2 * Implementation of the Common Access Method Transport (XPT) layer.
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30 * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.60 2007/12/02 05:32:26 pavalos Exp $
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
46 #include <sys/thread.h>
47 #include <sys/thread2.h>
49 #include <machine/clock.h>
53 #include "cam_periph.h"
56 #include "cam_xpt_sim.h"
57 #include "cam_xpt_periph.h"
58 #include "cam_debug.h"
60 #include "scsi/scsi_all.h"
61 #include "scsi/scsi_message.h"
62 #include "scsi/scsi_pass.h"
65 /* Datastructures internal to the xpt layer */
66 MALLOC_DEFINE(M_CAMXPT
, "CAM XPT", "CAM XPT buffers");
69 * Definition of an async handler callback block. These are used to add
70 * SIMs and peripherals to the async callback lists.
73 SLIST_ENTRY(async_node
) links
;
74 u_int32_t event_enable
; /* Async Event enables */
75 void (*callback
)(void *arg
, u_int32_t code
,
76 struct cam_path
*path
, void *args
);
80 SLIST_HEAD(async_list
, async_node
);
81 SLIST_HEAD(periph_list
, cam_periph
);
82 static STAILQ_HEAD(highpowerlist
, ccb_hdr
) highpowerq
;
85 * This is the maximum number of high powered commands (e.g. start unit)
86 * that can be outstanding at a particular time.
88 #ifndef CAM_MAX_HIGHPOWER
89 #define CAM_MAX_HIGHPOWER 4
92 /* number of high powered commands that can go through right now */
93 static int num_highpower
= CAM_MAX_HIGHPOWER
;
96 * Structure for queueing a device in a run queue.
97 * There is one run queue for allocating new ccbs,
98 * and another for sending ccbs to the controller.
100 struct cam_ed_qinfo
{
102 struct cam_ed
*device
;
106 * The CAM EDT (Existing Device Table) contains the device information for
107 * all devices for all busses in the system. The table contains a
108 * cam_ed structure for each device on the bus.
111 TAILQ_ENTRY(cam_ed
) links
;
112 struct cam_ed_qinfo alloc_ccb_entry
;
113 struct cam_ed_qinfo send_ccb_entry
;
114 struct cam_et
*target
;
117 * Queue of type drivers wanting to do
118 * work on this device.
120 struct cam_ccbq ccbq
; /* Queue of pending ccbs */
121 struct async_list asyncs
; /* Async callback info for this B/T/L */
122 struct periph_list periphs
; /* All attached devices */
123 u_int generation
; /* Generation number */
124 struct cam_periph
*owner
; /* Peripheral driver's ownership tag */
125 struct xpt_quirk_entry
*quirk
; /* Oddities about this device */
126 /* Storage for the inquiry data */
127 #ifdef CAM_NEW_TRAN_CODE
129 u_int protocol_version
;
131 u_int transport_version
;
132 #endif /* CAM_NEW_TRAN_CODE */
133 struct scsi_inquiry_data inq_data
;
134 u_int8_t inq_flags
; /*
135 * Current settings for inquiry flags.
136 * This allows us to override settings
137 * like disconnection and tagged
138 * queuing for a device.
140 u_int8_t queue_flags
; /* Queue flags from the control page */
141 u_int8_t serial_num_len
;
142 u_int8_t
*serial_num
;
143 u_int32_t qfrozen_cnt
;
145 #define CAM_DEV_UNCONFIGURED 0x01
146 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02
147 #define CAM_DEV_REL_ON_COMPLETE 0x04
148 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
149 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
150 #define CAM_DEV_TAG_AFTER_COUNT 0x20
151 #define CAM_DEV_INQUIRY_DATA_VALID 0x40
152 u_int32_t tag_delay_count
;
153 #define CAM_TAG_DELAY_COUNT 5
154 u_int32_t tag_saved_openings
;
156 struct callout c_handle
;
160 * Each target is represented by an ET (Existing Target). These
161 * entries are created when a target is successfully probed with an
162 * identify, and removed when a device fails to respond after a number
163 * of retries, or a bus rescan finds the device missing.
166 TAILQ_HEAD(, cam_ed
) ed_entries
;
167 TAILQ_ENTRY(cam_et
) links
;
169 target_id_t target_id
;
172 struct timeval last_reset
; /* uptime of last reset */
176 * Each bus is represented by an EB (Existing Bus). These entries
177 * are created by calls to xpt_bus_register and deleted by calls to
178 * xpt_bus_deregister.
181 TAILQ_HEAD(, cam_et
) et_entries
;
182 TAILQ_ENTRY(cam_eb
) links
;
185 struct timeval last_reset
; /* uptime of last reset */
187 #define CAM_EB_RUNQ_SCHEDULED 0x01
193 struct cam_periph
*periph
;
195 struct cam_et
*target
;
196 struct cam_ed
*device
;
199 struct xpt_quirk_entry
{
200 struct scsi_inquiry_pattern inq_pat
;
202 #define CAM_QUIRK_NOLUNS 0x01
203 #define CAM_QUIRK_NOSERIAL 0x02
204 #define CAM_QUIRK_HILUNS 0x04
205 #define CAM_QUIRK_NOHILUNS 0x08
210 static int cam_srch_hi
= 0;
211 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi
);
212 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS
);
213 SYSCTL_PROC(_kern_cam
, OID_AUTO
, cam_srch_hi
, CTLTYPE_INT
|CTLFLAG_RW
, 0, 0,
214 sysctl_cam_search_luns
, "I",
215 "allow search above LUN 7 for SCSI3 and greater devices");
217 #define CAM_SCSI2_MAXLUN 8
219 * If we're not quirked to search <= the first 8 luns
220 * and we are either quirked to search above lun 8,
221 * or we're > SCSI-2 and we've enabled hilun searching,
222 * or we're > SCSI-2 and the last lun was a success,
223 * we can look for luns above lun 8.
225 #define CAN_SRCH_HI_SPARSE(dv) \
226 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
227 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
228 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
230 #define CAN_SRCH_HI_DENSE(dv) \
231 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
232 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
233 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
241 u_int32_t generation
;
244 static const char quantum
[] = "QUANTUM";
245 static const char sony
[] = "SONY";
246 static const char west_digital
[] = "WDIGTL";
247 static const char samsung
[] = "SAMSUNG";
248 static const char seagate
[] = "SEAGATE";
249 static const char microp
[] = "MICROP";
251 static struct xpt_quirk_entry xpt_quirk_table
[] =
254 /* Reports QUEUE FULL for temporary resource shortages */
255 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "XP39100*", "*" },
256 /*quirks*/0, /*mintags*/24, /*maxtags*/32
259 /* Reports QUEUE FULL for temporary resource shortages */
260 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "XP34550*", "*" },
261 /*quirks*/0, /*mintags*/24, /*maxtags*/32
264 /* Reports QUEUE FULL for temporary resource shortages */
265 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "XP32275*", "*" },
266 /*quirks*/0, /*mintags*/24, /*maxtags*/32
269 /* Broken tagged queuing drive */
270 { T_DIRECT
, SIP_MEDIA_FIXED
, microp
, "4421-07*", "*" },
271 /*quirks*/0, /*mintags*/0, /*maxtags*/0
274 /* Broken tagged queuing drive */
275 { T_DIRECT
, SIP_MEDIA_FIXED
, "HP", "C372*", "*" },
276 /*quirks*/0, /*mintags*/0, /*maxtags*/0
279 /* Broken tagged queuing drive */
280 { T_DIRECT
, SIP_MEDIA_FIXED
, microp
, "3391*", "x43h" },
281 /*quirks*/0, /*mintags*/0, /*maxtags*/0
285 * Unfortunately, the Quantum Atlas III has the same
286 * problem as the Atlas II drives above.
287 * Reported by: "Johan Granlund" <johan@granlund.nu>
289 * For future reference, the drive with the problem was:
290 * QUANTUM QM39100TD-SW N1B0
292 * It's possible that Quantum will fix the problem in later
293 * firmware revisions. If that happens, the quirk entry
294 * will need to be made specific to the firmware revisions
298 /* Reports QUEUE FULL for temporary resource shortages */
299 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "QM39100*", "*" },
300 /*quirks*/0, /*mintags*/24, /*maxtags*/32
304 * 18 Gig Atlas III, same problem as the 9G version.
305 * Reported by: Andre Albsmeier
306 * <andre.albsmeier@mchp.siemens.de>
308 * For future reference, the drive with the problem was:
309 * QUANTUM QM318000TD-S N491
311 /* Reports QUEUE FULL for temporary resource shortages */
312 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "QM318000*", "*" },
313 /*quirks*/0, /*mintags*/24, /*maxtags*/32
317 * Broken tagged queuing drive
318 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
319 * and: Martin Renters <martin@tdc.on.ca>
321 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST410800*", "71*" },
322 /*quirks*/0, /*mintags*/0, /*maxtags*/0
325 * The Seagate Medalist Pro drives have very poor write
326 * performance with anything more than 2 tags.
328 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
329 * Drive: <SEAGATE ST36530N 1444>
331 * Reported by: Jeremy Lea <reg@shale.csir.co.za>
332 * Drive: <SEAGATE ST34520W 1281>
334 * No one has actually reported that the 9G version
335 * (ST39140*) of the Medalist Pro has the same problem, but
336 * we're assuming that it does because the 4G and 6.5G
337 * versions of the drive are broken.
340 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST34520*", "*"},
341 /*quirks*/0, /*mintags*/2, /*maxtags*/2
344 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST36530*", "*"},
345 /*quirks*/0, /*mintags*/2, /*maxtags*/2
348 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST39140*", "*"},
349 /*quirks*/0, /*mintags*/2, /*maxtags*/2
353 * Slow when tagged queueing is enabled. Write performance
354 * steadily drops off with more and more concurrent
355 * transactions. Best sequential write performance with
356 * tagged queueing turned off and write caching turned on.
359 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
360 * Drive: DCAS-34330 w/ "S65A" firmware.
362 * The drive with the problem had the "S65A" firmware
363 * revision, and has also been reported (by Stephen J.
364 * Roznowski <sjr@home.net>) for a drive with the "S61A"
367 * Although no one has reported problems with the 2 gig
368 * version of the DCAS drive, the assumption is that it
369 * has the same problems as the 4 gig version. Therefore
370 * this quirk entries disables tagged queueing for all
373 { T_DIRECT
, SIP_MEDIA_FIXED
, "IBM", "DCAS*", "*" },
374 /*quirks*/0, /*mintags*/0, /*maxtags*/0
377 /* Broken tagged queuing drive */
378 { T_DIRECT
, SIP_MEDIA_REMOVABLE
, "iomega", "jaz*", "*" },
379 /*quirks*/0, /*mintags*/0, /*maxtags*/0
382 /* Broken tagged queuing drive */
383 { T_DIRECT
, SIP_MEDIA_FIXED
, "CONNER", "CFP2107*", "*" },
384 /*quirks*/0, /*mintags*/0, /*maxtags*/0
388 * Broken tagged queuing drive.
390 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
393 { T_DIRECT
, SIP_MEDIA_FIXED
, samsung
, "WN34324U*", "*" },
394 /*quirks*/0, /*mintags*/0, /*maxtags*/0
398 * Slow when tagged queueing is enabled. (1.5MB/sec versus
400 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
401 * Best performance with these drives is achieved with
402 * tagged queueing turned off, and write caching turned on.
404 { T_DIRECT
, SIP_MEDIA_FIXED
, west_digital
, "WDE*", "*" },
405 /*quirks*/0, /*mintags*/0, /*maxtags*/0
409 * Slow when tagged queueing is enabled. (1.5MB/sec versus
411 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
412 * Best performance with these drives is achieved with
413 * tagged queueing turned off, and write caching turned on.
415 { T_DIRECT
, SIP_MEDIA_FIXED
, west_digital
, "ENTERPRISE", "*" },
416 /*quirks*/0, /*mintags*/0, /*maxtags*/0
420 * Doesn't handle queue full condition correctly,
421 * so we need to limit maxtags to what the device
422 * can handle instead of determining this automatically.
424 { T_DIRECT
, SIP_MEDIA_FIXED
, samsung
, "WN321010S*", "*" },
425 /*quirks*/0, /*mintags*/2, /*maxtags*/32
428 /* Really only one LUN */
429 { T_ENCLOSURE
, SIP_MEDIA_FIXED
, "SUN", "SENA", "*" },
430 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
433 /* I can't believe we need a quirk for DPT volumes. */
434 { T_ANY
, SIP_MEDIA_FIXED
|SIP_MEDIA_REMOVABLE
, "DPT", "*", "*" },
435 CAM_QUIRK_NOSERIAL
|CAM_QUIRK_NOLUNS
,
436 /*mintags*/0, /*maxtags*/255
440 * Many Sony CDROM drives don't like multi-LUN probing.
