Fix LINT build.
[dragonfly.git] / sys / netinet / ip_input.c
blob524251466e9cd53e370c2754ae74e3a294c63b63
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.71 2007/10/25 13:13:18 sephe Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
97 #include <machine/stdarg.h>
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 #include <net/intrq.h>
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
116 #include <sys/thread2.h>
117 #include <sys/msgport2.h>
118 #include <net/netmsg2.h>
120 #include <sys/socketvar.h>
122 #include <net/ipfw/ip_fw.h>
123 #include <net/dummynet/ip_dummynet.h>
125 #ifdef IPSEC
126 #include <netinet6/ipsec.h>
127 #include <netproto/key/key.h>
128 #endif
130 #ifdef FAST_IPSEC
131 #include <netproto/ipsec/ipsec.h>
132 #include <netproto/ipsec/key.h>
133 #endif
135 int rsvp_on = 0;
136 static int ip_rsvp_on;
137 struct socket *ip_rsvpd;
139 int ipforwarding = 0;
140 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
141 &ipforwarding, 0, "Enable IP forwarding between interfaces");
143 static int ipsendredirects = 1; /* XXX */
144 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
145 &ipsendredirects, 0, "Enable sending IP redirects");
147 int ip_defttl = IPDEFTTL;
148 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
149 &ip_defttl, 0, "Maximum TTL on IP packets");
151 static int ip_dosourceroute = 0;
152 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
153 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
155 static int ip_acceptsourceroute = 0;
156 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
157 CTLFLAG_RW, &ip_acceptsourceroute, 0,
158 "Enable accepting source routed IP packets");
160 static int ip_keepfaith = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
162 &ip_keepfaith, 0,
163 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
165 static int nipq = 0; /* total # of reass queues */
166 static int maxnipq;
167 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
168 &maxnipq, 0,
169 "Maximum number of IPv4 fragment reassembly queue entries");
171 static int maxfragsperpacket;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
173 &maxfragsperpacket, 0,
174 "Maximum number of IPv4 fragments allowed per packet");
176 static int ip_sendsourcequench = 0;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
178 &ip_sendsourcequench, 0,
179 "Enable the transmission of source quench packets");
181 int ip_do_randomid = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
183 &ip_do_randomid, 0,
184 "Assign random ip_id values");
186 * XXX - Setting ip_checkinterface mostly implements the receive side of
187 * the Strong ES model described in RFC 1122, but since the routing table
188 * and transmit implementation do not implement the Strong ES model,
189 * setting this to 1 results in an odd hybrid.
191 * XXX - ip_checkinterface currently must be disabled if you use ipnat
192 * to translate the destination address to another local interface.
194 * XXX - ip_checkinterface must be disabled if you add IP aliases
195 * to the loopback interface instead of the interface where the
196 * packets for those addresses are received.
198 static int ip_checkinterface = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
200 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
202 #ifdef DIAGNOSTIC
203 static int ipprintfs = 0;
204 #endif
206 static struct ifqueue ipintrq;
207 static int ipqmaxlen = IFQ_MAXLEN;
209 extern struct domain inetdomain;
210 extern struct protosw inetsw[];
211 u_char ip_protox[IPPROTO_MAX];
212 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
213 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
214 u_long in_ifaddrhmask; /* mask for hash table */
216 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
217 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
218 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
219 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
221 struct ip_stats ipstats_percpu[MAXCPU];
222 #ifdef SMP
223 static int
224 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
226 int cpu, error = 0;
228 for (cpu = 0; cpu < ncpus; ++cpu) {
229 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
230 sizeof(struct ip_stats))))
231 break;
232 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
233 sizeof(struct ip_stats))))
234 break;
237 return (error);
239 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
240 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
241 #else
242 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
243 &ipstat, ip_stats, "IP statistics");
244 #endif
246 /* Packet reassembly stuff */
247 #define IPREASS_NHASH_LOG2 6
248 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
249 #define IPREASS_HMASK (IPREASS_NHASH - 1)
250 #define IPREASS_HASH(x,y) \
251 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
253 static struct ipq ipq[IPREASS_NHASH];
254 const int ipintrq_present = 1;
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258 &ip_mtu, 0, "Default MTU");
259 #endif
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
269 /* Firewall hooks */
270 ip_fw_chk_t *ip_fw_chk_ptr;
271 int fw_enable = 1;
272 int fw_one_pass = 1;
274 /* Dummynet hooks */
275 ip_dn_io_t *ip_dn_io_ptr;
277 struct pfil_head inet_pfil_hook;
280 * XXX this is ugly -- the following two global variables are
281 * used to store packet state while it travels through the stack.
282 * Note that the code even makes assumptions on the size and
283 * alignment of fields inside struct ip_srcrt so e.g. adding some
284 * fields will break the code. This needs to be fixed.
286 * We need to save the IP options in case a protocol wants to respond
287 * to an incoming packet over the same route if the packet got here
288 * using IP source routing. This allows connection establishment and
289 * maintenance when the remote end is on a network that is not known
290 * to us.
292 static int ip_nhops = 0;
294 static struct ip_srcrt {
295 struct in_addr dst; /* final destination */
296 char nop; /* one NOP to align */
297 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
298 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 } ip_srcrt;
301 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
302 static struct malloc_pipe ipq_mpipe;
304 static void save_rte (u_char *, struct in_addr);
305 static int ip_dooptions (struct mbuf *m, int,
306 struct sockaddr_in *next_hop);
307 static void ip_forward (struct mbuf *m, boolean_t using_srcrt,
308 struct sockaddr_in *next_hop);
309 static void ip_freef (struct ipq *);
310 static void ip_input_handler (struct netmsg *);
311 static struct mbuf *ip_reass (struct mbuf *, struct ipq *,
312 struct ipq *, u_int32_t *);
315 * IP initialization: fill in IP protocol switch table.
316 * All protocols not implemented in kernel go to raw IP protocol handler.
318 void
319 ip_init(void)
321 struct protosw *pr;
322 int i;
323 #ifdef SMP
324 int cpu;
325 #endif
328 * Make sure we can handle a reasonable number of fragments but
329 * cap it at 4000 (XXX).
331 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
332 IFQ_MAXLEN, 4000, 0, NULL);
333 TAILQ_INIT(&in_ifaddrhead);
334 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
336 if (pr == NULL)
337 panic("ip_init");
338 for (i = 0; i < IPPROTO_MAX; i++)
339 ip_protox[i] = pr - inetsw;
340 for (pr = inetdomain.dom_protosw;
341 pr < inetdomain.dom_protoswNPROTOSW; pr++)
342 if (pr->pr_domain->dom_family == PF_INET &&
343 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
344 ip_protox[pr->pr_protocol] = pr - inetsw;
346 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
347 inet_pfil_hook.ph_af = AF_INET;
348 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
349 kprintf("%s: WARNING: unable to register pfil hook, "
350 "error %d\n", __func__, i);
353 for (i = 0; i < IPREASS_NHASH; i++)
354 ipq[i].next = ipq[i].prev = &ipq[i];
356 maxnipq = nmbclusters / 32;
357 maxfragsperpacket = 16;
359 ip_id = time_second & 0xffff;
360 ipintrq.ifq_maxlen = ipqmaxlen;
363 * Initialize IP statistics counters for each CPU.
366 #ifdef SMP
367 for (cpu = 0; cpu < ncpus; ++cpu) {
368 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
370 #else
371 bzero(&ipstat, sizeof(struct ip_stats));
372 #endif
374 netisr_register(NETISR_IP, ip_mport, ip_input_handler);
378 * XXX watch out this one. It is perhaps used as a cache for
379 * the most recently used route ? it is cleared in in_addroute()
380 * when a new route is successfully created.
