2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 #include <sys/mountctl.h>
36 #include <sys/namecache.h>
38 #include <vfs/fifofs/fifo.h>
45 static int hammer_vop_fsync(struct vop_fsync_args
*);
46 static int hammer_vop_read(struct vop_read_args
*);
47 static int hammer_vop_write(struct vop_write_args
*);
48 static int hammer_vop_access(struct vop_access_args
*);
49 static int hammer_vop_advlock(struct vop_advlock_args
*);
50 static int hammer_vop_close(struct vop_close_args
*);
51 static int hammer_vop_ncreate(struct vop_ncreate_args
*);
52 static int hammer_vop_getattr(struct vop_getattr_args
*);
53 static int hammer_vop_nresolve(struct vop_nresolve_args
*);
54 static int hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args
*);
55 static int hammer_vop_nlink(struct vop_nlink_args
*);
56 static int hammer_vop_nmkdir(struct vop_nmkdir_args
*);
57 static int hammer_vop_nmknod(struct vop_nmknod_args
*);
58 static int hammer_vop_open(struct vop_open_args
*);
59 static int hammer_vop_print(struct vop_print_args
*);
60 static int hammer_vop_readdir(struct vop_readdir_args
*);
61 static int hammer_vop_readlink(struct vop_readlink_args
*);
62 static int hammer_vop_nremove(struct vop_nremove_args
*);
63 static int hammer_vop_nrename(struct vop_nrename_args
*);
64 static int hammer_vop_nrmdir(struct vop_nrmdir_args
*);
65 static int hammer_vop_markatime(struct vop_markatime_args
*);
66 static int hammer_vop_setattr(struct vop_setattr_args
*);
67 static int hammer_vop_strategy(struct vop_strategy_args
*);
68 static int hammer_vop_bmap(struct vop_bmap_args
*ap
);
69 static int hammer_vop_nsymlink(struct vop_nsymlink_args
*);
70 static int hammer_vop_nwhiteout(struct vop_nwhiteout_args
*);
71 static int hammer_vop_ioctl(struct vop_ioctl_args
*);
72 static int hammer_vop_mountctl(struct vop_mountctl_args
*);
73 static int hammer_vop_kqfilter (struct vop_kqfilter_args
*);
75 static int hammer_vop_fifoclose (struct vop_close_args
*);
76 static int hammer_vop_fiforead (struct vop_read_args
*);
77 static int hammer_vop_fifowrite (struct vop_write_args
*);
78 static int hammer_vop_fifokqfilter (struct vop_kqfilter_args
*);
80 struct vop_ops hammer_vnode_vops
= {
81 .vop_default
= vop_defaultop
,
82 .vop_fsync
= hammer_vop_fsync
,
83 .vop_getpages
= vop_stdgetpages
,
84 .vop_putpages
= vop_stdputpages
,
85 .vop_read
= hammer_vop_read
,
86 .vop_write
= hammer_vop_write
,
87 .vop_access
= hammer_vop_access
,
88 .vop_advlock
= hammer_vop_advlock
,
89 .vop_close
= hammer_vop_close
,
90 .vop_ncreate
= hammer_vop_ncreate
,
91 .vop_getattr
= hammer_vop_getattr
,
92 .vop_inactive
= hammer_vop_inactive
,
93 .vop_reclaim
= hammer_vop_reclaim
,
94 .vop_nresolve
= hammer_vop_nresolve
,
95 .vop_nlookupdotdot
= hammer_vop_nlookupdotdot
,
96 .vop_nlink
= hammer_vop_nlink
,
97 .vop_nmkdir
= hammer_vop_nmkdir
,
98 .vop_nmknod
= hammer_vop_nmknod
,
99 .vop_open
= hammer_vop_open
,
100 .vop_pathconf
= vop_stdpathconf
,
101 .vop_print
= hammer_vop_print
,
102 .vop_readdir
= hammer_vop_readdir
,
103 .vop_readlink
= hammer_vop_readlink
,
104 .vop_nremove
= hammer_vop_nremove
,
105 .vop_nrename
= hammer_vop_nrename
,
106 .vop_nrmdir
= hammer_vop_nrmdir
,
107 .vop_markatime
= hammer_vop_markatime
,
108 .vop_setattr
= hammer_vop_setattr
,
109 .vop_bmap
= hammer_vop_bmap
,
110 .vop_strategy
= hammer_vop_strategy
,
111 .vop_nsymlink
= hammer_vop_nsymlink
,
112 .vop_nwhiteout
= hammer_vop_nwhiteout
,
113 .vop_ioctl
= hammer_vop_ioctl
,
114 .vop_mountctl
= hammer_vop_mountctl
,
115 .vop_kqfilter
= hammer_vop_kqfilter
118 struct vop_ops hammer_spec_vops
= {
119 .vop_default
= vop_defaultop
,
120 .vop_fsync
= hammer_vop_fsync
,
121 .vop_read
= vop_stdnoread
,
122 .vop_write
= vop_stdnowrite
,
123 .vop_access
= hammer_vop_access
,
124 .vop_close
= hammer_vop_close
,
125 .vop_markatime
= hammer_vop_markatime
,
126 .vop_getattr
= hammer_vop_getattr
,
127 .vop_inactive
= hammer_vop_inactive
,
128 .vop_reclaim
= hammer_vop_reclaim
,
129 .vop_setattr
= hammer_vop_setattr
132 struct vop_ops hammer_fifo_vops
= {
133 .vop_default
= fifo_vnoperate
,
134 .vop_fsync
= hammer_vop_fsync
,
135 .vop_read
= hammer_vop_fiforead
,
136 .vop_write
= hammer_vop_fifowrite
,
137 .vop_access
= hammer_vop_access
,
138 .vop_close
= hammer_vop_fifoclose
,
139 .vop_markatime
= hammer_vop_markatime
,
140 .vop_getattr
= hammer_vop_getattr
,
141 .vop_inactive
= hammer_vop_inactive
,
142 .vop_reclaim
= hammer_vop_reclaim
,
143 .vop_setattr
= hammer_vop_setattr
,
144 .vop_kqfilter
= hammer_vop_fifokqfilter
149 hammer_knote(struct vnode
*vp
, int flags
)
152 KNOTE(&vp
->v_pollinfo
.vpi_kqinfo
.ki_note
, flags
);
155 static int hammer_dounlink(hammer_transaction_t trans
, struct nchandle
*nch
,
156 struct vnode
*dvp
, struct ucred
*cred
,
157 int flags
, int isdir
);
158 static int hammer_vop_strategy_read(struct vop_strategy_args
*ap
);
159 static int hammer_vop_strategy_write(struct vop_strategy_args
*ap
);
162 * hammer_vop_fsync { vp, waitfor }
164 * fsync() an inode to disk and wait for it to be completely committed
165 * such that the information would not be undone if a crash occured after
168 * NOTE: HAMMER's fsync()'s are going to remain expensive until we implement
169 * a REDO log. A sysctl is provided to relax HAMMER's fsync()
172 * Ultimately the combination of a REDO log and use of fast storage
173 * to front-end cluster caches will make fsync fast, but it aint
174 * here yet. And, in anycase, we need real transactional
175 * all-or-nothing features which are not restricted to a single file.
179 hammer_vop_fsync(struct vop_fsync_args
*ap
)
181 hammer_inode_t ip
= VTOI(ap
->a_vp
);
182 hammer_mount_t hmp
= ip
->hmp
;
183 int waitfor
= ap
->a_waitfor
;
186 lwkt_gettoken(&hmp
->fs_token
);
189 * Fsync rule relaxation (default is either full synchronous flush
190 * or REDO semantics with synchronous flush).
192 if (ap
->a_flags
& VOP_FSYNC_SYSCALL
) {
193 switch(hammer_fsync_mode
) {
196 /* no REDO, full synchronous flush */
200 /* no REDO, full asynchronous flush */
201 if (waitfor
== MNT_WAIT
)
202 waitfor
= MNT_NOWAIT
;
205 /* REDO semantics, synchronous flush */
206 if (hmp
->version
< HAMMER_VOL_VERSION_FOUR
)
208 mode
= HAMMER_FLUSH_UNDOS_AUTO
;
211 /* REDO semantics, relaxed asynchronous flush */
212 if (hmp
->version
< HAMMER_VOL_VERSION_FOUR
)
214 mode
= HAMMER_FLUSH_UNDOS_RELAXED
;
215 if (waitfor
== MNT_WAIT
)
216 waitfor
= MNT_NOWAIT
;
219 /* ignore the fsync() system call */
220 lwkt_reltoken(&hmp
->fs_token
);
223 /* we have to do something */
224 mode
= HAMMER_FLUSH_UNDOS_RELAXED
;
225 if (waitfor
== MNT_WAIT
)
226 waitfor
= MNT_NOWAIT
;
231 * Fast fsync only needs to flush the UNDO/REDO fifo if
232 * HAMMER_INODE_REDO is non-zero and the only modifications
233 * made to the file are write or write-extends.
235 if ((ip
->flags
& HAMMER_INODE_REDO
) &&
236 (ip
->flags
& HAMMER_INODE_MODMASK_NOREDO
) == 0) {
237 ++hammer_count_fsyncs
;
238 hammer_flusher_flush_undos(hmp
, mode
);
240 if (ip
->vp
&& (ip
->flags
& HAMMER_INODE_MODMASK
) == 0)
242 lwkt_reltoken(&hmp
->fs_token
);
247 * REDO is enabled by fsync(), the idea being we really only
248 * want to lay down REDO records when programs are using
249 * fsync() heavily. The first fsync() on the file starts
250 * the gravy train going and later fsync()s keep it hot by
251 * resetting the redo_count.
253 * We weren't running REDOs before now so we have to fall
254 * through and do a full fsync of what we have.
256 if (hmp
->version
>= HAMMER_VOL_VERSION_FOUR
&&
257 (hmp
->flags
& HAMMER_MOUNT_REDO_RECOVERY_RUN
) == 0) {
258 ip
->flags
|= HAMMER_INODE_REDO
;
265 * Do a full flush sequence.
267 * Attempt to release the vnode while waiting for the inode to
268 * finish flushing. This can really mess up inactive->reclaim
269 * sequences so only do it if the vnode is active.
271 * WARNING! The VX lock functions must be used. vn_lock() will
272 * fail when this is part of a VOP_RECLAIM sequence.
274 ++hammer_count_fsyncs
;
275 vfsync(ap
->a_vp
, waitfor
, 1, NULL
, NULL
);
276 hammer_flush_inode(ip
, HAMMER_FLUSH_SIGNAL
);
277 if (waitfor
== MNT_WAIT
) {
280 if ((ap
->a_vp
->v_flag
& VRECLAIMED
) == 0) {
286 hammer_wait_inode(ip
);
290 if (ip
->vp
&& (ip
->flags
& HAMMER_INODE_MODMASK
) == 0)
292 lwkt_reltoken(&hmp
->fs_token
);
297 * hammer_vop_read { vp, uio, ioflag, cred }
299 * MPSAFE (for the cache safe does not require fs_token)
303 hammer_vop_read(struct vop_read_args
*ap
)
305 struct hammer_transaction trans
;
320 if (ap
->a_vp
->v_type
!= VREG
)
329 * Attempt to shortcut directly to the VM object using lwbufs.
330 * This is much faster than instantiating buffer cache buffers.
332 resid
= uio
->uio_resid
;
333 error
= vop_helper_read_shortcut(ap
);
334 hammer_stats_file_read
+= resid
- uio
->uio_resid
;
337 if (uio
->uio_resid
== 0)
341 * Allow the UIO's size to override the sequential heuristic.
343 blksize
= hammer_blocksize(uio
->uio_offset
);
344 seqcount
= (uio
->uio_resid
+ (MAXBSIZE
- 1)) / MAXBSIZE
;
345 ioseqcount
= (ap
->a_ioflag
>> 16);
346 if (seqcount
< ioseqcount
)
347 seqcount
= ioseqcount
;
350 * If reading or writing a huge amount of data we have to break
351 * atomicy and allow the operation to be interrupted by a signal
352 * or it can DOS the machine.
354 bigread
= (uio
->uio_resid
> 100 * 1024 * 1024);
357 * Access the data typically in HAMMER_BUFSIZE blocks via the
358 * buffer cache, but HAMMER may use a variable block size based
361 * XXX Temporary hack, delay the start transaction while we remain
362 * MPSAFE. NOTE: ino_data.size cannot change while vnode is
365 while (uio
->uio_resid
> 0 && uio
->uio_offset
< ip
->ino_data
.size
) {
369 blksize
= hammer_blocksize(uio
->uio_offset
);
370 offset
= (int)uio
->uio_offset
& (blksize
- 1);
371 base_offset
= uio
->uio_offset
- offset
;
373 if (bigread
&& (error
= hammer_signal_check(ip
->hmp
)) != 0)
379 bp
= getblk(ap
->a_vp
, base_offset
, blksize
, 0, 0);
380 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) == B_CACHE
) {
381 bp
->b_flags
&= ~B_AGE
;
385 if (ap
->a_ioflag
& IO_NRDELAY
) {
387 return (EWOULDBLOCK
);
393 if (got_trans
== 0) {
394 hammer_start_transaction(&trans
, ip
->hmp
);
399 * NOTE: A valid bp has already been acquired, but was not
402 if (hammer_cluster_enable
) {
404 * Use file_limit to prevent cluster_read() from
405 * creating buffers of the wrong block size past
408 file_limit
= ip
->ino_data
.size
;
409 if (base_offset
< HAMMER_XDEMARC
&&
410 file_limit
> HAMMER_XDEMARC
) {
411 file_limit
= HAMMER_XDEMARC
;
413 error
= cluster_readx(ap
->a_vp
,
414 file_limit
, base_offset
,
420 error
= breadnx(ap
->a_vp
, base_offset
,
429 if ((hammer_debug_io
& 0x0001) && (bp
->b_flags
& B_IOISSUED
)) {
430 hdkprintf("zone2_offset %016jx read file %016jx@%016jx\n",
431 (intmax_t)bp
->b_bio2
.bio_offset
,
432 (intmax_t)ip
->obj_id
,
433 (intmax_t)bp
->b_loffset
);
435 bp
->b_flags
&= ~B_IOISSUED
;
436 if (blksize
== HAMMER_XBUFSIZE
)
437 bp
->b_flags
|= B_CLUSTEROK
;
439 n
= blksize
- offset
;
440 if (n
> uio
->uio_resid
)
442 if (n
> ip
->ino_data
.size
- uio
->uio_offset
)
443 n
= (int)(ip
->ino_data
.size
- uio
->uio_offset
);
446 * Set B_AGE, data has a lower priority than meta-data.
