammer2_chain_tree, &chain->core.rbtree,
556 NULL, hammer2_flush_recurse, info);
557 hammer2_spin_unex(&chain->core.spin);
558 info->parent = parent;
559 if (info->diddeferral)
560 hammer2_chain_setflush(chain);
563 * If we lost the parent->chain association we have to
564 * stop processing this chain because it is no longer
565 * in this recursion. If it moved, it will be handled
566 * by the ONFLUSH flag elsewhere.
568 if (chain->parent != parent) {
569 kprintf("LOST CHILD2 %p->%p (actual parent %p)\n",
570 parent, chain, chain->parent);
571 goto done;
576 * Now we are in the bottom-up part of the recursion.
578 * Do not update chain if lower layers were deferred.
580 if (info->diddeferral)
581 goto done;
584 * Both parent and chain must be locked in order to flush chain,
585 * in order to properly update the parent under certain conditions.
587 * In addition, we can't safely unlock/relock the chain once we
588 * start flushing the chain itself, which we would have to do later
589 * on in order to lock the parent if we didn't do that now.
591 hammer2_chain_unlock(chain);
592 if (parent)
593 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
594 hammer2_chain_lock(chain, HAMMER2_RESOLVE_MAYBE);
595 if (chain->parent != parent) {
596 kprintf("LOST CHILD3 %p->%p (actual parent %p)\n",
597 parent, chain, chain->parent);
598 KKASSERT(parent != NULL);
599 hammer2_chain_unlock(parent);
600 if ((chain->flags & HAMMER2_CHAIN_DELAYED) == 0) {
601 hammer2_chain_ref(chain);
602 TAILQ_INSERT_TAIL(&info->flushq, chain, flush_node);
603 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEFERRED);
604 ++info->diddeferral;
606 goto done;
610 * Propagate the DESTROY flag downwards. This dummies up the flush
611 * code and tries to invalidate related buffer cache buffers to
612 * avoid the disk write.
614 if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
615 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
618 * Chain was already modified or has become modified, flush it out.
620 if ((hammer2_debug & 0x200) &&
621 info->debug &&
622 (chain->flags & (HAMMER2_CHAIN_MODIFIED | HAMMER2_CHAIN_UPDATE))) {
623 hammer2_chain_t *scan = chain;
625 kprintf("DISCONNECTED FLUSH %p->%p\n", info->debug, chain);
626 while (scan) {
627 kprintf(" chain %p [%08x] bref=%016jx:%02x\n",
628 scan, scan->flags,
629 scan->bref.key, scan->bref.type);
630 if (scan == info->debug)
631 break;
632 scan = scan->parent;
636 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
638 * Dispose of the modified bit.
640 * If parent is present, the UPDATE bit should already be set.
641 * UPDATE should already be set.
642 * bref.mirror_tid should already be set.
644 KKASSERT((chain->flags & HAMMER2_CHAIN_UPDATE) ||
645 chain->parent == NULL);
646 if (hammer2_debug & 0x800000) {
647 hammer2_chain_t *pp;
649 for (pp = chain; pp->parent; pp = pp->parent)
651 kprintf("FLUSH CHAIN %p (p=%p pp=%p/%d) TYPE %d FLAGS %08x (%s)\n",
652 chain, chain->parent, pp, pp->bref.type,
653 chain->bref.type, chain->flags,
654 (chain->bref.type == 1 ? (const char *)chain->data->ipdata.filename : "?")
657 print_backtrace(10);
659 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
660 atomic_add_long(&hammer2_count_modified_chains, -1);
663 * Manage threads waiting for excessive dirty memory to
664 * be retired.
666 if (chain->pmp)
667 hammer2_pfs_memory_wakeup(chain->pmp);
669 #if 0
670 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0 &&
671 chain != &hmp->vchain &&
672 chain != &hmp->fchain) {
674 * Set UPDATE bit indicating that the parent block
675 * table requires updating.
677 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
679 #endif
682 * Issue the flush. This is indirect via the DIO.
684 * NOTE: A DELETED node that reaches this point must be
685 * flushed for synchronization point consistency.
687 * NOTE: Even though MODIFIED was already set, the related DIO
688 * might not be dirty due to a system buffer cache
689 * flush and must be set dirty if we are going to make
690 * further modifications to the buffer. Chains with
691 * embedded data don't need this.