442 { T_CDROM
, SIP_MEDIA_REMOVABLE
, sony
, "CD-ROM CDU*", "*" },
443 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
447 * This drive doesn't like multiple LUN probing.
448 * Submitted by: Parag Patel <parag@cgt.com>
450 { T_WORM
, SIP_MEDIA_REMOVABLE
, sony
, "CD-R CDU9*", "*" },
451 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
454 { T_WORM
, SIP_MEDIA_REMOVABLE
, "YAMAHA", "CDR100*", "*" },
455 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
459 * The 8200 doesn't like multi-lun probing, and probably
460 * don't like serial number requests either.
463 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "EXABYTE",
466 CAM_QUIRK_NOSERIAL
|CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
470 * Let's try the same as above, but for a drive that says
471 * it's an IPL-6860 but is actually an EXB 8200.
474 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "EXABYTE",
477 CAM_QUIRK_NOSERIAL
|CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
481 * These Hitachi drives don't like multi-lun probing.
482 * The PR submitter has a DK319H, but says that the Linux
483 * kernel has a similar work-around for the DK312 and DK314,
484 * so all DK31* drives are quirked here.
486 * Submitted by: Paul Haddad <paul@pth.com>
488 { T_DIRECT
, SIP_MEDIA_FIXED
, "HITACHI", "DK31*", "*" },
489 CAM_QUIRK_NOLUNS
, /*mintags*/2, /*maxtags*/255
493 * This old revision of the TDC3600 is also SCSI-1, and
494 * hangs upon serial number probing.
497 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "TANDBERG",
500 CAM_QUIRK_NOSERIAL
, /*mintags*/0, /*maxtags*/0
504 * Would repond to all LUNs if asked for.
507 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "CALIPER",
510 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
514 * Would repond to all LUNs if asked for.
517 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "KENNEDY",
520 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
523 /* Submitted by: Matthew Dodd <winter@jurai.net> */
524 { T_PROCESSOR
, SIP_MEDIA_FIXED
, "Cabletrn", "EA41*", "*" },
525 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
528 /* Submitted by: Matthew Dodd <winter@jurai.net> */
529 { T_PROCESSOR
, SIP_MEDIA_FIXED
, "CABLETRN", "EA41*", "*" },
530 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
533 /* TeraSolutions special settings for TRC-22 RAID */
534 { T_DIRECT
, SIP_MEDIA_FIXED
, "TERASOLU", "TRC-22", "*" },
535 /*quirks*/0, /*mintags*/55, /*maxtags*/255
538 /* Veritas Storage Appliance */
539 { T_DIRECT
, SIP_MEDIA_FIXED
, "VERITAS", "*", "*" },
540 CAM_QUIRK_HILUNS
, /*mintags*/2, /*maxtags*/1024
544 * Would respond to all LUNs. Device type and removable
545 * flag are jumper-selectable.
547 { T_ANY
, SIP_MEDIA_REMOVABLE
|SIP_MEDIA_FIXED
, "MaxOptix",
550 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
553 /* Default tagged queuing parameters for all devices */
555 T_ANY
, SIP_MEDIA_REMOVABLE
|SIP_MEDIA_FIXED
,
556 /*vendor*/"*", /*product*/"*", /*revision*/"*"
558 /*quirks*/0, /*mintags*/2, /*maxtags*/255
562 static const int xpt_quirk_table_size
=
563 sizeof(xpt_quirk_table
) / sizeof(*xpt_quirk_table
);
567 DM_RET_FLAG_MASK
= 0x0f,
570 DM_RET_DESCEND
= 0x20,
572 DM_RET_ACTION_MASK
= 0xf0
580 } xpt_traverse_depth
;
582 struct xpt_traverse_config
{
583 xpt_traverse_depth depth
;
588 typedef int xpt_busfunc_t (struct cam_eb
*bus
, void *arg
);
589 typedef int xpt_targetfunc_t (struct cam_et
*target
, void *arg
);
590 typedef int xpt_devicefunc_t (struct cam_ed
*device
, void *arg
);
591 typedef int xpt_periphfunc_t (struct cam_periph
*periph
, void *arg
);
592 typedef int xpt_pdrvfunc_t (struct periph_driver
**pdrv
, void *arg
);
594 /* Transport layer configuration information */
595 static struct xpt_softc xsoftc
;
597 /* Queues for our software interrupt handler */
598 typedef TAILQ_HEAD(cam_isrq
, ccb_hdr
) cam_isrq_t
;
599 static cam_isrq_t cam_bioq
;
601 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
602 static SLIST_HEAD(,ccb_hdr
) ccb_freeq
;
603 static u_int xpt_max_ccbs
; /*
604 * Maximum size of ccb pool. Modified as
605 * devices are added/removed or have their
606 * opening counts changed.
608 static u_int xpt_ccb_count
; /* Current count of allocated ccbs */
610 struct cam_periph
*xpt_periph
;
612 static periph_init_t xpt_periph_init
;
614 static periph_init_t probe_periph_init
;
616 static struct periph_driver xpt_driver
=
618 xpt_periph_init
, "xpt",
619 TAILQ_HEAD_INITIALIZER(xpt_driver
.units
)
622 static struct periph_driver probe_driver
=
624 probe_periph_init
, "probe",
625 TAILQ_HEAD_INITIALIZER(probe_driver
.units
)
628 PERIPHDRIVER_DECLARE(xpt
, xpt_driver
);
629 PERIPHDRIVER_DECLARE(probe
, probe_driver
);
631 #define XPT_CDEV_MAJOR 104
633 static d_open_t xptopen
;
634 static d_close_t xptclose
;
635 static d_ioctl_t xptioctl
;
637 static struct dev_ops xpt_ops
= {
638 { "xpt", XPT_CDEV_MAJOR
, 0 },
644 static struct intr_config_hook
*xpt_config_hook
;
646 static void dead_sim_action(struct cam_sim
*sim
, union ccb
*ccb
);
647 static void dead_sim_poll(struct cam_sim
*sim
);
649 /* Dummy SIM that is used when the real one has gone. */
650 static struct cam_sim cam_dead_sim
= {
651 .sim_action
= dead_sim_action
,
652 .sim_poll
= dead_sim_poll
,
653 .sim_name
= "dead_sim",
656 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim)
658 /* Registered busses */
659 static TAILQ_HEAD(,cam_eb
) xpt_busses
;
660 static u_int bus_generation
;
662 /* Storage for debugging datastructures */
664 struct cam_path
*cam_dpath
;
665 u_int32_t cam_dflags
;
666 u_int32_t cam_debug_delay
;
669 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
670 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
674 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
675 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
676 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
678 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
679 || defined(CAM_DEBUG_LUN)
681 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
682 || !defined(CAM_DEBUG_LUN)
683 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
685 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
686 #else /* !CAMDEBUG */
687 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
688 #endif /* CAMDEBUG */
689 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
691 /* Our boot-time initialization hook */
692 static int cam_module_event_handler(module_t
, int /*modeventtype_t*/, void *);
694 static moduledata_t cam_moduledata
= {
696 cam_module_event_handler
,
700 static void xpt_init(void *);
702 DECLARE_MODULE(cam
, cam_moduledata
, SI_SUB_CONFIGURE
, SI_ORDER_SECOND
);
703 MODULE_VERSION(cam
, 1);
706 static cam_status
xpt_compile_path(struct cam_path
*new_path
,
707 struct cam_periph
*perph
,
709 target_id_t target_id
,
712 static void xpt_release_path(struct cam_path
*path
);
714 static void xpt_async_bcast(struct async_list
*async_head
,
715 u_int32_t async_code
,
716 struct cam_path
*path
,
718 static void xpt_dev_async(u_int32_t async_code
,
720 struct cam_et
*target
,
721 struct cam_ed
*device
,
723 static path_id_t
xptnextfreepathid(void);
724 static path_id_t
xptpathid(const char *sim_name
, int sim_unit
, int sim_bus
);
725 static union ccb
*xpt_get_ccb(struct cam_ed
*device
);
726 static int xpt_schedule_dev(struct camq
*queue
, cam_pinfo
*dev_pinfo
,
727 u_int32_t new_priority
);
728 static void xpt_run_dev_allocq(struct cam_eb
*bus
);
729 static void xpt_run_dev_sendq(struct cam_eb
*bus
);
730 static timeout_t xpt_release_devq_timeout
;
731 static void xpt_release_bus(struct cam_eb
*bus
);
732 static void xpt_release_devq_device(struct cam_ed
*dev
, u_int count
,
734 static struct cam_et
*
735 xpt_alloc_target(struct cam_eb
*bus
, target_id_t target_id
);
736 static void xpt_release_target(struct cam_eb
*bus
, struct cam_et
*target
);
737 static struct cam_ed
*
738 xpt_alloc_device(struct cam_eb
*bus
, struct cam_et
*target
,
740 static void xpt_release_device(struct cam_eb
*bus
, struct cam_et
*target
,
741 struct cam_ed
*device
);
742 static u_int32_t
xpt_dev_ccbq_resize(struct cam_path
*path
, int newopenings
);
743 static struct cam_eb
*
744 xpt_find_bus(path_id_t path_id
);
745 static struct cam_et
*
746 xpt_find_target(struct cam_eb
*bus
, target_id_t target_id
);
747 static struct cam_ed
*
748 xpt_find_device(struct cam_et
*target
, lun_id_t lun_id
);
749 static void xpt_scan_bus(struct cam_periph
*periph
, union ccb
*ccb
);
750 static void xpt_scan_lun(struct cam_periph
*periph
,
751 struct cam_path
*path
, cam_flags flags
,
753 static void xptscandone(struct cam_periph
*periph
, union ccb
*done_ccb
);
754 static xpt_busfunc_t xptconfigbuscountfunc
;
755 static xpt_busfunc_t xptconfigfunc
;
756 static void xpt_config(void *arg
);
757 static xpt_devicefunc_t xptpassannouncefunc
;
758 static void xpt_finishconfig(struct cam_periph
*periph
, union ccb
*ccb
);
759 static void xptaction(struct cam_sim
*sim
, union ccb
*work_ccb
);
760 static void xptpoll(struct cam_sim
*sim
);
761 static inthand2_t swi_cambio
;
762 static void camisr(cam_isrq_t
*queue
);
764 static void xptstart(struct cam_periph
*periph
, union ccb
*work_ccb
);
765 static void xptasync(struct cam_periph
*periph
,
766 u_int32_t code
, cam_path
*path
);
768 static dev_match_ret
xptbusmatch(struct dev_match_pattern
*patterns
,
769 u_int num_patterns
, struct cam_eb
*bus
);
770 static dev_match_ret
xptdevicematch(struct dev_match_pattern
*patterns
,
772 struct cam_ed
*device
);
773 static dev_match_ret
xptperiphmatch(struct dev_match_pattern
*patterns
,
775 struct cam_periph
*periph
);
776 static xpt_busfunc_t xptedtbusfunc
;
777 static xpt_targetfunc_t xptedttargetfunc
;
778 static xpt_devicefunc_t xptedtdevicefunc
;
779 static xpt_periphfunc_t xptedtperiphfunc
;
780 static xpt_pdrvfunc_t xptplistpdrvfunc
;
781 static xpt_periphfunc_t xptplistperiphfunc
;
782 static int xptedtmatch(struct ccb_dev_match
*cdm
);
783 static int xptperiphlistmatch(struct ccb_dev_match
*cdm
);
784 static int xptbustraverse(struct cam_eb
*start_bus
,
785 xpt_busfunc_t
*tr_func
, void *arg
);
786 static int xpttargettraverse(struct cam_eb
*bus
,
787 struct cam_et
*start_target
,
788 xpt_targetfunc_t
*tr_func
, void *arg
);
789 static int xptdevicetraverse(struct cam_et
*target
,
790 struct cam_ed
*start_device
,
791 xpt_devicefunc_t
*tr_func
, void *arg
);
792 static int xptperiphtraverse(struct cam_ed
*device
,
793 struct cam_periph
*start_periph
,
794 xpt_periphfunc_t
*tr_func
, void *arg
);
795 static int xptpdrvtraverse(struct periph_driver
**start_pdrv
,
796 xpt_pdrvfunc_t
