Raise WARNS to 6 and silence resulting warnings.
[dragonfly.git] / sbin / growfs / growfs.c
blobc7c0b3b042f03c5120a6c4057daadd0c75aea77d
1 /*
2 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgment:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors, as well as Christoph
21 * Herrmann and Thomas-Henning von Kamptz.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40 * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41 * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
42 * $DragonFly: src/sbin/growfs/growfs.c,v 1.6 2007/05/20 23:21:36 dillon Exp $
45 /* ********************************************************** INCLUDES ***** */
46 #include <sys/param.h>
47 #include <sys/diskslice.h>
48 #include <sys/ioctl.h>
49 #include <sys/stat.h>
51 #include <stdio.h>
52 #include <paths.h>
53 #include <ctype.h>
54 #include <err.h>
55 #include <fcntl.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <vfs/ufs/dinode.h>
60 #include <vfs/ufs/fs.h>
62 #include "debug.h"
64 /* *************************************************** GLOBALS & TYPES ***** */
65 #ifdef FS_DEBUG
66 int _dbg_lvl_ = (DL_INFO); /* DL_TRC */
67 #endif /* FS_DEBUG */
69 static union {
70 struct fs fs;
71 char pad[SBSIZE];
72 } fsun1, fsun2;
73 #define sblock fsun1.fs /* the new superblock */
74 #define osblock fsun2.fs /* the old superblock */
76 static union {
77 struct cg cg;
78 char pad[MAXBSIZE];
79 } cgun1, cgun2;
80 #define acg cgun1.cg /* a cylinder cgroup (new) */
81 #define aocg cgun2.cg /* an old cylinder group */
83 static char ablk[MAXBSIZE]; /* a block */
84 static char i1blk[MAXBSIZE]; /* some indirect blocks */
85 static char i2blk[MAXBSIZE];
86 static char i3blk[MAXBSIZE];
88 /* where to write back updated blocks */
89 static daddr_t in_src, i1_src, i2_src, i3_src;
91 /* what object contains the reference */
92 enum pointer_source {
93 GFS_PS_INODE,
94 GFS_PS_IND_BLK_LVL1,
95 GFS_PS_IND_BLK_LVL2,
96 GFS_PS_IND_BLK_LVL3
99 static struct csum *fscs; /* cylinder summary */
101 static struct ufs1_dinode zino[MAXBSIZE/sizeof(struct ufs1_dinode)]; /* some inodes */
104 * An array of elements of type struct gfs_bpp describes all blocks to
105 * be relocated in order to free the space needed for the cylinder group
106 * summary for all cylinder groups located in the first cylinder group.
108 struct gfs_bpp {
109 daddr_t old; /* old block number */
110 daddr_t new; /* new block number */
111 #define GFS_FL_FIRST 1
112 #define GFS_FL_LAST 2
113 unsigned int flags; /* special handling required */
114 int found; /* how many references were updated */
117 /* ******************************************************** PROTOTYPES ***** */
118 static void growfs(int, int, unsigned int);
119 static void rdfs(daddr_t, size_t, void *, int);
120 static void wtfs(daddr_t, size_t, void *, int, unsigned int);
121 static daddr_t alloc(void);
122 static int charsperline(void);
123 static void usage(void);
124 static int isblock(struct fs *, unsigned char *, int);
125 static void clrblock(struct fs *, unsigned char *, int);
126 static void setblock(struct fs *, unsigned char *, int);
127 static void initcg(int, time_t, int, unsigned int);
128 static void updjcg(int, time_t, int, int, unsigned int);
129 static void updcsloc(time_t, int, int, unsigned int);
130 static struct ufs1_dinode *ginode(ino_t, int, int);
131 static void frag_adjust(daddr_t, int);
132 static void cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
133 enum pointer_source, int, unsigned int);
134 static void updclst(int);
135 static void updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
137 /* ************************************************************ growfs ***** */
139 * Here we actually start growing the filesystem. We basically read the
140 * cylinder summary from the first cylinder group as we want to update
141 * this on the fly during our various operations. First we handle the
142 * changes in the former last cylinder group. Afterwards we create all new
143 * cylinder groups. Now we handle the cylinder group containing the
144 * cylinder summary which might result in a relocation of the whole
145 * structure. In the end we write back the updated cylinder summary, the
146 * new superblock, and slightly patched versions of the super block
147 * copies.
149 static void
150 growfs(int fsi, int fso, unsigned int Nflag)
152 DBG_FUNC("growfs")
153 int i;
154 int cylno, j;
155 time_t utime;
156 int width;
157 char tmpbuf[100];
158 #ifdef FSIRAND
159 static int randinit=0;
161 DBG_ENTER;
163 if (!randinit) {
164 randinit = 1;
165 srandomdev();
167 #else /* not FSIRAND */
169 DBG_ENTER;
171 #endif /* FSIRAND */
172 time(&utime);
175 * Get the cylinder summary into the memory.
177 fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
178 if(fscs == NULL) {
179 errx(1, "calloc failed");
181 for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
182 rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
183 numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
184 osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
187 #ifdef FS_DEBUG
189 struct csum *dbg_csp;
190 int dbg_csc;
191 char dbg_line[80];
193 dbg_csp=fscs;
194 for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
195 snprintf(dbg_line, sizeof(dbg_line),
196 "%d. old csum in old location", dbg_csc);
197 DBG_DUMP_CSUM(&osblock,
198 dbg_line,
199 dbg_csp++);
202 #endif /* FS_DEBUG */
203 DBG_PRINT0("fscs read\n");
206 * Do all needed changes in the former last cylinder group.
208 updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
211 * Dump out summary information about file system.
213 printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
214 sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
215 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
216 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
217 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
218 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
219 sblock.fs_ncg, sblock.fs_cpg,
220 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
221 sblock.fs_ipg);
222 #undef B2MBFACTOR
225 * Now build the cylinders group blocks and
226 * then print out indices of cylinder groups.
228 printf("super-block backups (for fsck -b #) at:\n");
229 i = 0;
230 width = charsperline();
233 * Iterate for only the new cylinder groups.
235 for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
236 initcg(cylno, utime, fso, Nflag);
237 j = sprintf(tmpbuf, " %d%s",
238 (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
239 cylno < (sblock.fs_ncg-1) ? "," : "" );
240 if (i + j >= width) {
241 printf("\n");
242 i = 0;
244 i += j;
245 printf("%s", tmpbuf);
246 fflush(stdout);
248 printf("\n");
251 * Do all needed changes in the first cylinder group.
252 * allocate blocks in new location
254 updcsloc(utime, fsi, fso, Nflag);
257 * Now write the cylinder summary back to disk.
259 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
260 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
261 (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
262 (void *)(((char *)fscs) + i), fso, Nflag);
264 DBG_PRINT0("fscs written\n");
266 #ifdef FS_DEBUG
268 struct csum *dbg_csp;
269 int dbg_csc;
270 char dbg_line[80];
272 dbg_csp=fscs;
273 for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
274 snprintf(dbg_line, sizeof(dbg_line),
275 "%d. new csum in new location", dbg_csc);
276 DBG_DUMP_CSUM(&sblock,
277 dbg_line,
278 dbg_csp++);
281 #endif /* FS_DEBUG */
284 * Now write the new superblock back to disk.
286 sblock.fs_time = utime;
287 wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
288 fso, Nflag);
289 DBG_PRINT0("sblock written\n");
290 DBG_DUMP_FS(&sblock,
291 "new initial sblock");
294 * Clean up the dynamic fields in our superblock copies.
296 sblock.fs_fmod = 0;
297 sblock.fs_clean = 1;
298 sblock.fs_ronly = 0;
299 sblock.fs_cgrotor = 0;
300 sblock.fs_state = 0;
301 memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
302 sblock.fs_flags &= FS_DOSOFTDEP;
305 * XXX
306 * The following fields are currently distributed from the superblock
307 * to the copies:
308 * fs_minfree
309 * fs_rotdelay
310 * fs_maxcontig
311 * fs_maxbpg
312 * fs_minfree,
313 * fs_optim
314 * fs_flags regarding SOFTPDATES
316 * We probably should rather change the summary for the cylinder group
317 * statistics here to the value of what would be in there, if the file
318 * system were created initially with the new size. Therefor we still
319 * need to find an easy way of calculating that.