693 if (hammer2_debug & 0x1000) {
694 kprintf("Flush %p.%d %016jx/%d data=%016jx\n",
695 chain, chain->bref.type,
696 (uintmax_t)chain->bref.key,
697 chain->bref.keybits,
698 (uintmax_t)chain->bref.data_off);
700 if (hammer2_debug & 0x2000) {
701 Debugger("Flush hell");
705 * Update chain CRCs for flush.
707 * NOTE: Volume headers are NOT flushed here as they require
708 * special processing.
710 switch(chain->bref.type) {
711 case HAMMER2_BREF_TYPE_FREEMAP:
713 * Update the volume header's freemap_tid to the
714 * freemap's flushing mirror_tid.
716 * (note: embedded data, do not call setdirty)
718 KKASSERT(hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED);
719 KKASSERT(chain == &hmp->fchain);
720 hmp->voldata.freemap_tid = chain->bref.mirror_tid;
721 if (hammer2_debug & 0x8000) {
722 /* debug only, avoid syslogd loop */
723 kprintf("sync freemap mirror_tid %08jx\n",
724 (intmax_t)chain->bref.mirror_tid);
728 * The freemap can be flushed independently of the
729 * main topology, but for the case where it is
730 * flushed in the same transaction, and flushed
731 * before vchain (a case we want to allow for
732 * performance reasons), make sure modifications
733 * made during the flush under vchain use a new
734 * transaction id.
736 * Otherwise the mount recovery code will get confused.
738 ++hmp->voldata.mirror_tid;
739 break;
740 case HAMMER2_BREF_TYPE_VOLUME:
742 * The free block table is flushed by
743 * hammer2_vfs_sync() before it flushes vchain.
744 * We must still hold fchain locked while copying
745 * voldata to volsync, however.
747 * (note: embedded data, do not call setdirty)
749 hammer2_chain_lock(&hmp->fchain,
750 HAMMER2_RESOLVE_ALWAYS);
751 hammer2_voldata_lock(hmp);
752 if (hammer2_debug & 0x8000) {
753 /* debug only, avoid syslogd loop */
754 kprintf("sync volume mirror_tid %08jx\n",
755 (intmax_t)chain->bref.mirror_tid);
759 * Update the volume header's mirror_tid to the
760 * main topology's flushing mirror_tid. It is
761 * possible that voldata.mirror_tid is already
762 * beyond bref.mirror_tid due to the bump we made
763 * above in BREF_TYPE_FREEMAP.
765 if (hmp->voldata.mirror_tid < chain->bref.mirror_tid) {
766 hmp->voldata.mirror_tid =
767 chain->bref.mirror_tid;
771 * The volume header is flushed manually by the
772 * syncer, not here. All we do here is adjust the
773 * crc's.
775 KKASSERT(chain->data != NULL);
776 KKASSERT(chain->dio == NULL);
778 hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT1]=
779 hammer2_icrc32(
780 (char *)&hmp->voldata +
781 HAMMER2_VOLUME_ICRC1_OFF,
782 HAMMER2_VOLUME_ICRC1_SIZE);
783 hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT0]=
784 hammer2_icrc32(
785 (char *)&hmp->voldata +
786 HAMMER2_VOLUME_ICRC0_OFF,
787 HAMMER2_VOLUME_ICRC0_SIZE);
788 hmp->voldata.icrc_volheader =
789 hammer2_icrc32(
790 (char *)&hmp->voldata +
791 HAMMER2_VOLUME_ICRCVH_OFF,
792 HAMMER2_VOLUME_ICRCVH_SIZE);
794 if (hammer2_debug & 0x8000) {
795 /* debug only, avoid syslogd loop */
796 kprintf("syncvolhdr %016jx %016jx\n",
797 hmp->voldata.mirror_tid,
798 hmp->vchain.bref.mirror_tid);
800 hmp->volsync = hmp->voldata;
801 atomic_set_int(&chain->flags, HAMMER2_CHAIN_VOLUMESYNC);
802 hammer2_voldata_unlock(hmp);
803 hammer2_chain_unlock(&hmp->fchain);
804 break;
805 case HAMMER2_BREF_TYPE_DATA:
807 * Data elements have already been flushed via the
808 * logical file buffer cache. Their hash was set in
809 * the bref by the vop_write code. Do not re-dirty.
811 * Make sure any device buffer(s) have been flushed
812 * out here (there aren't usually any to flush) XXX.