*tr_func
, void *arg
);
797 static int xptpdperiphtraverse(struct periph_driver
**pdrv
,
798 struct cam_periph
*start_periph
,
799 xpt_periphfunc_t
*tr_func
,
801 static xpt_busfunc_t xptdefbusfunc
;
802 static xpt_targetfunc_t xptdeftargetfunc
;
803 static xpt_devicefunc_t xptdefdevicefunc
;
804 static xpt_periphfunc_t xptdefperiphfunc
;
805 static int xpt_for_all_busses(xpt_busfunc_t
*tr_func
, void *arg
);
807 static int xpt_for_all_targets(xpt_targetfunc_t
*tr_func
,
810 static int xpt_for_all_devices(xpt_devicefunc_t
*tr_func
,
813 static int xpt_for_all_periphs(xpt_periphfunc_t
*tr_func
,
816 static xpt_devicefunc_t xptsetasyncfunc
;
817 static xpt_busfunc_t xptsetasyncbusfunc
;
818 static cam_status
xptregister(struct cam_periph
*periph
,
820 static cam_status
proberegister(struct cam_periph
*periph
,
822 static void probeschedule(struct cam_periph
*probe_periph
);
823 static void probestart(struct cam_periph
*periph
, union ccb
*start_ccb
);
824 static void proberequestdefaultnegotiation(struct cam_periph
*periph
);
825 static void probedone(struct cam_periph
*periph
, union ccb
*done_ccb
);
826 static void probecleanup(struct cam_periph
*periph
);
827 static void xpt_find_quirk(struct cam_ed
*device
);
828 #ifdef CAM_NEW_TRAN_CODE
829 static void xpt_devise_transport(struct cam_path
*path
);
830 #endif /* CAM_NEW_TRAN_CODE */
831 static void xpt_set_transfer_settings(struct ccb_trans_settings
*cts
,
832 struct cam_ed
*device
,
834 static void xpt_toggle_tags(struct cam_path
*path
);
835 static void xpt_start_tags(struct cam_path
*path
);
836 static __inline
int xpt_schedule_dev_allocq(struct cam_eb
*bus
,
838 static __inline
int xpt_schedule_dev_sendq(struct cam_eb
*bus
,
840 static __inline
int periph_is_queued(struct cam_periph
*periph
);
841 static __inline
int device_is_alloc_queued(struct cam_ed
*device
);
842 static __inline
int device_is_send_queued(struct cam_ed
*device
);
843 static __inline
int dev_allocq_is_runnable(struct cam_devq
*devq
);
846 xpt_schedule_dev_allocq(struct cam_eb
*bus
, struct cam_ed
*dev
)
850 if (bus
->sim
->devq
&& dev
->ccbq
.devq_openings
> 0) {
851 if ((dev
->flags
& CAM_DEV_RESIZE_QUEUE_NEEDED
) != 0) {
852 cam_ccbq_resize(&dev
->ccbq
,
853 dev
->ccbq
.dev_openings
854 + dev
->ccbq
.dev_active
);
855 dev
->flags
&= ~CAM_DEV_RESIZE_QUEUE_NEEDED
;
858 * The priority of a device waiting for CCB resources
859 * is that of the the highest priority peripheral driver
862 retval
= xpt_schedule_dev(&bus
->sim
->devq
->alloc_queue
,
863 &dev
->alloc_ccb_entry
.pinfo
,
864 CAMQ_GET_HEAD(&dev
->drvq
)->priority
);
873 xpt_schedule_dev_sendq(struct cam_eb
*bus
, struct cam_ed
*dev
)
877 if (bus
->sim
->devq
&& dev
->ccbq
.dev_openings
> 0) {
879 * The priority of a device waiting for controller
880 * resources is that of the the highest priority CCB
884 xpt_schedule_dev(&bus
->sim
->devq
->send_queue
,
885 &dev
->send_ccb_entry
.pinfo
,
886 CAMQ_GET_HEAD(&dev
->ccbq
.queue
)->priority
);
894 periph_is_queued(struct cam_periph
*periph
)
896 return (periph
->pinfo
.index
!= CAM_UNQUEUED_INDEX
);
900 device_is_alloc_queued(struct cam_ed
*device
)
902 return (device
->alloc_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
);
906 device_is_send_queued(struct cam_ed
*device
)
908 return (device
->send_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
);
912 dev_allocq_is_runnable(struct cam_devq
*devq
)
916 * Have space to do more work.
917 * Allowed to do work.
919 return ((devq
->alloc_queue
.qfrozen_cnt
== 0)
920 && (devq
->alloc_queue
.entries
> 0)
921 && (devq
->alloc_openings
> 0));
925 xpt_periph_init(void)
927 dev_ops_add(&xpt_ops
, 0, 0);
928 make_dev(&xpt_ops
, 0, UID_ROOT
, GID_OPERATOR
, 0600, "xpt0");
932 probe_periph_init(void)
938 xptdone(struct cam_periph
*periph
, union ccb
*done_ccb
)
940 /* Caller will release the CCB */
941 wakeup(&done_ccb
->ccb_h
.cbfcnp
);
945 xptopen(struct dev_open_args
*ap
)
947 cdev_t dev
= ap
->a_head
.a_dev
;
950 unit
= minor(dev
) & 0xff;
953 * Only allow read-write access.
955 if (((ap
->a_oflags
& FWRITE
) == 0) || ((ap
->a_oflags
& FREAD
) == 0))
959 * We don't allow nonblocking access.
961 if ((ap
->a_oflags
& O_NONBLOCK
) != 0) {
962 kprintf("xpt%d: can't do nonblocking access\n", unit
);
967 * We only have one transport layer right now. If someone accesses
968 * us via something other than minor number 1, point out their
972 kprintf("xptopen: got invalid xpt unit %d\n", unit
);
976 /* Mark ourselves open */
977 xsoftc
.flags
|= XPT_FLAG_OPEN
;
983 xptclose(struct dev_close_args
*ap
)
985 cdev_t dev
= ap
->a_head
.a_dev
;
988 unit
= minor(dev
) & 0xff;
991 * We only have one transport layer right now. If someone accesses
992 * us via something other than minor number 1, point out their
996 kprintf("xptclose: got invalid xpt unit %d\n", unit
);
1000 /* Mark ourselves closed */
1001 xsoftc
.flags
&= ~XPT_FLAG_OPEN
;
1007 xptioctl(struct dev_ioctl_args
*ap
)
1009 cdev_t dev
= ap
->a_head
.a_dev
;
1013 unit
= minor(dev
) & 0xff;
1016 * We only have one transport layer right now. If someone accesses
1017 * us via something other than minor number 1, point out their
1021 kprintf("xptioctl: got invalid xpt unit %d\n", unit
);
1027 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1028 * to accept CCB types that don't quite make sense to send through a
1029 * passthrough driver.
1031 case CAMIOCOMMAND
: {
1035 inccb
= (union ccb
*)ap
->a_data
;
1037 switch(inccb
->ccb_h
.func_code
) {
1040 if ((inccb
->ccb_h
.target_id
!= CAM_TARGET_WILDCARD
)
1041 || (inccb
->ccb_h
.target_lun
!= CAM_LUN_WILDCARD
)) {
1050 ccb
= xpt_alloc_ccb();
1053 * Create a path using the bus, target, and lun the
1056 if (xpt_create_path(&ccb
->ccb_h
.path
, xpt_periph
,
1057 inccb
->ccb_h
.path_id
,
1058 inccb
->ccb_h
.target_id
,
1059 inccb
->ccb_h
.target_lun
) !=
1065 /* Ensure all of our fields are correct */
1066 xpt_setup_ccb(&ccb
->ccb_h
, ccb
->ccb_h
.path
,
1067 inccb
->ccb_h
.pinfo
.priority
);
1068 xpt_merge_ccb(ccb
, inccb
);
1069 ccb
->ccb_h
.cbfcnp
= xptdone
;
1070 cam_periph_runccb(ccb
, NULL
, 0, 0, NULL
);
1071 bcopy(ccb
, inccb
, sizeof(union ccb
));
1072 xpt_free_path(ccb
->ccb_h
.path
);
1080 * This is an immediate CCB, so it's okay to
1081 * allocate it on the stack.
1085 * Create a path using the bus, target, and lun the
1088 if (xpt_create_path(&ccb
.ccb_h
.path
, xpt_periph
,
1089 inccb
->ccb_h
.path_id
,
1090 inccb
->ccb_h
.target_id
,
1091 inccb
->ccb_h
.target_lun
) !=
1096 /* Ensure all of our fields are correct */
1097 xpt_setup_ccb(&ccb
.ccb_h
, ccb
.ccb_h
.path
,
1098 inccb
->ccb_h
.pinfo
.priority
);
1099 xpt_merge_ccb(&ccb
, inccb
);
1100 ccb
.ccb_h
.cbfcnp
= xptdone
;
1102 bcopy(&ccb
, inccb
, sizeof(union ccb
));
1103 xpt_free_path(ccb
.ccb_h
.path
);
1107 case XPT_DEV_MATCH
: {
1108 struct cam_periph_map_info mapinfo
;
1109 struct cam_path
*old_path
;
1112 * We can't deal with physical addresses for this
1113 * type of transaction.
1115 if (inccb
->ccb_h
.flags
& CAM_DATA_PHYS
) {
1121 * Save this in case the caller had it set to
1122 * something in particular.
1124 old_path
= inccb
->ccb_h
.path
;
1127 * We really don't need a path for the matching
1128 * code. The path is needed because of the
1129 * debugging statements in xpt_action(). They
1130 * assume that the CCB has a valid path.
1132 inccb
->ccb_h
.path
= xpt_periph
->path
;
1134 bzero(&mapinfo
, sizeof(mapinfo
));
1137 * Map the pattern and match buffers into kernel
1138 * virtual address space.
1140 error
= cam_periph_mapmem(inccb
, &mapinfo
);
1143 inccb
->ccb_h
.path
= old_path
;
1148 * This is an immediate CCB, we can send it on directly.
1153 * Map the buffers back into user space.
1155 cam_periph_unmapmem(inccb
, &mapinfo
);
1157 inccb
->ccb_h
.path
= old_path
;
1169 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1170 * with the periphal driver name and unit name filled in. The other
1171 * fields don't really matter as input. The passthrough driver name
1172 * ("pass"), and unit number are passed back in the ccb. The current
1173 * device generation number, and the index into the device peripheral
1174 * driver list, and the status are also passed back. Note that
1175 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1176 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
1177 * (or rather should be) impossible for the device peripheral driver
1178 * list to change since we look at the whole thing in one pass, and
1179 * we do it within a critical section.
1182 case CAMGETPASSTHRU
: {
1184 struct cam_periph
*periph
;
1185 struct periph_driver
**p_drv
;
1188 u_int cur_generation
;
1189 int base_periph_found
;
1192 ccb
= (union ccb
*)ap
->a_data
;
1193 unit
= ccb
->cgdl
.unit_number
;
1194 name
= ccb
->cgdl
.periph_name
;
1196 * Every 100 devices, we want to call splz() to check for
1197 * and allow the software interrupt handler a chance to run.
1199 * Most systems won't run into this check, but this should
1200 * avoid starvation in the software interrupt handler in
1205 ccb
= (union ccb
*)ap
->a_data
;
1207 base_periph_found
= 0;
1210 * Sanity check -- make sure we don't get a null peripheral
1213 if (*ccb
->cgdl
.periph_name
== '\0') {
1218 /* Keep the list from changing while we traverse it */
1221 cur_generation
= xsoftc
.generation
;
1223 /* first find our driver in the list of drivers */
1224 for (p_drv
= periph_drivers
; *p_drv
!= NULL
; p_drv
++) {
1225 if (strcmp((*p_drv
)->driver_name
, name
) == 0)
1229 if (*p_drv
== NULL
) {
1231 ccb
->ccb_h
.status
= CAM_REQ_CMP_ERR
;
1232 ccb
->cgdl
.status
= CAM_GDEVLIST_ERROR
;
1233 *ccb
->cgdl
.periph_name
= '\0';
1234 ccb
->cgdl
.unit_number
= 0;
1240 * Run through every peripheral instance of this driver
1241 * and check to see whether it matches the unit passed
1242 * in by the user. If it does, get out of the loops and
1243 * find the passthrough driver associated with that
1244 * peripheral driver.
1246 TAILQ_FOREACH(periph
, &(*p_drv
)->units
, unit_links
) {
1248 if (periph
->unit_number
== unit
) {
1250 } else if (--splbreaknum
== 0) {
1253 if (cur_generation
!= xsoftc
.generation
)
1258 * If we found the peripheral driver that the user passed
1259 * in, go through all of the peripheral drivers for that
1260 * particular device and look for a passthrough driver.
1262 if (periph
!= NULL
) {
1263 struct cam_ed
*device
;
1266 base_periph_found
= 1;
1267 device
= periph
->path
->device
;
1268 for (i
= 0, periph
= SLIST_FIRST(&device
->periphs
);
1270 periph
= SLIST_NEXT(periph
, periph_links
), i
++) {
1272 * Check to see whether we have a
1273 * passthrough device or not.