448 * Use a hold/unlock/drop sequence to run the uiomove
449 * with the buffer unlocked, avoiding deadlocks against
450 * read()s on mmap()'d spaces.
452 bp
->b_flags
|= B_AGE
;
453 error
= uiomovebp(bp
, (char *)bp
->b_data
+ offset
, n
, uio
);
458 hammer_stats_file_read
+= n
;
464 * Try to update the atime with just the inode lock for maximum
465 * concurrency. If we can't shortcut it we have to get the full
468 if (got_trans
== 0 && hammer_update_atime_quick(ip
) < 0) {
469 hammer_start_transaction(&trans
, ip
->hmp
);
474 if ((ip
->flags
& HAMMER_INODE_RO
) == 0 &&
475 (ip
->hmp
->mp
->mnt_flag
& MNT_NOATIME
) == 0) {
476 lwkt_gettoken(&hmp
->fs_token
);
477 ip
->ino_data
.atime
= trans
.time
;
478 hammer_modify_inode(&trans
, ip
, HAMMER_INODE_ATIME
);
479 hammer_done_transaction(&trans
);
480 lwkt_reltoken(&hmp
->fs_token
);
482 hammer_done_transaction(&trans
);
489 * hammer_vop_write { vp, uio, ioflag, cred }
493 hammer_vop_write(struct vop_write_args
*ap
)
495 struct hammer_transaction trans
;
513 if (vp
->v_type
!= VREG
)
519 seqcount
= ap
->a_ioflag
>> 16;
521 if (ip
->flags
& HAMMER_INODE_RO
)
525 * Create a transaction to cover the operations we perform.
527 hammer_start_transaction(&trans
, hmp
);
531 * Use v_lastwrite_ts if file not open for writing
532 * (i.e. a late msync)
534 if (uio
->uio_segflg
== UIO_NOCOPY
) {
535 if (vp
->v_flag
& VLASTWRITETS
) {
536 trans
.time
= vp
->v_lastwrite_ts
.tv_sec
* 1000000 +
537 vp
->v_lastwrite_ts
.tv_nsec
/ 1000;
539 trans
.time
= ip
->ino_data
.mtime
;
542 vclrflags(vp
, VLASTWRITETS
);
548 if (ap
->a_ioflag
& IO_APPEND
)
549 uio
->uio_offset
= ip
->ino_data
.size
;
552 * Check for illegal write offsets. Valid range is 0...2^63-1.
554 * NOTE: the base_off assignment is required to work around what
555 * I consider to be a GCC-4 optimization bug.
557 if (uio
->uio_offset
< 0) {
558 hammer_done_transaction(&trans
);
561 base_offset
= uio
->uio_offset
+ uio
->uio_resid
; /* work around gcc-4 */
562 if (uio
->uio_resid
> 0 && base_offset
<= uio
->uio_offset
) {
563 hammer_done_transaction(&trans
);
567 if (uio
->uio_resid
> 0 && (td
= uio
->uio_td
) != NULL
&& td
->td_proc
&&
568 base_offset
> td
->td_proc
->p_rlimit
[RLIMIT_FSIZE
].rlim_cur
) {
569 hammer_done_transaction(&trans
);
570 lwpsignal(td
->td_proc
, td
->td_lwp
, SIGXFSZ
);
575 * If reading or writing a huge amount of data we have to break
576 * atomicy and allow the operation to be interrupted by a signal
577 * or it can DOS the machine.
579 * Preset redo_count so we stop generating REDOs earlier if the
582 * redo_count is heuristical, SMP races are ok
584 bigwrite
= (uio
->uio_resid
> 100 * 1024 * 1024);
585 if ((ip
->flags
& HAMMER_INODE_REDO
) &&
586 ip
->redo_count
< hammer_limit_redo
) {
587 ip
->redo_count
+= uio
->uio_resid
;
591 * Access the data typically in HAMMER_BUFSIZE blocks via the
592 * buffer cache, but HAMMER may use a variable block size based
595 while (uio
->uio_resid
> 0) {
603 if ((error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_WRITE
)) != 0)
605 if (bigwrite
&& (error
= hammer_signal_check(hmp
)) != 0)
608 blksize
= hammer_blocksize(uio
->uio_offset
);
611 * Control the number of pending records associated with
612 * this inode. If too many have accumulated start a
613 * flush. Try to maintain a pipeline with the flusher.
615 * NOTE: It is possible for other sources to grow the
616 * records but not necessarily issue another flush,
617 * so use a timeout and ensure that a re-flush occurs.
619 if (ip
->rsv_recs
>= hammer_limit_inode_recs
) {
620 lwkt_gettoken(&hmp
->fs_token
);
621 hammer_flush_inode(ip
, HAMMER_FLUSH_SIGNAL
);
622 while (ip
->rsv_recs
>= hammer_limit_inode_recs
* 2) {
623 ip
->flags
|= HAMMER_INODE_RECSW
;
624 tsleep(&ip
->rsv_recs
, 0, "hmrwww", hz
);
625 hammer_flush_inode(ip
, HAMMER_FLUSH_SIGNAL
);
627 lwkt_reltoken(&hmp
->fs_token
);
631 * Do not allow HAMMER to blow out the buffer cache. Very
632 * large UIOs can lockout other processes due to bwillwrite()
635 * The hammer inode is not locked during these operations.
636 * The vnode is locked which can interfere with the pageout
637 * daemon for non-UIO_NOCOPY writes but should not interfere
638 * with the buffer cache. Even so, we cannot afford to
639 * allow the pageout daemon to build up too many dirty buffer
642 * Only call this if we aren't being recursively called from
643 * a virtual disk device (vn), else we may deadlock.
645 if ((ap
->a_ioflag
& IO_RECURSE
) == 0)
649 * Calculate the blocksize at the current offset and figure
650 * out how much we can actually write.
652 blkmask
= blksize
- 1;
653 offset
= (int)uio
->uio_offset
& blkmask
;
654 base_offset
= uio
->uio_offset
& ~(int64_t)blkmask
;
655 n
= blksize
- offset
;
656 if (n
> uio
->uio_resid
) {
662 nsize
= uio
->uio_offset
+ n
;
663 if (nsize
> ip
->ino_data
.size
) {
664 if (uio
->uio_offset
> ip
->ino_data
.size
)
668 nvextendbuf(ap
->a_vp
,
671 hammer_blocksize(ip
->ino_data
.size
),
672 hammer_blocksize(nsize
),
673 hammer_blockoff(ip
->ino_data
.size
),
674 hammer_blockoff(nsize
),
677 kflags
|= NOTE_EXTEND
;
680 if (uio
->uio_segflg
== UIO_NOCOPY
) {
682 * Issuing a write with the same data backing the
683 * buffer. Instantiate the buffer to collect the
684 * backing vm pages, then read-in any missing bits.
686 * This case is used by vop_stdputpages().
688 bp
= getblk(ap
->a_vp
, base_offset
,
689 blksize
, GETBLK_BHEAVY
, 0);
690 if ((bp
->b_flags
& B_CACHE
) == 0) {
692 error
= bread(ap
->a_vp
, base_offset
,
695 } else if (offset
== 0 && uio
->uio_resid
>= blksize
) {
697 * Even though we are entirely overwriting the buffer
698 * we may still have to zero it out to avoid a
699 * mmap/write visibility issue.
701 bp
= getblk(ap
->a_vp
, base_offset
, blksize
, GETBLK_BHEAVY
, 0);
702 if ((bp
->b_flags
& B_CACHE
) == 0)
704 } else if (base_offset
>= ip
->ino_data
.size
) {
706 * If the base offset of the buffer is beyond the
707 * file EOF, we don't have to issue a read.
709 bp
= getblk(ap
->a_vp
, base_offset
,
710 blksize
, GETBLK_BHEAVY
, 0);
714 * Partial overwrite, read in any missing bits then
715 * replace the portion being written.
717 error
= bread(ap
->a_vp
, base_offset
, blksize
, &bp
);
722 error
= uiomovebp(bp
, bp
->b_data
+ offset
, n
, uio
);
724 lwkt_gettoken(&hmp
->fs_token
);
727 * Generate REDO records if enabled and redo_count will not
728 * exceeded the limit.
730 * If redo_count exceeds the limit we stop generating records
731 * and clear HAMMER_INODE_REDO. This will cause the next
732 * fsync() to do a full meta-data sync instead of just an
733 * UNDO/REDO fifo update.
735 * When clearing HAMMER_INODE_REDO any pre-existing REDOs
736 * will still be tracked. The tracks will be terminated
737 * when the related meta-data (including possible data
738 * modifications which are not tracked via REDO) is
741 if ((ip
->flags
& HAMMER_INODE_REDO
) && error
== 0) {
742 if (ip
->redo_count
< hammer_limit_redo
) {
743 bp
->b_flags
|= B_VFSFLAG1
;
744 error
= hammer_generate_redo(&trans
, ip
,
745 base_offset
+ offset
,
750 ip
->flags
&= ~HAMMER_INODE_REDO
;
755 * If we screwed up we have to undo any VM size changes we
761 nvtruncbuf(ap
->a_vp
, ip
->ino_data
.size
,
762 hammer_blocksize(ip
->ino_data
.size
),
763 hammer_blockoff(ip
->ino_data
.size
),
766 lwkt_reltoken(&hmp
->fs_token
);
769 kflags
|= NOTE_WRITE
;
770 hammer_stats_file_write
+= n
;
771 if (blksize
== HAMMER_XBUFSIZE
)
772 bp
->b_flags
|= B_CLUSTEROK
;
773 if (ip
->ino_data
.size
< uio
->uio_offset
) {
774 ip
->ino_data
.size
= uio
->uio_offset
;
775 flags
= HAMMER_INODE_SDIRTY
;
779 ip
->ino_data
.mtime
= trans
.time
;
780 flags
|= HAMMER_INODE_MTIME
| HAMMER_INODE_BUFS
;
781 hammer_modify_inode(&trans
, ip
, flags
);
784 * Once we dirty the buffer any cached zone-X offset
785 * becomes invalid. HAMMER NOTE: no-history mode cannot
786 * allow overwriting over the same data sector unless
787 * we provide UNDOs for the old data, which we don't.
789 bp
->b_bio2
.bio_offset
= NOOFFSET
;
791 lwkt_reltoken(&hmp
->fs_token
);
794 * Final buffer disposition.
796 * Because meta-data updates are deferred, HAMMER is
797 * especially sensitive to excessive bdwrite()s because
798 * the I/O stream is not broken up by disk reads. So the
799 * buffer cache simply cannot keep up.
801 * WARNING! blksize is variable. cluster_write() is
802 * expected to not blow up if it encounters
803 * buffers that do not match the passed blksize.
805 * NOTE! Hammer shouldn't need to bawrite()/cluster_write().
806 * The ip->rsv_recs check should burst-flush the data.
807 * If we queue it immediately the buf could be left
808 * locked on the device queue for a very long time.
810 * However, failing to flush a dirty buffer out when
811 * issued from the pageout daemon can result in a low
812 * memory deadlock against bio_page_alloc(), so we
813 * have to bawrite() on IO_ASYNC as well.
815 * NOTE! To avoid degenerate stalls due to mismatched block
816 * sizes we only honor IO_DIRECT on the write which
817 * abuts the end of the buffer. However, we must
818 * honor IO_SYNC in case someone is silly enough to
819 * configure a HAMMER file as swap, or when HAMMER
820 * is serving NFS (for commits). Ick ick.
822 bp
->b_flags
|= B_AGE
;
823 if (blksize
== HAMMER_XBUFSIZE
)
824 bp
->b_flags
|= B_CLUSTEROK
;
826 if (ap
->a_ioflag
& IO_SYNC
) {
828 } else if ((ap
->a_ioflag
& IO_DIRECT
) && endofblk
) {
830 } else if (ap
->a_ioflag
& IO_ASYNC
) {
832 } else if (hammer_cluster_enable
&&
833 !(ap
->a_vp
->v_mount
->mnt_flag
& MNT_NOCLUSTERW
)) {
834 if (base_offset
< HAMMER_XDEMARC
)
835 cluster_eof
= hammer_blockdemarc(base_offset
,
838 cluster_eof
= ip
->ino_data
.size
;
839 cluster_write(bp
, cluster_eof
, blksize
, seqcount
);
844 hammer_done_transaction(&trans
);
845 hammer_knote(ap
->a_vp
, kflags
);
851 * hammer_vop_access { vp, mode, cred }
853 * MPSAFE - does not require fs_token
857 hammer_vop_access(struct vop_access_args
*ap
)
859 hammer_inode_t ip
= VTOI(ap
->a_vp
);
864 uid
= hammer_to_unix_xid(&ip
->ino_data
.uid
);
865 gid
= hammer_to_unix_xid(&ip
->ino_data
.gid
);
867 error
= vop_helper_access(ap
, uid
, gid
, ip
->ino_data
.mode
,
868 ip
->ino_data
.uflags
);
873 * hammer_vop_advlock { vp, id, op, fl, flags }
875 * MPSAFE - does not require fs_token
879 hammer_vop_advlock(struct vop_advlock_args
*ap
)
881 hammer_inode_t ip
= VTOI(ap
->a_vp
);
883 return (lf_advlock(ap
, &ip
->advlock
, ip
->ino_data
.size
));
887 * hammer_vop_close { vp, fflag }
889 * We can only sync-on-close for normal closes. XXX disabled for now.
893 hammer_vop_close(struct vop_close_args
*ap
)
896 struct vnode
*vp
= ap
->a_vp
;
897 hammer_inode_t ip
= VTOI(vp
);
899 if (ip
->flags
& (HAMMER_INODE_CLOSESYNC
|HAMMER_INODE_CLOSEASYNC
)) {
900 if (vn_islocked(vp
) == LK_EXCLUSIVE
&&
901 (vp
->v_flag
& (VINACTIVE
|VRECLAIMED
)) == 0) {
902 if (ip
->flags
& HAMMER_INODE_CLOSESYNC
)
905 waitfor
= MNT_NOWAIT
;
906 ip
->flags
&= ~(HAMMER_INODE_CLOSESYNC
|
907 HAMMER_INODE_CLOSEASYNC
);
908 VOP_FSYNC(vp
, MNT_NOWAIT
, waitfor
);
912 return (vop_stdclose(ap
));
916 * hammer_vop_ncreate { nch, dvp, vpp, cred, vap }
918 * The operating system has already ensured that the directory entry
919 * does not exist and done all appropriate namespace locking.