814 break;
815 case HAMMER2_BREF_TYPE_INDIRECT:
816 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
817 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
819 * Buffer I/O will be cleaned up when the volume is
820 * flushed (but the kernel is free to flush it before
821 * then, as well).
823 KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
824 hammer2_chain_setcheck(chain, chain->data);
825 break;
826 case HAMMER2_BREF_TYPE_DIRENT:
828 * A directory entry can use the check area to store
829 * the filename for filenames <= 64 bytes, don't blow
830 * it up!
832 KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
833 if (chain->bytes)
834 hammer2_chain_setcheck(chain, chain->data);
835 break;
836 case HAMMER2_BREF_TYPE_INODE:
838 * NOTE: We must call io_setdirty() to make any late
839 * changes to the inode data, the system might
840 * have already flushed the buffer.
842 if (chain->data->ipdata.meta.op_flags &
843 HAMMER2_OPFLAG_PFSROOT) {
845 * non-NULL pmp if mounted as a PFS. We must
846 * sync fields cached in the pmp? XXX
848 hammer2_inode_data_t *ipdata;
850 hammer2_io_setdirty(chain->dio);
851 ipdata = &chain->data->ipdata;
852 if (chain->pmp) {
853 ipdata->meta.pfs_inum =
854 chain->pmp->inode_tid;
856 } else {
857 /* can't be mounted as a PFS */
860 KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
861 hammer2_chain_setcheck(chain, chain->data);
862 break;
863 default:
864 KKASSERT(chain->flags & HAMMER2_CHAIN_EMBEDDED);
865 panic("hammer2_flush_core: unsupported "
866 "embedded bref %d",
867 chain->bref.type);
868 /* NOT REACHED */
872 * If the chain was destroyed try to avoid unnecessary I/O.
873 * The DIO system buffer may silently disallow the
874 * invalidation.
876 if (chain->flags & HAMMER2_CHAIN_DESTROY) {
877 hammer2_io_t *dio;
879 if (chain->dio) {
880 hammer2_io_setinval(chain->dio,
881 chain->bref.data_off,
882 chain->bytes);
883 } else if ((dio = hammer2_io_getquick(hmp,
884 chain->bref.data_off,
885 chain->bytes)) != NULL) {
886 hammer2_io_setinval(dio,
887 chain->bref.data_off,
888 chain->bytes);
889 hammer2_io_putblk(&dio);
895 * If UPDATE is set the parent block table may need to be updated.
897 * NOTE: UPDATE may be set on vchain or fchain in which case
898 * parent could be NULL. It's easiest to allow the case
899 * and test for NULL. parent can also wind up being NULL
900 * due to a deletion so we need to handle the case anyway.
902 * If no parent exists we can just clear the UPDATE bit. If the
903 * chain gets reattached later on the bit will simply get set
904 * again.
906 if ((chain->flags & HAMMER2_CHAIN_UPDATE) && parent == NULL)
907 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
910 * The chain may need its blockrefs updated in the parent.
912 if (chain->flags & HAMMER2_CHAIN_UPDATE) {
913 hammer2_blockref_t *base;
914 int count;
917 * Clear UPDATE flag, mark parent modified, update its
918 * modify_tid if necessary, and adjust the parent blockmap.
920 if (chain->flags & HAMMER2_CHAIN_UPDATE)
921 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
924 * (optional code)
926 * Avoid actually modifying and updating the parent if it
927 * was flagged for destruction. This can greatly reduce
928 * disk I/O in large tree removals because the
929 * hammer2_io_setinval() call in the upward recursion
930 * (see MODIFIED code above) can only handle a few cases.
932 if (parent->flags & HAMMER2_CHAIN_DESTROY) {
933 if (parent->bref.modify_tid < chain->bref.modify_tid) {
934 parent->bref.modify_tid =
935 chain->bref.modify_tid;
937 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
938 HAMMER2_CHAIN_BMAPUPD);
939 goto skipupdate;
943 * (semi-optional code)
945 * The flusher is responsible for deleting empty indirect
946 * blocks at this point. If we don't do this, no major harm
947 * will be done but the empty indirect blocks will stay in
948 * the topology and make it a bit messy.