382 struct route ipforward_rt[MAXCPU];
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
387 struct sockaddr_in *nexthop)
390 * Switch out to protocol's input routine.
392 if (nexthop && ip->ip_p == IPPROTO_TCP) {
393 /* TCP needs IPFORWARD info if available */
394 struct m_hdr tag;
396 tag.mh_type = MT_TAG;
397 tag.mh_flags = PACKET_TAG_IPFORWARD;
398 tag.mh_data = (caddr_t)nexthop;
399 tag.mh_next = m;
401 (*inetsw[ip_protox[ip->ip_p]].pr_input)
402 ((struct mbuf *)&tag, hlen, ip->ip_p);
403 } else {
404 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
408 struct netmsg_transport_packet {
409 struct netmsg nm_netmsg;
410 struct mbuf *nm_mbuf;
411 int nm_hlen;
412 boolean_t nm_hasnexthop;
413 struct sockaddr_in nm_nexthop;
416 static void
417 transport_processing_handler(netmsg_t netmsg)
419 struct netmsg_transport_packet *msg = (void *)netmsg;
420 struct sockaddr_in *nexthop;
421 struct ip *ip;
423 ip = mtod(msg->nm_mbuf, struct ip *);
424 nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
425 transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
426 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
429 static void
430 ip_input_handler(struct netmsg *msg0)
432 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
434 ip_input(m);
435 /* msg0 was embedded in the mbuf, do not reply! */
439 * IP input routine. Checksum and byte swap header. If fragmented
440 * try to reassemble. Process options. Pass to next level.
442 void
443 ip_input(struct mbuf *m)
445 struct ip *ip;
446 struct ipq *fp;
447 struct in_ifaddr *ia = NULL;
448 struct ifaddr *ifa;
449 int i, hlen, checkif;
450 u_short sum;
451 struct in_addr pkt_dst;
452 u_int32_t divert_info = 0; /* packet divert/tee info */
453 struct ip_fw_args args;
454 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
455 boolean_t needredispatch = FALSE;
456 struct in_addr odst; /* original dst address(NAT) */
457 struct m_tag *mtag;
458 #ifdef FAST_IPSEC
459 struct tdb_ident *tdbi;
460 struct secpolicy *sp;
461 int error;
462 #endif
464 args.eh = NULL;
465 args.oif = NULL;
466 args.rule = NULL;
467 args.next_hop = NULL;
469 /* Grab info from MT_TAG mbufs prepended to the chain. */
470 while (m != NULL && m->m_type == MT_TAG) {
471 switch(m->_m_tag_id) {
472 case PACKET_TAG_IPFORWARD:
473 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
474 break;
475 default:
476 kprintf("ip_input: unrecognised MT_TAG tag %d\n",
477 m->_m_tag_id);
478 break;
480 m = m->m_next;
482 KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
484 /* Extract info from dummynet tag */
485 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
486 if (mtag != NULL) {
487 args.rule = ((struct dn_pkt *)m_tag_data(mtag))->rule;
489 m_tag_delete(m, mtag);
490 mtag = NULL;
493 if (args.rule != NULL) { /* dummynet already filtered us */
494 ip = mtod(m, struct ip *);
495 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
496 goto iphack;
499 ipstat.ips_total++;
501 /* length checks already done in ip_demux() */
502 KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
504 ip = mtod(m, struct ip *);
506 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
507 ipstat.ips_badvers++;
508 goto bad;
511 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
512 /* length checks already done in ip_demux() */
513 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
514 KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
516 /* 127/8 must not appear on wire - RFC1122 */
517 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
518 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
519 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
520 ipstat.ips_badaddr++;
521 goto bad;
525 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
526 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
527 } else {
528 if (hlen == sizeof(struct ip)) {
529 sum = in_cksum_hdr(ip);
530 } else {
531 sum = in_cksum(m, hlen);
534 if (sum != 0) {
535 ipstat.ips_badsum++;
536 goto bad;
539 #ifdef ALTQ
540 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
541 /* packet is dropped by traffic conditioner */
542 return;
544 #endif
546 * Convert fields to host representation.
548 ip->ip_len = ntohs(ip->ip_len);
549 if (ip->ip_len < hlen) {
550 ipstat.ips_badlen++;
551 goto bad;
553 ip->ip_off = ntohs(ip->ip_off);
556 * Check that the amount of data in the buffers
557 * is as at least much as the IP header would have us expect.
558 * Trim mbufs if longer than we expect.
559 * Drop packet if shorter than we expect.
561 if (m->m_pkthdr.len < ip->ip_len) {
562 ipstat.ips_tooshort++;
563 goto bad;
565 if (m->m_pkthdr.len > ip->ip_len) {
566 if (m->m_len == m->m_pkthdr.len) {
567 m->m_len = ip->ip_len;
568 m->m_pkthdr.len = ip->ip_len;
569 } else
570 m_adj(m, ip->ip_len - m->m_pkthdr.len);
572 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
574 * Bypass packet filtering for packets from a tunnel (gif).
576 if (ipsec_gethist(m, NULL))
577 goto pass;
578 #endif
581 * IpHack's section.
582 * Right now when no processing on packet has done
583 * and it is still fresh out of network we do our black
584 * deals with it.
585 * - Firewall: deny/allow/divert
586 * - Xlate: translate packet's addr/port (NAT).
587 * - Pipe: pass pkt through dummynet.
588 * - Wrap: fake packet's addr/port <unimpl.>
589 * - Encapsulate: put it in another IP and send out. <unimp.>
592 iphack:
595 * Run through list of hooks for input packets.
597 * NB: Beware of the destination address changing (e.g.
598 * by NAT rewriting). When this happens, tell
599 * ip_forward to do the right thing.
601 if (pfil_has_hooks(&inet_pfil_hook)) {
602 odst = ip->ip_dst;
603 if (pfil_run_hooks(&inet_pfil_hook, &m,
604 m->m_pkthdr.rcvif, PFIL_IN)) {
605 return;
607 if (m == NULL) /* consumed by filter */
608 return;
609 ip = mtod(m, struct ip *);
610 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
613 if (fw_enable && IPFW_LOADED) {
615 * If we've been forwarded from the output side, then
616 * skip the firewall a second time
618 if (args.next_hop != NULL)
619 goto ours;
621 args.m = m;
622 i = ip_fw_chk_ptr(&args);
623 m = args.m;
625 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
626 if (m != NULL)
627 m_freem(m);
628 return;
630 ip = mtod(m, struct ip *); /* just in case m changed */
631 if (i == 0 && args.next_hop == NULL) /* common case */
632 goto pass;
633 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
634 /* Send packet to the appropriate pipe */
635 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
636 return;
638 #ifdef IPDIVERT
639 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
640 /* Divert or tee packet */
641 divert_info = i;
642 goto ours;
644 #endif
645 if (i == 0 && args.next_hop != NULL)
646 goto pass;
648 * if we get here, the packet must be dropped
650 m_freem(m);
651 return;
653 pass:
656 * Process options and, if not destined for us,
657 * ship it on. ip_dooptions returns 1 when an
658 * error was detected (causing an icmp message
659 * to be sent and the original packet to be freed).
661 ip_nhops = 0; /* for source routed packets */
662 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
663 return;
665 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
666 * matter if it is destined to another node, or whether it is
667 * a multicast one, RSVP wants it! and prevents it from being forwarded
668 * anywhere else. Also checks if the rsvp daemon is running before
669 * grabbing the packet.
671 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
672 goto ours;
675 * Check our list of addresses, to see if the packet is for us.