1275 if (strcmp(periph
->periph_name
, "pass") == 0) {
1277 * Fill in the getdevlist fields.
1279 strcpy(ccb
->cgdl
.periph_name
,
1280 periph
->periph_name
);
1281 ccb
->cgdl
.unit_number
=
1282 periph
->unit_number
;
1283 if (SLIST_NEXT(periph
, periph_links
))
1285 CAM_GDEVLIST_MORE_DEVS
;
1288 CAM_GDEVLIST_LAST_DEVICE
;
1289 ccb
->cgdl
.generation
=
1291 ccb
->cgdl
.index
= i
;
1293 * Fill in some CCB header fields
1294 * that the user may want.
1296 ccb
->ccb_h
.path_id
=
1297 periph
->path
->bus
->path_id
;
1298 ccb
->ccb_h
.target_id
=
1299 periph
->path
->target
->target_id
;
1300 ccb
->ccb_h
.target_lun
=
1301 periph
->path
->device
->lun_id
;
1302 ccb
->ccb_h
.status
= CAM_REQ_CMP
;
1309 * If the periph is null here, one of two things has
1310 * happened. The first possibility is that we couldn't
1311 * find the unit number of the particular peripheral driver
1312 * that the user is asking about. e.g. the user asks for
1313 * the passthrough driver for "da11". We find the list of
1314 * "da" peripherals all right, but there is no unit 11.
1315 * The other possibility is that we went through the list
1316 * of peripheral drivers attached to the device structure,
1317 * but didn't find one with the name "pass". Either way,
1318 * we return ENOENT, since we couldn't find something.
1320 if (periph
== NULL
) {
1321 ccb
->ccb_h
.status
= CAM_REQ_CMP_ERR
;
1322 ccb
->cgdl
.status
= CAM_GDEVLIST_ERROR
;
1323 *ccb
->cgdl
.periph_name
= '\0';
1324 ccb
->cgdl
.unit_number
= 0;
1327 * It is unfortunate that this is even necessary,
1328 * but there are many, many clueless users out there.
1329 * If this is true, the user is looking for the
1330 * passthrough driver, but doesn't have one in his
1333 if (base_periph_found
== 1) {
1334 kprintf("xptioctl: pass driver is not in the "
1336 kprintf("xptioctl: put \"device pass0\" in "
1337 "your kernel config file\n");
1352 cam_module_event_handler(module_t mod
, int what
, void *arg
)
1354 if (what
== MOD_LOAD
) {
1356 } else if (what
== MOD_UNLOAD
) {
1365 /* Functions accessed by the peripheral drivers */
1367 xpt_init(void *dummy
)
1369 struct cam_sim
*xpt_sim
;
1370 struct cam_path
*path
;
1371 struct cam_devq
*devq
;
1374 TAILQ_INIT(&xpt_busses
);
1375 TAILQ_INIT(&cam_bioq
);
1376 SLIST_INIT(&ccb_freeq
);
1377 STAILQ_INIT(&highpowerq
);
1380 * The xpt layer is, itself, the equivelent of a SIM.
1381 * Allow 16 ccbs in the ccb pool for it. This should
1382 * give decent parallelism when we probe busses and
1383 * perform other XPT functions.
1385 devq
= cam_simq_alloc(16);
1386 xpt_sim
= cam_sim_alloc(xptaction
,
1391 /*max_dev_transactions*/0,
1392 /*max_tagged_dev_transactions*/0,
1394 cam_simq_release(devq
);
1397 xpt_bus_register(xpt_sim
, /*bus #*/0);
1400 * Looking at the XPT from the SIM layer, the XPT is
1401 * the equivelent of a peripheral driver. Allocate
1402 * a peripheral driver entry for us.
1404 if ((status
= xpt_create_path(&path
, NULL
, CAM_XPT_PATH_ID
,
1405 CAM_TARGET_WILDCARD
,
1406 CAM_LUN_WILDCARD
)) != CAM_REQ_CMP
) {
1407 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1408 " failing attach\n", status
);
1412 cam_periph_alloc(xptregister
, NULL
, NULL
, NULL
, "xpt", CAM_PERIPH_BIO
,
1413 path
, NULL
, 0, NULL
);
1414 xpt_free_path(path
);
1416 xpt_sim
->softc
= xpt_periph
;
1419 * Register a callback for when interrupts are enabled.
1421 xpt_config_hook
= kmalloc(sizeof(struct intr_config_hook
),
1422 M_TEMP
, M_INTWAIT
| M_ZERO
);
1423 xpt_config_hook
->ich_func
= xpt_config
;
1424 xpt_config_hook
->ich_desc
= "xpt";
1425 xpt_config_hook
->ich_order
= 1000;
1426 if (config_intrhook_establish(xpt_config_hook
) != 0) {
1427 kfree (xpt_config_hook
, M_TEMP
);
1428 kprintf("xpt_init: config_intrhook_establish failed "
1429 "- failing attach\n");
1432 /* Install our software interrupt handlers */
1433 register_swi(SWI_CAMBIO
, swi_cambio
, NULL
, "swi_cambio", NULL
);
1437 xptregister(struct cam_periph
*periph
, void *arg
)
1439 if (periph
== NULL
) {
1440 kprintf("xptregister: periph was NULL!!\n");
1441 return(CAM_REQ_CMP_ERR
);
1444 periph
->softc
= NULL
;
1446 xpt_periph
= periph
;
1448 return(CAM_REQ_CMP
);
1452 xpt_add_periph(struct cam_periph
*periph
)
1454 struct cam_ed
*device
;
1456 struct periph_list
*periph_head
;
1458 device
= periph
->path
->device
;
1460 periph_head
= &device
->periphs
;
1462 status
= CAM_REQ_CMP
;
1464 if (device
!= NULL
) {
1466 * Make room for this peripheral
1467 * so it will fit in the queue
1468 * when it's scheduled to run
1471 status
= camq_resize(&device
->drvq
,
1472 device
->drvq
.array_size
+ 1);
1474 device
->generation
++;
1476 SLIST_INSERT_HEAD(periph_head
, periph
, periph_links
);
1480 xsoftc
.generation
++;
1486 xpt_remove_periph(struct cam_periph
*periph
)
1488 struct cam_ed
*device
;
1490 device
= periph
->path
->device
;
1492 if (device
!= NULL
) {
1493 struct periph_list
*periph_head
;
1495 periph_head
= &device
->periphs
;
1497 /* Release the slot for this peripheral */
1499 camq_resize(&device
->drvq
, device
->drvq
.array_size
- 1);
1501 device
->generation
++;
1503 SLIST_REMOVE(periph_head
, periph
, cam_periph
, periph_links
);
1507 xsoftc
.generation
++;
1511 #ifdef CAM_NEW_TRAN_CODE
1514 xpt_announce_periph(struct cam_periph
*periph
, char *announce_string
)
1516 struct ccb_pathinq cpi
;
1517 struct ccb_trans_settings cts
;
1518 struct cam_path
*path
;
1523 path
= periph
->path
;
1525 * To ensure that this is printed in one piece,
1526 * mask out CAM interrupts.
1529 printf("%s%d at %s%d bus %d target %d lun %d\n",
1530 periph
->periph_name
, periph
->unit_number
,
1531 path
->bus
->sim
->sim_name
,
1532 path
->bus
->sim
->unit_number
,
1533 path
->bus
->sim
->bus_id
,
1534 path
->target
->target_id
,
1535 path
->device
->lun_id
);
1536 printf("%s%d: ", periph
->periph_name
, periph
->unit_number
);
1537 scsi_print_inquiry(&path
->device
->inq_data
);
1538 if (bootverbose
&& path
->device
->serial_num_len
> 0) {
1539 /* Don't wrap the screen - print only the first 60 chars */
1540 printf("%s%d: Serial Number %.60s\n", periph
->periph_name
,
1541 periph
->unit_number
, path
->device
->serial_num
);
1543 xpt_setup_ccb(&cts
.ccb_h
, path
, /*priority*/1);
1544 cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
1545 cts
.type
= CTS_TYPE_CURRENT_SETTINGS
;
1546 xpt_action((union ccb
*)&cts
);
1548 /* Ask the SIM for its base transfer speed */
1549 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
1550 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
1551 xpt_action((union ccb
*)&cpi
);
1553 speed
= cpi
.base_transfer_speed
;
1555 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_SPI
) {
1556 struct ccb_trans_settings_spi
*spi
;
1558 spi
= &cts
.xport_specific
.spi
;
1559 if ((spi
->valid
& CTS_SPI_VALID_SYNC_OFFSET
) != 0
1560 && spi
->sync_offset
!= 0) {
1561 freq
= scsi_calc_syncsrate(spi
->sync_period
);
1565 if ((spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) != 0)
1566 speed
*= (0x01 << spi
->bus_width
);
1568 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_FC
) {
1569 struct ccb_trans_settings_fc
*fc
= &cts
.xport_specific
.fc
;
1570 if (fc
->valid
& CTS_FC_VALID_SPEED
) {
1571 speed
= fc
->bitrate
;
1575 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_SAS
) {
1576 struct ccb_trans_settings_sas
*sas
= &cts
.xport_specific
.sas
;
1577 if (sas
->valid
& CTS_SAS_VALID_SPEED
) {
1578 speed
= sas
->bitrate
;
1584 printf("%s%d: %d.%03dMB/s transfers",
1585 periph
->periph_name
, periph
->unit_number
,
1588 printf("%s%d: %dKB/s transfers", periph
->periph_name
,
1589 periph
->unit_number
, speed
);
1590 /* Report additional information about SPI connections */
1591 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_SPI
) {
1592 struct ccb_trans_settings_spi
*spi
;
1594 spi
= &cts
.xport_specific
.spi
;
1596 printf(" (%d.%03dMHz%s, offset %d", freq
/ 1000,
1598 (spi
->ppr_options
& MSG_EXT_PPR_DT_REQ
) != 0
1602 if ((spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) != 0
1603 && spi
->bus_width
> 0) {
1609 printf("%dbit)", 8 * (0x01 << spi
->bus_width
));
1610 } else if (freq
!= 0) {
1614 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_FC
) {
1615 struct ccb_trans_settings_fc
*fc
;
1617 fc
= &cts
.xport_specific
.fc
;
1618 if (fc
->valid
& CTS_FC_VALID_WWNN
)
1619 printf(" WWNN 0x%llx", (long long) fc
->wwnn
);
1620 if (fc
->valid
& CTS_FC_VALID_WWPN
)
1621 printf(" WWPN 0x%llx", (long long) fc
->wwpn
);
1622 if (fc
->valid
& CTS_FC_VALID_PORT
)
1623 printf(" PortID 0x%x", fc
->port
);
1626 if (path
->device
->inq_flags
& SID_CmdQue
1627 || path
->device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) {
1628 printf("\n%s%d: Tagged Queueing Enabled",
1629 periph
->periph_name
, periph
->unit_number
);
1634 * We only want to print the caller's announce string if they've
1637 if (announce_string
!= NULL
)
1638 printf("%s%d: %s\n", periph
->periph_name
,
1639 periph
->unit_number
, announce_string
);
1642 #else /* CAM_NEW_TRAN_CODE */
1644 xpt_announce_periph(struct cam_periph
*periph
, char *announce_string
)
1647 struct cam_path
*path
;
1648 struct ccb_trans_settings cts
;
1650 path
= periph
->path
;
1652 * To ensure that this is printed in one piece,
1653 * mask out CAM interrupts.