950 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT &&
951 chain->core.live_count == 0 &&
952 (chain->flags & (HAMMER2_CHAIN_INITIAL |
953 HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
954 base = &chain->data->npdata[0];
955 count = chain->bytes / sizeof(hammer2_blockref_t);
956 hammer2_chain_countbrefs(chain, base, count);
958 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT &&
959 chain->core.live_count == 0) {
960 #if 0
961 kprintf("DELETE CHAIN %016jx.%02x %016jx/%d refs=%d\n",
962 chain->bref.data_off, chain->bref.type,
963 chain->bref.key, chain->bref.keybits,
964 chain->refs);
965 #endif
966 hammer2_chain_delete(parent, chain,
967 chain->bref.modify_tid,
968 HAMMER2_DELETE_PERMANENT);
969 goto skipupdate;
973 * We are updating the parent's blockmap, the parent must
974 * be set modified.
976 hammer2_chain_modify(parent, 0, 0, 0);
977 if (parent->bref.modify_tid < chain->bref.modify_tid)
978 parent->bref.modify_tid = chain->bref.modify_tid;
981 * Calculate blockmap pointer
983 switch(parent->bref.type) {
984 case HAMMER2_BREF_TYPE_INODE:
986 * Access the inode's block array. However, there is
987 * no block array if the inode is flagged DIRECTDATA.
989 if (parent->data &&
990 (parent->data->ipdata.meta.op_flags &
991 HAMMER2_OPFLAG_DIRECTDATA) == 0) {
992 base = &parent->data->
993 ipdata.u.blockset.blockref[0];
994 } else {
995 base = NULL;
997 count = HAMMER2_SET_COUNT;
998 break;
999 case HAMMER2_BREF_TYPE_INDIRECT:
1000 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1001 if (parent->data)
1002 base = &parent->data->npdata[0];
1003 else
1004 base = NULL;
1005 count = parent->bytes / sizeof(hammer2_blockref_t);
1006 break;
1007 case HAMMER2_BREF_TYPE_VOLUME:
1008 base = &chain->hmp->voldata.sroot_blockset.blockref[0];
1009 count = HAMMER2_SET_COUNT;
1010 break;
1011 case HAMMER2_BREF_TYPE_FREEMAP:
1012 base = &parent->data->npdata[0];
1013 count = HAMMER2_SET_COUNT;
1014 break;
1015 default:
1016 base = NULL;
1017 count = 0;
1018 panic("hammer2_flush_core: "
1019 "unrecognized blockref type: %d",
1020 parent->bref.type);
1024 * Blocktable updates
1026 * We synchronize pending statistics at this time. Delta
1027 * adjustments designated for the current and upper level
1028 * are synchronized.
1030 if (base && (chain->flags & HAMMER2_CHAIN_BMAPUPD)) {
1031 if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
1032 hammer2_spin_ex(&parent->core.spin);
1033 hammer2_base_delete(parent, base, count,
1034 &info->cache_index, chain);
1035 hammer2_spin_unex(&parent->core.spin);
1036 /* base_delete clears both bits */
1037 } else {
1038 atomic_clear_int(&chain->flags,
1039 HAMMER2_CHAIN_BMAPUPD);
1042 if (base && (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
1043 hammer2_spin_ex(&parent->core.spin);
1044 hammer2_base_insert(parent, base, count,
1045 &info->cache_index, chain);
1046 hammer2_spin_unex(&parent->core.spin);
1047 /* base_insert sets BMAPPED */
1050 skipupdate:
1051 if (parent)
1052 hammer2_chain_unlock(parent);
1055 * Final cleanup after flush
1057 done:
1058 KKASSERT(chain->refs > 0);
1059 if (hammer2_debug & 0x200) {
1060 if (info->debug == chain)
1061 info->debug = NULL;
1066 * Flush recursion helper, called from flush_core, calls flush_core.
1068 * Flushes the children of the caller's chain (info->parent), restricted
1069 * by sync_tid. Set info->domodify if the child's blockref must propagate
1070 * back up to the parent.
1072 * Ripouts can move child from rbtree to dbtree or dbq but the caller's
1073 * flush scan order prevents any chains from being lost. A child can be
1074 * executes more than once.
1076 * WARNING! If we do not call hammer2_flush_core() we must update
1077 * bref.mirror_tid ourselves to indicate that the flush has
1078 * processed the child.
1080 * WARNING! parent->core spinlock is held on entry and return.
1082 static int
1083 hammer2_flush_recurse(hammer2_chain_t *child, void *data)
1085 hammer2_flush_info_t *info = data;
1086 hammer2_chain_t *parent = info->parent;
1089 * (child can never be fchain or vchain so a special check isn't
1090 * needed).