320 * Possibly we can try to read the first superblock copy and apply the
321 * "diffed" stats between the old and new superblock by still copying
322 * certain parameters onto that.
326 * Write out the duplicate super blocks.
328 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
329 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
330 (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
332 DBG_PRINT0("sblock copies written\n");
333 DBG_DUMP_FS(&sblock,
334 "new other sblocks");
336 DBG_LEAVE;
337 return;
340 /* ************************************************************ initcg ***** */
342 * This creates a new cylinder group structure, for more details please see
343 * the source of newfs(8), as this function is taken over almost unchanged.
344 * As this is never called for the first cylinder group, the special
345 * provisions for that case are removed here.
347 static void
348 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
350 DBG_FUNC("initcg")
351 daddr_t cbase, d, dlower, dupper, dmax, blkno;
352 int i;
353 struct csum *cs;
354 #ifdef FSIRAND
355 int j;
356 #endif
358 DBG_ENTER;
361 * Determine block bounds for cylinder group.
363 cbase = cgbase(&sblock, cylno);
364 dmax = cbase + sblock.fs_fpg;
365 if (dmax > sblock.fs_size) {
366 dmax = sblock.fs_size;
368 dlower = cgsblock(&sblock, cylno) - cbase;
369 dupper = cgdmin(&sblock, cylno) - cbase;
370 if (cylno == 0) { /* XXX fscs may be relocated */
371 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
373 cs = fscs + cylno;
374 memset(&acg, 0, (size_t)sblock.fs_cgsize);
375 acg.cg_time = utime;
376 acg.cg_magic = CG_MAGIC;
377 acg.cg_cgx = cylno;
378 if (cylno == sblock.fs_ncg - 1) {
379 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
380 } else {
381 acg.cg_ncyl = sblock.fs_cpg;
383 acg.cg_niblk = sblock.fs_ipg;
384 acg.cg_ndblk = dmax - cbase;
385 if (sblock.fs_contigsumsize > 0) {
386 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
388 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
389 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
390 acg.cg_iusedoff = acg.cg_boff +
391 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
392 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
393 if (sblock.fs_contigsumsize <= 0) {
394 acg.cg_nextfreeoff = acg.cg_freeoff +
395 howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
396 } else {
397 acg.cg_clustersumoff = acg.cg_freeoff + howmany
398 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
399 sizeof(u_int32_t);
400 acg.cg_clustersumoff =
401 roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
402 acg.cg_clusteroff = acg.cg_clustersumoff +
403 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
404 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
405 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
407 if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) {
409 * XXX This should never happen as we would have had that panic
410 * already on filesystem creation
412 errx(37, "panic: cylinder group too big");
414 acg.cg_cs.cs_nifree += sblock.fs_ipg;
415 if (cylno == 0)
416 for (i = 0; (size_t)i < ROOTINO; i++) {
417 setbit(cg_inosused(&acg), i);
418 acg.cg_cs.cs_nifree--;
420 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
421 #ifdef FSIRAND
422 for (j = 0; j < sblock.fs_bsize / sizeof(struct ufs1_dinode); j++) {
423 zino[j].di_gen = random();
425 #endif
426 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
427 (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
429 for (d = 0; d < dlower; d += sblock.fs_frag) {
430 blkno = d / sblock.fs_frag;
431 setblock(&sblock, cg_blksfree(&acg), blkno);
432 if (sblock.fs_contigsumsize > 0) {
433 setbit(cg_clustersfree(&acg), blkno);
435 acg.cg_cs.cs_nbfree++;
436 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
437 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
438 [cbtorpos(&sblock, d)]++;
440 sblock.fs_dsize += dlower;
441 sblock.fs_dsize += acg.cg_ndblk - dupper;
442 if ((i = dupper % sblock.fs_frag)) {
443 acg.cg_frsum[sblock.fs_frag - i]++;
444 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
445 setbit(cg_blksfree(&acg), dupper);
446 acg.cg_cs.cs_nffree++;
449 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
450 blkno = d / sblock.fs_frag;
451 setblock(&sblock, cg_blksfree(&acg), blkno);
452 if (sblock.fs_contigsumsize > 0) {
453 setbit(cg_clustersfree(&acg), blkno);
455 acg.cg_cs.cs_nbfree++;
456 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
457 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
458 [cbtorpos(&sblock, d)]++;
459 d += sblock.fs_frag;
461 if (d < dmax - cbase) {
462 acg.cg_frsum[dmax - cbase - d]++;
463 for (; d < dmax - cbase; d++) {
464 setbit(cg_blksfree(&acg), d);
465 acg.cg_cs.cs_nffree++;
468 if (sblock.fs_contigsumsize > 0) {
469 int32_t *sump = cg_clustersum(&acg);
470 u_char *mapp = cg_clustersfree(&acg);
471 int map = *mapp++;
472 int bit = 1;
473 int run = 0;
475 for (i = 0; i < acg.cg_nclusterblks; i++) {
476 if ((map & bit) != 0) {
477 run++;
478 } else if (run != 0) {
479 if (run > sblock.fs_contigsumsize) {
480 run = sblock.fs_contigsumsize;
482 sump[run]++;
483 run = 0;
485 if ((i & (NBBY - 1)) != (NBBY - 1)) {
486 bit <<= 1;
487 } else {
488 map = *mapp++;
489 bit = 1;
492 if (run != 0) {
493 if (run > sblock.fs_contigsumsize) {
494 run = sblock.fs_contigsumsize;
496 sump[run]++;
499 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
500 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
501 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
502 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
503 *cs = acg.cg_cs;
504 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
505 (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
506 DBG_DUMP_CG(&sblock,
507 "new cg",
508 &acg);
510 DBG_LEAVE;
511 return;
514 /* ******************************************************* frag_adjust ***** */
516 * Here we add or subtract (sign +1/-1) the available fragments in a given
517 * block to or from the fragment statistics. By subtracting before and adding
518 * after an operation on the free frag map we can easy update the fragment
519 * statistic, which seems to be otherwise an rather complex operation.
521 static void
522 frag_adjust(daddr_t frag, int sign)
524 DBG_FUNC("frag_adjust")
525 int fragsize;
526 int f;
528 DBG_ENTER;
530 fragsize=0;
532 * Here frag only needs to point to any fragment in the block we want
533 * to examine.
535 for(f=rounddown(frag, sblock.fs_frag);
536 f<roundup(frag+1, sblock.fs_frag);
537 f++) {
539 * Count contiguos free fragments.
541 if(isset(cg_blksfree(&acg), f)) {
542 fragsize++;
543 } else {
544 if(fragsize && fragsize<sblock.fs_frag) {
546 * We found something in between.
548 acg.cg_frsum[fragsize]+=sign;
549 DBG_PRINT2("frag_adjust [%d]+=%d\n",
550 fragsize,
551 sign);
553 fragsize=0;
556 if(fragsize && fragsize<sblock.fs_frag) {
558 * We found something.
560 acg.cg_frsum[fragsize]+=sign;
561 DBG_PRINT2("frag_adjust [%d]+=%d\n",
562 fragsize,
563 sign);
565 DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
566 fragsize,
567 sign);
569 DBG_LEAVE;
570 return;
573 /* ******************************************************* cond_bl_upd ***** */
575 * Here we conditionally update a pointer to a fragment. We check for all
576 * relocated blocks if any of it's fragments is referenced by the current
577 * field, and update the pointer to the respective fragment in our new
578 * block. If we find a reference we write back the block immediately,
579 * as there is no easy way for our general block reading engine to figure
580 * out if a write back operation is needed.
582 static void
583 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
584 enum pointer_source source, int fso, unsigned int Nflag)
586 DBG_FUNC("cond_bl_upd")
587 struct gfs_bpp *f;
588 char *src;
589 daddr_t dst=0;
591 DBG_ENTER;
593 f=field;
594 while(f->old) { /* for all old blocks */
595 if(*block/sblock.fs_frag == f->old) {
597 * The fragment is part of the block, so update.