923 hammer_vop_ncreate(struct vop_ncreate_args
*ap
)
925 struct hammer_transaction trans
;
928 struct nchandle
*nch
;
933 dip
= VTOI(ap
->a_dvp
);
936 if (dip
->flags
& HAMMER_INODE_RO
)
938 if ((error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_CREATE
)) != 0)
942 * Create a transaction to cover the operations we perform.
944 lwkt_gettoken(&hmp
->fs_token
);
945 hammer_start_transaction(&trans
, hmp
);
948 * Create a new filesystem object of the requested type. The
949 * returned inode will be referenced and shared-locked to prevent
950 * it from being moved to the flusher.
952 error
= hammer_create_inode(&trans
, ap
->a_vap
, ap
->a_cred
,
953 dip
, nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
956 hkprintf("hammer_create_inode error %d\n", error
);
957 hammer_done_transaction(&trans
);
959 lwkt_reltoken(&hmp
->fs_token
);
964 * Add the new filesystem object to the directory. This will also
965 * bump the inode's link count.
967 error
= hammer_ip_add_direntry(&trans
, dip
,
968 nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
971 hkprintf("hammer_ip_add_direntry error %d\n", error
);
977 hammer_rel_inode(nip
, 0);
978 hammer_done_transaction(&trans
);
981 error
= hammer_get_vnode(nip
, ap
->a_vpp
);
982 hammer_done_transaction(&trans
);
983 hammer_rel_inode(nip
, 0);
985 cache_setunresolved(ap
->a_nch
);
986 cache_setvp(ap
->a_nch
, *ap
->a_vpp
);
988 hammer_knote(ap
->a_dvp
, NOTE_WRITE
);
990 lwkt_reltoken(&hmp
->fs_token
);
995 * hammer_vop_getattr { vp, vap }
997 * Retrieve an inode's attribute information. When accessing inodes
998 * historically we fake the atime field to ensure consistent results.
999 * The atime field is stored in the B-Tree element and allowed to be
1000 * updated without cycling the element.
1002 * MPSAFE - does not require fs_token
1006 hammer_vop_getattr(struct vop_getattr_args
*ap
)
1008 hammer_inode_t ip
= VTOI(ap
->a_vp
);
1009 struct vattr
*vap
= ap
->a_vap
;
1012 * We want the fsid to be different when accessing a filesystem
1013 * with different as-of's so programs like diff don't think
1014 * the files are the same.
1016 * We also want the fsid to be the same when comparing snapshots,
1017 * or when comparing mirrors (which might be backed by different
1018 * physical devices). HAMMER fsids are based on the PFS's
1019 * shared_uuid field.
1021 * XXX there is a chance of collision here. The va_fsid reported
1022 * by stat is different from the more involved fsid used in the
1025 hammer_lock_sh(&ip
->lock
);
1026 vap
->va_fsid
= ip
->pfsm
->fsid_udev
^ (uint32_t)ip
->obj_asof
^
1027 (uint32_t)(ip
->obj_asof
>> 32);
1029 vap
->va_fileid
= ip
->ino_leaf
.base
.obj_id
;
1030 vap
->va_mode
= ip
->ino_data
.mode
;
1031 vap
->va_nlink
= ip
->ino_data
.nlinks
;
1032 vap
->va_uid
= hammer_to_unix_xid(&ip
->ino_data
.uid
);
1033 vap
->va_gid
= hammer_to_unix_xid(&ip
->ino_data
.gid
);
1036 vap
->va_size
= ip
->ino_data
.size
;
1039 * Special case for @@PFS softlinks. The actual size of the
1040 * expanded softlink is "@@0x%016llx:%05d" == 26 bytes.
1041 * or for MAX_TID is "@@-1:%05d" == 10 bytes.
1043 * Note that userspace hammer command does not allow users to
1044 * create a @@PFS softlink under an existing other PFS (id!=0)
1045 * so the ip localization here for @@PFS softlink is always 0.
1047 if (ip
->ino_data
.obj_type
== HAMMER_OBJTYPE_SOFTLINK
&&
1048 ip
->ino_data
.size
== 10 &&
1049 ip
->obj_asof
== HAMMER_MAX_TID
&&
1050 ip
->obj_localization
== HAMMER_DEF_LOCALIZATION
&&
1051 strncmp(ip
->ino_data
.ext
.symlink
, "@@PFS", 5) == 0) {
1052 if (hammer_is_pfs_slave(&ip
->pfsm
->pfsd
))
1059 * We must provide a consistent atime and mtime for snapshots
1060 * so people can do a 'tar cf - ... | md5' on them and get
1061 * consistent results.
1063 if (ip
->flags
& HAMMER_INODE_RO
) {
1064 hammer_time_to_timespec(ip
->ino_data
.ctime
, &vap
->va_atime
);
1065 hammer_time_to_timespec(ip
->ino_data
.ctime
, &vap
->va_mtime
);
1067 hammer_time_to_timespec(ip
->ino_data
.atime
, &vap
->va_atime
);
1068 hammer_time_to_timespec(ip
->ino_data
.mtime
, &vap
->va_mtime
);
1070 hammer_time_to_timespec(ip
->ino_data
.ctime
, &vap
->va_ctime
);
1071 vap
->va_flags
= ip
->ino_data
.uflags
;
1072 vap
->va_gen
= 1; /* hammer inums are unique for all time */
1073 vap
->va_blocksize
= HAMMER_BUFSIZE
;
1074 if (ip
->ino_data
.size
>= HAMMER_XDEMARC
) {
1075 vap
->va_bytes
= HAMMER_XBUFSIZE64_DOALIGN(ip
->ino_data
.size
);
1076 } else if (ip
->ino_data
.size
> HAMMER_HBUFSIZE
) {
1077 vap
->va_bytes
= HAMMER_BUFSIZE64_DOALIGN(ip
->ino_data
.size
);
1079 vap
->va_bytes
= HAMMER_DATA_DOALIGN(ip
->ino_data
.size
);
1082 vap
->va_type
= hammer_get_vnode_type(ip
->ino_data
.obj_type
);
1083 vap
->va_filerev
= 0; /* XXX */
1084 vap
->va_uid_uuid
= ip
->ino_data
.uid
;
1085 vap
->va_gid_uuid
= ip
->ino_data
.gid
;
1086 vap
->va_fsid_uuid
= ip
->hmp
->fsid
;
1087 vap
->va_vaflags
= VA_UID_UUID_VALID
| VA_GID_UUID_VALID
|
1090 switch (ip
->ino_data
.obj_type
) {
1091 case HAMMER_OBJTYPE_CDEV
:
1092 case HAMMER_OBJTYPE_BDEV
:
1093 vap
->va_rmajor
= ip
->ino_data
.rmajor
;
1094 vap
->va_rminor
= ip
->ino_data
.rminor
;
1099 hammer_unlock(&ip
->lock
);
1104 * hammer_vop_nresolve { nch, dvp, cred }
1106 * Locate the requested directory entry.
1110 hammer_vop_nresolve(struct vop_nresolve_args
*ap
)
1112 struct hammer_transaction trans
;
1113 struct namecache
*ncp
;
1118 struct hammer_cursor cursor
;
1127 uint32_t localization
;
1128 uint32_t max_iterations
;
1131 * Misc initialization, plus handle as-of name extensions. Look for
1132 * the '@@' extension. Note that as-of files and directories cannot
1135 dip
= VTOI(ap
->a_dvp
);
1136 ncp
= ap
->a_nch
->ncp
;
1137 asof
= dip
->obj_asof
;
1138 localization
= dip
->obj_localization
; /* for code consistency */
1139 nlen
= ncp
->nc_nlen
;
1140 flags
= dip
->flags
& HAMMER_INODE_RO
;
1144 lwkt_gettoken(&hmp
->fs_token
);
1145 hammer_simple_transaction(&trans
, hmp
);
1147 for (i
= 0; i
< nlen
; ++i
) {
1148 if (ncp
->nc_name
[i
] == '@' && ncp
->nc_name
[i
+1] == '@') {
1149 error
= hammer_str_to_tid(ncp
->nc_name
+ i
+ 2,
1150 &ispfs
, &asof
, &localization
);
1155 if (asof
!= HAMMER_MAX_TID
)
1156 flags
|= HAMMER_INODE_RO
;
1163 * If this is a PFS we dive into the PFS root inode
1165 if (ispfs
&& nlen
== 0) {
1166 ip
= hammer_get_inode(&trans
, dip
, HAMMER_OBJID_ROOT
,
1170 error
= hammer_get_vnode(ip
, &vp
);
1171 hammer_rel_inode(ip
, 0);
1177 cache_setvp(ap
->a_nch
, vp
);
1184 * If there is no path component the time extension is relative to dip.
1185 * e.g. "fubar/@@<snapshot>"
1187 * "." is handled by the kernel, but ".@@<snapshot>" is not.
1188 * e.g. "fubar/.@@<snapshot>"
1190 * ".." is handled by the kernel. We do not currently handle
1193 if (nlen
== 0 || (nlen
== 1 && ncp
->nc_name
[0] == '.')) {
1194 ip
= hammer_get_inode(&trans
, dip
, dip
->obj_id
,
1195 asof
, dip
->obj_localization
,
1198 error
= hammer_get_vnode(ip
, &vp
);
1199 hammer_rel_inode(ip
, 0);
1205 cache_setvp(ap
->a_nch
, vp
);
1212 * Calculate the namekey and setup the key range for the scan. This
1213 * works kinda like a chained hash table where the lower 32 bits
1214 * of the namekey synthesize the chain.
1216 * The key range is inclusive of both key_beg and key_end.
1218 namekey
= hammer_direntry_namekey(dip
, ncp
->nc_name
, nlen
,
1221 error
= hammer_init_cursor(&trans
, &cursor
, &dip
->cache
[1], dip
);
1222 cursor
.key_beg
.localization
= dip
->obj_localization
|
1223 hammer_dir_localization(dip
);
1224 cursor
.key_beg
.obj_id
= dip
->obj_id
;
1225 cursor
.key_beg
.key
= namekey
;
1226 cursor
.key_beg
.create_tid
= 0;
1227 cursor
.key_beg
.delete_tid
= 0;
1228 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_DIRENTRY
;
1229 cursor
.key_beg
.obj_type
= 0;
1231 cursor
.key_end
= cursor
.key_beg
;
1232 cursor
.key_end
.key
+= max_iterations
;
1234 cursor
.flags
|= HAMMER_CURSOR_END_INCLUSIVE
| HAMMER_CURSOR_ASOF
;
1237 * Scan all matching records (the chain), locate the one matching
1238 * the requested path component.
1240 * The hammer_ip_*() functions merge in-memory records with on-disk
1241 * records for the purposes of the search.
1244 localization
= HAMMER_DEF_LOCALIZATION
;
1247 error
= hammer_ip_first(&cursor
);
1248 while (error
== 0) {
1249 error
= hammer_ip_resolve_data(&cursor
);
1252 if (nlen
== cursor
.leaf
->data_len
- HAMMER_ENTRY_NAME_OFF
&&
1253 bcmp(ncp
->nc_name
, cursor
.data
->entry
.name
, nlen
) == 0) {
1254 obj_id
= cursor
.data
->entry
.obj_id
;
1255 localization
= cursor
.data
->entry
.localization
;
1258 error
= hammer_ip_next(&cursor
);
1261 hammer_done_cursor(&cursor
);
1264 * Lookup the obj_id. This should always succeed. If it does not
1265 * the filesystem may be damaged and we return a dummy inode.
1268 ip
= hammer_get_inode(&trans
, dip
, obj_id
,
1271 if (error
== ENOENT
) {
1272 hkprintf("WARNING: Missing inode for dirent \"%s\"\n"
1273 "\tobj_id = %016jx, asof=%016jx, lo=%08x\n",
1275 (intmax_t)obj_id
, (intmax_t)asof
,
1278 ip
= hammer_get_dummy_inode(&trans
, dip
, obj_id
,
1283 error
= hammer_get_vnode(ip
, &vp
);
1284 hammer_rel_inode(ip
, 0);
1290 cache_setvp(ap
->a_nch
, vp
);
1293 } else if (error
== ENOENT
) {
1294 cache_setvp(ap
->a_nch
, NULL
);
1297 hammer_done_transaction(&trans
);
1298 lwkt_reltoken(&hmp
->fs_token
);
1303 * hammer_vop_nlookupdotdot { dvp, vpp, cred }
1305 * Locate the parent directory of a directory vnode.
1307 * dvp is referenced but not locked. *vpp must be returned referenced and
1308 * locked. A parent_obj_id of 0 indicates that we are at the root.
1310 * NOTE: as-of sequences are not linked into the directory structure. If
1311 * we are at the root with a different asof then the mount point, reload
1312 * the same directory with the mount point's asof. I'm not sure what this
1313 * will do to NFS. We encode ASOF stamps in NFS file handles so it might not
1314 * get confused, but it hasn't been tested.
1318 hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args
*ap
)
1320 struct hammer_transaction trans
;
1324 int64_t parent_obj_id
;
1325 uint32_t parent_obj_localization
;
1329 dip
= VTOI(ap
->a_dvp
);
1330 asof
= dip
->obj_asof
;
1334 * Whos are parent? This could be the root of a pseudo-filesystem
1335 * whos parent is in another localization domain.
1337 lwkt_gettoken(&hmp
->fs_token
);
1338 parent_obj_id
= dip
->ino_data
.parent_obj_id
;
1339 if (dip
->obj_id
== HAMMER_OBJID_ROOT
)
1340 parent_obj_localization
= HAMMER_DEF_LOCALIZATION
;
1342 parent_obj_localization
= dip
->obj_localization
;
1345 * It's probably a PFS root when dip->ino_data.parent_obj_id is 0.