676 * If we don't have any addresses, assume any unicast packet
677 * we receive might be for us (and let the upper layers deal
678 * with it).
680 if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
681 goto ours;
684 * Cache the destination address of the packet; this may be
685 * changed by use of 'ipfw fwd'.
687 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
690 * Enable a consistency check between the destination address
691 * and the arrival interface for a unicast packet (the RFC 1122
692 * strong ES model) if IP forwarding is disabled and the packet
693 * is not locally generated and the packet is not subject to
694 * 'ipfw fwd'.
696 * XXX - Checking also should be disabled if the destination
697 * address is ipnat'ed to a different interface.
699 * XXX - Checking is incompatible with IP aliases added
700 * to the loopback interface instead of the interface where
701 * the packets are received.
703 checkif = ip_checkinterface &&
704 !ipforwarding &&
705 m->m_pkthdr.rcvif != NULL &&
706 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
707 (args.next_hop == NULL);
710 * Check for exact addresses in the hash bucket.
712 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
714 * If the address matches, verify that the packet
715 * arrived via the correct interface if checking is
716 * enabled.
718 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
719 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
720 goto ours;
723 * Check for broadcast addresses.
725 * Only accept broadcast packets that arrive via the matching
726 * interface. Reception of forwarded directed broadcasts would
727 * be handled via ip_forward() and ether_output() with the loopback
728 * into the stack for SIMPLEX interfaces handled by ether_output().
730 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
731 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
732 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
733 continue;
734 if (ifa->ifa_addr->sa_family != AF_INET)
735 continue;
736 ia = ifatoia(ifa);
737 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
738 pkt_dst.s_addr)
739 goto ours;
740 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
741 goto ours;
742 #ifdef BOOTP_COMPAT
743 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
744 goto ours;
745 #endif
748 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
749 struct in_multi *inm;
751 if (ip_mrouter != NULL) {
753 * If we are acting as a multicast router, all
754 * incoming multicast packets are passed to the
755 * kernel-level multicast forwarding function.
756 * The packet is returned (relatively) intact; if
757 * ip_mforward() returns a non-zero value, the packet
758 * must be discarded, else it may be accepted below.
760 if (ip_mforward != NULL &&
761 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
762 ipstat.ips_cantforward++;
763 m_freem(m);
764 return;
768 * The process-level routing daemon needs to receive
769 * all multicast IGMP packets, whether or not this
770 * host belongs to their destination groups.
772 if (ip->ip_p == IPPROTO_IGMP)
773 goto ours;
774 ipstat.ips_forward++;
777 * See if we belong to the destination multicast group on the
778 * arrival interface.
780 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
781 if (inm == NULL) {
782 ipstat.ips_notmember++;
783 m_freem(m);
784 return;
786 goto ours;
788 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
789 goto ours;
790 if (ip->ip_dst.s_addr == INADDR_ANY)
791 goto ours;
794 * FAITH(Firewall Aided Internet Translator)
796 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
797 if (ip_keepfaith) {
798 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
799 goto ours;
801 m_freem(m);
802 return;
806 * Not for us; forward if possible and desirable.
808 if (!ipforwarding) {
809 ipstat.ips_cantforward++;
810 m_freem(m);
811 } else {
812 #ifdef IPSEC
814 * Enforce inbound IPsec SPD.
816 if (ipsec4_in_reject(m, NULL)) {
817 ipsecstat.in_polvio++;
818 goto bad;
820 #endif
821 #ifdef FAST_IPSEC
822 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
823 crit_enter();
824 if (mtag != NULL) {
825 tdbi = (struct tdb_ident *)m_tag_data(mtag);
826 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
827 } else {
828 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
829 IP_FORWARDING, &error);
831 if (sp == NULL) { /* NB: can happen if error */
832 crit_exit();
833 /*XXX error stat???*/
834 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
835 goto bad;
839 * Check security policy against packet attributes.
841 error = ipsec_in_reject(sp, m);
842 KEY_FREESP(&sp);
843 crit_exit();
844 if (error) {
845 ipstat.ips_cantforward++;
846 goto bad;
848 #endif
849 ip_forward(m, using_srcrt, args.next_hop);
851 return;
853 ours:
856 * IPSTEALTH: Process non-routing options only
857 * if the packet is destined for us.
859 if (ipstealth &&
860 hlen > sizeof(struct ip) &&
861 ip_dooptions(m, 1, args.next_hop))
862 return;
864 /* Count the packet in the ip address stats */
865 if (ia != NULL) {
866 ia->ia_ifa.if_ipackets++;
867 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
871 * If offset or IP_MF are set, must reassemble.
872 * Otherwise, nothing need be done.
873 * (We could look in the reassembly queue to see
874 * if the packet was previously fragmented,
875 * but it's not worth the time; just let them time out.)
877 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
879 /* If maxnipq is 0, never accept fragments. */
880 if (maxnipq == 0) {
881 ipstat.ips_fragments++;
882 ipstat.ips_fragdropped++;
883 goto bad;
886 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
888 * Look for queue of fragments
889 * of this datagram.
891 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
892 if (ip->ip_id == fp->ipq_id &&
893 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
894 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
895 ip->ip_p == fp->ipq_p)
896 goto found;
898 fp = NULL;
901 * Enforce upper bound on number of fragmented packets
902 * for which we attempt reassembly;
903 * If maxnipq is -1, accept all fragments without limitation.
905 if ((nipq > maxnipq) && (maxnipq > 0)) {
907 * drop something from the tail of the current queue
908 * before proceeding further
910 if (ipq[sum].prev == &ipq[sum]) { /* gak */
911 for (i = 0; i < IPREASS_NHASH; i++) {
912 if (ipq[i].prev != &ipq[i]) {
913 ipstat.ips_fragtimeout +=
914 ipq[i].prev->ipq_nfrags;
915 ip_freef(ipq[i].prev);
916 break;
919 } else {
920 ipstat.ips_fragtimeout +=
921 ipq[sum].prev->ipq_nfrags;
922 ip_freef(ipq[sum].prev);
925 found:
927 * Adjust ip_len to not reflect header,
928 * convert offset of this to bytes.
930 ip->ip_len -= hlen;
931 if (ip->ip_off & IP_MF) {
933 * Make sure that fragments have a data length
934 * that's a non-zero multiple of 8 bytes.
936 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
937 ipstat.ips_toosmall++; /* XXX */
938 goto bad;
940 m->m_flags |= M_FRAG;
941 } else
942 m->m_flags &= ~M_FRAG;
943 ip->ip_off <<= 3;
946 * Attempt reassembly; if it succeeds, proceed.
947 * ip_reass() will return a different mbuf, and update
948 * the divert info in divert_info.
950 ipstat.ips_fragments++;
951 m->m_pkthdr.header = ip;
952 m = ip_reass(m, fp, &ipq[sum], &divert_info);
953 if (m == NULL)
954 return;
955 ipstat.ips_reassembled++;
956 needredispatch = TRUE;
957 ip = mtod(m, struct ip *);
958 /* Get the header length of the reassembled packet */
959 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
960 #ifdef IPDIVERT
961 /* Restore original checksum before diverting packet */
962 if (divert_info != 0) {
963 ip->ip_len += hlen;
964 ip->ip_len = htons(ip->ip_len);
965 ip->ip_off = htons(ip->ip_off);
966 ip->ip_sum = 0;
967 if (hlen == sizeof(struct ip))
968 ip->ip_sum = in_cksum_hdr(ip);
969 else
970 ip->ip_sum = in_cksum(m, hlen);
971 ip->ip_off = ntohs(ip->ip_off);
972 ip->ip_len = ntohs(ip->ip_len);
973 ip->ip_len -= hlen;
975 #endif
976 } else {
977 ip->ip_len -= hlen;
980 #ifdef IPDIVERT
982 * Divert or tee packet to the divert protocol if required.