1656 kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1657 periph
->periph_name
, periph
->unit_number
,
1658 path
->bus
->sim
->sim_name
,
1659 path
->bus
->sim
->unit_number
,
1660 path
->bus
->sim
->bus_id
,
1661 path
->target
->target_id
,
1662 path
->device
->lun_id
);
1663 kprintf("%s%d: ", periph
->periph_name
, periph
->unit_number
);
1664 scsi_print_inquiry(&path
->device
->inq_data
);
1666 && (path
->device
->serial_num_len
> 0)) {
1667 /* Don't wrap the screen - print only the first 60 chars */
1668 kprintf("%s%d: Serial Number %.60s\n", periph
->periph_name
,
1669 periph
->unit_number
, path
->device
->serial_num
);
1671 xpt_setup_ccb(&cts
.ccb_h
, path
, /*priority*/1);
1672 cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
1673 cts
.flags
= CCB_TRANS_CURRENT_SETTINGS
;
1674 xpt_action((union ccb
*)&cts
);
1675 if (cts
.ccb_h
.status
== CAM_REQ_CMP
) {
1679 if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1680 && cts
.sync_offset
!= 0) {
1681 freq
= scsi_calc_syncsrate(cts
.sync_period
);
1684 struct ccb_pathinq cpi
;
1686 /* Ask the SIM for its base transfer speed */
1687 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
1688 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
1689 xpt_action((union ccb
*)&cpi
);
1691 speed
= cpi
.base_transfer_speed
;
1694 if ((cts
.valid
& CCB_TRANS_BUS_WIDTH_VALID
) != 0)
1695 speed
*= (0x01 << cts
.bus_width
);
1698 kprintf("%s%d: %d.%03dMB/s transfers",
1699 periph
->periph_name
, periph
->unit_number
,
1702 kprintf("%s%d: %dKB/s transfers", periph
->periph_name
,
1703 periph
->unit_number
, speed
);
1704 if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1705 && cts
.sync_offset
!= 0) {
1706 kprintf(" (%d.%03dMHz, offset %d", freq
/ 1000,
1707 freq
% 1000, cts
.sync_offset
);
1709 if ((cts
.valid
& CCB_TRANS_BUS_WIDTH_VALID
) != 0
1710 && cts
.bus_width
> 0) {
1711 if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1712 && cts
.sync_offset
!= 0) {
1717 kprintf("%dbit)", 8 * (0x01 << cts
.bus_width
));
1718 } else if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1719 && cts
.sync_offset
!= 0) {
1723 if (path
->device
->inq_flags
& SID_CmdQue
1724 || path
->device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) {
1725 kprintf(", Tagged Queueing Enabled");
1729 } else if (path
->device
->inq_flags
& SID_CmdQue
1730 || path
->device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) {
1731 kprintf("%s%d: Tagged Queueing Enabled\n",
1732 periph
->periph_name
, periph
->unit_number
);
1736 * We only want to print the caller's announce string if they've
1739 if (announce_string
!= NULL
)
1740 kprintf("%s%d: %s\n", periph
->periph_name
,
1741 periph
->unit_number
, announce_string
);
1745 #endif /* CAM_NEW_TRAN_CODE */
1747 static dev_match_ret
1748 xptbusmatch(struct dev_match_pattern
*patterns
, u_int num_patterns
,
1751 dev_match_ret retval
;
1754 retval
= DM_RET_NONE
;
1757 * If we aren't given something to match against, that's an error.
1760 return(DM_RET_ERROR
);
1763 * If there are no match entries, then this bus matches no
1766 if ((patterns
== NULL
) || (num_patterns
== 0))
1767 return(DM_RET_DESCEND
| DM_RET_COPY
);
1769 for (i
= 0; i
< num_patterns
; i
++) {
1770 struct bus_match_pattern
*cur_pattern
;
1773 * If the pattern in question isn't for a bus node, we
1774 * aren't interested. However, we do indicate to the
1775 * calling routine that we should continue descending the
1776 * tree, since the user wants to match against lower-level
1779 if (patterns
[i
].type
!= DEV_MATCH_BUS
) {
1780 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
)
1781 retval
|= DM_RET_DESCEND
;
1785 cur_pattern
= &patterns
[i
].pattern
.bus_pattern
;
1788 * If they want to match any bus node, we give them any
1791 if (cur_pattern
->flags
== BUS_MATCH_ANY
) {
1792 /* set the copy flag */
1793 retval
|= DM_RET_COPY
;
1796 * If we've already decided on an action, go ahead
1799 if ((retval
& DM_RET_ACTION_MASK
) != DM_RET_NONE
)
1804 * Not sure why someone would do this...
1806 if (cur_pattern
->flags
== BUS_MATCH_NONE
)
1809 if (((cur_pattern
->flags
& BUS_MATCH_PATH
) != 0)
1810 && (cur_pattern
->path_id
!= bus
->path_id
))
1813 if (((cur_pattern
->flags
& BUS_MATCH_BUS_ID
) != 0)
1814 && (cur_pattern
->bus_id
!= bus
->sim
->bus_id
))
1817 if (((cur_pattern
->flags
& BUS_MATCH_UNIT
) != 0)
1818 && (cur_pattern
->unit_number
!= bus
->sim
->unit_number
))
1821 if (((cur_pattern
->flags
& BUS_MATCH_NAME
) != 0)
1822 && (strncmp(cur_pattern
->dev_name
, bus
->sim
->sim_name
,
1827 * If we get to this point, the user definitely wants
1828 * information on this bus. So tell the caller to copy the
1831 retval
|= DM_RET_COPY
;
1834 * If the return action has been set to descend, then we
1835 * know that we've already seen a non-bus matching
1836 * expression, therefore we need to further descend the tree.
1837 * This won't change by continuing around the loop, so we
1838 * go ahead and return. If we haven't seen a non-bus
1839 * matching expression, we keep going around the loop until
1840 * we exhaust the matching expressions. We'll set the stop
1841 * flag once we fall out of the loop.
1843 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_DESCEND
)
1848 * If the return action hasn't been set to descend yet, that means
1849 * we haven't seen anything other than bus matching patterns. So
1850 * tell the caller to stop descending the tree -- the user doesn't
1851 * want to match against lower level tree elements.
1853 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
)
1854 retval
|= DM_RET_STOP
;
1859 static dev_match_ret
1860 xptdevicematch(struct dev_match_pattern
*patterns
, u_int num_patterns
,
1861 struct cam_ed
*device
)
1863 dev_match_ret retval
;
1866 retval
= DM_RET_NONE
;
1869 * If we aren't given something to match against, that's an error.
1872 return(DM_RET_ERROR
);
1875 * If there are no match entries, then this device matches no
1878 if ((patterns
== NULL
) || (num_patterns
== 0))
1879 return(DM_RET_DESCEND
| DM_RET_COPY
);
1881 for (i
= 0; i
< num_patterns
; i
++) {
1882 struct device_match_pattern
*cur_pattern
;
1885 * If the pattern in question isn't for a device node, we
1886 * aren't interested.
1888 if (patterns
[i
].type
!= DEV_MATCH_DEVICE
) {
1889 if ((patterns
[i
].type
== DEV_MATCH_PERIPH
)
1890 && ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
))
1891 retval
|= DM_RET_DESCEND
;
1895 cur_pattern
= &patterns
[i
].pattern
.device_pattern
;
1898 * If they want to match any device node, we give them any
1901 if (cur_pattern
->flags
== DEV_MATCH_ANY
) {
1902 /* set the copy flag */
1903 retval
|= DM_RET_COPY
;
1907 * If we've already decided on an action, go ahead
1910 if ((retval
& DM_RET_ACTION_MASK
) != DM_RET_NONE
)
1915 * Not sure why someone would do this...
1917 if (cur_pattern
->flags
== DEV_MATCH_NONE
)
1920 if (((cur_pattern
->flags
& DEV_MATCH_PATH
) != 0)
1921 && (cur_pattern
->path_id
!= device
->target
->bus
->path_id
))
1924 if (((cur_pattern
->flags
& DEV_MATCH_TARGET
) != 0)
1925 && (cur_pattern
->target_id
!= device
->target
->target_id
))
1928 if (((cur_pattern
->flags
& DEV_MATCH_LUN
) != 0)
1929 && (cur_pattern
->target_lun
!= device
->lun_id
))
1932 if (((cur_pattern
->flags
& DEV_MATCH_INQUIRY
) != 0)
1933 && (cam_quirkmatch((caddr_t
)&device
->inq_data
,
1934 (caddr_t
)&cur_pattern
->inq_pat
,
1935 1, sizeof(cur_pattern
->inq_pat
),
1936 scsi_static_inquiry_match
) == NULL
))
1940 * If we get to this point, the user definitely wants
1941 * information on this device. So tell the caller to copy
1944 retval
|= DM_RET_COPY
;
1947 * If the return action has been set to descend, then we
1948 * know that we've already seen a peripheral matching
1949 * expression, therefore we need to further descend the tree.
1950 * This won't change by continuing around the loop, so we
1951 * go ahead and return. If we haven't seen a peripheral
1952 * matching expression, we keep going around the loop until
1953 * we exhaust the matching expressions. We'll set the stop
1954 * flag once we fall out of the loop.
1956 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_DESCEND
)
1961 * If the return action hasn't been set to descend yet, that means
1962 * we haven't seen any peripheral matching patterns. So tell the
1963 * caller to stop descending the tree -- the user doesn't want to
1964 * match against lower level tree elements.
1966 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
)
1967 retval
|= DM_RET_STOP
;
1973 * Match a single peripheral against any number of match patterns.
1975 static dev_match_ret
1976 xptperiphmatch(struct dev_match_pattern
*patterns
, u_int num_patterns
,
1977 struct cam_periph
*periph
)
1979 dev_match_ret retval
;
1983 * If we aren't given something to match against, that's an error.
1986 return(DM_RET_ERROR
);
1989 * If there are no match entries, then this peripheral matches no
1992 if ((patterns
== NULL
) || (num_patterns
== 0))
1993 return(DM_RET_STOP
| DM_RET_COPY
);
1996 * There aren't any nodes below a peripheral node, so there's no
1997 * reason to descend the tree any further.
1999 retval
= DM_RET_STOP
;
2001 for (i
= 0; i
< num_patterns
; i
++) {
2002 struct periph_match_pattern
*cur_pattern
;
2005 * If the pattern in question isn't for a peripheral, we
2006 * aren't interested.
2008 if (patterns
[i
].type
!= DEV_MATCH_PERIPH
)
2011 cur_pattern
= &patterns
[i
].pattern
.periph_pattern
;
2014 * If they want to match on anything, then we will do so.
2016 if (cur_pattern
->flags
== PERIPH_MATCH_ANY
) {
2017 /* set the copy flag */
2018 retval
|= DM_RET_COPY
;
2021 * We've already set the return action to stop,
2022 * since there are no nodes below peripherals in
2029 * Not sure why someone would do this...
2031 if (cur_pattern
->flags
== PERIPH_MATCH_NONE
)
2034 if (((cur_pattern
->flags
& PERIPH_MATCH_PATH
) != 0)
2035 && (cur_pattern
->path_id
!= periph
->path
->bus
->path_id
))
2039 * For the target and lun id's, we have to make sure the
2040 * target and lun pointers aren't NULL. The xpt peripheral
2041 * has a wildcard target and device.
2043 if (((cur_pattern
->flags
& PERIPH_MATCH_TARGET
) != 0)
2044 && ((periph
->path
->target
== NULL
)
2045 ||(cur_pattern
->target_id
!= periph
->path
->target
->target_id
)))
2048 if (((cur_pattern
->flags
& PERIPH_MATCH_LUN
) != 0)
2049 && ((periph
->path
->device
== NULL
)
2050 || (cur_pattern
->target_lun
!= periph
->path
->device
->lun_id
)))
2053 if (((cur_pattern
->flags
& PERIPH_MATCH_UNIT
) != 0)
2054 && (cur_pattern
->unit_number
!= periph
->unit_number
))
2057 if (((cur_pattern
->flags
& PERIPH_MATCH_NAME
) != 0)
2058 && (strncmp(cur_pattern
->periph_name
, periph
->periph_name
,
2063 * If we get to this point, the user definitely wants
2064 * information on this peripheral. So tell the caller to
2065 * copy the data out.
2067 retval
|= DM_RET_COPY
;
2070 * The return action has already been set to stop, since
2071 * peripherals don't have any nodes below them in the EDT.
2077 * If we get to this point, the peripheral that was passed in
2078 * doesn't match any of the patterns.
2084 xptedtbusfunc(struct cam_eb
*bus
, void *arg
)
2086 struct ccb_dev_match
*cdm
;
2087 dev_match_ret retval
;
2089 cdm
= (struct ccb_dev_match
*)arg
;
2092 * If our position is for something deeper in the tree, that means
2093 * that we've already seen this node. So, we keep going down.
2095 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2096 && (cdm
->pos
.cookie
.bus
== bus
)
2097 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2098 && (cdm
->pos
.cookie
.target
!= NULL
))
2099 retval
= DM_RET_DESCEND
;
2101 retval
= xptbusmatch(cdm
->patterns
, cdm
->num_patterns
, bus
);
2104 * If we got an error, bail out of the search.
2106 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2107 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2112 * If the copy flag is set, copy this bus out.
2114 if (retval
& DM_RET_COPY
) {
2117 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2118 sizeof(struct dev_match_result
));
2121 * If we don't have enough space to put in another
2122 * match result, save our position and tell the
2123 * user there are more devices to check.