1347 if (parent_obj_id
== 0) {
1348 if (dip
->obj_id
== HAMMER_OBJID_ROOT
&&
1349 asof
!= hmp
->asof
) {
1350 parent_obj_id
= dip
->obj_id
;
1352 *ap
->a_fakename
= kmalloc(19, M_TEMP
, M_WAITOK
);
1353 ksnprintf(*ap
->a_fakename
, 19, "0x%016jx",
1354 (intmax_t)dip
->obj_asof
);
1357 lwkt_reltoken(&hmp
->fs_token
);
1362 hammer_simple_transaction(&trans
, hmp
);
1364 ip
= hammer_get_inode(&trans
, dip
, parent_obj_id
,
1365 asof
, parent_obj_localization
,
1366 dip
->flags
, &error
);
1368 error
= hammer_get_vnode(ip
, ap
->a_vpp
);
1369 hammer_rel_inode(ip
, 0);
1373 hammer_done_transaction(&trans
);
1374 lwkt_reltoken(&hmp
->fs_token
);
1379 * hammer_vop_nlink { nch, dvp, vp, cred }
1383 hammer_vop_nlink(struct vop_nlink_args
*ap
)
1385 struct hammer_transaction trans
;
1388 struct nchandle
*nch
;
1392 if (ap
->a_dvp
->v_mount
!= ap
->a_vp
->v_mount
)
1396 dip
= VTOI(ap
->a_dvp
);
1397 ip
= VTOI(ap
->a_vp
);
1400 if (dip
->obj_localization
!= ip
->obj_localization
)
1403 if (dip
->flags
& HAMMER_INODE_RO
)
1405 if (ip
->flags
& HAMMER_INODE_RO
)
1407 if ((error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_CREATE
)) != 0)
1411 * Create a transaction to cover the operations we perform.
1413 lwkt_gettoken(&hmp
->fs_token
);
1414 hammer_start_transaction(&trans
, hmp
);
1417 * Add the filesystem object to the directory. Note that neither
1418 * dip nor ip are referenced or locked, but their vnodes are
1419 * referenced. This function will bump the inode's link count.
1421 error
= hammer_ip_add_direntry(&trans
, dip
,
1422 nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
1429 cache_setunresolved(nch
);
1430 cache_setvp(nch
, ap
->a_vp
);
1432 hammer_done_transaction(&trans
);
1433 hammer_knote(ap
->a_vp
, NOTE_LINK
);
1434 hammer_knote(ap
->a_dvp
, NOTE_WRITE
);
1435 lwkt_reltoken(&hmp
->fs_token
);
1440 * hammer_vop_nmkdir { nch, dvp, vpp, cred, vap }
1442 * The operating system has already ensured that the directory entry
1443 * does not exist and done all appropriate namespace locking.
1447 hammer_vop_nmkdir(struct vop_nmkdir_args
*ap
)
1449 struct hammer_transaction trans
;
1452 struct nchandle
*nch
;
1457 dip
= VTOI(ap
->a_dvp
);
1460 if (dip
->flags
& HAMMER_INODE_RO
)
1462 if ((error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_CREATE
)) != 0)
1466 * Create a transaction to cover the operations we perform.
1468 lwkt_gettoken(&hmp
->fs_token
);
1469 hammer_start_transaction(&trans
, hmp
);
1472 * Create a new filesystem object of the requested type. The
1473 * returned inode will be referenced but not locked.
1475 error
= hammer_create_inode(&trans
, ap
->a_vap
, ap
->a_cred
,
1476 dip
, nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
1479 hammer_done_transaction(&trans
);
1481 lwkt_reltoken(&hmp
->fs_token
);
1485 * Add the new filesystem object to the directory. This will also
1486 * bump the inode's link count.
1488 error
= hammer_ip_add_direntry(&trans
, dip
,
1489 nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
1492 hkprintf("hammer_mkdir (add) error %d\n", error
);
1498 hammer_rel_inode(nip
, 0);
1501 error
= hammer_get_vnode(nip
, ap
->a_vpp
);
1502 hammer_rel_inode(nip
, 0);
1504 cache_setunresolved(ap
->a_nch
);
1505 cache_setvp(ap
->a_nch
, *ap
->a_vpp
);
1508 hammer_done_transaction(&trans
);
1510 hammer_knote(ap
->a_dvp
, NOTE_WRITE
| NOTE_LINK
);
1511 lwkt_reltoken(&hmp
->fs_token
);
1516 * hammer_vop_nmknod { nch, dvp, vpp, cred, vap }
1518 * The operating system has already ensured that the directory entry
1519 * does not exist and done all appropriate namespace locking.
1523 hammer_vop_nmknod(struct vop_nmknod_args
*ap
)
1525 struct hammer_transaction trans
;
1528 struct nchandle
*nch
;
1533 dip
= VTOI(ap
->a_dvp
);
1536 if (dip
->flags
& HAMMER_INODE_RO
)
1538 if ((error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_CREATE
)) != 0)
1542 * Create a transaction to cover the operations we perform.
1544 lwkt_gettoken(&hmp
->fs_token
);
1545 hammer_start_transaction(&trans
, hmp
);
1548 * Create a new filesystem object of the requested type. The
1549 * returned inode will be referenced but not locked.
1551 * If mknod specifies a directory a pseudo-fs is created.
1553 error
= hammer_create_inode(&trans
, ap
->a_vap
, ap
->a_cred
,
1554 dip
, nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
1557 hammer_done_transaction(&trans
);
1559 lwkt_reltoken(&hmp
->fs_token
);
1564 * Add the new filesystem object to the directory. This will also
1565 * bump the inode's link count.
1567 error
= hammer_ip_add_direntry(&trans
, dip
,
1568 nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
1575 hammer_rel_inode(nip
, 0);
1578 error
= hammer_get_vnode(nip
, ap
->a_vpp
);
1579 hammer_rel_inode(nip
, 0);
1581 cache_setunresolved(ap
->a_nch
);
1582 cache_setvp(ap
->a_nch
, *ap
->a_vpp
);
1585 hammer_done_transaction(&trans
);
1587 hammer_knote(ap
->a_dvp
, NOTE_WRITE
);
1588 lwkt_reltoken(&hmp
->fs_token
);
1593 * hammer_vop_open { vp, mode, cred, fp }
1595 * MPSAFE (does not require fs_token)
1599 hammer_vop_open(struct vop_open_args
*ap
)
1603 ip
= VTOI(ap
->a_vp
);
1605 if ((ap
->a_mode
& FWRITE
) && (ip
->flags
& HAMMER_INODE_RO
))
1607 return(vop_stdopen(ap
));
1611 * hammer_vop_print { vp }
1615 hammer_vop_print(struct vop_print_args
*ap
)
1621 * hammer_vop_readdir { vp, uio, cred, *eofflag, *ncookies, off_t **cookies }
1625 hammer_vop_readdir(struct vop_readdir_args
*ap
)
1627 struct hammer_transaction trans
;
1628 struct hammer_cursor cursor
;
1632 hammer_base_elm_t base
;
1641 ip
= VTOI(ap
->a_vp
);
1643 saveoff
= uio
->uio_offset
;
1646 if (ap
->a_ncookies
) {
1647 ncookies
= uio
->uio_resid
/ 16 + 1;
1648 if (ncookies
> 1024)
1650 cookies
= kmalloc(ncookies
* sizeof(off_t
), M_TEMP
, M_WAITOK
);
1658 lwkt_gettoken(&hmp
->fs_token
);
1659 hammer_simple_transaction(&trans
, hmp
);
1662 * Handle artificial entries
1664 * It should be noted that the minimum value for a directory
1665 * hash key on-media is 0x0000000100000000, so we can use anything
1666 * less then that to represent our 'special' key space.
1670 r
= vop_write_dirent(&error
, uio
, ip
->obj_id
, DT_DIR
, 1, ".");
1674 cookies
[cookie_index
] = saveoff
;
1677 if (cookie_index
== ncookies
)
1681 if (ip
->ino_data
.parent_obj_id
) {
1682 r
= vop_write_dirent(&error
, uio
,
1683 ip
->ino_data
.parent_obj_id
,
1686 r
= vop_write_dirent(&error
, uio
,
1687 ip
->obj_id
, DT_DIR
, 2, "..");
1692 cookies
[cookie_index
] = saveoff
;
1695 if (cookie_index
== ncookies
)
1700 * Key range (begin and end inclusive) to scan. Directory keys
1701 * directly translate to a 64 bit 'seek' position.
1703 hammer_init_cursor(&trans
, &cursor
, &ip
->cache
[1], ip
);
1704 cursor
.key_beg
.localization
= ip
->obj_localization
|
1705 hammer_dir_localization(ip
);
1706 cursor
.key_beg
.obj_id
= ip
->obj_id
;
1707 cursor
.key_beg
.create_tid
= 0;
1708 cursor
.key_beg
.delete_tid
= 0;
1709 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_DIRENTRY
;
1710 cursor
.key_beg
.obj_type
= 0;
1711 cursor
.key_beg
.key
= saveoff
;
1713 cursor
.key_end
= cursor
.key_beg
;
1714 cursor
.key_end
.key
= HAMMER_MAX_KEY
;
1715 cursor
.asof
= ip
->obj_asof
;
1716 cursor
.flags
|= HAMMER_CURSOR_END_INCLUSIVE
| HAMMER_CURSOR_ASOF
;
1718 error
= hammer_ip_first(&cursor
);
1720 while (error
== 0) {
1721 error
= hammer_ip_resolve_data(&cursor
);
1724 base
= &cursor
.leaf
->base
;
1725 saveoff
= base
->key
;
1726 KKASSERT(cursor
.leaf
->data_len
> HAMMER_ENTRY_NAME_OFF
);
1728 if (base
->obj_id
!= ip
->obj_id
)
1729 hpanic("bad record at %p", cursor
.node
);
1731 dtype
= hammer_get_dtype(cursor
.leaf
->base
.obj_type
);
1732 r
= vop_write_dirent(
1733 &error
, uio
, cursor
.data
->entry
.obj_id
,
1735 cursor
.leaf
->data_len
- HAMMER_ENTRY_NAME_OFF
,
1736 (void *)cursor
.data
->entry
.name
);
1741 cookies
[cookie_index
] = base
->key
;
1743 if (cookie_index
== ncookies
)
1745 error
= hammer_ip_next(&cursor
);
1747 hammer_done_cursor(&cursor
);
1750 hammer_done_transaction(&trans
);
1753 *ap
->a_eofflag
= (error
== ENOENT
);
1754 uio
->uio_offset
= saveoff
;
1755 if (error
&& cookie_index
== 0) {
1756 if (error
== ENOENT
)
1759 kfree(cookies
, M_TEMP
);
1760 *ap
->a_ncookies
= 0;
1761 *ap
->a_cookies
= NULL
;
1764 if (error
== ENOENT
)
1767 *ap
->a_ncookies
= cookie_index
;
1768 *ap
->a_cookies
= cookies
;
1771 lwkt_reltoken(&hmp
->fs_token
);
1776 * hammer_vop_readlink { vp, uio, cred }
1780 hammer_vop_readlink(struct vop_readlink_args
*ap
)
1782 struct hammer_transaction trans
;
1783 struct hammer_cursor cursor
;
1787 uint32_t localization
;
1788 hammer_pseudofs_inmem_t pfsm
;
1791 ip
= VTOI(ap
->a_vp
);
1794 lwkt_gettoken(&hmp
->fs_token
);
1797 * Shortcut if the symlink data was stuffed into ino_data.
1799 * Also expand special "@@PFS%05d" softlinks (expansion only
1800 * occurs for non-historical (current) accesses made from the
1801 * primary filesystem).
1803 * Note that userspace hammer command does not allow users to
1804 * create a @@PFS softlink under an existing other PFS (id!=0)
1805 * so the ip localization here for @@PFS softlink is always 0.
1807 if (ip
->ino_data
.size
<= HAMMER_INODE_BASESYMLEN
) {
1811 ptr
= ip
->ino_data
.ext
.symlink
;
1812 bytes
= (int)ip
->ino_data
.size
;
1814 ip
->obj_asof
== HAMMER_MAX_TID
&&
1815 ip
->obj_localization
== HAMMER_DEF_LOCALIZATION
&&
1816 strncmp(ptr
, "@@PFS", 5) == 0) {
1817 hammer_simple_transaction(&trans
, hmp
);
1818 bcopy(ptr
+ 5, buf
, 5);
1820 localization
= pfs_to_lo(strtoul(buf
, NULL
, 10));
1821 pfsm
= hammer_load_pseudofs(&trans
, localization
,
1824 if (hammer_is_pfs_slave(&pfsm
->pfsd
)) {
1825 /* vap->va_size == 26 */
1826 ksnprintf(buf
, sizeof(buf
),
1828 (intmax_t)pfsm
->pfsd
.sync_end_tid
,
1829 lo_to_pfs(localization
));
1831 /* vap->va_size == 10 */
1832 ksnprintf(buf
, sizeof(buf
),
1834 lo_to_pfs(localization
));
1837 bytes
= strlen(buf
);
1840 hammer_rel_pseudofs(hmp
, pfsm
);
1841 hammer_done_transaction(&trans
);
1843 error
= uiomove(ptr
, bytes
, ap
->a_uio
);
1844 lwkt_reltoken(&hmp
->fs_token
);
1851 hammer_simple_transaction(&trans
, hmp
);
1852 hammer_init_cursor(&trans
, &cursor
, &ip
->cache
[1], ip
);
1855 * Key range (begin and end inclusive) to scan. Directory keys
1856 * directly translate to a 64 bit 'seek' position.