984 if (divert_info != 0) {
985 struct mbuf *clone = NULL;
987 /* Clone packet if we're doing a 'tee' */
988 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
989 clone = m_dup(m, MB_DONTWAIT);
991 /* Restore packet header fields to original values */
992 ip->ip_len += hlen;
993 ip->ip_len = htons(ip->ip_len);
994 ip->ip_off = htons(ip->ip_off);
996 /* Deliver packet to divert input routine */
997 divert_packet(m, 1, divert_info & 0xffff);
998 ipstat.ips_delivered++;
1000 /* If 'tee', continue with original packet */
1001 if (clone == NULL)
1002 return;
1003 m = clone;
1004 ip = mtod(m, struct ip *);
1005 ip->ip_len += hlen;
1007 * Jump backwards to complete processing of the
1008 * packet. But first clear divert_info to avoid
1009 * entering this block again.
1010 * We do not need to clear args.divert_rule
1011 * or args.next_hop as they will not be used.
1013 * XXX Better safe than sorry, remove the DIVERT tag.
1015 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1016 if (mtag != NULL)
1017 m_tag_delete(m, mtag);
1019 divert_info = 0;
1020 goto pass;
1022 #endif
1024 #ifdef IPSEC
1026 * enforce IPsec policy checking if we are seeing last header.
1027 * note that we do not visit this with protocols with pcb layer
1028 * code - like udp/tcp/raw ip.
1030 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1031 ipsec4_in_reject(m, NULL)) {
1032 ipsecstat.in_polvio++;
1033 goto bad;
1035 #endif
1036 #if FAST_IPSEC
1038 * enforce IPsec policy checking if we are seeing last header.
1039 * note that we do not visit this with protocols with pcb layer
1040 * code - like udp/tcp/raw ip.
1042 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1044 * Check if the packet has already had IPsec processing
1045 * done. If so, then just pass it along. This tag gets
1046 * set during AH, ESP, etc. input handling, before the
1047 * packet is returned to the ip input queue for delivery.
1049 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1050 crit_enter();
1051 if (mtag != NULL) {
1052 tdbi = (struct tdb_ident *)m_tag_data(mtag);
1053 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1054 } else {
1055 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1056 IP_FORWARDING, &error);
1058 if (sp != NULL) {
1060 * Check security policy against packet attributes.
1062 error = ipsec_in_reject(sp, m);
1063 KEY_FREESP(&sp);
1064 } else {
1065 /* XXX error stat??? */
1066 error = EINVAL;
1067 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1068 goto bad;
1070 crit_exit();
1071 if (error)
1072 goto bad;
1074 #endif /* FAST_IPSEC */
1076 ipstat.ips_delivered++;
1077 if (needredispatch) {
1078 struct netmsg_transport_packet *msg;
1079 lwkt_port_t port;
1081 ip->ip_off = htons(ip->ip_off);
1082 ip->ip_len = htons(ip->ip_len);
1083 port = ip_mport(&m);
1084 if (port == NULL)
1085 return;
1087 msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1088 M_INTWAIT | M_NULLOK);
1089 if (msg == NULL)
1090 goto bad;
1092 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1093 transport_processing_handler);
1094 msg->nm_hlen = hlen;
1095 msg->nm_hasnexthop = (args.next_hop != NULL);
1096 if (msg->nm_hasnexthop)
1097 msg->nm_nexthop = *args.next_hop; /* structure copy */
1099 msg->nm_mbuf = m;
1100 ip = mtod(m, struct ip *);
1101 ip->ip_len = ntohs(ip->ip_len);
1102 ip->ip_off = ntohs(ip->ip_off);
1103 lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1104 } else {
1105 transport_processing_oncpu(m, hlen, ip, args.next_hop);
1107 return;
1109 bad:
1110 m_freem(m);
1114 * Take incoming datagram fragment and try to reassemble it into
1115 * whole datagram. If a chain for reassembly of this datagram already
1116 * exists, then it is given as fp; otherwise have to make a chain.
1118 * When IPDIVERT enabled, keep additional state with each packet that
1119 * tells us if we need to divert or tee the packet we're building.
1120 * In particular, *divinfo includes the port and TEE flag.
1123 static struct mbuf *
1124 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1125 u_int32_t *divinfo)
1127 struct ip *ip = mtod(m, struct ip *);
1128 struct mbuf *p = NULL, *q, *nq;
1129 struct mbuf *n;
1130 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1131 int i, next;
1132 #ifdef IPDIVERT
1133 struct m_tag *mtag;
1134 #endif
1137 * If the hardware has not done csum over this fragment
1138 * then csum_data is not valid at all.
1140 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1141 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1142 m->m_pkthdr.csum_data = 0;
1143 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1147 * Presence of header sizes in mbufs
1148 * would confuse code below.
1150 m->m_data += hlen;
1151 m->m_len -= hlen;
1154 * If first fragment to arrive, create a reassembly queue.
1156 if (fp == NULL) {
1157 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1158 goto dropfrag;
1159 insque(fp, where);
1160 nipq++;
1161 fp->ipq_nfrags = 1;
1162 fp->ipq_ttl = IPFRAGTTL;
1163 fp->ipq_p = ip->ip_p;
1164 fp->ipq_id = ip->ip_id;
1165 fp->ipq_src = ip->ip_src;
1166 fp->ipq_dst = ip->ip_dst;
1167 fp->ipq_frags = m;
1168 m->m_nextpkt = NULL;
1169 #ifdef IPDIVERT
1170 fp->ipq_div_info = 0;
1171 #endif
1172 goto inserted;
1173 } else {
1174 fp->ipq_nfrags++;
1177 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1180 * Find a segment which begins after this one does.
1182 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1183 if (GETIP(q)->ip_off > ip->ip_off)
1184 break;
1187 * If there is a preceding segment, it may provide some of
1188 * our data already. If so, drop the data from the incoming
1189 * segment. If it provides all of our data, drop us, otherwise
1190 * stick new segment in the proper place.
1192 * If some of the data is dropped from the the preceding
1193 * segment, then it's checksum is invalidated.
1195 if (p) {
1196 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1197 if (i > 0) {
1198 if (i >= ip->ip_len)
1199 goto dropfrag;
1200 m_adj(m, i);
1201 m->m_pkthdr.csum_flags = 0;
1202 ip->ip_off += i;
1203 ip->ip_len -= i;
1205 m->m_nextpkt = p->m_nextpkt;
1206 p->m_nextpkt = m;
1207 } else {
1208 m->m_nextpkt = fp->ipq_frags;
1209 fp->ipq_frags = m;
1213 * While we overlap succeeding segments trim them or,
1214 * if they are completely covered, dequeue them.
1216 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1217 q = nq) {
1218 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1219 if (i < GETIP(q)->ip_len) {
1220 GETIP(q)->ip_len -= i;
1221 GETIP(q)->ip_off += i;
1222 m_adj(q, i);
1223 q->m_pkthdr.csum_flags = 0;
1224 break;
1226 nq = q->m_nextpkt;
1227 m->m_nextpkt = nq;
1228 ipstat.ips_fragdropped++;
1229 fp->ipq_nfrags--;
1230 q->m_nextpkt = NULL;
1231 m_freem(q);
1234 inserted:
1236 #ifdef IPDIVERT
1238 * Transfer firewall instructions to the fragment structure.