1092 * We must ref the child before unlocking the spinlock.
1094 * The caller has added a ref to the parent so we can temporarily
1095 * unlock it in order to lock the child. However, if it no longer
1096 * winds up being the child of the parent we must skip this child.
1098 hammer2_chain_ref(child);
1099 hammer2_spin_unex(&parent->core.spin);
1101 hammer2_chain_unlock(parent);
1102 hammer2_chain_lock(child, HAMMER2_RESOLVE_MAYBE);
1103 if (child->parent != parent) {
1104 kprintf("LOST CHILD1 %p->%p (actual parent %p)\n",
1105 parent, child, child->parent);
1106 goto done;
1110 * Must propagate the DESTROY flag downwards, otherwise the
1111 * parent could end up never being removed because it will
1112 * be requeued to the flusher if it survives this run due to
1113 * the flag.
1115 if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
1116 atomic_set_int(&child->flags, HAMMER2_CHAIN_DESTROY);
1119 * Recurse and collect deferral data. We're in the media flush,
1120 * this can cross PFS boundaries.
1122 if (child->flags & HAMMER2_CHAIN_FLUSH_MASK) {
1123 ++info->depth;
1124 hammer2_flush_core(info, child, info->flags);
1125 --info->depth;
1126 } else if (hammer2_debug & 0x200) {
1127 if (info->debug == NULL)
1128 info->debug = child;
1129 ++info->depth;
1130 hammer2_flush_core(info, child, info->flags);
1131 --info->depth;
1132 if (info->debug == child)
1133 info->debug = NULL;
1136 done:
1138 * Relock to continue the loop
1140 hammer2_chain_unlock(child);
1141 hammer2_chain_lock(parent, HAMMER2_RESOLVE_MAYBE);
1142 hammer2_chain_drop(child);
1143 KKASSERT(info->parent == parent);
1144 hammer2_spin_ex(&parent->core.spin);
1146 return (0);
1150 * Flush helper (direct)
1152 * Quickly flushes any dirty chains for a device and returns a temporary
1153 * out-of-band copy of hmp->vchain that the caller can use as a stable
1154 * reference.
1156 * This function does not flush the actual volume root and does not flush dirty
1157 * device buffers. We don't care about pending work, per-say. This function
1158 * is primarily used by the bulkfree code to create a stable snapshot of
1159 * the block tree.
1161 hammer2_chain_t *
1162 hammer2_flush_quick(hammer2_dev_t *hmp)
1164 hammer2_chain_t *chain;
1165 hammer2_chain_t *copy;
1167 hammer2_trans_init(hmp->spmp, HAMMER2_TRANS_ISFLUSH);
1169 hammer2_chain_ref(&hmp->vchain);
1170 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1171 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1172 chain = &hmp->vchain;
1173 hammer2_flush(chain, HAMMER2_FLUSH_TOP |
1174 HAMMER2_FLUSH_ALL);
1175 KKASSERT(chain == &hmp->vchain);
1177 copy = hammer2_chain_bulksnap(&hmp->vchain);
1178 hammer2_chain_unlock(&hmp->vchain);
1179 hammer2_chain_drop(&hmp->vchain);
1181 hammer2_trans_done(hmp->spmp); /* spmp trans */
1183 return copy;
1187 * flush helper (backend threaded)
1189 * Flushes core chains, issues disk sync, flushes volume roots.
1191 * Primarily called from vfs_sync().
1193 void
1194 hammer2_inode_xop_flush(hammer2_thread_t *thr, hammer2_xop_t *arg)
1196 hammer2_xop_flush_t *xop = &arg->xop_flush;
1197 hammer2_chain_t *chain;
1198 hammer2_chain_t *parent;
1199 hammer2_dev_t *hmp;
1200 int error = 0;
1201 int total_error = 0;
1202 int j;
1205 * Flush core chains
1207 chain = hammer2_inode_chain(xop->head.ip1, thr->clindex,
1208 HAMMER2_RESOLVE_ALWAYS);
1209 if (chain) {
1210 hmp = chain->hmp;
1211 if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) ||
1212 TAILQ_FIRST(&hmp->flushq) != NULL) {
1213 hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1214 parent = chain->parent;
1215 KKASSERT(chain->pmp != parent->pmp);
1216 hammer2_chain_setflush(parent);
1218 hammer2_chain_unlock(chain);
1219 hammer2_chain_drop(chain);
1220 chain = NULL;
1221 } else {
1222 hmp = NULL;
1226 * Flush volume roots. Avoid replication, we only want to
1227 * flush each hammer2_dev (hmp) once.