2125 if (spaceleft
< sizeof(struct dev_match_result
)) {
2126 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2127 cdm
->pos
.position_type
=
2128 CAM_DEV_POS_EDT
| CAM_DEV_POS_BUS
;
2130 cdm
->pos
.cookie
.bus
= bus
;
2131 cdm
->pos
.generations
[CAM_BUS_GENERATION
]=
2133 cdm
->status
= CAM_DEV_MATCH_MORE
;
2136 j
= cdm
->num_matches
;
2138 cdm
->matches
[j
].type
= DEV_MATCH_BUS
;
2139 cdm
->matches
[j
].result
.bus_result
.path_id
= bus
->path_id
;
2140 cdm
->matches
[j
].result
.bus_result
.bus_id
= bus
->sim
->bus_id
;
2141 cdm
->matches
[j
].result
.bus_result
.unit_number
=
2142 bus
->sim
->unit_number
;
2143 strncpy(cdm
->matches
[j
].result
.bus_result
.dev_name
,
2144 bus
->sim
->sim_name
, DEV_IDLEN
);
2148 * If the user is only interested in busses, there's no
2149 * reason to descend to the next level in the tree.
2151 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_STOP
)
2155 * If there is a target generation recorded, check it to
2156 * make sure the target list hasn't changed.
2158 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2159 && (bus
== cdm
->pos
.cookie
.bus
)
2160 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2161 && (cdm
->pos
.generations
[CAM_TARGET_GENERATION
] != 0)
2162 && (cdm
->pos
.generations
[CAM_TARGET_GENERATION
] !=
2164 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2168 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2169 && (cdm
->pos
.cookie
.bus
== bus
)
2170 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2171 && (cdm
->pos
.cookie
.target
!= NULL
))
2172 return(xpttargettraverse(bus
,
2173 (struct cam_et
*)cdm
->pos
.cookie
.target
,
2174 xptedttargetfunc
, arg
));
2176 return(xpttargettraverse(bus
, NULL
, xptedttargetfunc
, arg
));
2180 xptedttargetfunc(struct cam_et
*target
, void *arg
)
2182 struct ccb_dev_match
*cdm
;
2184 cdm
= (struct ccb_dev_match
*)arg
;
2187 * If there is a device list generation recorded, check it to
2188 * make sure the device list hasn't changed.
2190 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2191 && (cdm
->pos
.cookie
.bus
== target
->bus
)
2192 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2193 && (cdm
->pos
.cookie
.target
== target
)
2194 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2195 && (cdm
->pos
.generations
[CAM_DEV_GENERATION
] != 0)
2196 && (cdm
->pos
.generations
[CAM_DEV_GENERATION
] !=
2197 target
->generation
)) {
2198 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2202 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2203 && (cdm
->pos
.cookie
.bus
== target
->bus
)
2204 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2205 && (cdm
->pos
.cookie
.target
== target
)
2206 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2207 && (cdm
->pos
.cookie
.device
!= NULL
))
2208 return(xptdevicetraverse(target
,
2209 (struct cam_ed
*)cdm
->pos
.cookie
.device
,
2210 xptedtdevicefunc
, arg
));
2212 return(xptdevicetraverse(target
, NULL
, xptedtdevicefunc
, arg
));
2216 xptedtdevicefunc(struct cam_ed
*device
, void *arg
)
2219 struct ccb_dev_match
*cdm
;
2220 dev_match_ret retval
;
2222 cdm
= (struct ccb_dev_match
*)arg
;
2225 * If our position is for something deeper in the tree, that means
2226 * that we've already seen this node. So, we keep going down.
2228 if ((cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2229 && (cdm
->pos
.cookie
.device
== device
)
2230 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2231 && (cdm
->pos
.cookie
.periph
!= NULL
))
2232 retval
= DM_RET_DESCEND
;
2234 retval
= xptdevicematch(cdm
->patterns
, cdm
->num_patterns
,
2237 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2238 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2243 * If the copy flag is set, copy this device out.
2245 if (retval
& DM_RET_COPY
) {
2248 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2249 sizeof(struct dev_match_result
));
2252 * If we don't have enough space to put in another
2253 * match result, save our position and tell the
2254 * user there are more devices to check.
2256 if (spaceleft
< sizeof(struct dev_match_result
)) {
2257 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2258 cdm
->pos
.position_type
=
2259 CAM_DEV_POS_EDT
| CAM_DEV_POS_BUS
|
2260 CAM_DEV_POS_TARGET
| CAM_DEV_POS_DEVICE
;
2262 cdm
->pos
.cookie
.bus
= device
->target
->bus
;
2263 cdm
->pos
.generations
[CAM_BUS_GENERATION
]=
2265 cdm
->pos
.cookie
.target
= device
->target
;
2266 cdm
->pos
.generations
[CAM_TARGET_GENERATION
] =
2267 device
->target
->bus
->generation
;
2268 cdm
->pos
.cookie
.device
= device
;
2269 cdm
->pos
.generations
[CAM_DEV_GENERATION
] =
2270 device
->target
->generation
;
2271 cdm
->status
= CAM_DEV_MATCH_MORE
;
2274 j
= cdm
->num_matches
;
2276 cdm
->matches
[j
].type
= DEV_MATCH_DEVICE
;
2277 cdm
->matches
[j
].result
.device_result
.path_id
=
2278 device
->target
->bus
->path_id
;
2279 cdm
->matches
[j
].result
.device_result
.target_id
=
2280 device
->target
->target_id
;
2281 cdm
->matches
[j
].result
.device_result
.target_lun
=
2283 bcopy(&device
->inq_data
,
2284 &cdm
->matches
[j
].result
.device_result
.inq_data
,
2285 sizeof(struct scsi_inquiry_data
));
2287 /* Let the user know whether this device is unconfigured */
2288 if (device
->flags
& CAM_DEV_UNCONFIGURED
)
2289 cdm
->matches
[j
].result
.device_result
.flags
=
2290 DEV_RESULT_UNCONFIGURED
;
2292 cdm
->matches
[j
].result
.device_result
.flags
=
2297 * If the user isn't interested in peripherals, don't descend
2298 * the tree any further.
2300 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_STOP
)
2304 * If there is a peripheral list generation recorded, make sure
2305 * it hasn't changed.
2307 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2308 && (device
->target
->bus
== cdm
->pos
.cookie
.bus
)
2309 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2310 && (device
->target
== cdm
->pos
.cookie
.target
)
2311 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2312 && (device
== cdm
->pos
.cookie
.device
)
2313 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2314 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] != 0)
2315 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] !=
2316 device
->generation
)){
2317 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2321 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2322 && (cdm
->pos
.cookie
.bus
== device
->target
->bus
)
2323 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2324 && (cdm
->pos
.cookie
.target
== device
->target
)
2325 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2326 && (cdm
->pos
.cookie
.device
== device
)
2327 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2328 && (cdm
->pos
.cookie
.periph
!= NULL
))
2329 return(xptperiphtraverse(device
,
2330 (struct cam_periph
*)cdm
->pos
.cookie
.periph
,
2331 xptedtperiphfunc
, arg
));
2333 return(xptperiphtraverse(device
, NULL
, xptedtperiphfunc
, arg
));
2337 xptedtperiphfunc(struct cam_periph
*periph
, void *arg
)
2339 struct ccb_dev_match
*cdm
;
2340 dev_match_ret retval
;
2342 cdm
= (struct ccb_dev_match
*)arg
;
2344 retval
= xptperiphmatch(cdm
->patterns
, cdm
->num_patterns
, periph
);
2346 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2347 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2352 * If the copy flag is set, copy this peripheral out.
2354 if (retval
& DM_RET_COPY
) {
2357 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2358 sizeof(struct dev_match_result
));
2361 * If we don't have enough space to put in another
2362 * match result, save our position and tell the
2363 * user there are more devices to check.
2365 if (spaceleft
< sizeof(struct dev_match_result
)) {
2366 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2367 cdm
->pos
.position_type
=
2368 CAM_DEV_POS_EDT
| CAM_DEV_POS_BUS
|
2369 CAM_DEV_POS_TARGET
| CAM_DEV_POS_DEVICE
|
2372 cdm
->pos
.cookie
.bus
= periph
->path
->bus
;
2373 cdm
->pos
.generations
[CAM_BUS_GENERATION
]=
2375 cdm
->pos
.cookie
.target
= periph
->path
->target
;
2376 cdm
->pos
.generations
[CAM_TARGET_GENERATION
] =
2377 periph
->path
->bus
->generation
;
2378 cdm
->pos
.cookie
.device
= periph
->path
->device
;
2379 cdm
->pos
.generations
[CAM_DEV_GENERATION
] =
2380 periph
->path
->target
->generation
;
2381 cdm
->pos
.cookie
.periph
= periph
;
2382 cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] =
2383 periph
->path
->device
->generation
;
2384 cdm
->status
= CAM_DEV_MATCH_MORE
;
2388 j
= cdm
->num_matches
;
2390 cdm
->matches
[j
].type
= DEV_MATCH_PERIPH
;
2391 cdm
->matches
[j
].result
.periph_result
.path_id
=
2392 periph
->path
->bus
->path_id
;
2393 cdm
->matches
[j
].result
.periph_result
.target_id
=
2394 periph
->path
->target
->target_id
;
2395 cdm
->matches
[j
].result
.periph_result
.target_lun
=
2396 periph
->path
->device
->lun_id
;
2397 cdm
->matches
[j
].result
.periph_result
.unit_number
=
2398 periph
->unit_number
;
2399 strncpy(cdm
->matches
[j
].result
.periph_result
.periph_name
,
2400 periph
->periph_name
, DEV_IDLEN
);
2407 xptedtmatch(struct ccb_dev_match
*cdm
)
2411 cdm
->num_matches
= 0;
2414 * Check the bus list generation. If it has changed, the user
2415 * needs to reset everything and start over.
2417 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2418 && (cdm
->pos
.generations
[CAM_BUS_GENERATION
] != 0)
2419 && (cdm
->pos
.generations
[CAM_BUS_GENERATION
] != bus_generation
)) {
2420 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2424 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2425 && (cdm
->pos
.cookie
.bus
!= NULL
))
2426 ret
= xptbustraverse((struct cam_eb
*)cdm
->pos
.cookie
.bus
,
2427 xptedtbusfunc
, cdm
);
2429 ret
= xptbustraverse(NULL
, xptedtbusfunc
, cdm
);
2432 * If we get back 0, that means that we had to stop before fully
2433 * traversing the EDT. It also means that one of the subroutines
2434 * has set the status field to the proper value. If we get back 1,
2435 * we've fully traversed the EDT and copied out any matching entries.
2438 cdm
->status
= CAM_DEV_MATCH_LAST
;
2444 xptplistpdrvfunc(struct periph_driver
**pdrv
, void *arg
)
2446 struct ccb_dev_match
*cdm
;
2448 cdm
= (struct ccb_dev_match
*)arg
;
2450 if ((cdm
->pos
.position_type
& CAM_DEV_POS_PDPTR
)
2451 && (cdm
->pos
.cookie
.pdrv
== pdrv
)
2452 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2453 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] != 0)
2454 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] !=
2455 (*pdrv
)->generation
)) {
2456 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2460 if ((cdm
->pos
.position_type
& CAM_DEV_POS_PDPTR
)
2461 && (cdm
->pos
.cookie
.pdrv
== pdrv
)
2462 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2463 && (cdm
->pos
.cookie
.periph
!= NULL
))
2464 return(xptpdperiphtraverse(pdrv
,
2465 (struct cam_periph
*)cdm
->pos
.cookie
.periph
,
2466 xptplistperiphfunc
, arg
));
2468 return(xptpdperiphtraverse(pdrv
, NULL
,xptplistperiphfunc
, arg
));
2472 xptplistperiphfunc(struct cam_periph
*periph
, void *arg
)
2474 struct ccb_dev_match
*cdm
;
2475 dev_match_ret retval
;
2477 cdm
= (struct ccb_dev_match
*)arg
;
2479 retval
= xptperiphmatch(cdm
->patterns
, cdm
->num_patterns
, periph
);
2481 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2482 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2487 * If the copy flag is set, copy this peripheral out.
2489 if (retval
& DM_RET_COPY
) {
2492 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2493 sizeof(struct dev_match_result
));
2496 * If we don't have enough space to put in another
2497 * match result, save our position and tell the
2498 * user there are more devices to check.
2500 if (spaceleft
< sizeof(struct dev_match_result
)) {
2501 struct periph_driver
**pdrv
;
2504 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2505 cdm
->pos
.position_type
=
2506 CAM_DEV_POS_PDRV
| CAM_DEV_POS_PDPTR
|
2510 * This may look a bit non-sensical, but it is
2511 * actually quite logical. There are very few
2512 * peripheral drivers, and bloating every peripheral
2513 * structure with a pointer back to its parent
2514 * peripheral driver linker set entry would cost
2515 * more in the long run than doing this quick lookup.