1858 cursor
.key_beg
.localization
= ip
->obj_localization
|
1859 HAMMER_LOCALIZE_MISC
;
1860 cursor
.key_beg
.obj_id
= ip
->obj_id
;
1861 cursor
.key_beg
.create_tid
= 0;
1862 cursor
.key_beg
.delete_tid
= 0;
1863 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_FIX
;
1864 cursor
.key_beg
.obj_type
= 0;
1865 cursor
.key_beg
.key
= HAMMER_FIXKEY_SYMLINK
;
1866 cursor
.asof
= ip
->obj_asof
;
1867 cursor
.flags
|= HAMMER_CURSOR_ASOF
;
1869 error
= hammer_ip_lookup(&cursor
);
1871 error
= hammer_ip_resolve_data(&cursor
);
1873 KKASSERT(cursor
.leaf
->data_len
>=
1874 HAMMER_SYMLINK_NAME_OFF
);
1875 error
= uiomove(cursor
.data
->symlink
.name
,
1876 cursor
.leaf
->data_len
-
1877 HAMMER_SYMLINK_NAME_OFF
,
1881 hammer_done_cursor(&cursor
);
1882 hammer_done_transaction(&trans
);
1883 lwkt_reltoken(&hmp
->fs_token
);
1888 * hammer_vop_nremove { nch, dvp, cred }
1892 hammer_vop_nremove(struct vop_nremove_args
*ap
)
1894 struct hammer_transaction trans
;
1899 dip
= VTOI(ap
->a_dvp
);
1902 if (hammer_nohistory(dip
) == 0 &&
1903 (error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_REMOVE
)) != 0) {
1907 lwkt_gettoken(&hmp
->fs_token
);
1908 hammer_start_transaction(&trans
, hmp
);
1909 error
= hammer_dounlink(&trans
, ap
->a_nch
, ap
->a_dvp
, ap
->a_cred
, 0, 0);
1910 hammer_done_transaction(&trans
);
1912 hammer_knote(ap
->a_dvp
, NOTE_WRITE
);
1913 lwkt_reltoken(&hmp
->fs_token
);
1918 * hammer_vop_nrename { fnch, tnch, fdvp, tdvp, cred }
1922 hammer_vop_nrename(struct vop_nrename_args
*ap
)
1924 struct hammer_transaction trans
;
1925 struct namecache
*fncp
;
1926 struct namecache
*tncp
;
1927 hammer_inode_t fdip
;
1928 hammer_inode_t tdip
;
1931 struct hammer_cursor cursor
;
1933 uint32_t max_iterations
;
1936 if (ap
->a_fdvp
->v_mount
!= ap
->a_tdvp
->v_mount
)
1938 if (ap
->a_fdvp
->v_mount
!= ap
->a_fnch
->ncp
->nc_vp
->v_mount
)
1941 fdip
= VTOI(ap
->a_fdvp
);
1942 tdip
= VTOI(ap
->a_tdvp
);
1943 fncp
= ap
->a_fnch
->ncp
;
1944 tncp
= ap
->a_tnch
->ncp
;
1945 ip
= VTOI(fncp
->nc_vp
);
1946 KKASSERT(ip
!= NULL
);
1950 if (fdip
->obj_localization
!= tdip
->obj_localization
)
1952 if (fdip
->obj_localization
!= ip
->obj_localization
)
1955 if (fdip
->flags
& HAMMER_INODE_RO
)
1957 if (tdip
->flags
& HAMMER_INODE_RO
)
1959 if (ip
->flags
& HAMMER_INODE_RO
)
1961 if ((error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_CREATE
)) != 0)
1964 lwkt_gettoken(&hmp
->fs_token
);
1965 hammer_start_transaction(&trans
, hmp
);
1968 * Remove tncp from the target directory and then link ip as
1969 * tncp. XXX pass trans to dounlink
1971 * Force the inode sync-time to match the transaction so it is
1972 * in-sync with the creation of the target directory entry.
1974 error
= hammer_dounlink(&trans
, ap
->a_tnch
, ap
->a_tdvp
,
1976 if (error
== 0 || error
== ENOENT
) {
1977 error
= hammer_ip_add_direntry(&trans
, tdip
,
1978 tncp
->nc_name
, tncp
->nc_nlen
,
1981 ip
->ino_data
.parent_obj_id
= tdip
->obj_id
;
1982 ip
->ino_data
.ctime
= trans
.time
;
1983 hammer_modify_inode(&trans
, ip
, HAMMER_INODE_DDIRTY
);
1987 goto failed
; /* XXX */
1990 * Locate the record in the originating directory and remove it.
1992 * Calculate the namekey and setup the key range for the scan. This
1993 * works kinda like a chained hash table where the lower 32 bits
1994 * of the namekey synthesize the chain.
1996 * The key range is inclusive of both key_beg and key_end.
1998 namekey
= hammer_direntry_namekey(fdip
, fncp
->nc_name
, fncp
->nc_nlen
,
2001 hammer_init_cursor(&trans
, &cursor
, &fdip
->cache
[1], fdip
);
2002 cursor
.key_beg
.localization
= fdip
->obj_localization
|
2003 hammer_dir_localization(fdip
);
2004 cursor
.key_beg
.obj_id
= fdip
->obj_id
;
2005 cursor
.key_beg
.key
= namekey
;
2006 cursor
.key_beg
.create_tid
= 0;
2007 cursor
.key_beg
.delete_tid
= 0;
2008 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_DIRENTRY
;
2009 cursor
.key_beg
.obj_type
= 0;
2011 cursor
.key_end
= cursor
.key_beg
;
2012 cursor
.key_end
.key
+= max_iterations
;
2013 cursor
.asof
= fdip
->obj_asof
;
2014 cursor
.flags
|= HAMMER_CURSOR_END_INCLUSIVE
| HAMMER_CURSOR_ASOF
;
2017 * Scan all matching records (the chain), locate the one matching
2018 * the requested path component.
2020 * The hammer_ip_*() functions merge in-memory records with on-disk
2021 * records for the purposes of the search.
2023 error
= hammer_ip_first(&cursor
);
2024 while (error
== 0) {
2025 if (hammer_ip_resolve_data(&cursor
) != 0)
2027 nlen
= cursor
.leaf
->data_len
- HAMMER_ENTRY_NAME_OFF
;
2029 if (fncp
->nc_nlen
== nlen
&&
2030 bcmp(fncp
->nc_name
, cursor
.data
->entry
.name
, nlen
) == 0) {
2033 error
= hammer_ip_next(&cursor
);
2037 * If all is ok we have to get the inode so we can adjust nlinks.
2039 * WARNING: hammer_ip_del_direntry() may have to terminate the
2040 * cursor to avoid a recursion. It's ok to call hammer_done_cursor()
2044 error
= hammer_ip_del_direntry(&trans
, &cursor
, fdip
, ip
);
2047 * XXX A deadlock here will break rename's atomicy for the purposes
2048 * of crash recovery.
2050 if (error
== EDEADLK
) {
2051 hammer_done_cursor(&cursor
);
2056 * Cleanup and tell the kernel that the rename succeeded.
2058 * NOTE: ip->vp, if non-NULL, cannot be directly referenced
2059 * without formally acquiring the vp since the vp might
2060 * have zero refs on it, or in the middle of a reclaim,
2063 hammer_done_cursor(&cursor
);
2065 cache_rename(ap
->a_fnch
, ap
->a_tnch
);
2066 hammer_knote(ap
->a_fdvp
, NOTE_WRITE
);
2067 hammer_knote(ap
->a_tdvp
, NOTE_WRITE
);
2071 error
= hammer_get_vnode(ip
, &vp
);
2072 if (error
== 0 && vp
) {
2074 hammer_knote(ip
->vp
, NOTE_RENAME
);
2078 hdkprintf("ip/vp race2 avoided\n");
2083 hammer_done_transaction(&trans
);
2084 lwkt_reltoken(&hmp
->fs_token
);
2089 * hammer_vop_nrmdir { nch, dvp, cred }
2093 hammer_vop_nrmdir(struct vop_nrmdir_args
*ap
)
2095 struct hammer_transaction trans
;
2100 dip
= VTOI(ap
->a_dvp
);
2103 if (hammer_nohistory(dip
) == 0 &&
2104 (error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_REMOVE
)) != 0) {
2108 lwkt_gettoken(&hmp
->fs_token
);
2109 hammer_start_transaction(&trans
, hmp
);
2110 error
= hammer_dounlink(&trans
, ap
->a_nch
, ap
->a_dvp
, ap
->a_cred
, 0, 1);
2111 hammer_done_transaction(&trans
);
2113 hammer_knote(ap
->a_dvp
, NOTE_WRITE
| NOTE_LINK
);
2114 lwkt_reltoken(&hmp
->fs_token
);
2119 * hammer_vop_markatime { vp, cred }
2123 hammer_vop_markatime(struct vop_markatime_args
*ap
)
2125 struct hammer_transaction trans
;
2129 ip
= VTOI(ap
->a_vp
);
2130 if (ap
->a_vp
->v_mount
->mnt_flag
& MNT_RDONLY
)
2132 if (ip
->flags
& HAMMER_INODE_RO
)
2135 if (hmp
->mp
->mnt_flag
& MNT_NOATIME
)
2137 lwkt_gettoken(&hmp
->fs_token
);
2138 hammer_start_transaction(&trans
, hmp
);
2140 ip
->ino_data
.atime
= trans
.time
;
2141 hammer_modify_inode(&trans
, ip
, HAMMER_INODE_ATIME
);
2142 hammer_done_transaction(&trans
);
2143 hammer_knote(ap
->a_vp
, NOTE_ATTRIB
);
2144 lwkt_reltoken(&hmp
->fs_token
);
2149 * hammer_vop_setattr { vp, vap, cred }
2153 hammer_vop_setattr(struct vop_setattr_args
*ap
)
2155 struct hammer_transaction trans
;
2165 int64_t aligned_size
;
2170 ip
= ap
->a_vp
->v_data
;
2175 if (ap
->a_vp
->v_mount
->mnt_flag
& MNT_RDONLY
)
2177 if (ip
->flags
& HAMMER_INODE_RO
)
2179 if (hammer_nohistory(ip
) == 0 &&
2180 (error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_REMOVE
)) != 0) {
2184 lwkt_gettoken(&hmp
->fs_token
);
2185 hammer_start_transaction(&trans
, hmp
);
2188 if (vap
->va_flags
!= VNOVAL
) {
2189 flags
= ip
->ino_data
.uflags
;
2190 error
= vop_helper_setattr_flags(&flags
, vap
->va_flags
,
2191 hammer_to_unix_xid(&ip
->ino_data
.uid
),
2194 if (ip
->ino_data
.uflags
!= flags
) {
2195 ip
->ino_data
.uflags
= flags
;
2196 ip
->ino_data
.ctime
= trans
.time
;
2197 modflags
|= HAMMER_INODE_DDIRTY
;
2198 kflags
|= NOTE_ATTRIB
;
2200 if (ip
->ino_data
.uflags
& (IMMUTABLE
| APPEND
)) {
2207 if (ip
->ino_data
.uflags
& (IMMUTABLE
| APPEND
)) {
2211 if (vap
->va_uid
!= (uid_t
)VNOVAL
|| vap
->va_gid
!= (gid_t
)VNOVAL
) {
2212 mode_t cur_mode
= ip
->ino_data
.mode
;
2213 uid_t cur_uid
= hammer_to_unix_xid(&ip
->ino_data
.uid
);
2214 gid_t cur_gid
= hammer_to_unix_xid(&ip
->ino_data
.gid
);
2215 hammer_uuid_t uuid_uid
;
2216 hammer_uuid_t uuid_gid
;
2218 error
= vop_helper_chown(ap
->a_vp
, vap
->va_uid
, vap
->va_gid
,
2220 &cur_uid
, &cur_gid
, &cur_mode
);
2222 hammer_guid_to_uuid(&uuid_uid
, cur_uid
);
2223 hammer_guid_to_uuid(&uuid_gid
, cur_gid
);
2224 if (kuuid_compare(&uuid_uid
, &ip
->ino_data
.uid
) ||
2225 kuuid_compare(&uuid_gid
, &ip
->ino_data
.gid
) ||
2226 ip
->ino_data
.mode
!= cur_mode
) {
2227 ip
->ino_data
.uid
= uuid_uid
;
2228 ip
->ino_data
.gid
= uuid_gid
;
2229 ip
->ino_data
.mode
= cur_mode
;
2230 ip
->ino_data
.ctime
= trans
.time
;
2231 modflags
|= HAMMER_INODE_DDIRTY
;
2233 kflags
|= NOTE_ATTRIB
;
2236 while (vap
->va_size
!= VNOVAL
&& ip
->ino_data
.size
!= vap
->va_size
) {
2237 switch(ap
->a_vp
->v_type
) {
2239 if (vap
->va_size
== ip
->ino_data
.size
)
2243 * Log the operation if in fast-fsync mode or if
2244 * there are unterminated redo write records present.
2246 * The second check is needed so the recovery code
2247 * properly truncates write redos even if nominal
2248 * REDO operations is turned off due to excessive
2249 * writes, because the related records might be
2250 * destroyed and never lay down a TERM_WRITE.
2252 if ((ip
->flags
& HAMMER_INODE_REDO
) ||
2253 (ip
->flags
& HAMMER_INODE_RDIRTY
)) {
2254 error
= hammer_generate_redo(&trans
, ip
,
2259 blksize
= hammer_blocksize(vap
->va_size
);
2262 * XXX break atomicy, we can deadlock the backend
2263 * if we do not release the lock. Probably not a
2266 if (vap
->va_size
< ip
->ino_data
.size
) {
2267 nvtruncbuf(ap
->a_vp
, vap
->va_size
,
2269 hammer_blockoff(vap
->va_size
),
2272 kflags
|= NOTE_WRITE
;
2274 nvextendbuf(ap
->a_vp
,
2277 hammer_blocksize(ip
->ino_data
.size
),
2278 hammer_blocksize(vap
->va_size
),
2279 hammer_blockoff(ip
->ino_data
.size
),
2280 hammer_blockoff(vap
->va_size
),
2283 kflags
|= NOTE_WRITE
| NOTE_EXTEND
;
2285 ip
->ino_data
.size
= vap
->va_size
;
2286 ip
->ino_data
.mtime
= trans
.time
;
2287 /* XXX safe to use SDIRTY instead of DDIRTY here? */
2288 modflags
|= HAMMER_INODE_MTIME
| HAMMER_INODE_DDIRTY
;
2289 vclrflags(ap
->a_vp
, VLASTWRITETS
);
2292 * On-media truncation is cached in the inode until
2293 * the inode is synchronized. We must immediately
2294 * handle any frontend records.
2297 hammer_ip_frontend_trunc(ip
, vap
->va_size
);
2298 if ((ip
->flags
& HAMMER_INODE_TRUNCATED
) == 0) {
2299 ip
->flags
|= HAMMER_INODE_TRUNCATED
;
2300 ip
->trunc_off
= vap
->va_size
;
2301 hammer_inode_dirty(ip
);
2302 } else if (ip
->trunc_off
> vap
->va_size
) {
2303 ip
->trunc_off
= vap
->va_size
;
2309 * When truncating, nvtruncbuf() may have cleaned out
2310 * a portion of the last block on-disk in the buffer
2311 * cache. We must clean out any frontend records
2312 * for blocks beyond the new last block.