1239 * Only trust info in the fragment at offset 0.
1241 if (ip->ip_off == 0) {
1242 fp->ipq_div_info = *divinfo;
1243 } else {
1244 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1245 if (mtag != NULL)
1246 m_tag_delete(m, mtag);
1248 *divinfo = 0;
1249 #endif
1252 * Check for complete reassembly and perform frag per packet
1253 * limiting.
1255 * Frag limiting is performed here so that the nth frag has
1256 * a chance to complete the packet before we drop the packet.
1257 * As a result, n+1 frags are actually allowed per packet, but
1258 * only n will ever be stored. (n = maxfragsperpacket.)
1261 next = 0;
1262 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1263 if (GETIP(q)->ip_off != next) {
1264 if (fp->ipq_nfrags > maxfragsperpacket) {
1265 ipstat.ips_fragdropped += fp->ipq_nfrags;
1266 ip_freef(fp);
1268 return (NULL);
1270 next += GETIP(q)->ip_len;
1272 /* Make sure the last packet didn't have the IP_MF flag */
1273 if (p->m_flags & M_FRAG) {
1274 if (fp->ipq_nfrags > maxfragsperpacket) {
1275 ipstat.ips_fragdropped += fp->ipq_nfrags;
1276 ip_freef(fp);
1278 return (NULL);
1282 * Reassembly is complete. Make sure the packet is a sane size.
1284 q = fp->ipq_frags;
1285 ip = GETIP(q);
1286 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1287 ipstat.ips_toolong++;
1288 ipstat.ips_fragdropped += fp->ipq_nfrags;
1289 ip_freef(fp);
1290 return (NULL);
1294 * Concatenate fragments.
1296 m = q;
1297 n = m->m_next;
1298 m->m_next = NULL;
1299 m_cat(m, n);
1300 nq = q->m_nextpkt;
1301 q->m_nextpkt = NULL;
1302 for (q = nq; q != NULL; q = nq) {
1303 nq = q->m_nextpkt;
1304 q->m_nextpkt = NULL;
1305 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1306 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1307 m_cat(m, q);
1311 * Clean up the 1's complement checksum. Carry over 16 bits must
1312 * be added back. This assumes no more then 65535 packet fragments
1313 * were reassembled. A second carry can also occur (but not a third).
1315 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1316 (m->m_pkthdr.csum_data >> 16);
1317 if (m->m_pkthdr.csum_data > 0xFFFF)
1318 m->m_pkthdr.csum_data -= 0xFFFF;
1321 #ifdef IPDIVERT
1323 * Extract firewall instructions from the fragment structure.
1325 *divinfo = fp->ipq_div_info;
1326 #endif
1329 * Create header for new ip packet by
1330 * modifying header of first packet;
1331 * dequeue and discard fragment reassembly header.
1332 * Make header visible.
1334 ip->ip_len = next;
1335 ip->ip_src = fp->ipq_src;
1336 ip->ip_dst = fp->ipq_dst;
1337 remque(fp);
1338 nipq--;
1339 mpipe_free(&ipq_mpipe, fp);
1340 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1341 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1342 /* some debugging cruft by sklower, below, will go away soon */
1343 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1344 int plen = 0;
1346 for (n = m; n; n = n->m_next)
1347 plen += n->m_len;
1348 m->m_pkthdr.len = plen;
1350 return (m);
1352 dropfrag:
1353 #ifdef IPDIVERT
1354 *divinfo = 0;
1355 #endif
1356 ipstat.ips_fragdropped++;
1357 if (fp != NULL)
1358 fp->ipq_nfrags--;
1359 m_freem(m);
1360 return (NULL);
1362 #undef GETIP
1366 * Free a fragment reassembly header and all
1367 * associated datagrams.
1369 static void
1370 ip_freef(struct ipq *fp)
1372 struct mbuf *q;
1374 while (fp->ipq_frags) {
1375 q = fp->ipq_frags;
1376 fp->ipq_frags = q->m_nextpkt;
1377 q->m_nextpkt = NULL;
1378 m_freem(q);
1380 remque(fp);
1381 mpipe_free(&ipq_mpipe, fp);
1382 nipq--;
1386 * IP timer processing;
1387 * if a timer expires on a reassembly
1388 * queue, discard it.
1390 void
1391 ip_slowtimo(void)
1393 struct ipq *fp;
1394 int i;
1396 crit_enter();
1397 for (i = 0; i < IPREASS_NHASH; i++) {
1398 fp = ipq[i].next;
1399 if (fp == NULL)
1400 continue;
1401 while (fp != &ipq[i]) {
1402 --fp->ipq_ttl;
1403 fp = fp->next;
1404 if (fp->prev->ipq_ttl == 0) {
1405 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1406 ip_freef(fp->prev);
1411 * If we are over the maximum number of fragments
1412 * (due to the limit being lowered), drain off
1413 * enough to get down to the new limit.
1415 if (maxnipq >= 0 && nipq > maxnipq) {
1416 for (i = 0; i < IPREASS_NHASH; i++) {
1417 while (nipq > maxnipq &&
1418 (ipq[i].next != &ipq[i])) {
1419 ipstat.ips_fragdropped +=
1420 ipq[i].next->ipq_nfrags;
1421 ip_freef(ipq[i].next);
1425 ipflow_slowtimo();
1426 crit_exit();
1430 * Drain off all datagram fragments.
1432 void
1433 ip_drain(void)
1435 int i;
1437 for (i = 0; i < IPREASS_NHASH; i++) {
1438 while (ipq[i].next != &ipq[i]) {
1439 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1440 ip_freef(ipq[i].next);
1443 in_rtqdrain();
1447 * Do option processing on a datagram,
1448 * possibly discarding it if bad options are encountered,
1449 * or forwarding it if source-routed.
1450 * The pass argument is used when operating in the IPSTEALTH
1451 * mode to tell what options to process:
1452 * [LS]SRR (pass 0) or the others (pass 1).
1453 * The reason for as many as two passes is that when doing IPSTEALTH,
1454 * non-routing options should be processed only if the packet is for us.
1455 * Returns 1 if packet has been forwarded/freed,
1456 * 0 if the packet should be processed further.
1458 static int
1459 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1461 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1462 struct ip *ip = mtod(m, struct ip *);
1463 u_char *cp;
1464 struct in_ifaddr *ia;
1465 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1466 boolean_t forward = FALSE;
1467 struct in_addr *sin, dst;
1468 n_time ntime;
1470 dst = ip->ip_dst;
1471 cp = (u_char *)(ip + 1);
1472 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1473 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1474 opt = cp[IPOPT_OPTVAL];
1475 if (opt == IPOPT_EOL)
1476 break;
1477 if (opt == IPOPT_NOP)
1478 optlen = 1;
1479 else {
1480 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1481 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1482 goto bad;
1484 optlen = cp[IPOPT_OLEN];
1485 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1486 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1487 goto bad;
1490 switch (opt) {
1492 default:
1493 break;
1496 * Source routing with record.
1497 * Find interface with current destination address.
1498 * If none on this machine then drop if strictly routed,
1499 * or do nothing if loosely routed.
1500 * Record interface address and bring up next address
1501 * component. If strictly routed make sure next
1502 * address is on directly accessible net.
1504 case IPOPT_LSRR:
1505 case IPOPT_SSRR:
1506 if (ipstealth && pass > 0)
1507 break;
1508 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1509 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1510 goto bad;
1512 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1513 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1514 goto bad;
1516 ipaddr.sin_addr = ip->ip_dst;
1517 ia = (struct in_ifaddr *)
1518 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1519 if (ia == NULL) {
1520 if (opt == IPOPT_SSRR) {
1521 type = ICMP_UNREACH;
1522 code = ICMP_UNREACH_SRCFAIL;
1523 goto bad;
1525 if (!ip_dosourceroute)
1526 goto nosourcerouting;
1528 * Loose routing, and not at next destination
1529 * yet; nothing to do except forward.