2517 for (pdrv
= periph_drivers
; *pdrv
!= NULL
; pdrv
++) {
2518 if (strcmp((*pdrv
)->driver_name
,
2519 periph
->periph_name
) == 0)
2523 if (*pdrv
== NULL
) {
2524 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2528 cdm
->pos
.cookie
.pdrv
= pdrv
;
2530 * The periph generation slot does double duty, as
2531 * does the periph pointer slot. They are used for
2532 * both edt and pdrv lookups and positioning.
2534 cdm
->pos
.cookie
.periph
= periph
;
2535 cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] =
2536 (*pdrv
)->generation
;
2537 cdm
->status
= CAM_DEV_MATCH_MORE
;
2541 j
= cdm
->num_matches
;
2543 cdm
->matches
[j
].type
= DEV_MATCH_PERIPH
;
2544 cdm
->matches
[j
].result
.periph_result
.path_id
=
2545 periph
->path
->bus
->path_id
;
2548 * The transport layer peripheral doesn't have a target or
2551 if (periph
->path
->target
)
2552 cdm
->matches
[j
].result
.periph_result
.target_id
=
2553 periph
->path
->target
->target_id
;
2555 cdm
->matches
[j
].result
.periph_result
.target_id
= -1;
2557 if (periph
->path
->device
)
2558 cdm
->matches
[j
].result
.periph_result
.target_lun
=
2559 periph
->path
->device
->lun_id
;
2561 cdm
->matches
[j
].result
.periph_result
.target_lun
= -1;
2563 cdm
->matches
[j
].result
.periph_result
.unit_number
=
2564 periph
->unit_number
;
2565 strncpy(cdm
->matches
[j
].result
.periph_result
.periph_name
,
2566 periph
->periph_name
, DEV_IDLEN
);
2573 xptperiphlistmatch(struct ccb_dev_match
*cdm
)
2577 cdm
->num_matches
= 0;
2580 * At this point in the edt traversal function, we check the bus
2581 * list generation to make sure that no busses have been added or
2582 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2583 * For the peripheral driver list traversal function, however, we
2584 * don't have to worry about new peripheral driver types coming or
2585 * going; they're in a linker set, and therefore can't change
2586 * without a recompile.
2589 if ((cdm
->pos
.position_type
& CAM_DEV_POS_PDPTR
)
2590 && (cdm
->pos
.cookie
.pdrv
!= NULL
))
2591 ret
= xptpdrvtraverse(
2592 (struct periph_driver
**)cdm
->pos
.cookie
.pdrv
,
2593 xptplistpdrvfunc
, cdm
);
2595 ret
= xptpdrvtraverse(NULL
, xptplistpdrvfunc
, cdm
);
2598 * If we get back 0, that means that we had to stop before fully
2599 * traversing the peripheral driver tree. It also means that one of
2600 * the subroutines has set the status field to the proper value. If
2601 * we get back 1, we've fully traversed the EDT and copied out any
2605 cdm
->status
= CAM_DEV_MATCH_LAST
;
2611 xptbustraverse(struct cam_eb
*start_bus
, xpt_busfunc_t
*tr_func
, void *arg
)
2613 struct cam_eb
*bus
, *next_bus
;
2618 for (bus
= (start_bus
? start_bus
: TAILQ_FIRST(&xpt_busses
));
2621 next_bus
= TAILQ_NEXT(bus
, links
);
2623 retval
= tr_func(bus
, arg
);
2632 xpttargettraverse(struct cam_eb
*bus
, struct cam_et
*start_target
,
2633 xpt_targetfunc_t
*tr_func
, void *arg
)
2635 struct cam_et
*target
, *next_target
;
2639 for (target
= (start_target
? start_target
:
2640 TAILQ_FIRST(&bus
->et_entries
));
2641 target
!= NULL
; target
= next_target
) {
2643 next_target
= TAILQ_NEXT(target
, links
);
2645 retval
= tr_func(target
, arg
);
2655 xptdevicetraverse(struct cam_et
*target
, struct cam_ed
*start_device
,
2656 xpt_devicefunc_t
*tr_func
, void *arg
)
2658 struct cam_ed
*device
, *next_device
;
2662 for (device
= (start_device
? start_device
:
2663 TAILQ_FIRST(&target
->ed_entries
));
2665 device
= next_device
) {
2667 next_device
= TAILQ_NEXT(device
, links
);
2669 retval
= tr_func(device
, arg
);
2679 xptperiphtraverse(struct cam_ed
*device
, struct cam_periph
*start_periph
,
2680 xpt_periphfunc_t
*tr_func
, void *arg
)
2682 struct cam_periph
*periph
, *next_periph
;
2687 for (periph
= (start_periph
? start_periph
:
2688 SLIST_FIRST(&device
->periphs
));
2690 periph
= next_periph
) {
2692 next_periph
= SLIST_NEXT(periph
, periph_links
);
2694 retval
= tr_func(periph
, arg
);
2703 xptpdrvtraverse(struct periph_driver
**start_pdrv
,
2704 xpt_pdrvfunc_t
*tr_func
, void *arg
)
2706 struct periph_driver
**pdrv
;
2712 * We don't traverse the peripheral driver list like we do the
2713 * other lists, because it is a linker set, and therefore cannot be
2714 * changed during runtime. If the peripheral driver list is ever
2715 * re-done to be something other than a linker set (i.e. it can
2716 * change while the system is running), the list traversal should
2717 * be modified to work like the other traversal functions.
2719 for (pdrv
= (start_pdrv
? start_pdrv
: periph_drivers
);
2720 *pdrv
!= NULL
; pdrv
++) {
2721 retval
= tr_func(pdrv
, arg
);
2731 xptpdperiphtraverse(struct periph_driver
**pdrv
,
2732 struct cam_periph
*start_periph
,
2733 xpt_periphfunc_t
*tr_func
, void *arg
)
2735 struct cam_periph
*periph
, *next_periph
;
2740 for (periph
= (start_periph
? start_periph
:
2741 TAILQ_FIRST(&(*pdrv
)->units
)); periph
!= NULL
;
2742 periph
= next_periph
) {
2744 next_periph
= TAILQ_NEXT(periph
, unit_links
);
2746 retval
= tr_func(periph
, arg
);
2754 xptdefbusfunc(struct cam_eb
*bus
, void *arg
)
2756 struct xpt_traverse_config
*tr_config
;
2758 tr_config
= (struct xpt_traverse_config
*)arg
;
2760 if (tr_config
->depth
== XPT_DEPTH_BUS
) {
2761 xpt_busfunc_t
*tr_func
;
2763 tr_func
= (xpt_busfunc_t
*)tr_config
->tr_func
;
2765 return(tr_func(bus
, tr_config
->tr_arg
));
2767 return(xpttargettraverse(bus
, NULL
, xptdeftargetfunc
, arg
));
2771 xptdeftargetfunc(struct cam_et
*target
, void *arg
)
2773 struct xpt_traverse_config
*tr_config
;
2775 tr_config
= (struct xpt_traverse_config
*)arg
;
2777 if (tr_config
->depth
== XPT_DEPTH_TARGET
) {
2778 xpt_targetfunc_t
*tr_func
;
2780 tr_func
= (xpt_targetfunc_t
*)tr_config
->tr_func
;
2782 return(tr_func(target
, tr_config
->tr_arg
));
2784 return(xptdevicetraverse(target
, NULL
, xptdefdevicefunc
, arg
));
2788 xptdefdevicefunc(struct cam_ed
*device
, void *arg
)
2790 struct xpt_traverse_config
*tr_config
;
2792 tr_config
= (struct xpt_traverse_config
*)arg
;
2794 if (tr_config
->depth
== XPT_DEPTH_DEVICE
) {
2795 xpt_devicefunc_t
*tr_func
;
2797 tr_func
= (xpt_devicefunc_t
*)tr_config
->tr_func
;
2799 return(tr_func(device
, tr_config
->tr_arg
));
2801 return(xptperiphtraverse(device
, NULL
, xptdefperiphfunc
, arg
));
2805 xptdefperiphfunc(struct cam_periph
*periph
, void *arg
)
2807 struct xpt_traverse_config
*tr_config
;
2808 xpt_periphfunc_t
*tr_func
;
2810 tr_config
= (struct xpt_traverse_config
*)arg
;
2812 tr_func
= (xpt_periphfunc_t
*)tr_config
->tr_func
;
2815 * Unlike the other default functions, we don't check for depth
2816 * here. The peripheral driver level is the last level in the EDT,
2817 * so if we're here, we should execute the function in question.
2819 return(tr_func(periph
, tr_config
->tr_arg
));
2823 * Execute the given function for every bus in the EDT.
2826 xpt_for_all_busses(xpt_busfunc_t
*tr_func
, void *arg
)
2828 struct xpt_traverse_config tr_config
;
2830 tr_config
.depth
= XPT_DEPTH_BUS
;
2831 tr_config
.tr_func
= tr_func
;
2832 tr_config
.tr_arg
= arg
;
2834 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2839 * Execute the given function for every target in the EDT.
2842 xpt_for_all_targets(xpt_targetfunc_t
*tr_func
, void *arg
)
2844 struct xpt_traverse_config tr_config
;
2846 tr_config
.depth
= XPT_DEPTH_TARGET
;
2847 tr_config
.tr_func
= tr_func
;
2848 tr_config
.tr_arg
= arg
;
2850 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2852 #endif /* notusedyet */
2855 * Execute the given function for every device in the EDT.
2858 xpt_for_all_devices(xpt_devicefunc_t
*tr_func
, void *arg
)
2860 struct xpt_traverse_config tr_config
;
2862 tr_config
.depth
= XPT_DEPTH_DEVICE
;
2863 tr_config
.tr_func
= tr_func
;
2864 tr_config
.tr_arg
= arg
;
2866 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2871 * Execute the given function for every peripheral in the EDT.
2874 xpt_for_all_periphs(xpt_periphfunc_t
*tr_func
, void *arg
)
2876 struct xpt_traverse_config tr_config
;
2878 tr_config
.depth
= XPT_DEPTH_PERIPH
;
2879 tr_config
.tr_func
= tr_func
;
2880 tr_config
.tr_arg
= arg
;
2882 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2884 #endif /* notusedyet */
2887 xptsetasyncfunc(struct cam_ed
*device
, void *arg
)
2889 struct cam_path path
;
2890 struct ccb_getdev cgd
;
2891 struct async_node
*cur_entry
;
2893 cur_entry
= (struct async_node
*)arg
;
2896 * Don't report unconfigured devices (Wildcard devs,
2897 * devices only for target mode, device instances
2898 * that have been invalidated but are waiting for
2899 * their last reference count to be released).
2901 if ((device
->flags
& CAM_DEV_UNCONFIGURED
) != 0)
2904 xpt_compile_path(&path
,
2906 device
->target
->bus
->path_id
,
2907 device
->target
->target_id
,
2909 xpt_setup_ccb(&cgd
.ccb_h
, &path
, /*priority*/1);
2910 cgd
.ccb_h
.func_code
= XPT_GDEV_TYPE
;
2911 xpt_action((union ccb
*)&cgd
);
2912 cur_entry
->callback(cur_entry
->callback_arg
,
2915 xpt_release_path(&path
);
2921 xptsetasyncbusfunc(struct cam_eb
*bus
, void *arg
)
2923 struct cam_path path
;
2924 struct ccb_pathinq cpi
;
2925 struct async_node
*cur_entry
;
2927 cur_entry
= (struct async_node
*)arg
;
2929 xpt_compile_path(&path
, /*periph*/NULL
,
2931 CAM_TARGET_WILDCARD
,
2933 xpt_setup_ccb(&cpi
.ccb_h
, &path
, /*priority*/1);
2934 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
2935 xpt_action((union ccb
*)&cpi
);
2936 cur_entry
->callback(cur_entry
->callback_arg
,
2939 xpt_release_path(&path
);
2945 xpt_action(union ccb
*start_ccb
)
2947 CAM_DEBUG(start_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("xpt_action\n"));
2949 start_ccb
->ccb_h
.status
= CAM_REQ_INPROG
;
2953 switch (start_ccb
->ccb_h
.func_code
) {
2956 #ifdef CAM_NEW_TRAN_CODE
2957 struct cam_ed
*device
;
2958 #endif /* CAM_NEW_TRAN_CODE */
2960 char cdb_str
[(SCSI_MAX_CDBLEN
* 3) + 1];
2961 struct cam_path
*path
;
2963 path
= start_ccb
->ccb_h
.path
;
2967 * For the sake of compatibility with SCSI-1
2968 * devices that may not understand the identify
2969 * message, we include lun information in the
2970 * second byte of all commands. SCSI-1 specifies
2971 * that luns are a 3 bit value and reserves only 3
2972 * bits for lun information in the CDB. Later
2973 * revisions of the SCSI spec allow for more than 8
2974 * luns, but have deprecated lun information in the
2975 * CDB. So, if the lun won't fit, we must omit.