2314 aligned_size
= (vap
->va_size
+ (blksize
- 1)) &
2315 ~(int64_t)(blksize
- 1);
2316 if (truncating
&& vap
->va_size
< aligned_size
) {
2317 aligned_size
-= blksize
;
2318 hammer_ip_frontend_trunc(ip
, aligned_size
);
2323 if ((ip
->flags
& HAMMER_INODE_TRUNCATED
) == 0) {
2324 ip
->flags
|= HAMMER_INODE_TRUNCATED
;
2325 ip
->trunc_off
= vap
->va_size
;
2326 hammer_inode_dirty(ip
);
2327 } else if (ip
->trunc_off
> vap
->va_size
) {
2328 ip
->trunc_off
= vap
->va_size
;
2330 hammer_ip_frontend_trunc(ip
, vap
->va_size
);
2331 ip
->ino_data
.size
= vap
->va_size
;
2332 ip
->ino_data
.mtime
= trans
.time
;
2333 modflags
|= HAMMER_INODE_MTIME
| HAMMER_INODE_DDIRTY
;
2334 vclrflags(ap
->a_vp
, VLASTWRITETS
);
2335 kflags
|= NOTE_ATTRIB
;
2343 if (vap
->va_atime
.tv_sec
!= VNOVAL
) {
2344 ip
->ino_data
.atime
= hammer_timespec_to_time(&vap
->va_atime
);
2345 modflags
|= HAMMER_INODE_ATIME
;
2346 kflags
|= NOTE_ATTRIB
;
2348 if (vap
->va_mtime
.tv_sec
!= VNOVAL
) {
2349 ip
->ino_data
.mtime
= hammer_timespec_to_time(&vap
->va_mtime
);
2350 modflags
|= HAMMER_INODE_MTIME
;
2351 kflags
|= NOTE_ATTRIB
;
2352 vclrflags(ap
->a_vp
, VLASTWRITETS
);
2354 if (vap
->va_mode
!= (mode_t
)VNOVAL
) {
2355 mode_t cur_mode
= ip
->ino_data
.mode
;
2356 uid_t cur_uid
= hammer_to_unix_xid(&ip
->ino_data
.uid
);
2357 gid_t cur_gid
= hammer_to_unix_xid(&ip
->ino_data
.gid
);
2359 error
= vop_helper_chmod(ap
->a_vp
, vap
->va_mode
, ap
->a_cred
,
2360 cur_uid
, cur_gid
, &cur_mode
);
2361 if (error
== 0 && ip
->ino_data
.mode
!= cur_mode
) {
2362 ip
->ino_data
.mode
= cur_mode
;
2363 ip
->ino_data
.ctime
= trans
.time
;
2364 modflags
|= HAMMER_INODE_DDIRTY
;
2365 kflags
|= NOTE_ATTRIB
;
2370 hammer_modify_inode(&trans
, ip
, modflags
);
2371 hammer_done_transaction(&trans
);
2372 hammer_knote(ap
->a_vp
, kflags
);
2373 lwkt_reltoken(&hmp
->fs_token
);
2378 * hammer_vop_nsymlink { nch, dvp, vpp, cred, vap, target }
2382 hammer_vop_nsymlink(struct vop_nsymlink_args
*ap
)
2384 struct hammer_transaction trans
;
2387 hammer_record_t record
;
2388 struct nchandle
*nch
;
2393 ap
->a_vap
->va_type
= VLNK
;
2396 dip
= VTOI(ap
->a_dvp
);
2399 if (dip
->flags
& HAMMER_INODE_RO
)
2401 if ((error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_CREATE
)) != 0)
2405 * Create a transaction to cover the operations we perform.
2407 lwkt_gettoken(&hmp
->fs_token
);
2408 hammer_start_transaction(&trans
, hmp
);
2411 * Create a new filesystem object of the requested type. The
2412 * returned inode will be referenced but not locked.
2415 error
= hammer_create_inode(&trans
, ap
->a_vap
, ap
->a_cred
,
2416 dip
, nch
->ncp
->nc_name
, nch
->ncp
->nc_nlen
,
2419 hammer_done_transaction(&trans
);
2421 lwkt_reltoken(&hmp
->fs_token
);
2426 * Add a record representing the symlink. symlink stores the link
2427 * as pure data, not a string, and is no \0 terminated.
2430 bytes
= strlen(ap
->a_target
);
2432 if (bytes
<= HAMMER_INODE_BASESYMLEN
) {
2433 bcopy(ap
->a_target
, nip
->ino_data
.ext
.symlink
, bytes
);
2435 record
= hammer_alloc_mem_record(nip
, bytes
);
2436 record
->type
= HAMMER_MEM_RECORD_GENERAL
;
2438 record
->leaf
.base
.localization
= nip
->obj_localization
|
2439 HAMMER_LOCALIZE_MISC
;
2440 record
->leaf
.base
.key
= HAMMER_FIXKEY_SYMLINK
;
2441 record
->leaf
.base
.rec_type
= HAMMER_RECTYPE_FIX
;
2442 record
->leaf
.data_len
= bytes
;
2443 KKASSERT(HAMMER_SYMLINK_NAME_OFF
== 0);
2444 bcopy(ap
->a_target
, record
->data
->symlink
.name
, bytes
);
2445 error
= hammer_ip_add_record(&trans
, record
);
2449 * Set the file size to the length of the link.
2452 nip
->ino_data
.size
= bytes
;
2453 hammer_modify_inode(&trans
, nip
, HAMMER_INODE_DDIRTY
);
2457 error
= hammer_ip_add_direntry(&trans
, dip
, nch
->ncp
->nc_name
,
2458 nch
->ncp
->nc_nlen
, nip
);
2464 hammer_rel_inode(nip
, 0);
2467 error
= hammer_get_vnode(nip
, ap
->a_vpp
);
2468 hammer_rel_inode(nip
, 0);
2470 cache_setunresolved(ap
->a_nch
);
2471 cache_setvp(ap
->a_nch
, *ap
->a_vpp
);
2472 hammer_knote(ap
->a_dvp
, NOTE_WRITE
);
2475 hammer_done_transaction(&trans
);
2476 lwkt_reltoken(&hmp
->fs_token
);
2481 * hammer_vop_nwhiteout { nch, dvp, cred, flags }
2485 hammer_vop_nwhiteout(struct vop_nwhiteout_args
*ap
)
2487 struct hammer_transaction trans
;
2492 dip
= VTOI(ap
->a_dvp
);
2495 if (hammer_nohistory(dip
) == 0 &&
2496 (error
= hammer_checkspace(hmp
, HAMMER_CHKSPC_CREATE
)) != 0) {
2500 lwkt_gettoken(&hmp
->fs_token
);
2501 hammer_start_transaction(&trans
, hmp
);
2502 error
= hammer_dounlink(&trans
, ap
->a_nch
, ap
->a_dvp
,
2503 ap
->a_cred
, ap
->a_flags
, -1);
2504 hammer_done_transaction(&trans
);
2505 lwkt_reltoken(&hmp
->fs_token
);
2511 * hammer_vop_ioctl { vp, command, data, fflag, cred }
2515 hammer_vop_ioctl(struct vop_ioctl_args
*ap
)
2517 hammer_inode_t ip
= ap
->a_vp
->v_data
;
2518 hammer_mount_t hmp
= ip
->hmp
;
2521 lwkt_gettoken(&hmp
->fs_token
);
2522 error
= hammer_ioctl(ip
, ap
->a_command
, ap
->a_data
,
2523 ap
->a_fflag
, ap
->a_cred
);
2524 lwkt_reltoken(&hmp
->fs_token
);
2530 hammer_vop_mountctl(struct vop_mountctl_args
*ap
)
2532 static const struct mountctl_opt extraopt
[] = {
2533 { HMNT_NOHISTORY
, "nohistory" },
2534 { HMNT_MASTERID
, "master" },
2535 { HMNT_NOMIRROR
, "nomirror" },
2546 mp
= ap
->a_head
.a_ops
->head
.vv_mount
;
2547 KKASSERT(mp
->mnt_data
!= NULL
);
2548 hmp
= (hammer_mount_t
)mp
->mnt_data
;
2550 lwkt_gettoken(&hmp
->fs_token
);
2553 case MOUNTCTL_SET_EXPORT
:
2554 if (ap
->a_ctllen
!= sizeof(struct export_args
))
2557 error
= hammer_vfs_export(mp
, ap
->a_op
,
2558 (const struct export_args
*)ap
->a_ctl
);
2560 case MOUNTCTL_MOUNTFLAGS
:
2562 * Call standard mountctl VOP function
2563 * so we get user mount flags.
2565 error
= vop_stdmountctl(ap
);
2569 usedbytes
= *ap
->a_res
;
2571 if (usedbytes
> 0 && usedbytes
< ap
->a_buflen
) {
2572 usedbytes
+= vfs_flagstostr(hmp
->hflags
, extraopt
,
2574 ap
->a_buflen
- usedbytes
,
2578 *ap
->a_res
+= usedbytes
;
2581 error
= vop_stdmountctl(ap
);
2584 lwkt_reltoken(&hmp
->fs_token
);
2589 * hammer_vop_strategy { vp, bio }
2591 * Strategy call, used for regular file read & write only. Note that the
2592 * bp may represent a cluster.
2594 * To simplify operation and allow better optimizations in the future,
2595 * this code does not make any assumptions with regards to buffer alignment
2600 hammer_vop_strategy(struct vop_strategy_args
*ap
)
2605 bp
= ap
->a_bio
->bio_buf
;
2609 error
= hammer_vop_strategy_read(ap
);
2612 error
= hammer_vop_strategy_write(ap
);
2615 bp
->b_error
= error
= EINVAL
;
2616 bp
->b_flags
|= B_ERROR
;
2621 /* hammer_dump_dedup_cache(((hammer_inode_t)ap->a_vp->v_data)->hmp); */
2627 * Read from a regular file. Iterate the related records and fill in the
2628 * BIO/BUF. Gaps are zero-filled.
2630 * The support code in hammer_object.c should be used to deal with mixed
2631 * in-memory and on-disk records.
2633 * NOTE: Can be called from the cluster code with an oversized buf.
2639 hammer_vop_strategy_read(struct vop_strategy_args
*ap
)
2641 struct hammer_transaction trans
;
2645 struct hammer_cursor cursor
;
2646 hammer_base_elm_t base
;
2647 hammer_off_t disk_offset
;
2662 ip
= ap
->a_vp
->v_data
;
2666 * The zone-2 disk offset may have been set by the cluster code via
2667 * a BMAP operation, or else should be NOOFFSET.
2669 * Checking the high bits for a match against zone-2 should suffice.
2671 * In cases where a lot of data duplication is present it may be
2672 * more beneficial to drop through and doubule-buffer through the
2675 nbio
= push_bio(bio
);
2676 if (hammer_is_zone_large_data(nbio
->bio_offset
)) {
2677 if (hammer_double_buffer
== 0) {
2678 lwkt_gettoken(&hmp
->fs_token
);
2679 error
= hammer_io_direct_read(hmp
, nbio
, NULL
);
2680 lwkt_reltoken(&hmp
->fs_token
);
2685 * Try to shortcut requests for double_buffer mode too.
2686 * Since this mode runs through the device buffer cache
2687 * only compatible buffer sizes (meaning those generated
2688 * by normal filesystem buffers) are legal.
2690 if (hammer_live_dedup
== 0 && (bp
->b_flags
& B_PAGING
) == 0) {
2691 lwkt_gettoken(&hmp
->fs_token
);
2692 error
= hammer_io_indirect_read(hmp
, nbio
, NULL
);
2693 lwkt_reltoken(&hmp
->fs_token
);
2699 * Well, that sucked. Do it the hard way. If all the stars are
2700 * aligned we may still be able to issue a direct-read.
2702 lwkt_gettoken(&hmp
->fs_token
);
2703 hammer_simple_transaction(&trans
, hmp
);
2704 hammer_init_cursor(&trans
, &cursor
, &ip
->cache
[1], ip
);
2707 * Key range (begin and end inclusive) to scan. Note that the key's
2708 * stored in the actual records represent BASE+LEN, not BASE. The
2709 * first record containing bio_offset will have a key > bio_offset.
2711 cursor
.key_beg
.localization
= ip
->obj_localization
|
2712 HAMMER_LOCALIZE_MISC
;
2713 cursor
.key_beg
.obj_id
= ip
->obj_id
;
2714 cursor
.key_beg
.create_tid
= 0;
2715 cursor
.key_beg
.delete_tid
= 0;
2716 cursor
.key_beg
.obj_type
= 0;
2717 cursor
.key_beg
.key
= bio
->bio_offset
+ 1;
2718 cursor
.asof
= ip
->obj_asof
;
2719 cursor
.flags
|= HAMMER_CURSOR_ASOF
;
2721 cursor
.key_end
= cursor
.key_beg
;
2722 KKASSERT(ip
->ino_data
.obj_type
== HAMMER_OBJTYPE_REGFILE
);
2724 if (ip
->ino_data
.obj_type
== HAMMER_OBJTYPE_DBFILE
) {
2725 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_DB
;
2726 cursor
.key_end
.rec_type
= HAMMER_RECTYPE_DB
;
2727 cursor
.key_end
.key
= HAMMER_MAX_KEY
;
2731 ran_end
= bio
->bio_offset
+ bp
->b_bufsize
;
2732 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_DATA
;
2733 cursor
.key_end
.rec_type
= HAMMER_RECTYPE_DATA
;
2734 tmp64
= ran_end
+ MAXPHYS
+ 1; /* work-around GCC-4 bug */
2735 if (tmp64
< ran_end
)
2736 cursor
.key_end
.key
= HAMMER_MAX_KEY
;
2738 cursor
.key_end
.key
= ran_end
+ MAXPHYS
+ 1;
2740 cursor
.flags
|= HAMMER_CURSOR_END_INCLUSIVE
;
2743 * Set NOSWAPCACHE for cursor data extraction if double buffering
2744 * is disabled or (if the file is not marked cacheable via chflags
2745 * and vm.swapcache_use_chflags is enabled).
2747 if (hammer_double_buffer
== 0 ||
2748 ((ap
->a_vp
->v_flag
& VSWAPCACHE
) == 0 &&
2749 vm_swapcache_use_chflags
)) {
2750 cursor
.flags
|= HAMMER_CURSOR_NOSWAPCACHE
;
2753 error
= hammer_ip_first(&cursor
);
2756 while (error
== 0) {
2758 * Get the base file offset of the record. The key for
2759 * data records is (base + bytes) rather then (base).