599 *block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
600 f->found++;
601 DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
602 f->old,
603 f->new,
604 *block%sblock.fs_frag);
606 /* Write the block back to disk immediately */
607 switch (source) {
608 case GFS_PS_INODE:
609 src=ablk;
610 dst=in_src;
611 break;
612 case GFS_PS_IND_BLK_LVL1:
613 src=i1blk;
614 dst=i1_src;
615 break;
616 case GFS_PS_IND_BLK_LVL2:
617 src=i2blk;
618 dst=i2_src;
619 break;
620 case GFS_PS_IND_BLK_LVL3:
621 src=i3blk;
622 dst=i3_src;
623 break;
624 default: /* error */
625 src=NULL;
626 break;
628 if(src) {
630 * XXX If src is not of type inode we have to
631 * implement copy on write here in case
632 * of active snapshots.
634 wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
635 fso, Nflag);
639 * The same block can't be found again in this loop.
641 break;
643 f++;
646 DBG_LEAVE;
647 return;
650 /* ************************************************************ updjcg ***** */
652 * Here we do all needed work for the former last cylinder group. It has to be
653 * changed in any case, even if the filesystem ended exactly on the end of
654 * this group, as there is some slightly inconsistent handling of the number
655 * of cylinders in the cylinder group. We start again by reading the cylinder
656 * group from disk. If the last block was not fully available, we first handle
657 * the missing fragments, then we handle all new full blocks in that file
658 * system and finally we handle the new last fragmented block in the file
659 * system. We again have to handle the fragment statistics rotational layout
660 * tables and cluster summary during all those operations.
662 static void
663 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
665 DBG_FUNC("updjcg")
666 daddr_t cbase, dmax, dupper;
667 struct csum *cs;
668 int i,k;
669 int j=0;
671 DBG_ENTER;
674 * Read the former last (joining) cylinder group from disk, and make
675 * a copy.
677 rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
678 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
679 DBG_PRINT0("jcg read\n");
680 DBG_DUMP_CG(&sblock,
681 "old joining cg",
682 &aocg);
684 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
687 * If the cylinder group had already it's new final size almost
688 * nothing is to be done ... except:
689 * For some reason the value of cg_ncyl in the last cylinder group has
690 * to be zero instead of fs_cpg. As this is now no longer the last
691 * cylinder group we have to change that value now to fs_cpg.
694 if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
695 acg.cg_ncyl=sblock.fs_cpg;
697 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
698 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
699 DBG_PRINT0("jcg written\n");
700 DBG_DUMP_CG(&sblock,
701 "new joining cg",
702 &acg);
704 DBG_LEAVE;
705 return;
709 * Set up some variables needed later.
711 cbase = cgbase(&sblock, cylno);
712 dmax = cbase + sblock.fs_fpg;
713 if (dmax > sblock.fs_size)
714 dmax = sblock.fs_size;
715 dupper = cgdmin(&sblock, cylno) - cbase;
716 if (cylno == 0) { /* XXX fscs may be relocated */
717 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
721 * Set pointer to the cylinder summary for our cylinder group.
723 cs = fscs + cylno;
726 * Touch the cylinder group, update all fields in the cylinder group as
727 * needed, update the free space in the superblock.
729 acg.cg_time = utime;
730 if (cylno == sblock.fs_ncg - 1) {
732 * This is still the last cylinder group.
734 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
735 } else {
736 acg.cg_ncyl = sblock.fs_cpg;
738 DBG_PRINT4("jcg dbg: %d %u %d %u\n",
739 cylno,
740 sblock.fs_ncg,
741 acg.cg_ncyl,
742 sblock.fs_cpg);
743 acg.cg_ndblk = dmax - cbase;
744 sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
745 if (sblock.fs_contigsumsize > 0) {
746 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
750 * Now we have to update the free fragment bitmap for our new free
751 * space. There again we have to handle the fragmentation and also
752 * the rotational layout tables and the cluster summary. This is
753 * also done per fragment for the first new block if the old file
754 * system end was not on a block boundary, per fragment for the new
755 * last block if the new file system end is not on a block boundary,
756 * and per block for all space in between.
758 * Handle the first new block here if it was partially available
759 * before.
761 if(osblock.fs_size % sblock.fs_frag) {
762 if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
764 * The new space is enough to fill at least this
765 * block
767 j=0;
768 for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
769 i>=osblock.fs_size-cbase;
770 i--) {
771 setbit(cg_blksfree(&acg), i);
772 acg.cg_cs.cs_nffree++;
773 j++;
777 * Check if the fragment just created could join an
778 * already existing fragment at the former end of the
779 * file system.
781 if(isblock(&sblock, cg_blksfree(&acg),
782 ((osblock.fs_size - cgbase(&sblock, cylno))/
783 sblock.fs_frag))) {
785 * The block is now completely available
787 DBG_PRINT0("block was\n");
788 acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
789 acg.cg_cs.cs_nbfree++;
790 acg.cg_cs.cs_nffree-=sblock.fs_frag;
791 k=rounddown(osblock.fs_size-cbase,
792 sblock.fs_frag);
793 cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
794 cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
795 [cbtorpos(&sblock, k)]++;
796 updclst((osblock.fs_size-cbase)/sblock.fs_frag);
797 } else {
799 * Lets rejoin a possible partially growed
800 * fragment.
802 k=0;
803 while(isset(cg_blksfree(&acg), i) &&
804 (i>=rounddown(osblock.fs_size-cbase,
805 sblock.fs_frag))) {
806 i--;
807 k++;
809 if(k) {
810 acg.cg_frsum[k]--;
812 acg.cg_frsum[k+j]++;
814 } else {
816 * We only grow by some fragments within this last
817 * block.
819 for(i=sblock.fs_size-cbase-1;
820 i>=osblock.fs_size-cbase;
821 i--) {
822 setbit(cg_blksfree(&acg), i);
823 acg.cg_cs.cs_nffree++;
824 j++;
827 * Lets rejoin a possible partially growed fragment.
829 k=0;
830 while(isset(cg_blksfree(&acg), i) &&
831 (i>=rounddown(osblock.fs_size-cbase,
832 sblock.fs_frag))) {
833 i--;
834 k++;
836 if(k) {
837 acg.cg_frsum[k]--;
839 acg.cg_frsum[k+j]++;
844 * Handle all new complete blocks here.
846 for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
847 i+sblock.fs_frag<=dmax-cbase; /* XXX <= or only < ? */
848 i+=sblock.fs_frag) {
849 j = i / sblock.fs_frag;
850 setblock(&sblock, cg_blksfree(&acg), j);
851 updclst(j);
852 acg.cg_cs.cs_nbfree++;
853 cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
854 cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
855 [cbtorpos(&sblock, i)]++;
859 * Handle the last new block if there are stll some new fragments left.
860 * Here we don't have to bother about the cluster summary or the even
861 * the rotational layout table.
863 if (i < (dmax - cbase)) {
864 acg.cg_frsum[dmax - cbase - i]++;
865 for (; i < dmax - cbase; i++) {
866 setbit(cg_blksfree(&acg), i);
867 acg.cg_cs.cs_nffree++;
871 sblock.fs_cstotal.cs_nffree +=
872 (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
873 sblock.fs_cstotal.cs_nbfree +=
874 (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
876 * The following statistics are not changed here:
877 * sblock.fs_cstotal.cs_ndir
878 * sblock.fs_cstotal.cs_nifree
879 * As the statistics for this cylinder group are ready, copy it to
880 * the summary information array.
882 *cs = acg.cg_cs;
885 * Write the updated "joining" cylinder group back to disk.
887 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
888 (void *)&acg, fso, Nflag);
889 DBG_PRINT0("jcg written\n");
890 DBG_DUMP_CG(&sblock,
891 "new joining cg",
892 &acg);
894 DBG_LEAVE;
895 return;
898 /* ********************************************************** updcsloc ***** */
900 * Here we update the location of the cylinder summary. We have two possible
901 * ways of growing the cylinder summary.
902 * (1) We can try to grow the summary in the current location, and relocate
903 * possibly used blocks within the current cylinder group.
904 * (2) Alternatively we can relocate the whole cylinder summary to the first
905 * new completely empty cylinder group. Once the cylinder summary is no
906 * longer in the beginning of the first cylinder group you should never
907 * use a version of fsck which is not aware of the possibility to have
908 * this structure in a non standard place.
909 * Option (1) is considered to be less intrusive to the structure of the file-
910 * system. So we try to stick to that whenever possible. If there is not enough
911 * space in the cylinder group containing the cylinder summary we have to use
912 * method (2). In case of active snapshots in the filesystem we probably can
913 * completely avoid implementing copy on write if we stick to method (2) only.