1531 break;
1533 off--; /* 0 origin */
1534 if (off > optlen - (int)sizeof(struct in_addr)) {
1536 * End of source route. Should be for us.
1538 if (!ip_acceptsourceroute)
1539 goto nosourcerouting;
1540 save_rte(cp, ip->ip_src);
1541 break;
1543 if (ipstealth)
1544 goto dropit;
1545 if (!ip_dosourceroute) {
1546 if (ipforwarding) {
1547 char buf[sizeof "aaa.bbb.ccc.ddd"];
1550 * Acting as a router, so generate ICMP
1552 nosourcerouting:
1553 strcpy(buf, inet_ntoa(ip->ip_dst));
1554 log(LOG_WARNING,
1555 "attempted source route from %s to %s\n",
1556 inet_ntoa(ip->ip_src), buf);
1557 type = ICMP_UNREACH;
1558 code = ICMP_UNREACH_SRCFAIL;
1559 goto bad;
1560 } else {
1562 * Not acting as a router,
1563 * so silently drop.
1565 dropit:
1566 ipstat.ips_cantforward++;
1567 m_freem(m);
1568 return (1);
1573 * locate outgoing interface
1575 memcpy(&ipaddr.sin_addr, cp + off,
1576 sizeof ipaddr.sin_addr);
1578 if (opt == IPOPT_SSRR) {
1579 #define INA struct in_ifaddr *
1580 #define SA struct sockaddr *
1581 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1582 == NULL)
1583 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1584 } else
1585 ia = ip_rtaddr(ipaddr.sin_addr,
1586 &ipforward_rt[mycpuid]);
1587 if (ia == NULL) {
1588 type = ICMP_UNREACH;
1589 code = ICMP_UNREACH_SRCFAIL;
1590 goto bad;
1592 ip->ip_dst = ipaddr.sin_addr;
1593 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1594 sizeof(struct in_addr));
1595 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1597 * Let ip_intr's mcast routing check handle mcast pkts
1599 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1600 break;
1602 case IPOPT_RR:
1603 if (ipstealth && pass == 0)
1604 break;
1605 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1606 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1607 goto bad;
1609 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1610 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1611 goto bad;
1614 * If no space remains, ignore.
1616 off--; /* 0 origin */
1617 if (off > optlen - (int)sizeof(struct in_addr))
1618 break;
1619 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1620 sizeof ipaddr.sin_addr);
1622 * locate outgoing interface; if we're the destination,
1623 * use the incoming interface (should be same).
1625 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1626 (ia = ip_rtaddr(ipaddr.sin_addr,
1627 &ipforward_rt[mycpuid]))
1628 == NULL) {
1629 type = ICMP_UNREACH;
1630 code = ICMP_UNREACH_HOST;
1631 goto bad;
1633 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1634 sizeof(struct in_addr));
1635 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1636 break;
1638 case IPOPT_TS:
1639 if (ipstealth && pass == 0)
1640 break;
1641 code = cp - (u_char *)ip;
1642 if (optlen < 4 || optlen > 40) {
1643 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1644 goto bad;
1646 if ((off = cp[IPOPT_OFFSET]) < 5) {
1647 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1648 goto bad;
1650 if (off > optlen - (int)sizeof(int32_t)) {
1651 cp[IPOPT_OFFSET + 1] += (1 << 4);
1652 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1653 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1654 goto bad;
1656 break;
1658 off--; /* 0 origin */
1659 sin = (struct in_addr *)(cp + off);
1660 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1662 case IPOPT_TS_TSONLY:
1663 break;
1665 case IPOPT_TS_TSANDADDR:
1666 if (off + sizeof(n_time) +
1667 sizeof(struct in_addr) > optlen) {
1668 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1669 goto bad;
1671 ipaddr.sin_addr = dst;
1672 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1673 m->m_pkthdr.rcvif);
1674 if (ia == NULL)
1675 continue;
1676 memcpy(sin, &IA_SIN(ia)->sin_addr,
1677 sizeof(struct in_addr));
1678 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1679 off += sizeof(struct in_addr);
1680 break;
1682 case IPOPT_TS_PRESPEC:
1683 if (off + sizeof(n_time) +
1684 sizeof(struct in_addr) > optlen) {
1685 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1686 goto bad;
1688 memcpy(&ipaddr.sin_addr, sin,
1689 sizeof(struct in_addr));
1690 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1691 continue;
1692 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1693 off += sizeof(struct in_addr);
1694 break;
1696 default:
1697 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1698 goto bad;
1700 ntime = iptime();
1701 memcpy(cp + off, &ntime, sizeof(n_time));
1702 cp[IPOPT_OFFSET] += sizeof(n_time);
1705 if (forward && ipforwarding) {
1706 ip_forward(m, TRUE, next_hop);
1707 return (1);
1709 return (0);
1710 bad:
1711 icmp_error(m, type, code, 0, 0);
1712 ipstat.ips_badoptions++;
1713 return (1);
1717 * Given address of next destination (final or next hop),
1718 * return internet address info of interface to be used to get there.
1720 struct in_ifaddr *
1721 ip_rtaddr(struct in_addr dst, struct route *ro)
1723 struct sockaddr_in *sin;
1725 sin = (struct sockaddr_in *)&ro->ro_dst;
1727 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1728 if (ro->ro_rt != NULL) {
1729 RTFREE(ro->ro_rt);
1730 ro->ro_rt = NULL;
1732 sin->sin_family = AF_INET;
1733 sin->sin_len = sizeof *sin;
1734 sin->sin_addr = dst;
1735 rtalloc_ign(ro, RTF_PRCLONING);
1738 if (ro->ro_rt == NULL)
1739 return (NULL);
1741 return (ifatoia(ro->ro_rt->rt_ifa));
1745 * Save incoming source route for use in replies,
1746 * to be picked up later by ip_srcroute if the receiver is interested.
1748 void
1749 save_rte(u_char *option, struct in_addr dst)
1751 unsigned olen;
1753 olen = option[IPOPT_OLEN];
1754 #ifdef DIAGNOSTIC
1755 if (ipprintfs)
1756 kprintf("save_rte: olen %d\n", olen);
1757 #endif
1758 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1759 return;
1760 bcopy(option, ip_srcrt.srcopt, olen);
1761 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1762 ip_srcrt.dst = dst;
1766 * Retrieve incoming source route for use in replies,
1767 * in the same form used by setsockopt.
1768 * The first hop is placed before the options, will be removed later.
1770 struct mbuf *
1771 ip_srcroute(void)
1773 struct in_addr *p, *q;
1774 struct mbuf *m;
1776 if (ip_nhops == 0)
1777 return (NULL);
1778 m = m_get(MB_DONTWAIT, MT_HEADER);
1779 if (m == NULL)
1780 return (NULL);
1782 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1784 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1785 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1786 OPTSIZ;
1787 #ifdef DIAGNOSTIC
1788 if (ipprintfs)
1789 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1790 #endif
1793 * First save first hop for return route
1795 p = &ip_srcrt.route[ip_nhops - 1];
1796 *(mtod(m, struct in_addr *)) = *p--;
1797 #ifdef DIAGNOSTIC
1798 if (ipprintfs)
1799 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1800 #endif
1803 * Copy option fields and padding (nop) to mbuf.