2761 base
= &cursor
.leaf
->base
;
2762 rec_offset
= base
->key
- cursor
.leaf
->data_len
;
2765 * Calculate the gap, if any, and zero-fill it.
2767 * n is the offset of the start of the record verses our
2768 * current seek offset in the bio.
2770 n
= (int)(rec_offset
- (bio
->bio_offset
+ boff
));
2772 if (n
> bp
->b_bufsize
- boff
)
2773 n
= bp
->b_bufsize
- boff
;
2774 bzero((char *)bp
->b_data
+ boff
, n
);
2780 * Calculate the data offset in the record and the number
2781 * of bytes we can copy.
2783 * There are two degenerate cases. First, boff may already
2784 * be at bp->b_bufsize. Secondly, the data offset within
2785 * the record may exceed the record's size.
2789 n
= cursor
.leaf
->data_len
- roff
;
2791 hdkprintf("bad n=%d roff=%d\n", n
, roff
);
2793 } else if (n
> bp
->b_bufsize
- boff
) {
2794 n
= bp
->b_bufsize
- boff
;
2798 * Deal with cached truncations. This cool bit of code
2799 * allows truncate()/ftruncate() to avoid having to sync
2802 * If the frontend is truncated then all backend records are
2803 * subject to the frontend's truncation.
2805 * If the backend is truncated then backend records on-disk
2806 * (but not in-memory) are subject to the backend's
2807 * truncation. In-memory records owned by the backend
2808 * represent data written after the truncation point on the
2809 * backend and must not be truncated.
2811 * Truncate operations deal with frontend buffer cache
2812 * buffers and frontend-owned in-memory records synchronously.
2814 if (ip
->flags
& HAMMER_INODE_TRUNCATED
) {
2815 if (hammer_cursor_ondisk(&cursor
)/* ||
2816 cursor.iprec->flush_state == HAMMER_FST_FLUSH*/) {
2817 if (ip
->trunc_off
<= rec_offset
)
2819 else if (ip
->trunc_off
< rec_offset
+ n
)
2820 n
= (int)(ip
->trunc_off
- rec_offset
);
2823 if (ip
->sync_flags
& HAMMER_INODE_TRUNCATED
) {
2824 if (hammer_cursor_ondisk(&cursor
)) {
2825 if (ip
->sync_trunc_off
<= rec_offset
)
2827 else if (ip
->sync_trunc_off
< rec_offset
+ n
)
2828 n
= (int)(ip
->sync_trunc_off
- rec_offset
);
2833 * Try to issue a direct read into our bio if possible,
2834 * otherwise resolve the element data into a hammer_buffer
2837 * The buffer on-disk should be zerod past any real
2838 * truncation point, but may not be for any synthesized
2839 * truncation point from above.
2841 * NOTE: disk_offset is only valid if the cursor data is
2844 disk_offset
= cursor
.leaf
->data_offset
+ roff
;
2845 isdedupable
= (boff
== 0 && n
== bp
->b_bufsize
&&
2846 hammer_cursor_ondisk(&cursor
) &&
2847 ((int)disk_offset
& HAMMER_BUFMASK
) == 0);
2849 if (isdedupable
&& hammer_double_buffer
== 0) {
2853 KKASSERT(hammer_is_zone_large_data(disk_offset
));
2854 nbio
->bio_offset
= disk_offset
;
2855 error
= hammer_io_direct_read(hmp
, nbio
, cursor
.leaf
);
2856 if (hammer_live_dedup
&& error
== 0)
2857 hammer_dedup_cache_add(ip
, cursor
.leaf
);
2859 } else if (isdedupable
) {
2861 * Async I/O case for reading from backing store
2862 * and copying the data to the filesystem buffer.
2863 * live-dedup has to verify the data anyway if it
2864 * gets a hit later so we can just add the entry
2867 KKASSERT(hammer_is_zone_large_data(disk_offset
));
2868 nbio
->bio_offset
= disk_offset
;
2869 if (hammer_live_dedup
)
2870 hammer_dedup_cache_add(ip
, cursor
.leaf
);
2871 error
= hammer_io_indirect_read(hmp
, nbio
, cursor
.leaf
);
2874 error
= hammer_ip_resolve_data(&cursor
);
2876 if (hammer_live_dedup
&& isdedupable
)
2877 hammer_dedup_cache_add(ip
, cursor
.leaf
);
2878 bcopy((char *)cursor
.data
+ roff
,
2879 (char *)bp
->b_data
+ boff
, n
);
2886 * We have to be sure that the only elements added to the
2887 * dedup cache are those which are already on-media.
2889 if (hammer_live_dedup
&& hammer_cursor_ondisk(&cursor
))
2890 hammer_dedup_cache_add(ip
, cursor
.leaf
);
2893 * Iterate until we have filled the request.
2896 if (boff
== bp
->b_bufsize
)
2898 error
= hammer_ip_next(&cursor
);
2902 * There may have been a gap after the last record
2904 if (error
== ENOENT
)
2906 if (error
== 0 && boff
!= bp
->b_bufsize
) {
2907 KKASSERT(boff
< bp
->b_bufsize
);
2908 bzero((char *)bp
->b_data
+ boff
, bp
->b_bufsize
- boff
);
2909 /* boff = bp->b_bufsize; */
2913 * Disallow swapcache operation on the vnode buffer if double
2914 * buffering is enabled, the swapcache will get the data via
2915 * the block device buffer.
2917 if (hammer_double_buffer
)
2918 bp
->b_flags
|= B_NOTMETA
;
2924 bp
->b_error
= error
;
2926 bp
->b_flags
|= B_ERROR
;
2931 * Cache the b-tree node for the last data read in cache[1].
2933 * If we hit the file EOF then also cache the node in the
2934 * governing directory's cache[3], it will be used to initialize
2935 * the new inode's cache[1] for any inodes looked up via the directory.
2937 * This doesn't reduce disk accesses since the B-Tree chain is
2938 * likely cached, but it does reduce cpu overhead when looking
2939 * up file offsets for cpdup/tar/cpio style iterations.
2942 hammer_cache_node(&ip
->cache
[1], cursor
.node
);
2943 if (ran_end
>= ip
->ino_data
.size
) {
2944 dip
= hammer_find_inode(&trans
, ip
->ino_data
.parent_obj_id
,
2945 ip
->obj_asof
, ip
->obj_localization
);
2947 hammer_cache_node(&dip
->cache
[3], cursor
.node
);
2948 hammer_rel_inode(dip
, 0);
2951 hammer_done_cursor(&cursor
);
2952 hammer_done_transaction(&trans
);
2953 lwkt_reltoken(&hmp
->fs_token
);
2958 * BMAP operation - used to support cluster_read() only.
2960 * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
2962 * This routine may return EOPNOTSUPP if the opration is not supported for
2963 * the specified offset. The contents of the pointer arguments do not
2964 * need to be initialized in that case.
2966 * If a disk address is available and properly aligned return 0 with
2967 * *doffsetp set to the zone-2 address, and *runp / *runb set appropriately
2968 * to the run-length relative to that offset. Callers may assume that
2969 * *doffsetp is valid if 0 is returned, even if *runp is not sufficiently
2970 * large, so return EOPNOTSUPP if it is not sufficiently large.
2974 hammer_vop_bmap(struct vop_bmap_args
*ap
)
2976 struct hammer_transaction trans
;
2979 struct hammer_cursor cursor
;
2980 hammer_base_elm_t base
;
2984 int64_t base_offset
;
2985 int64_t base_disk_offset
;
2986 int64_t last_offset
;
2987 hammer_off_t last_disk_offset
;
2988 hammer_off_t disk_offset
;
2993 ip
= ap
->a_vp
->v_data
;
2997 * We can only BMAP regular files. We can't BMAP database files,
3000 if (ip
->ino_data
.obj_type
!= HAMMER_OBJTYPE_REGFILE
)
3004 * bmap is typically called with runp/runb both NULL when used
3005 * for writing. We do not support BMAP for writing atm.
3007 if (ap
->a_cmd
!= BUF_CMD_READ
)
3011 * Scan the B-Tree to acquire blockmap addresses, then translate
3014 lwkt_gettoken(&hmp
->fs_token
);
3015 hammer_simple_transaction(&trans
, hmp
);
3017 hammer_init_cursor(&trans
, &cursor
, &ip
->cache
[1], ip
);
3020 * Key range (begin and end inclusive) to scan. Note that the key's
3021 * stored in the actual records represent BASE+LEN, not BASE. The
3022 * first record containing bio_offset will have a key > bio_offset.
3024 cursor
.key_beg
.localization
= ip
->obj_localization
|
3025 HAMMER_LOCALIZE_MISC
;
3026 cursor
.key_beg
.obj_id
= ip
->obj_id
;
3027 cursor
.key_beg
.create_tid
= 0;
3028 cursor
.key_beg
.delete_tid
= 0;
3029 cursor
.key_beg
.obj_type
= 0;
3031 cursor
.key_beg
.key
= ap
->a_loffset
- MAXPHYS
+ 1;
3033 cursor
.key_beg
.key
= ap
->a_loffset
+ 1;
3034 if (cursor
.key_beg
.key
< 0)
3035 cursor
.key_beg
.key
= 0;
3036 cursor
.asof
= ip
->obj_asof
;
3037 cursor
.flags
|= HAMMER_CURSOR_ASOF
;
3039 cursor
.key_end
= cursor
.key_beg
;
3040 KKASSERT(ip
->ino_data
.obj_type
== HAMMER_OBJTYPE_REGFILE
);
3042 ran_end
= ap
->a_loffset
+ MAXPHYS
;
3043 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_DATA
;
3044 cursor
.key_end
.rec_type
= HAMMER_RECTYPE_DATA
;
3045 tmp64
= ran_end
+ MAXPHYS
+ 1; /* work-around GCC-4 bug */
3046 if (tmp64
< ran_end
)
3047 cursor
.key_end
.key
= HAMMER_MAX_KEY
;
3049 cursor
.key_end
.key
= ran_end
+ MAXPHYS
+ 1;
3051 cursor
.flags
|= HAMMER_CURSOR_END_INCLUSIVE
;
3053 error
= hammer_ip_first(&cursor
);
3054 base_offset
= last_offset
= 0;
3055 base_disk_offset
= last_disk_offset
= 0;
3057 while (error
== 0) {
3059 * Get the base file offset of the record. The key for
3060 * data records is (base + bytes) rather then (base).
3062 * NOTE: rec_offset + rec_len may exceed the end-of-file.
3063 * The extra bytes should be zero on-disk and the BMAP op
3064 * should still be ok.
3066 base
= &cursor
.leaf
->base
;
3067 rec_offset
= base
->key
- cursor
.leaf
->data_len
;
3068 rec_len
= cursor
.leaf
->data_len
;
3071 * Incorporate any cached truncation.
3073 * NOTE: Modifications to rec_len based on synthesized
3074 * truncation points remove the guarantee that any extended
3075 * data on disk is zero (since the truncations may not have
3076 * taken place on-media yet).
3078 if (ip
->flags
& HAMMER_INODE_TRUNCATED
) {
3079 if (hammer_cursor_ondisk(&cursor
) ||
3080 cursor
.iprec
->flush_state
== HAMMER_FST_FLUSH
) {
3081 if (ip
->trunc_off
<= rec_offset
)
3083 else if (ip
->trunc_off
< rec_offset
+ rec_len
)
3084 rec_len
= (int)(ip
->trunc_off
- rec_offset
);
3087 if (ip
->sync_flags
& HAMMER_INODE_TRUNCATED
) {
3088 if (hammer_cursor_ondisk(&cursor
)) {
3089 if (ip
->sync_trunc_off
<= rec_offset
)
3091 else if (ip
->sync_trunc_off
< rec_offset
+ rec_len
)
3092 rec_len
= (int)(ip
->sync_trunc_off
- rec_offset
);
3097 * Accumulate information. If we have hit a discontiguous
3098 * block reset base_offset unless we are already beyond the
3099 * requested offset. If we are, that's it, we stop.
3103 if (hammer_cursor_ondisk(&cursor
)) {
3104 disk_offset
= cursor
.leaf
->data_offset
;
3105 if (rec_offset
!= last_offset
||
3106 disk_offset
!= last_disk_offset
) {
3107 if (rec_offset
> ap
->a_loffset
)
3109 base_offset
= rec_offset
;
3110 base_disk_offset
= disk_offset
;
3112 last_offset
= rec_offset
+ rec_len
;
3113 last_disk_offset
= disk_offset
+ rec_len
;
3115 if (hammer_live_dedup
)
3116 hammer_dedup_cache_add(ip
, cursor
.leaf
);
3119 error
= hammer_ip_next(&cursor
);
3123 hammer_cache_node(&ip
->cache
[1], cursor
.node
);
3125 hammer_done_cursor(&cursor
);
3126 hammer_done_transaction(&trans
);
3127 lwkt_reltoken(&hmp
->fs_token
);
3130 * If we couldn't find any records or the records we did find were
3131 * all behind the requested offset, return failure. A forward
3132 * truncation can leave a hole w/ no on-disk records.
3134 if (last_offset
== 0 || last_offset
< ap
->a_loffset
)
3135 return (EOPNOTSUPP
);
3138 * Figure out the block size at the requested offset and adjust
3139 * our limits so the cluster_read() does not create inappropriately
3140 * sized buffer cache buffers.
3142 blksize
= hammer_blocksize(ap
->a_loffset
);
3143 if (hammer_blocksize(base_offset
) != blksize
) {
3144 base_offset
= hammer_blockdemarc(base_offset
, ap
->a_loffset
);
3146 if (last_offset
!= ap
->a_loffset
&&
3147 hammer_blocksize(last_offset
- 1) != blksize
) {
3148 last_offset
= hammer_blockdemarc(ap
->a_loffset
,
3153 * Returning EOPNOTSUPP simply prevents the direct-IO optimization
3156 disk_offset
= base_disk_offset
+ (ap
->a_loffset
- base_offset
);
3158 if (!hammer_is_zone_large_data(disk_offset
)) {
3160 * Only large-data zones can be direct-IOd
3163 } else if ((disk_offset
& HAMMER_BUFMASK
) ||
3164 (last_offset
- ap
->a_loffset
) < blksize
) {
3166 * doffsetp is not aligned or the forward run size does
3167 * not cover a whole buffer, disallow the direct I/O.