915 static void
916 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
918 DBG_FUNC("updcsloc")
919 struct csum *cs;
920 int ocscg, ncscg;
921 int blocks;
922 daddr_t cbase, dupper, odupper, d, f, g;
923 int ind;
924 int cylno, inc;
925 struct gfs_bpp *bp;
926 int i, l;
927 int lcs=0;
928 int block;
930 DBG_ENTER;
932 if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
933 howmany(osblock.fs_cssize, osblock.fs_fsize)) {
935 * No new fragment needed.
937 DBG_LEAVE;
938 return;
940 ocscg=dtog(&osblock, osblock.fs_csaddr);
941 cs=fscs+ocscg;
942 blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
943 howmany(osblock.fs_cssize, osblock.fs_bsize);
946 * Read original cylinder group from disk, and make a copy.
947 * XXX If Nflag is set in some very rare cases we now miss
948 * some changes done in updjcg by reading the unmodified
949 * block from disk.
951 rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
952 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
953 DBG_PRINT0("oscg read\n");
954 DBG_DUMP_CG(&sblock,
955 "old summary cg",
956 &aocg);
958 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
961 * Touch the cylinder group, set up local variables needed later
962 * and update the superblock.
964 acg.cg_time = utime;
967 * XXX In the case of having active snapshots we may need much more
968 * blocks for the copy on write. We need each block twice, and
969 * also up to 8*3 blocks for indirect blocks for all possible
970 * references.
972 if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
974 * There is not enough space in the old cylinder group to
975 * relocate all blocks as needed, so we relocate the whole
976 * cylinder group summary to a new group. We try to use the
977 * first complete new cylinder group just created. Within the
978 * cylinder group we allign the area immediately after the
979 * cylinder group information location in order to be as
980 * close as possible to the original implementation of ffs.
982 * First we have to make sure we'll find enough space in the
983 * new cylinder group. If not, then we currently give up.
984 * We start with freeing everything which was used by the
985 * fragments of the old cylinder summary in the current group.
986 * Now we write back the group meta data, read in the needed
987 * meta data from the new cylinder group, and start allocating
988 * within that group. Here we can assume, the group to be
989 * completely empty. Which makes the handling of fragments and
990 * clusters a lot easier.
992 DBG_TRC;
993 if(sblock.fs_ncg-osblock.fs_ncg < 2) {
994 errx(2, "panic: not enough space");
998 * Point "d" to the first fragment not used by the cylinder
999 * summary.
1001 d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1004 * Set up last cluster size ("lcs") already here. Calculate
1005 * the size for the trailing cluster just behind where "d"
1006 * points to.
1008 if(sblock.fs_contigsumsize > 0) {
1009 for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1010 lcs=0; lcs<sblock.fs_contigsumsize;
1011 block++, lcs++) {
1012 if(isclr(cg_clustersfree(&acg), block)){
1013 break;
1019 * Point "d" to the last frag used by the cylinder summary.
1021 d--;
1023 DBG_PRINT1("d=%d\n",
1025 if((d+1)%sblock.fs_frag) {
1027 * The end of the cylinder summary is not a complete
1028 * block.
1030 DBG_TRC;
1031 frag_adjust(d%sblock.fs_fpg, -1);
1032 for(; (d+1)%sblock.fs_frag; d--) {
1033 DBG_PRINT1("d=%d\n",
1035 setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1036 acg.cg_cs.cs_nffree++;
1037 sblock.fs_cstotal.cs_nffree++;
1040 * Point "d" to the last fragment of the last
1041 * (incomplete) block of the clinder summary.
1043 d++;
1044 frag_adjust(d%sblock.fs_fpg, 1);
1046 if(isblock(&sblock, cg_blksfree(&acg),
1047 (d%sblock.fs_fpg)/sblock.fs_frag)) {
1048 DBG_PRINT1("d=%d\n",
1050 acg.cg_cs.cs_nffree-=sblock.fs_frag;
1051 acg.cg_cs.cs_nbfree++;
1052 sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1053 sblock.fs_cstotal.cs_nbfree++;
1054 cg_blktot(&acg)[cbtocylno(&sblock,
1055 d%sblock.fs_fpg)]++;
1056 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1057 d%sblock.fs_fpg))[cbtorpos(&sblock,
1058 d%sblock.fs_fpg)]++;
1059 if(sblock.fs_contigsumsize > 0) {
1060 setbit(cg_clustersfree(&acg),
1061 (d%sblock.fs_fpg)/sblock.fs_frag);
1062 if(lcs < sblock.fs_contigsumsize) {
1063 if(lcs) {
1064 cg_clustersum(&acg)
1065 [lcs]--;
1067 lcs++;
1068 cg_clustersum(&acg)[lcs]++;
1073 * Point "d" to the first fragment of the block before
1074 * the last incomplete block.
1076 d--;
1079 DBG_PRINT1("d=%d\n",
1081 for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1082 d-=sblock.fs_frag) {
1083 DBG_TRC;
1084 DBG_PRINT1("d=%d\n",
1086 setblock(&sblock, cg_blksfree(&acg),
1087 (d%sblock.fs_fpg)/sblock.fs_frag);
1088 acg.cg_cs.cs_nbfree++;
1089 sblock.fs_cstotal.cs_nbfree++;
1090 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1091 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1092 d%sblock.fs_fpg))[cbtorpos(&sblock,
1093 d%sblock.fs_fpg)]++;
1094 if(sblock.fs_contigsumsize > 0) {
1095 setbit(cg_clustersfree(&acg),
1096 (d%sblock.fs_fpg)/sblock.fs_frag);
1098 * The last cluster size is already set up.
1100 if(lcs < sblock.fs_contigsumsize) {
1101 if(lcs) {
1102 cg_clustersum(&acg)[lcs]--;
1104 lcs++;
1105 cg_clustersum(&acg)[lcs]++;
1109 *cs = acg.cg_cs;
1112 * Now write the former cylinder group containing the cylinder
1113 * summary back to disk.
1115 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1116 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1117 DBG_PRINT0("oscg written\n");
1118 DBG_DUMP_CG(&sblock,
1119 "old summary cg",
1120 &acg);
1123 * Find the beginning of the new cylinder group containing the
1124 * cylinder summary.
1126 sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1127 ncscg=dtog(&sblock, sblock.fs_csaddr);
1128 cs=fscs+ncscg;
1132 * If Nflag is specified, we would now read random data instead
1133 * of an empty cg structure from disk. So we can't simulate that
1134 * part for now.
1136 if(Nflag) {
1137 DBG_PRINT0("nscg update skipped\n");
1138 DBG_LEAVE;
1139 return;
1143 * Read the future cylinder group containing the cylinder
1144 * summary from disk, and make a copy.
1146 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1147 (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1148 DBG_PRINT0("nscg read\n");
1149 DBG_DUMP_CG(&sblock,
1150 "new summary cg",
1151 &aocg);
1153 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1156 * Allocate all complete blocks used by the new cylinder
1157 * summary.
1159 for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1160 sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1161 d+=sblock.fs_frag) {
1162 clrblock(&sblock, cg_blksfree(&acg),
1163 (d%sblock.fs_fpg)/sblock.fs_frag);
1164 acg.cg_cs.cs_nbfree--;
1165 sblock.fs_cstotal.cs_nbfree--;
1166 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1167 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1168 d%sblock.fs_fpg))[cbtorpos(&sblock,
1169 d%sblock.fs_fpg)]--;
1170 if(sblock.fs_contigsumsize > 0) {
1171 clrbit(cg_clustersfree(&acg),
1172 (d%sblock.fs_fpg)/sblock.fs_frag);
1177 * Allocate all fragments used by the cylinder summary in the
1178 * last block.