1229 for (j = thr->clindex - 1; j >= 0; --j) {
1230 if ((chain = xop->head.ip1->cluster.array[j].chain) != NULL) {
1231 if (chain->hmp == hmp) {
1232 chain = NULL; /* safety */
1233 goto skip;
1237 chain = NULL; /* safety */
1240 * spmp transaction. The super-root is never directly mounted so
1241 * there shouldn't be any vnodes, let alone any dirty vnodes
1242 * associated with it, so we shouldn't have to mess around with any
1243 * vnode flushes here.
1245 hammer2_trans_init(hmp->spmp, HAMMER2_TRANS_ISFLUSH);
1248 * Media mounts have two 'roots', vchain for the topology
1249 * and fchain for the free block table. Flush both.
1251 * Note that the topology and free block table are handled
1252 * independently, so the free block table can wind up being
1253 * ahead of the topology. We depend on the bulk free scan
1254 * code to deal with any loose ends.
1256 hammer2_chain_ref(&hmp->vchain);
1257 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1258 hammer2_chain_ref(&hmp->fchain);
1259 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1260 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1262 * This will also modify vchain as a side effect,
1263 * mark vchain as modified now.
1265 hammer2_voldata_modify(hmp);
1266 chain = &hmp->fchain;
1267 hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1268 KKASSERT(chain == &hmp->fchain);
1270 hammer2_chain_unlock(&hmp->fchain);
1271 hammer2_chain_unlock(&hmp->vchain);
1272 hammer2_chain_drop(&hmp->fchain);
1273 /* vchain dropped down below */
1275 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1276 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1277 chain = &hmp->vchain;
1278 hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1279 KKASSERT(chain == &hmp->vchain);
1281 hammer2_chain_unlock(&hmp->vchain);
1282 hammer2_chain_drop(&hmp->vchain);
1284 error = 0;
1287 * We can't safely flush the volume header until we have
1288 * flushed any device buffers which have built up.
1290 * XXX this isn't being incremental
1292 vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY);
1293 error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0);
1294 vn_unlock(hmp->devvp);
1297 * The flush code sets CHAIN_VOLUMESYNC to indicate that the
1298 * volume header needs synchronization via hmp->volsync.
1300 * XXX synchronize the flag & data with only this flush XXX
1302 if (error == 0 &&
1303 (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) {
1304 struct buf *bp;
1307 * Synchronize the disk before flushing the volume
1308 * header.
1310 bp = getpbuf(NULL);
1311 bp->b_bio1.bio_offset = 0;
1312 bp->b_bufsize = 0;
1313 bp->b_bcount = 0;
1314 bp->b_cmd = BUF_CMD_FLUSH;
1315 bp->b_bio1.bio_done = biodone_sync;
1316 bp->b_bio1.bio_flags |= BIO_SYNC;
1317 vn_strategy(hmp->devvp, &bp->b_bio1);
1318 biowait(&bp->b_bio1, "h2vol");
1319 relpbuf(bp, NULL);
1322 * Then we can safely flush the version of the
1323 * volume header synchronized by the flush code.
1325 j = hmp->volhdrno + 1;
1326 if (j >= HAMMER2_NUM_VOLHDRS)
1327 j = 0;
1328 if (j * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE >
1329 hmp->volsync.volu_size) {
1330 j = 0;
1332 if (hammer2_debug & 0x8000) {
1333 /* debug only, avoid syslogd loop */
1334 kprintf("sync volhdr %d %jd\n",
1335 j, (intmax_t)hmp->volsync.volu_size);
1337 bp = getblk(hmp->devvp, j * HAMMER2_ZONE_BYTES64,
1338 HAMMER2_PBUFSIZE, 0, 0);
1339 atomic_clear_int(&hmp->vchain.flags,
1340 HAMMER2_CHAIN_VOLUMESYNC);
1341 bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE);
1342 bawrite(bp);
1343 hmp->volhdrno = j;
1345 if (error)
1346 total_error = error;
1348 hammer2_trans_done(hmp->spmp); /* spmp trans */
1349 skip:
1350 error = hammer2_xop_feed(&xop->head, NULL, thr->clindex, total_error);