1805 ip_srcrt.nop = IPOPT_NOP;
1806 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1807 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1808 OPTSIZ);
1809 q = (struct in_addr *)(mtod(m, caddr_t) +
1810 sizeof(struct in_addr) + OPTSIZ);
1811 #undef OPTSIZ
1813 * Record return path as an IP source route,
1814 * reversing the path (pointers are now aligned).
1816 while (p >= ip_srcrt.route) {
1817 #ifdef DIAGNOSTIC
1818 if (ipprintfs)
1819 kprintf(" %x", ntohl(q->s_addr));
1820 #endif
1821 *q++ = *p--;
1824 * Last hop goes to final destination.
1826 *q = ip_srcrt.dst;
1827 #ifdef DIAGNOSTIC
1828 if (ipprintfs)
1829 kprintf(" %x\n", ntohl(q->s_addr));
1830 #endif
1831 return (m);
1835 * Strip out IP options.
1837 void
1838 ip_stripoptions(struct mbuf *m)
1840 int datalen;
1841 struct ip *ip = mtod(m, struct ip *);
1842 caddr_t opts;
1843 int optlen;
1845 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1846 opts = (caddr_t)(ip + 1);
1847 datalen = m->m_len - (sizeof(struct ip) + optlen);
1848 bcopy(opts + optlen, opts, datalen);
1849 m->m_len -= optlen;
1850 if (m->m_flags & M_PKTHDR)
1851 m->m_pkthdr.len -= optlen;
1852 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1855 u_char inetctlerrmap[PRC_NCMDS] = {
1856 0, 0, 0, 0,
1857 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1858 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1859 EMSGSIZE, EHOSTUNREACH, 0, 0,
1860 0, 0, 0, 0,
1861 ENOPROTOOPT, ECONNREFUSED
1865 * Forward a packet. If some error occurs return the sender
1866 * an icmp packet. Note we can't always generate a meaningful
1867 * icmp message because icmp doesn't have a large enough repertoire
1868 * of codes and types.
1870 * If not forwarding, just drop the packet. This could be confusing
1871 * if ipforwarding was zero but some routing protocol was advancing
1872 * us as a gateway to somewhere. However, we must let the routing
1873 * protocol deal with that.
1875 * The using_srcrt parameter indicates whether the packet is being forwarded
1876 * via a source route.
1878 static void
1879 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1881 struct ip *ip = mtod(m, struct ip *);
1882 struct sockaddr_in *ipforward_rtaddr;
1883 struct rtentry *rt;
1884 int error, type = 0, code = 0, destmtu = 0;
1885 struct mbuf *mcopy;
1886 n_long dest;
1887 struct in_addr pkt_dst;
1888 struct m_hdr tag;
1889 struct route *cache_rt = &ipforward_rt[mycpuid];
1891 dest = INADDR_ANY;
1893 * Cache the destination address of the packet; this may be
1894 * changed by use of 'ipfw fwd'.
1896 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1898 #ifdef DIAGNOSTIC
1899 if (ipprintfs)
1900 kprintf("forward: src %x dst %x ttl %x\n",
1901 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1902 #endif
1904 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1905 ipstat.ips_cantforward++;
1906 m_freem(m);
1907 return;
1909 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1910 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1911 return;
1914 ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1915 if (cache_rt->ro_rt == NULL ||
1916 ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1917 if (cache_rt->ro_rt != NULL) {
1918 RTFREE(cache_rt->ro_rt);
1919 cache_rt->ro_rt = NULL;
1921 ipforward_rtaddr->sin_family = AF_INET;
1922 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1923 ipforward_rtaddr->sin_addr = pkt_dst;
1924 rtalloc_ign(cache_rt, RTF_PRCLONING);
1925 if (cache_rt->ro_rt == NULL) {
1926 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1927 return;
1930 rt = cache_rt->ro_rt;
1933 * Save the IP header and at most 8 bytes of the payload,
1934 * in case we need to generate an ICMP message to the src.
1936 * XXX this can be optimized a lot by saving the data in a local
1937 * buffer on the stack (72 bytes at most), and only allocating the
1938 * mbuf if really necessary. The vast majority of the packets
1939 * are forwarded without having to send an ICMP back (either
1940 * because unnecessary, or because rate limited), so we are
1941 * really we are wasting a lot of work here.
1943 * We don't use m_copy() because it might return a reference
1944 * to a shared cluster. Both this function and ip_output()
1945 * assume exclusive access to the IP header in `m', so any
1946 * data in a cluster may change before we reach icmp_error().
1948 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1949 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1951 * It's probably ok if the pkthdr dup fails (because
1952 * the deep copy of the tag chain failed), but for now
1953 * be conservative and just discard the copy since
1954 * code below may some day want the tags.
1956 m_free(mcopy);
1957 mcopy = NULL;
1959 if (mcopy != NULL) {
1960 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1961 (int)ip->ip_len);
1962 mcopy->m_pkthdr.len = mcopy->m_len;
1963 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1966 if (!ipstealth)
1967 ip->ip_ttl -= IPTTLDEC;
1970 * If forwarding packet using same interface that it came in on,
1971 * perhaps should send a redirect to sender to shortcut a hop.
1972 * Only send redirect if source is sending directly to us,
1973 * and if packet was not source routed (or has any options).
1974 * Also, don't send redirect if forwarding using a default route
1975 * or a route modified by a redirect.
1977 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1978 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1979 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1980 ipsendredirects && !using_srcrt && next_hop == NULL) {
1981 u_long src = ntohl(ip->ip_src.s_addr);
1982 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1984 if (rt_ifa != NULL &&
1985 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1986 if (rt->rt_flags & RTF_GATEWAY)
1987 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1988 else
1989 dest = pkt_dst.s_addr;
1991 * Router requirements says to only send
1992 * host redirects.
1994 type = ICMP_REDIRECT;
1995 code = ICMP_REDIRECT_HOST;
1996 #ifdef DIAGNOSTIC
1997 if (ipprintfs)
1998 kprintf("redirect (%d) to %x\n", code, dest);
1999 #endif
2003 if (next_hop != NULL) {
2004 /* Pass IPFORWARD info if available */
2005 tag.mh_type = MT_TAG;
2006 tag.mh_flags = PACKET_TAG_IPFORWARD;
2007 tag.mh_data = (caddr_t)next_hop;
2008 tag.mh_next = m;
2009 m = (struct mbuf *)&tag;
2012 error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
2013 NULL);
2014 if (error == 0) {
2015 ipstat.ips_forward++;
2016 if (type == 0) {
2017 if (mcopy) {
2018 ipflow_create(cache_rt, mcopy);
2019 m_freem(mcopy);
2021 return; /* most common case */
2022 } else {
2023 ipstat.ips_redirectsent++;
2025 } else {
2026 ipstat.ips_cantforward++;
2029 if (mcopy == NULL)
2030 return;
2033 * Send ICMP message.
2036 switch (error) {
2038 case 0: /* forwarded, but need redirect */
2039 /* type, code set above */
2040 break;
2042 case ENETUNREACH: /* shouldn't happen, checked above */
2043 case EHOSTUNREACH:
2044 case ENETDOWN:
2045 case EHOSTDOWN:
2046 default:
2047 type = ICMP_UNREACH;
2048 code = ICMP_UNREACH_HOST;
2049 break;
2051 case EMSGSIZE:
2052 type = ICMP_UNREACH;
2053 code = ICMP_UNREACH_NEEDFRAG;
2054 #ifdef IPSEC
2056 * If the packet is routed over IPsec tunnel, tell the
2057 * originator the tunnel MTU.
2058 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2059 * XXX quickhack!!!