1180 if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1181 for(; d-sblock.fs_csaddr<
1182 sblock.fs_cssize/sblock.fs_fsize;
1183 d++) {
1184 clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1185 acg.cg_cs.cs_nffree--;
1186 sblock.fs_cstotal.cs_nffree--;
1188 acg.cg_cs.cs_nbfree--;
1189 acg.cg_cs.cs_nffree+=sblock.fs_frag;
1190 sblock.fs_cstotal.cs_nbfree--;
1191 sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1192 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1193 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1194 d%sblock.fs_fpg))[cbtorpos(&sblock,
1195 d%sblock.fs_fpg)]--;
1196 if(sblock.fs_contigsumsize > 0) {
1197 clrbit(cg_clustersfree(&acg),
1198 (d%sblock.fs_fpg)/sblock.fs_frag);
1201 frag_adjust(d%sblock.fs_fpg, +1);
1204 * XXX Handle the cluster statistics here in the case this
1205 * cylinder group is now almost full, and the remaining
1206 * space is less then the maximum cluster size. This is
1207 * probably not needed, as you would hardly find a file
1208 * system which has only MAXCSBUFS+FS_MAXCONTIG of free
1209 * space right behind the cylinder group information in
1210 * any new cylinder group.
1214 * Update our statistics in the cylinder summary.
1216 *cs = acg.cg_cs;
1219 * Write the new cylinder group containing the cylinder summary
1220 * back to disk.
1222 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1223 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1224 DBG_PRINT0("nscg written\n");
1225 DBG_DUMP_CG(&sblock,
1226 "new summary cg",
1227 &acg);
1229 DBG_LEAVE;
1230 return;
1233 * We have got enough of space in the current cylinder group, so we
1234 * can relocate just a few blocks, and let the summary information
1235 * grow in place where it is right now.
1237 DBG_TRC;
1239 cbase = cgbase(&osblock, ocscg); /* old and new are equal */
1240 dupper = sblock.fs_csaddr - cbase +
1241 howmany(sblock.fs_cssize, sblock.fs_fsize);
1242 odupper = osblock.fs_csaddr - cbase +
1243 howmany(osblock.fs_cssize, osblock.fs_fsize);
1245 sblock.fs_dsize -= dupper-odupper;
1248 * Allocate the space for the array of blocks to be relocated.
1250 bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1251 sizeof(struct gfs_bpp));
1252 if(bp == NULL) {
1253 errx(1, "malloc failed");
1255 memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1256 sizeof(struct gfs_bpp));
1259 * Lock all new frags needed for the cylinder group summary. This is
1260 * done per fragment in the first and last block of the new required
1261 * area, and per block for all other blocks.
1263 * Handle the first new block here (but only if some fragments where
1264 * already used for the cylinder summary).
1266 ind=0;
1267 frag_adjust(odupper, -1);
1268 for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1269 DBG_PRINT1("scg first frag check loop d=%d\n",
1271 if(isclr(cg_blksfree(&acg), d)) {
1272 if (!ind) {
1273 bp[ind].old=d/sblock.fs_frag;
1274 bp[ind].flags|=GFS_FL_FIRST;
1275 if(roundup(d, sblock.fs_frag) >= dupper) {
1276 bp[ind].flags|=GFS_FL_LAST;
1278 ind++;
1280 } else {
1281 clrbit(cg_blksfree(&acg), d);
1282 acg.cg_cs.cs_nffree--;
1283 sblock.fs_cstotal.cs_nffree--;
1286 * No cluster handling is needed here, as there was at least
1287 * one fragment in use by the cylinder summary in the old
1288 * file system.
1289 * No block-free counter handling here as this block was not
1290 * a free block.
1293 frag_adjust(odupper, 1);
1296 * Handle all needed complete blocks here.
1298 for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1299 DBG_PRINT1("scg block check loop d=%d\n",
1301 if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1302 for(f=d; f<d+sblock.fs_frag; f++) {
1303 if(isset(cg_blksfree(&aocg), f)) {
1304 acg.cg_cs.cs_nffree--;
1305 sblock.fs_cstotal.cs_nffree--;
1308 clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1309 bp[ind].old=d/sblock.fs_frag;
1310 ind++;
1311 } else {
1312 clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1313 acg.cg_cs.cs_nbfree--;
1314 sblock.fs_cstotal.cs_nbfree--;
1315 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1316 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1317 [cbtorpos(&sblock, d)]--;
1318 if(sblock.fs_contigsumsize > 0) {
1319 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1320 for(lcs=0, l=(d/sblock.fs_frag)+1;
1321 lcs<sblock.fs_contigsumsize;
1322 l++, lcs++ ) {
1323 if(isclr(cg_clustersfree(&acg),l)){
1324 break;
1327 if(lcs < sblock.fs_contigsumsize) {
1328 cg_clustersum(&acg)[lcs+1]--;
1329 if(lcs) {
1330 cg_clustersum(&acg)[lcs]++;
1336 * No fragment counter handling is needed here, as this finally
1337 * doesn't change after the relocation.
1342 * Handle all fragments needed in the last new affected block.
1344 if(d<dupper) {
1345 frag_adjust(dupper-1, -1);
1347 if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1348 acg.cg_cs.cs_nbfree--;
1349 sblock.fs_cstotal.cs_nbfree--;
1350 acg.cg_cs.cs_nffree+=sblock.fs_frag;
1351 sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1352 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1353 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1354 [cbtorpos(&sblock, d)]--;
1355 if(sblock.fs_contigsumsize > 0) {
1356 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1357 for(lcs=0, l=(d/sblock.fs_frag)+1;
1358 lcs<sblock.fs_contigsumsize;
1359 l++, lcs++ ) {
1360 if(isclr(cg_clustersfree(&acg),l)){
1361 break;
1364 if(lcs < sblock.fs_contigsumsize) {
1365 cg_clustersum(&acg)[lcs+1]--;
1366 if(lcs) {
1367 cg_clustersum(&acg)[lcs]++;
1373 for(; d<dupper; d++) {
1374 DBG_PRINT1("scg second frag check loop d=%d\n",
1376 if(isclr(cg_blksfree(&acg), d)) {
1377 bp[ind].old=d/sblock.fs_frag;
1378 bp[ind].flags|=GFS_FL_LAST;
1379 } else {
1380 clrbit(cg_blksfree(&acg), d);
1381 acg.cg_cs.cs_nffree--;
1382 sblock.fs_cstotal.cs_nffree--;
1385 if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1386 ind++;
1388 frag_adjust(dupper-1, 1);
1392 * If we found a block to relocate just do so.
1394 if(ind) {
1395 for(i=0; i<ind; i++) {
1396 if(!bp[i].old) { /* no more blocks listed */
1398 * XXX A relative blocknumber should not be
1399 * zero, which is not explicitly
1400 * guaranteed by our code.
1402 break;
1405 * Allocate a complete block in the same (current)
1406 * cylinder group.
1408 bp[i].new=alloc()/sblock.fs_frag;
1411 * There is no frag_adjust() needed for the new block
1412 * as it will have no fragments yet :-).
1414 for(f=bp[i].old*sblock.fs_frag,
1415 g=bp[i].new*sblock.fs_frag;
1416 f<(bp[i].old+1)*sblock.fs_frag;
1417 f++, g++) {
1418 if(isset(cg_blksfree(&aocg), f)) {
1419 setbit(cg_blksfree(&acg), g);
1420 acg.cg_cs.cs_nffree++;
1421 sblock.fs_cstotal.cs_nffree++;
1426 * Special handling is required if this was the first
1427 * block. We have to consider the fragments which were
1428 * used by the cylinder summary in the original block
1429 * which re to be free in the copy of our block. We
1430 * have to be careful if this first block happens to
1431 * be also the last block to be relocated.
1433 if(bp[i].flags & GFS_FL_FIRST) {
1434 for(f=bp[i].old*sblock.fs_frag,
1435 g=bp[i].new*sblock.fs_frag;
1436 f<odupper;
1437 f++, g++) {
1438 setbit(cg_blksfree(&acg), g);
1439 acg.cg_cs.cs_nffree++;
1440 sblock.fs_cstotal.cs_nffree++;
1442 if(!(bp[i].flags & GFS_FL_LAST)) {
1443 frag_adjust(bp[i].new*sblock.fs_frag,1);
1449 * Special handling is required if this is the last
1450 * block to be relocated.
1452 if(bp[i].flags & GFS_FL_LAST) {
1453 frag_adjust(bp[i].new*sblock.fs_frag, 1);
1454 frag_adjust(bp[i].old*sblock.fs_frag, -1);
1455 for(f=dupper;
1456 f<roundup(dupper, sblock.fs_frag);
1457 f++) {
1458 if(isclr(cg_blksfree(&acg), f)) {
1459 setbit(cg_blksfree(&acg), f);
1460 acg.cg_cs.cs_nffree++;
1461 sblock.fs_cstotal.cs_nffree++;
1464 frag_adjust(bp[i].old*sblock.fs_frag, 1);
1468 * !!! Attach the cylindergroup offset here.