3174 *ap
->a_doffsetp
= disk_offset
;
3176 *ap
->a_runb
= ap
->a_loffset
- base_offset
;
3177 KKASSERT(*ap
->a_runb
>= 0);
3180 *ap
->a_runp
= last_offset
- ap
->a_loffset
;
3181 KKASSERT(*ap
->a_runp
>= 0);
3189 * Write to a regular file. Because this is a strategy call the OS is
3190 * trying to actually get data onto the media.
3194 hammer_vop_strategy_write(struct vop_strategy_args
*ap
)
3196 hammer_record_t record
;
3201 int blksize __debugvar
;
3207 ip
= ap
->a_vp
->v_data
;
3210 blksize
= hammer_blocksize(bio
->bio_offset
);
3211 KKASSERT(bp
->b_bufsize
== blksize
);
3213 if (ip
->flags
& HAMMER_INODE_RO
) {
3214 bp
->b_error
= EROFS
;
3215 bp
->b_flags
|= B_ERROR
;
3220 lwkt_gettoken(&hmp
->fs_token
);
3223 * Disallow swapcache operation on the vnode buffer if double
3224 * buffering is enabled, the swapcache will get the data via
3225 * the block device buffer.
3227 if (hammer_double_buffer
)
3228 bp
->b_flags
|= B_NOTMETA
;
3231 * Interlock with inode destruction (no in-kernel or directory
3232 * topology visibility). If we queue new IO while trying to
3233 * destroy the inode we can deadlock the vtrunc call in
3234 * hammer_inode_unloadable_check().
3236 * Besides, there's no point flushing a bp associated with an
3237 * inode that is being destroyed on-media and has no kernel
3240 if ((ip
->flags
| ip
->sync_flags
) &
3241 (HAMMER_INODE_DELETING
|HAMMER_INODE_DELETED
)) {
3244 lwkt_reltoken(&hmp
->fs_token
);
3249 * Reserve space and issue a direct-write from the front-end.
3250 * NOTE: The direct_io code will hammer_bread/bcopy smaller
3253 * An in-memory record will be installed to reference the storage
3254 * until the flusher can get to it.
3256 * Since we own the high level bio the front-end will not try to
3257 * do a direct-read until the write completes.
3259 * NOTE: The only time we do not reserve a full-sized buffers
3260 * worth of data is if the file is small. We do not try to
3261 * allocate a fragment (from the small-data zone) at the end of
3262 * an otherwise large file as this can lead to wildly separated
3265 KKASSERT((bio
->bio_offset
& HAMMER_BUFMASK
) == 0);
3266 KKASSERT(bio
->bio_offset
< ip
->ino_data
.size
);
3267 if (bio
->bio_offset
|| ip
->ino_data
.size
> HAMMER_HBUFSIZE
)
3268 bytes
= bp
->b_bufsize
;
3270 bytes
= HAMMER_DATA_DOALIGN_WITH(int, ip
->ino_data
.size
);
3272 record
= hammer_ip_add_bulk(ip
, bio
->bio_offset
, bp
->b_data
,
3276 * B_VFSFLAG1 indicates that a REDO_WRITE entry was generated
3277 * in hammer_vop_write(). We must flag the record so the proper
3278 * REDO_TERM_WRITE entry is generated during the flush.
3281 if (bp
->b_flags
& B_VFSFLAG1
) {
3282 record
->flags
|= HAMMER_RECF_REDO
;
3283 bp
->b_flags
&= ~B_VFSFLAG1
;
3285 if (record
->flags
& HAMMER_RECF_DEDUPED
) {
3287 hammer_ip_replace_bulk(hmp
, record
);
3290 hammer_io_direct_write(hmp
, bio
, record
);
3292 if (ip
->rsv_recs
> 1 && hmp
->rsv_recs
> hammer_limit_recs
)
3293 hammer_flush_inode(ip
, 0);
3295 bp
->b_bio2
.bio_offset
= NOOFFSET
;
3296 bp
->b_error
= error
;
3297 bp
->b_flags
|= B_ERROR
;
3300 lwkt_reltoken(&hmp
->fs_token
);
3305 * dounlink - disconnect a directory entry
3307 * XXX whiteout support not really in yet
3310 hammer_dounlink(hammer_transaction_t trans
, struct nchandle
*nch
,
3311 struct vnode
*dvp
, struct ucred
*cred
,
3312 int flags
, int isdir
)
3314 struct namecache
*ncp
;
3318 struct hammer_cursor cursor
;
3320 uint32_t max_iterations
;
3324 * Calculate the namekey and setup the key range for the scan. This
3325 * works kinda like a chained hash table where the lower 32 bits
3326 * of the namekey synthesize the chain.
3328 * The key range is inclusive of both key_beg and key_end.
3334 if (dip
->flags
& HAMMER_INODE_RO
)
3337 namekey
= hammer_direntry_namekey(dip
, ncp
->nc_name
, ncp
->nc_nlen
,
3340 hammer_init_cursor(trans
, &cursor
, &dip
->cache
[1], dip
);
3341 cursor
.key_beg
.localization
= dip
->obj_localization
|
3342 hammer_dir_localization(dip
);
3343 cursor
.key_beg
.obj_id
= dip
->obj_id
;
3344 cursor
.key_beg
.key
= namekey
;
3345 cursor
.key_beg
.create_tid
= 0;
3346 cursor
.key_beg
.delete_tid
= 0;
3347 cursor
.key_beg
.rec_type
= HAMMER_RECTYPE_DIRENTRY
;
3348 cursor
.key_beg
.obj_type
= 0;
3350 cursor
.key_end
= cursor
.key_beg
;
3351 cursor
.key_end
.key
+= max_iterations
;
3352 cursor
.asof
= dip
->obj_asof
;
3353 cursor
.flags
|= HAMMER_CURSOR_END_INCLUSIVE
| HAMMER_CURSOR_ASOF
;
3356 * Scan all matching records (the chain), locate the one matching
3357 * the requested path component. info->last_error contains the
3358 * error code on search termination and could be 0, ENOENT, or
3361 * The hammer_ip_*() functions merge in-memory records with on-disk
3362 * records for the purposes of the search.
3364 error
= hammer_ip_first(&cursor
);
3366 while (error
== 0) {
3367 error
= hammer_ip_resolve_data(&cursor
);
3370 nlen
= cursor
.leaf
->data_len
- HAMMER_ENTRY_NAME_OFF
;
3372 if (ncp
->nc_nlen
== nlen
&&
3373 bcmp(ncp
->nc_name
, cursor
.data
->entry
.name
, nlen
) == 0) {
3376 error
= hammer_ip_next(&cursor
);
3380 * If all is ok we have to get the inode so we can adjust nlinks.
3381 * To avoid a deadlock with the flusher we must release the inode
3382 * lock on the directory when acquiring the inode for the entry.
3384 * If the target is a directory, it must be empty.
3387 hammer_unlock(&cursor
.ip
->lock
);
3388 ip
= hammer_get_inode(trans
, dip
, cursor
.data
->entry
.obj_id
,
3390 cursor
.data
->entry
.localization
,
3392 hammer_lock_sh(&cursor
.ip
->lock
);
3393 if (error
== ENOENT
) {
3394 hkprintf("WARNING: Removing dirent w/missing inode "
3396 "\tobj_id = %016jx\n",
3398 (intmax_t)cursor
.data
->entry
.obj_id
);
3403 * If isdir >= 0 we validate that the entry is or is not a
3404 * directory. If isdir < 0 we don't care.
3406 if (error
== 0 && isdir
>= 0 && ip
) {
3408 ip
->ino_data
.obj_type
!= HAMMER_OBJTYPE_DIRECTORY
) {
3410 } else if (isdir
== 0 &&
3411 ip
->ino_data
.obj_type
== HAMMER_OBJTYPE_DIRECTORY
) {
3417 * If we are trying to remove a directory the directory must
3420 * The check directory code can loop and deadlock/retry. Our
3421 * own cursor's node locks must be released to avoid a 3-way
3422 * deadlock with the flusher if the check directory code
3425 * If any changes whatsoever have been made to the cursor
3426 * set EDEADLK and retry.
3428 * WARNING: See warnings in hammer_unlock_cursor()
3431 if (error
== 0 && ip
&& ip
->ino_data
.obj_type
==
3432 HAMMER_OBJTYPE_DIRECTORY
) {
3433 hammer_unlock_cursor(&cursor
);
3434 error
= hammer_ip_check_directory_empty(trans
, ip
);
3435 hammer_lock_cursor(&cursor
);
3436 if (cursor
.flags
& HAMMER_CURSOR_RETEST
) {
3437 hkprintf("Warning: avoided deadlock "
3445 * Delete the directory entry.
3447 * WARNING: hammer_ip_del_direntry() may have to terminate
3448 * the cursor to avoid a deadlock. It is ok to call
3449 * hammer_done_cursor() twice.
3452 error
= hammer_ip_del_direntry(trans
, &cursor
,
3455 hammer_done_cursor(&cursor
);
3458 * Tell the namecache that we are now unlinked.
3463 * NOTE: ip->vp, if non-NULL, cannot be directly
3464 * referenced without formally acquiring the
3465 * vp since the vp might have zero refs on it,
3466 * or in the middle of a reclaim, etc.
3468 * NOTE: The cache_setunresolved() can rip the vp
3469 * out from under us since the vp may not have
3470 * any refs, in which case ip->vp will be NULL
3473 while (ip
&& ip
->vp
) {
3476 error
= hammer_get_vnode(ip
, &vp
);
3477 if (error
== 0 && vp
) {
3479 hammer_knote(ip
->vp
, NOTE_DELETE
);
3482 * Don't do this, it can deadlock
3483 * on concurrent rm's of hardlinks.
3484 * Shouldn't be needed any more.
3486 cache_inval_vp(ip
->vp
, CINV_DESTROY
);
3491 hdkprintf("ip/vp race1 avoided\n");
3495 hammer_rel_inode(ip
, 0);
3497 hammer_done_cursor(&cursor
);
3499 if (error
== EDEADLK
)
3505 /************************************************************************
3506 * FIFO AND SPECFS OPS *
3507 ************************************************************************
3511 hammer_vop_fifoclose (struct vop_close_args
*ap
)
3513 /* XXX update itimes */
3514 return (VOCALL(&fifo_vnode_vops
, &ap
->a_head
));
3518 hammer_vop_fiforead (struct vop_read_args
*ap
)
3522 error
= VOCALL(&fifo_vnode_vops
, &ap
->a_head
);
3523 /* XXX update access time */
3528 hammer_vop_fifowrite (struct vop_write_args
*ap
)
3532 error
= VOCALL(&fifo_vnode_vops
, &ap
->a_head
);
3533 /* XXX update access time */
3539 hammer_vop_fifokqfilter(struct vop_kqfilter_args
*ap
)
3543 error
= VOCALL(&fifo_vnode_vops
, &ap
->a_head
);
3545 error
= hammer_vop_kqfilter(ap
);
3549 /************************************************************************
3551 ************************************************************************
3554 static void filt_hammerdetach(struct knote
*kn
);
3555 static int filt_hammerread(struct knote
*kn
, long hint
);
3556 static int filt_hammerwrite(struct knote
*kn
, long hint
);
3557 static int filt_hammervnode(struct knote
*kn
, long hint
);
3559 static struct filterops hammerread_filtops
=
3560 { FILTEROP_ISFD
| FILTEROP_MPSAFE
,
3561 NULL
, filt_hammerdetach
, filt_hammerread
};
3562 static struct filterops hammerwrite_filtops
=
3563 { FILTEROP_ISFD
| FILTEROP_MPSAFE
,
3564 NULL
, filt_hammerdetach
, filt_hammerwrite
};
3565 static struct filterops hammervnode_filtops
=
3566 { FILTEROP_ISFD
| FILTEROP_MPSAFE
,
3567 NULL
, filt_hammerdetach
, filt_hammervnode
};
3571 hammer_vop_kqfilter(struct vop_kqfilter_args
*ap
)
3573 struct vnode
*vp
= ap
->a_vp
;
3574 struct knote
*kn
= ap
->a_kn
;
3576 switch (kn
->kn_filter
) {
3578 kn
->kn_fop
= &hammerread_filtops
;
3581 kn
->kn_fop
= &hammerwrite_filtops
;
3584 kn
->kn_fop
= &hammervnode_filtops
;
3587 return (EOPNOTSUPP
);
3590 kn
->kn_hook
= (caddr_t
)vp
;
3592 knote_insert(&vp
->v_pollinfo
.vpi_kqinfo
.ki_note
, kn
);
3598 filt_hammerdetach(struct knote
*kn
)
3600 struct vnode
*vp
= (void *)kn
->kn_hook
;
3602 knote_remove(&vp
->v_pollinfo
.vpi_kqinfo
.ki_note
, kn
);
3606 filt_hammerread(struct knote
*kn
, long hint
)
3608 struct vnode
*vp
= (void *)kn
->kn_hook
;
3609 hammer_inode_t ip
= VTOI(vp
);
3610 hammer_mount_t hmp
= ip
->hmp
;
3613 if (hint
== NOTE_REVOKE
) {
3614 kn
->kn_flags
|= (EV_EOF
| EV_NODATA
| EV_ONESHOT
);
3617 lwkt_gettoken(&hmp
->fs_token
); /* XXX use per-ip-token */
3618 off
= ip
->ino_data
.size
- kn
->kn_fp
->f_offset
;
3619 kn
->kn_data
= (off
< INTPTR_MAX
) ? off
: INTPTR_MAX
;
3620 lwkt_reltoken(&hmp
->fs_token
);
3621 if (kn
->kn_sfflags
& NOTE_OLDAPI
)
3623 return (kn
->kn_data
!= 0);
3627 filt_hammerwrite(struct knote
*kn
, long hint
)
3629 if (hint
== NOTE_REVOKE
)
3630 kn
->kn_flags
|= (EV_EOF
| EV_NODATA
| EV_ONESHOT
);
3636 filt_hammervnode(struct knote
*kn
, long hint
)
3638 if (kn
->kn_sfflags
& hint
)
3639 kn
->kn_fflags
|= hint
;
3640 if (hint
== NOTE_REVOKE
) {
3641 kn
->kn_flags
|= (EV_EOF
| EV_NODATA
);
3644 return (kn
->kn_fflags
!= 0);