2061 if (cache_rt->ro_rt != NULL) {
2062 struct secpolicy *sp = NULL;
2063 int ipsecerror;
2064 int ipsechdr;
2065 struct route *ro;
2067 sp = ipsec4_getpolicybyaddr(mcopy,
2068 IPSEC_DIR_OUTBOUND,
2069 IP_FORWARDING,
2070 &ipsecerror);
2072 if (sp == NULL)
2073 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2074 else {
2075 /* count IPsec header size */
2076 ipsechdr = ipsec4_hdrsiz(mcopy,
2077 IPSEC_DIR_OUTBOUND,
2078 NULL);
2081 * find the correct route for outer IPv4
2082 * header, compute tunnel MTU.
2085 if (sp->req != NULL && sp->req->sav != NULL &&
2086 sp->req->sav->sah != NULL) {
2087 ro = &sp->req->sav->sah->sa_route;
2088 if (ro->ro_rt != NULL &&
2089 ro->ro_rt->rt_ifp != NULL) {
2090 destmtu =
2091 ro->ro_rt->rt_ifp->if_mtu;
2092 destmtu -= ipsechdr;
2096 key_freesp(sp);
2099 #elif FAST_IPSEC
2101 * If the packet is routed over IPsec tunnel, tell the
2102 * originator the tunnel MTU.
2103 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2104 * XXX quickhack!!!
2106 if (cache_rt->ro_rt != NULL) {
2107 struct secpolicy *sp = NULL;
2108 int ipsecerror;
2109 int ipsechdr;
2110 struct route *ro;
2112 sp = ipsec_getpolicybyaddr(mcopy,
2113 IPSEC_DIR_OUTBOUND,
2114 IP_FORWARDING,
2115 &ipsecerror);
2117 if (sp == NULL)
2118 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2119 else {
2120 /* count IPsec header size */
2121 ipsechdr = ipsec4_hdrsiz(mcopy,
2122 IPSEC_DIR_OUTBOUND,
2123 NULL);
2126 * find the correct route for outer IPv4
2127 * header, compute tunnel MTU.
2130 if (sp->req != NULL &&
2131 sp->req->sav != NULL &&
2132 sp->req->sav->sah != NULL) {
2133 ro = &sp->req->sav->sah->sa_route;
2134 if (ro->ro_rt != NULL &&
2135 ro->ro_rt->rt_ifp != NULL) {
2136 destmtu =
2137 ro->ro_rt->rt_ifp->if_mtu;
2138 destmtu -= ipsechdr;
2142 KEY_FREESP(&sp);
2145 #else /* !IPSEC && !FAST_IPSEC */
2146 if (cache_rt->ro_rt != NULL)
2147 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2148 #endif /*IPSEC*/
2149 ipstat.ips_cantfrag++;
2150 break;
2152 case ENOBUFS:
2154 * A router should not generate ICMP_SOURCEQUENCH as
2155 * required in RFC1812 Requirements for IP Version 4 Routers.
2156 * Source quench could be a big problem under DoS attacks,
2157 * or if the underlying interface is rate-limited.
2158 * Those who need source quench packets may re-enable them
2159 * via the net.inet.ip.sendsourcequench sysctl.
2161 if (!ip_sendsourcequench) {
2162 m_freem(mcopy);
2163 return;
2164 } else {
2165 type = ICMP_SOURCEQUENCH;
2166 code = 0;
2168 break;
2170 case EACCES: /* ipfw denied packet */
2171 m_freem(mcopy);
2172 return;
2174 icmp_error(mcopy, type, code, dest, destmtu);
2177 void
2178 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2179 struct mbuf *m)
2181 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2182 struct timeval tv;
2184 microtime(&tv);
2185 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2186 SCM_TIMESTAMP, SOL_SOCKET);
2187 if (*mp)
2188 mp = &(*mp)->m_next;
2190 if (inp->inp_flags & INP_RECVDSTADDR) {
2191 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2192 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2193 if (*mp)
2194 mp = &(*mp)->m_next;
2196 if (inp->inp_flags & INP_RECVTTL) {
2197 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2198 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2199 if (*mp)
2200 mp = &(*mp)->m_next;
2202 #ifdef notyet
2203 /* XXX
2204 * Moving these out of udp_input() made them even more broken
2205 * than they already were.
2207 /* options were tossed already */
2208 if (inp->inp_flags & INP_RECVOPTS) {
2209 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2210 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2211 if (*mp)
2212 mp = &(*mp)->m_next;
2214 /* ip_srcroute doesn't do what we want here, need to fix */
2215 if (inp->inp_flags & INP_RECVRETOPTS) {
2216 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2217 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2218 if (*mp)
2219 mp = &(*mp)->m_next;
2221 #endif
2222 if (inp->inp_flags & INP_RECVIF) {
2223 struct ifnet *ifp;
2224 struct sdlbuf {
2225 struct sockaddr_dl sdl;
2226 u_char pad[32];
2227 } sdlbuf;
2228 struct sockaddr_dl *sdp;
2229 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2231 if (((ifp = m->m_pkthdr.rcvif)) &&
2232 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2233 sdp = IF_LLSOCKADDR(ifp);
2235 * Change our mind and don't try copy.
2237 if ((sdp->sdl_family != AF_LINK) ||
2238 (sdp->sdl_len > sizeof(sdlbuf))) {
2239 goto makedummy;
2241 bcopy(sdp, sdl2, sdp->sdl_len);
2242 } else {
2243 makedummy:
2244 sdl2->sdl_len =
2245 offsetof(struct sockaddr_dl, sdl_data[0]);
2246 sdl2->sdl_family = AF_LINK;
2247 sdl2->sdl_index = 0;
2248 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2250 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2251 IP_RECVIF, IPPROTO_IP);
2252 if (*mp)
2253 mp = &(*mp)->m_next;
2258 * XXX these routines are called from the upper part of the kernel.
2260 * They could also be moved to ip_mroute.c, since all the RSVP
2261 * handling is done there already.
2264 ip_rsvp_init(struct socket *so)
2266 if (so->so_type != SOCK_RAW ||
2267 so->so_proto->pr_protocol != IPPROTO_RSVP)
2268 return EOPNOTSUPP;
2270 if (ip_rsvpd != NULL)
2271 return EADDRINUSE;
2273 ip_rsvpd = so;
2275 * This may seem silly, but we need to be sure we don't over-increment
2276 * the RSVP counter, in case something slips up.
2278 if (!ip_rsvp_on) {
2279 ip_rsvp_on = 1;
2280 rsvp_on++;
2283 return 0;
2287 ip_rsvp_done(void)
2289 ip_rsvpd = NULL;
2291 * This may seem silly, but we need to be sure we don't over-decrement
2292 * the RSVP counter, in case something slips up.
2294 if (ip_rsvp_on) {
2295 ip_rsvp_on = 0;
2296 rsvp_on--;
2298 return 0;
2301 void
2302 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2304 int off, proto;
2305 __va_list ap;
2307 __va_start(ap, m);
2308 off = __va_arg(ap, int);
2309 proto = __va_arg(ap, int);
2310 __va_end(ap);
2312 if (rsvp_input_p) { /* call the real one if loaded */
2313 rsvp_input_p(m, off, proto);
2314 return;
2317 /* Can still get packets with rsvp_on = 0 if there is a local member
2318 * of the group to which the RSVP packet is addressed. But in this
2319 * case we want to throw the packet away.
2322 if (!rsvp_on) {
2323 m_freem(m);
2324 return;
2327 if (ip_rsvpd != NULL) {
2328 rip_input(m, off, proto);
2329 return;
2331 /* Drop the packet */
2332 m_freem(m);