1470 bp[i].old+=cbase/sblock.fs_frag;
1471 bp[i].new+=cbase/sblock.fs_frag;
1474 * Copy the content of the block.
1477 * XXX Here we will have to implement a copy on write
1478 * in the case we have any active snapshots.
1480 rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1481 (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1482 wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1483 (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1484 DBG_DUMP_HEX(&sblock,
1485 "copied full block",
1486 (unsigned char *)&ablk);
1488 DBG_PRINT2("scg (%d->%d) block relocated\n",
1489 bp[i].old,
1490 bp[i].new);
1494 * Now we have to update all references to any fragment which
1495 * belongs to any block relocated. We iterate now over all
1496 * cylinder groups, within those over all non zero length
1497 * inodes.
1499 for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1500 DBG_PRINT1("scg doing cg (%d)\n",
1501 cylno);
1502 for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1503 updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1508 * All inodes are checked, now make sure the number of
1509 * references found make sense.
1511 for(i=0; i<ind; i++) {
1512 if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1513 warnx("error: %d refs found for block %d.",
1514 bp[i].found, bp[i].old);
1520 * The following statistics are not changed here:
1521 * sblock.fs_cstotal.cs_ndir
1522 * sblock.fs_cstotal.cs_nifree
1523 * The following statistics were already updated on the fly:
1524 * sblock.fs_cstotal.cs_nffree
1525 * sblock.fs_cstotal.cs_nbfree
1526 * As the statistics for this cylinder group are ready, copy it to
1527 * the summary information array.
1530 *cs = acg.cg_cs;
1533 * Write summary cylinder group back to disk.
1535 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1536 (void *)&acg, fso, Nflag);
1537 DBG_PRINT0("scg written\n");
1538 DBG_DUMP_CG(&sblock,
1539 "new summary cg",
1540 &acg);
1542 DBG_LEAVE;
1543 return;
1546 /* ************************************************************** rdfs ***** */
1548 * Here we read some block(s) from disk.
1550 static void
1551 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1553 DBG_FUNC("rdfs")
1554 ssize_t n;
1556 DBG_ENTER;
1558 if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1559 err(33, "rdfs: seek error: %ld", (long)bno);
1561 n = read(fsi, bf, size);
1562 if (n != (ssize_t)size) {
1563 err(34, "rdfs: read error: %ld", (long)bno);
1566 DBG_LEAVE;
1567 return;
1570 /* ************************************************************** wtfs ***** */
1572 * Here we write some block(s) to disk.
1574 static void
1575 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1577 DBG_FUNC("wtfs")
1578 ssize_t n;
1580 DBG_ENTER;
1582 if (Nflag) {
1583 DBG_LEAVE;
1584 return;
1586 if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1587 err(35, "wtfs: seek error: %ld", (long)bno);
1589 n = write(fso, bf, size);
1590 if (n != (ssize_t)size) {
1591 err(36, "wtfs: write error: %ld", (long)bno);
1594 DBG_LEAVE;
1595 return;
1598 /* ************************************************************* alloc ***** */
1600 * Here we allocate a free block in the current cylinder group. It is assumed,
1601 * that acg contains the current cylinder group. As we may take a block from
1602 * somewhere in the filesystem we have to handle cluster summary here.
1604 static daddr_t
1605 alloc(void)
1607 DBG_FUNC("alloc")
1608 daddr_t d, blkno;
1609 int lcs1, lcs2;
1610 int l;
1611 int csmin, csmax;
1612 int dlower, dupper, dmax;
1614 DBG_ENTER;
1616 if (acg.cg_magic != CG_MAGIC) {
1617 warnx("acg: bad magic number");
1618 DBG_LEAVE;
1619 return (0);
1621 if (acg.cg_cs.cs_nbfree == 0) {
1622 warnx("error: cylinder group ran out of space");
1623 DBG_LEAVE;
1624 return (0);
1627 * We start seeking for free blocks only from the space available after
1628 * the end of the new grown cylinder summary. Otherwise we allocate a
1629 * block here which we have to relocate a couple of seconds later again
1630 * again, and we are not prepared to to this anyway.
1632 blkno=-1;
1633 dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1634 dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1635 dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1636 if (dmax > sblock.fs_size) {
1637 dmax = sblock.fs_size;
1639 dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1640 csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1641 csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1642 DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1643 dlower,
1644 dupper,
1645 dmax);
1646 DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1647 csmin,
1648 csmax);
1650 for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1651 if(d>=csmin && d<=csmax) {
1652 continue;
1654 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1655 d))) {
1656 blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1657 break;
1660 for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1661 if(d>=csmin && d<=csmax) {
1662 continue;
1664 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1665 d))) {
1666 blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1667 break;
1670 if(blkno==-1) {
1671 warnx("internal error: couldn't find promised block in cg");
1672 DBG_LEAVE;
1673 return (0);
1677 * This is needed if the block was found already in the first loop.
1679 d=blkstofrags(&sblock, blkno);
1681 clrblock(&sblock, cg_blksfree(&acg), blkno);
1682 if (sblock.fs_contigsumsize > 0) {
1684 * Handle the cluster allocation bitmap.
1686 clrbit(cg_clustersfree(&acg), blkno);
1688 * We possibly have split a cluster here, so we have to do
1689 * recalculate the sizes of the remaining cluster halves now,
1690 * and use them for updating the cluster summary information.
1692 * Lets start with the blocks before our allocated block ...
1694 for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1695 l--, lcs1++ ) {
1696 if(isclr(cg_clustersfree(&acg),l)){
1697 break;
1701 * ... and continue with the blocks right after our allocated
1702 * block.
1704 for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1705 l++, lcs2++ ) {
1706 if(isclr(cg_clustersfree(&acg),l)){
1707 break;
1712 * Now update all counters.
1714 cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1715 if(lcs1) {
1716 cg_clustersum(&acg)[lcs1]++;
1718 if(lcs2) {
1719 cg_clustersum(&acg)[lcs2]++;
1723 * Update all statistics based on blocks.
1725 acg.cg_cs.cs_nbfree--;
1726 sblock.fs_cstotal.cs_nbfree--;
1727 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1728 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1730 DBG_LEAVE;
1731 return (d);
1734 /* *********************************************************** isblock ***** */
1736 * Here we check if all frags of a block are free. For more details again
1737 * please see the source of newfs(8), as this function is taken over almost
1738 * unchanged.
1740 static int
1741 isblock(struct fs *fs, unsigned char *cp, int h)
1743 DBG_FUNC("isblock")
1744 unsigned char mask;
1746 DBG_ENTER;
1748 switch (fs->fs_frag) {
1749 case 8:
1750 DBG_LEAVE;
1751 return (cp[h] == 0xff);
1752 case 4:
1753 mask = 0x0f << ((h & 0x1) << 2);
1754 DBG_LEAVE;
1755 return ((cp[h >> 1] & mask) == mask);
1756 case 2:
1757 mask = 0x03 << ((h & 0x3) << 1);
1758 DBG_LEAVE;
1759 return ((cp[h >> 2] & mask) == mask);
1760 case 1:
1761 mask = 0x01 << (h & 0x7);
1762 DBG_LEAVE;
1763 return ((cp[h >> 3] & mask) == mask);
1764 default:
1765 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1766 DBG_LEAVE;
1767 return (0);
1771 /* ********************************************************** clrblock ***** */
1773 * Here we allocate a complete block in the block map. For more details again
1774 * please see the source of newfs(8), as this function is taken over almost
1775 * unchanged.
1777 static void
1778 clrblock(struct fs *fs, unsigned char *cp, int h)
1780 DBG_FUNC("clrblock")
1782 DBG_ENTER;
1784 switch ((fs)->fs_frag) {
1785 case 8:
1786 cp[h] = 0;
1787 break;
1788 case 4:
1789 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1790 break;
1791 case 2:
1792 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1793 break;
1794 case 1:
1795 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1796 break;
1797 default:
1798 warnx("clrblock bad fs_frag %d", fs->fs_frag);
1799 break;
1802 DBG_LEAVE;
1803 return;
1806 /* ********************************************************** setblock ***** */
1808 * Here we free a complete block in the free block map. For more details again
1809 * please see the source of newfs(8), as this function is taken over almost
1810 * unchanged.
1812 static void
1813 setblock(struct fs *fs, unsigned char *cp, int h)
1815 DBG_FUNC("setblock")
1817 DBG_ENTER;
1819 switch (fs->fs_frag) {
1820 case 8:
1821 cp[h] = 0xff;
1822 break;
1823 case 4:
1824 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1825 break;
1826 case 2:
1827 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1828 break;
1829 case 1:
1830 cp[h >> 3] |= (0x01 << (h & 0x7));
1831 break;
1832 default:
1833 warnx("setblock bad fs_frag %d", fs->fs_frag);
1834 break;
1837 DBG_LEAVE;
1838 return;
1841 /* ************************************************************ ginode ***** */
1843 * This function provides access to an individual inode. We find out in which
1844 * block the requested inode is located, read it from disk if needed, and
1845 * return the pointer into that block. We maintain a cache of one block to
1846 * not read the same block again and again if we iterate linearly over all
1847 * inodes.
1849 static struct ufs1_dinode *
1850 ginode(ino_t inumber, int fsi, int cg)
1852 DBG_FUNC("ginode")
1853 ufs_daddr_t iblk;
1854 static ino_t startinum=0; /* first inode in cached block */
1855 struct ufs1_dinode *pi;
1857 DBG_ENTER;
1859 pi=(struct ufs1_dinode *)(void *)ablk;
1860 inumber+=(cg * sblock.fs_ipg);
1861 if (startinum == 0 || inumber < startinum ||
1862 inumber >= startinum + INOPB(&sblock)) {
1864 * The block needed is not cached, so we have to read it from
1865 * disk now.
1867 iblk = ino_to_fsba(&sblock, inumber);
1868 in_src=fsbtodb(&sblock, iblk);
1869 rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1870 startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1873 DBG_LEAVE;
1874 return (&(pi[inumber % INOPB(&sblock)]));
1877 /* ****************************************************** charsperline ***** */
1879 * Figure out how many lines our current terminal has. For more details again
1880 * please see the source of newfs(8), as this function is taken over almost
1881 * unchanged.
1883 static int
1884 charsperline(void)
1886 DBG_FUNC("charsperline")
1887 int columns;
1888 char *cp;
1889 struct winsize ws;
1891 DBG_ENTER;
1893 columns = 0;
1894 if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1895 columns = ws.ws_col;
1897 if (columns == 0 && (cp = getenv("COLUMNS"))) {
1898 columns = atoi(cp);
1900 if (columns == 0) {
1901 columns = 80; /* last resort */
1904 DBG_LEAVE;
1905 return columns;
1908 /* ************************************************************** main ***** */
1910 * growfs(8) is a utility which allows to increase the size of an existing
1911 * ufs filesystem. Currently this can only be done on unmounted file system.
1912 * It recognizes some command line options to specify the new desired size,
1913 * and it does some basic checkings. The old file system size is determined
1914 * and after some more checks like we can really access the new last block
1915 * on the disk etc. we calculate the new parameters for the superblock. After
1916 * having done this we just call growfs() which will do the work. Before
1917 * we finish the only thing left is to update the disklabel.
1918 * We still have to provide support for snapshots. Therefore we first have to
1919 * understand what data structures are always replicated in the snapshot on
1920 * creation, for all other blocks we touch during our procedure, we have to
1921 * keep the old blocks unchanged somewhere available for the snapshots. If we
1922 * are lucky, then we only have to handle our blocks to be relocated in that
1923 * way.
1924 * Also we have to consider in what order we actually update the critical
1925 * data structures of the filesystem to make sure, that in case of a disaster
1926 * fsck(8) is still able to restore any lost data.
1927 * The foreseen last step then will be to provide for growing even mounted
1928 * file systems. There we have to extend the mount() system call to provide
1929 * userland access to the file system locking facility.
1932 main(int argc, char **argv)
1934 DBG_FUNC("main")
1935 struct partinfo pinfo;
1936 char *device, *special, *cp;
1937 char ch;
1938 unsigned int size=0;
1939 size_t len;
1940 unsigned int Nflag=0;
1941 int ExpertFlag=0;
1942 struct stat st;
1943 int fsi,fso;
1944 char reply[5];
1945 #ifdef FSMAXSNAP
1946 int j;
1947 #endif /* FSMAXSNAP */
1949 DBG_ENTER;
1951 while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1952 switch(ch) {
1953 case 'N':
1954 Nflag=1;
1955 break;
1956 case 's':
1957 size=(size_t)atol(optarg);
1958 if(size<1) {
1959 usage();
1961 break;
1962 case 'v': /* for compatibility to newfs */
1963 break;
1964 case 'y':
1965 ExpertFlag=1;
1966 break;
1967 case '?':
1968 /* FALLTHROUGH */
1969 default:
1970 usage();
1973 argc -= optind;
1974 argv += optind;
1976 if(argc != 1) {
1977 usage();
1979 device=*argv;
1982 * Now try to guess the (raw)device name.
1984 if (0 == strrchr(device, '/')) {
1986 * No path prefix was given, so try in that order:
1987 * /dev/r%s
1988 * /dev/%s
1989 * /dev/vinum/r%s
1990 * /dev/vinum/%s.
1992 * FreeBSD now doesn't distinguish between raw and block
1993 * devices any longer, but it should still work this way.
1995 len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1996 special=(char *)malloc(len);
1997 if(special == NULL) {
1998 errx(1, "malloc failed");
2000 snprintf(special, len, "%sr%s", _PATH_DEV, device);
2001 if (stat(special, &st) == -1) {
2002 snprintf(special, len, "%s%s", _PATH_DEV, device);
2003 if (stat(special, &st) == -1) {
2004 snprintf(special, len, "%svinum/r%s",
2005 _PATH_DEV, device);
2006 if (stat(special, &st) == -1) {
2007 /* For now this is the 'last resort' */
2008 snprintf(special, len, "%svinum/%s",
2009 _PATH_DEV, device);
2013 device = special;
2017 * Try to access our devices for writing ...
2019 if (Nflag) {
2020 fso = -1;
2021 } else {
2022 fso = open(device, O_WRONLY);
2023 if (fso < 0) {
2024 err(1, "%s", device);
2029 * ... and reading.
2031 fsi = open(device, O_RDONLY);
2032 if (fsi < 0) {
2033 err(1, "%s", device);
2037 * Try to read a label and gess the slice if not specified. This
2038 * code should guess the right thing and avaid to bother the user
2039 * user with the task of specifying the option -v on vinum volumes.
2041 cp=device+strlen(device)-1;
2043 if (ioctl(fsi, DIOCGPART, &pinfo) < 0) {
2044 if (fstat(fsi, &st) < 0)
2045 err(1, "unable to figure out the partition size");
2046 pinfo.media_blocks = st.st_size / DEV_BSIZE;
2047 pinfo.media_blksize = DEV_BSIZE;
2051 * Check if that partition looks suited for growing a file system.
2053 if (pinfo.media_blocks < 1) {
2054 errx(1, "partition is unavailable");
2058 * Read the current superblock, and take a backup.
2060 rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2061 fsi);
2062 if (osblock.fs_magic != FS_MAGIC) {
2063 errx(1, "superblock not recognized");
2065 memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2067 DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2068 DBG_DUMP_FS(&sblock,
2069 "old sblock");
2072 * Determine size to grow to. Default to the full size specified in
2073 * the disk label.
2075 sblock.fs_size = dbtofsb(&osblock, pinfo.media_blocks);
2076 if (size != 0) {
2077 if (size > pinfo.media_blocks){
2078 errx(1, "There is not enough space (%llu < %d)",
2079 pinfo.media_blocks, size);
2081 sblock.fs_size = dbtofsb(&osblock, size);
2085 * Are we really growing ?
2087 if(osblock.fs_size >= sblock.fs_size) {
2088 errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2089 sblock.fs_size);
2093 #ifdef FSMAXSNAP
2095 * Check if we find an active snapshot.
2097 if(ExpertFlag == 0) {
2098 for(j=0; j<FSMAXSNAP; j++) {
2099 if(sblock.fs_snapinum[j]) {
2100 errx(1, "active snapshot found in filesystem\n"
2101 " please remove all snapshots before "
2102 "using growfs\n");
2104 if(!sblock.fs_snapinum[j]) { /* list is dense */
2105 break;
2109 #endif
2111 if (ExpertFlag == 0 && Nflag == 0) {
2112 printf("We strongly recommend you to make a backup "
2113 "before growing the Filesystem\n\n"
2114 " Did you backup your data (Yes/No) ? ");
2115 fgets(reply, (int)sizeof(reply), stdin);
2116 if (strcmp(reply, "Yes\n")){
2117 printf("\n Nothing done \n");
2118 exit (0);
2122 printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2125 * Try to access our new last block in the filesystem. Even if we
2126 * later on realize we have to abort our operation, on that block
2127 * there should be no data, so we can't destroy something yet.
2129 wtfs((daddr_t)pinfo.media_blocks-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2130 Nflag);
2133 * Now calculate new superblock values and check for reasonable
2134 * bound for new file system size:
2135 * fs_size: is derived from label or user input
2136 * fs_dsize: should get updated in the routines creating or
2137 * updating the cylinder groups on the fly
2138 * fs_cstotal: should get updated in the routines creating or
2139 * updating the cylinder groups
2143 * Update the number of cylinders in the filesystem.
2145 sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2146 if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2147 sblock.fs_ncyl++;
2151 * Update the number of cylinder groups in the filesystem.
2153 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2154 if (sblock.fs_ncyl % sblock.fs_cpg) {
2155 sblock.fs_ncg++;
2158 if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2159 sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2160 cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2161 (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2163 * The space in the new last cylinder group is too small,
2164 * so revert back.
2166 sblock.fs_ncg--;
2167 #if 1 /* this is a bit more safe */
2168 sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2169 #else
2170 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2171 #endif
2172 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2173 printf( "Warning: %d sector(s) cannot be allocated.\n",
2174 (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2175 NSPF(&sblock));
2176 sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2180 * Update the space for the cylinder group summary information in the
2181 * respective cylinder group data area.
2183 sblock.fs_cssize =
2184 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2186 if(osblock.fs_size >= sblock.fs_size) {
2187 errx(1, "not enough new space");
2190 DBG_PRINT0("sblock calculated\n");
2193 * Ok, everything prepared, so now let's do the tricks.
2195 growfs(fsi, fso, Nflag);
2197 close(fsi);
2198 if(fso>-1) close(fso);
2200 DBG_CLOSE;
2202 DBG_LEAVE;
2203 return 0;
2206 /* ************************************************************* usage ***** */
2208 * Dump a line of usage.
2210 static void
2211 usage(void)
2213 DBG_FUNC("usage")
2215 DBG_ENTER;
2217 fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2219 DBG_LEAVE;
2220 exit(1);
2223 /* *********************************************************** updclst ***** */
2225 * This updates most paramters and the bitmap related to cluster. We have to
2226 * assume, that sblock, osblock, acg are set up.
2228 static void
2229 updclst(int block)
2231 DBG_FUNC("updclst")
2232 static int lcs=0;
2234 DBG_ENTER;
2236 if(sblock.fs_contigsumsize < 1) { /* no clustering */
2237 return;
2240 * update cluster allocation map
2242 setbit(cg_clustersfree(&acg), block);
2245 * update cluster summary table
2247 if(!lcs) {
2249 * calculate size for the trailing cluster
2251 for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2252 if(isclr(cg_clustersfree(&acg), block)){
2253 break;
2257 if(lcs < sblock.fs_contigsumsize) {
2258 if(lcs) {
2259 cg_clustersum(&acg)[lcs]--;
2261 lcs++;
2262 cg_clustersum(&acg)[lcs]++;
2265 DBG_LEAVE;
2266 return;
2269 /* *********************************************************** updrefs ***** */
2271 * This updates all references to relocated blocks for the given inode. The
2272 * inode is given as number within the cylinder group, and the number of the
2273 * cylinder group.
2275 static void
2276 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2277 Nflag)
2279 DBG_FUNC("updrefs")
2280 unsigned int ictr, ind2ctr, ind3ctr;
2281 ufs_daddr_t *iptr, *ind2ptr, *ind3ptr;
2282 struct ufs1_dinode *ino;
2283 int remaining_blocks;
2285 DBG_ENTER;
2288 * XXX We should skip unused inodes even from beeing read from disk
2289 * here by using the bitmap.
2291 ino=ginode(in, fsi, cg);
2292 if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2293 (ino->di_mode & IFMT)==IFLNK)) {
2294 DBG_LEAVE;
2295 return; /* only check DIR, FILE, LINK */
2297 if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2298 DBG_LEAVE;
2299 return; /* skip short symlinks */
2301 if(!ino->di_size) {
2302 DBG_LEAVE;
2303 return; /* skip empty file */
2305 if(!ino->di_blocks) {
2306 DBG_LEAVE;
2307 return; /* skip empty swiss cheesy file or old fastlink */
2309 DBG_PRINT2("scg checking inode (%d in %d)\n",
2311 cg);
2314 * Start checking all direct blocks.
2316 remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2317 for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2318 ictr++) {
2319 iptr=&(ino->di_db[ictr]);
2320 if(*iptr) {
2321 cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2324 DBG_PRINT0("~~scg direct blocks checked\n");
2326 remaining_blocks-=NDADDR;
2327 if(remaining_blocks<0) {
2328 DBG_LEAVE;
2329 return;
2331 if(ino->di_ib[0]) {
2333 * Start checking first indirect block
2335 cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2336 i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2337 rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2338 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2339 sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2340 ictr++) {
2341 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2342 if(*iptr) {
2343 cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2344 fso, Nflag);
2348 DBG_PRINT0("scg indirect_1 blocks checked\n");
2350 remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2351 if(remaining_blocks<0) {
2352 DBG_LEAVE;
2353 return;
2355 if(ino->di_ib[1]) {
2357 * Start checking second indirect block
2359 cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2360 i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2361 rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2362 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2363 sizeof(ufs_daddr_t)); ind2ctr++) {
2364 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2365 if(!*ind2ptr) {
2366 continue;
2368 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2369 Nflag);
2370 i1_src=fsbtodb(&sblock, *ind2ptr);
2371 rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2372 fsi);
2373 for(ictr=0; ictr<MIN(howmany((unsigned int)
2374 sblock.fs_bsize, sizeof(ufs_daddr_t)),
2375 (unsigned int)remaining_blocks); ictr++) {
2376 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2377 if(*iptr) {
2378 cond_bl_upd(iptr, bp,
2379 GFS_PS_IND_BLK_LVL1, fso, Nflag);
2384 DBG_PRINT0("scg indirect_2 blocks checked\n");
2386 #define SQUARE(a) ((a)*(a))
2387 remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2388 #undef SQUARE
2389 if(remaining_blocks<0) {
2390 DBG_LEAVE;
2391 return;
2394 if(ino->di_ib[2]) {
2396 * Start checking third indirect block
2398 cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2399 i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2400 rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2401 for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2402 sizeof(ufs_daddr_t)); ind3ctr ++) {
2403 ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2404 if(!*ind3ptr) {
2405 continue;
2407 cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2408 Nflag);
2409 i2_src=fsbtodb(&sblock, *ind3ptr);
2410 rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2411 fsi);
2412 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2413 sizeof(ufs_daddr_t)); ind2ctr ++) {
2414 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2415 [ind2ctr];
2416 if(!*ind2ptr) {
2417 continue;
2419 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2420 fso, Nflag);
2421 i1_src=fsbtodb(&sblock, *ind2ptr);
2422 rdfs(i1_src, (size_t)sblock.fs_bsize,
2423 (void *)&i1blk, fsi);
2424 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2425 sizeof(ufs_daddr_t)),
2426 (unsigned int)remaining_blocks); ictr++) {
2427 iptr=&((ufs_daddr_t *)(void *)&i1blk)
2428 [ictr];
2429 if(*iptr) {
2430 cond_bl_upd(iptr, bp,
2431 GFS_PS_IND_BLK_LVL1, fso,
2432 Nflag);
2439 DBG_PRINT0("scg indirect_3 blocks checked\n");
2441 DBG_LEAVE;
2442 return;