2977 * Also be aware that during initial probing for devices,
2978 * the inquiry information is unknown but initialized to 0.
2979 * This means that this code will be exercised while probing
2980 * devices with an ANSI revision greater than 2.
2982 #ifdef CAM_NEW_TRAN_CODE
2983 device
= start_ccb
->ccb_h
.path
->device
;
2984 if (device
->protocol_version
<= SCSI_REV_2
2985 #else /* CAM_NEW_TRAN_CODE */
2986 if (SID_ANSI_REV(&start_ccb
->ccb_h
.path
->device
->inq_data
) <= 2
2987 #endif /* CAM_NEW_TRAN_CODE */
2988 && start_ccb
->ccb_h
.target_lun
< 8
2989 && (start_ccb
->ccb_h
.flags
& CAM_CDB_POINTER
) == 0) {
2991 start_ccb
->csio
.cdb_io
.cdb_bytes
[1] |=
2992 start_ccb
->ccb_h
.target_lun
<< 5;
2994 start_ccb
->csio
.scsi_status
= SCSI_STATUS_OK
;
2995 CAM_DEBUG(path
, CAM_DEBUG_CDB
,("%s. CDB: %s\n",
2996 scsi_op_desc(start_ccb
->csio
.cdb_io
.cdb_bytes
[0],
2997 &path
->device
->inq_data
),
2998 scsi_cdb_string(start_ccb
->csio
.cdb_io
.cdb_bytes
,
2999 cdb_str
, sizeof(cdb_str
))));
3003 case XPT_CONT_TARGET_IO
:
3004 start_ccb
->csio
.sense_resid
= 0;
3005 start_ccb
->csio
.resid
= 0;
3010 struct cam_path
*path
;
3011 struct cam_sim
*sim
;
3014 path
= start_ccb
->ccb_h
.path
;
3016 sim
= path
->bus
->sim
;
3017 if (SIM_DEAD(sim
)) {
3018 /* The SIM has gone; just execute the CCB directly. */
3019 cam_ccbq_send_ccb(&path
->device
->ccbq
, start_ccb
);
3020 (*(sim
->sim_action
))(sim
, start_ccb
);
3024 cam_ccbq_insert_ccb(&path
->device
->ccbq
, start_ccb
);
3025 if (path
->device
->qfrozen_cnt
== 0)
3026 runq
= xpt_schedule_dev_sendq(path
->bus
, path
->device
);
3030 xpt_run_dev_sendq(path
->bus
);
3033 case XPT_SET_TRAN_SETTINGS
:
3035 xpt_set_transfer_settings(&start_ccb
->cts
,
3036 start_ccb
->ccb_h
.path
->device
,
3037 /*async_update*/FALSE
);
3040 case XPT_CALC_GEOMETRY
:
3042 struct cam_sim
*sim
;
3044 /* Filter out garbage */
3045 if (start_ccb
->ccg
.block_size
== 0
3046 || start_ccb
->ccg
.volume_size
== 0) {
3047 start_ccb
->ccg
.cylinders
= 0;
3048 start_ccb
->ccg
.heads
= 0;
3049 start_ccb
->ccg
.secs_per_track
= 0;
3050 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3053 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3054 (*(sim
->sim_action
))(sim
, start_ccb
);
3059 union ccb
* abort_ccb
;
3061 abort_ccb
= start_ccb
->cab
.abort_ccb
;
3062 if (XPT_FC_IS_DEV_QUEUED(abort_ccb
)) {
3064 if (abort_ccb
->ccb_h
.pinfo
.index
>= 0) {
3065 struct cam_ccbq
*ccbq
;
3067 ccbq
= &abort_ccb
->ccb_h
.path
->device
->ccbq
;
3068 cam_ccbq_remove_ccb(ccbq
, abort_ccb
);
3069 abort_ccb
->ccb_h
.status
=
3070 CAM_REQ_ABORTED
|CAM_DEV_QFRZN
;
3071 xpt_freeze_devq(abort_ccb
->ccb_h
.path
, 1);
3072 xpt_done(abort_ccb
);
3073 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3076 if (abort_ccb
->ccb_h
.pinfo
.index
== CAM_UNQUEUED_INDEX
3077 && (abort_ccb
->ccb_h
.status
& CAM_SIM_QUEUED
) == 0) {
3079 * We've caught this ccb en route to
3080 * the SIM. Flag it for abort and the
3081 * SIM will do so just before starting
3082 * real work on the CCB.
3084 abort_ccb
->ccb_h
.status
=
3085 CAM_REQ_ABORTED
|CAM_DEV_QFRZN
;
3086 xpt_freeze_devq(abort_ccb
->ccb_h
.path
, 1);
3087 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3091 if (XPT_FC_IS_QUEUED(abort_ccb
)
3092 && (abort_ccb
->ccb_h
.pinfo
.index
== CAM_DONEQ_INDEX
)) {
3094 * It's already completed but waiting
3095 * for our SWI to get to it.
3097 start_ccb
->ccb_h
.status
= CAM_UA_ABORT
;
3101 * If we weren't able to take care of the abort request
3102 * in the XPT, pass the request down to the SIM for processing.
3106 case XPT_ACCEPT_TARGET_IO
:
3108 case XPT_IMMED_NOTIFY
:
3109 case XPT_NOTIFY_ACK
:
3110 case XPT_GET_TRAN_SETTINGS
:
3113 struct cam_sim
*sim
;
3115 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3116 (*(sim
->sim_action
))(sim
, start_ccb
);
3121 struct cam_sim
*sim
;
3123 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3124 (*(sim
->sim_action
))(sim
, start_ccb
);
3127 case XPT_PATH_STATS
:
3128 start_ccb
->cpis
.last_reset
=
3129 start_ccb
->ccb_h
.path
->bus
->last_reset
;
3130 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3136 dev
= start_ccb
->ccb_h
.path
->device
;
3137 if ((dev
->flags
& CAM_DEV_UNCONFIGURED
) != 0) {
3138 start_ccb
->ccb_h
.status
= CAM_DEV_NOT_THERE
;
3140 struct ccb_getdev
*cgd
;
3144 cgd
= &start_ccb
->cgd
;
3145 bus
= cgd
->ccb_h
.path
->bus
;
3146 tar
= cgd
->ccb_h
.path
->target
;
3147 cgd
->inq_data
= dev
->inq_data
;
3148 cgd
->ccb_h
.status
= CAM_REQ_CMP
;
3149 cgd
->serial_num_len
= dev
->serial_num_len
;
3150 if ((dev
->serial_num_len
> 0)
3151 && (dev
->serial_num
!= NULL
))
3152 bcopy(dev
->serial_num
, cgd
->serial_num
,
3153 dev
->serial_num_len
);
3157 case XPT_GDEV_STATS
:
3161 dev
= start_ccb
->ccb_h
.path
->device
;
3162 if ((dev
->flags
& CAM_DEV_UNCONFIGURED
) != 0) {
3163 start_ccb
->ccb_h
.status
= CAM_DEV_NOT_THERE
;
3165 struct ccb_getdevstats
*cgds
;
3169 cgds
= &start_ccb
->cgds
;
3170 bus
= cgds
->ccb_h
.path
->bus
;
3171 tar
= cgds
->ccb_h
.path
->target
;
3172 cgds
->dev_openings
= dev
->ccbq
.dev_openings
;
3173 cgds
->dev_active
= dev
->ccbq
.dev_active
;
3174 cgds
->devq_openings
= dev
->ccbq
.devq_openings
;
3175 cgds
->devq_queued
= dev
->ccbq
.queue
.entries
;
3176 cgds
->held
= dev
->ccbq
.held
;
3177 cgds
->last_reset
= tar
->last_reset
;
3178 cgds
->maxtags
= dev
->quirk
->maxtags
;
3179 cgds
->mintags
= dev
->quirk
->mintags
;
3180 if (timevalcmp(&tar
->last_reset
, &bus
->last_reset
, <))
3181 cgds
->last_reset
= bus
->last_reset
;
3182 cgds
->ccb_h
.status
= CAM_REQ_CMP
;
3188 struct cam_periph
*nperiph
;
3189 struct periph_list
*periph_head
;
3190 struct ccb_getdevlist
*cgdl
;
3192 struct cam_ed
*device
;
3199 * Don't want anyone mucking with our data.
3201 device
= start_ccb
->ccb_h
.path
->device
;
3202 periph_head
= &device
->periphs
;
3203 cgdl
= &start_ccb
->cgdl
;
3206 * Check and see if the list has changed since the user
3207 * last requested a list member. If so, tell them that the
3208 * list has changed, and therefore they need to start over
3209 * from the beginning.
3211 if ((cgdl
->index
!= 0) &&
3212 (cgdl
->generation
!= device
->generation
)) {
3213 cgdl
->status
= CAM_GDEVLIST_LIST_CHANGED
;
3218 * Traverse the list of peripherals and attempt to find
3219 * the requested peripheral.
3221 for (nperiph
= SLIST_FIRST(periph_head
), i
= 0;
3222 (nperiph
!= NULL
) && (i
<= cgdl
->index
);
3223 nperiph
= SLIST_NEXT(nperiph
, periph_links
), i
++) {
3224 if (i
== cgdl
->index
) {
3225 strncpy(cgdl
->periph_name
,
3226 nperiph
->periph_name
,
3228 cgdl
->unit_number
= nperiph
->unit_number
;
3233 cgdl
->status
= CAM_GDEVLIST_ERROR
;
3237 if (nperiph
== NULL
)
3238 cgdl
->status
= CAM_GDEVLIST_LAST_DEVICE
;
3240 cgdl
->status
= CAM_GDEVLIST_MORE_DEVS
;
3243 cgdl
->generation
= device
->generation
;
3245 cgdl
->ccb_h
.status
= CAM_REQ_CMP
;
3250 dev_pos_type position_type
;
3251 struct ccb_dev_match
*cdm
;
3254 cdm
= &start_ccb
->cdm
;
3257 * Prevent EDT changes while we traverse it.
3260 * There are two ways of getting at information in the EDT.
3261 * The first way is via the primary EDT tree. It starts
3262 * with a list of busses, then a list of targets on a bus,
3263 * then devices/luns on a target, and then peripherals on a
3264 * device/lun. The "other" way is by the peripheral driver
3265 * lists. The peripheral driver lists are organized by
3266 * peripheral driver. (obviously) So it makes sense to
3267 * use the peripheral driver list if the user is looking
3268 * for something like "da1", or all "da" devices. If the
3269 * user is looking for something on a particular bus/target
3270 * or lun, it's generally better to go through the EDT tree.
3273 if (cdm
->pos
.position_type
!= CAM_DEV_POS_NONE
)
3274 position_type
= cdm
->pos
.position_type
;
3278 position_type
= CAM_DEV_POS_NONE
;
3280 for (i
= 0; i
< cdm
->num_patterns
; i
++) {
3281 if ((cdm
->patterns
[i
].type
== DEV_MATCH_BUS
)
3282 ||(cdm
->patterns
[i
].type
== DEV_MATCH_DEVICE
)){
3283 position_type
= CAM_DEV_POS_EDT
;
3288 if (cdm
->num_patterns
== 0)
3289 position_type
= CAM_DEV_POS_EDT
;
3290 else if (position_type
== CAM_DEV_POS_NONE
)
3291 position_type
= CAM_DEV_POS_PDRV
;
3294 switch(position_type
& CAM_DEV_POS_TYPEMASK
) {
3295 case CAM_DEV_POS_EDT
:
3296 ret
= xptedtmatch(cdm
);
3298 case CAM_DEV_POS_PDRV
:
3299 ret
= xptperiphlistmatch(cdm
);
3302 cdm
->status
= CAM_DEV_MATCH_ERROR
;
3306 if (cdm
->status
== CAM_DEV_MATCH_ERROR
)
3307 start_ccb
->ccb_h
.status
= CAM_REQ_CMP_ERR
;
3309 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3315 struct ccb_setasync
*csa
;
3316 struct async_node
*cur_entry
;
3317 struct async_list
*async_head
;
3320 csa
= &start_ccb
->csa
;
3321 added
= csa
->event_enable
;
3322 async_head
= &csa
->ccb_h
.path
->device
->asyncs
;
3325 * If there is already an entry for us, simply
3328 cur_entry
= SLIST_FIRST(async_head
);
3329 while (cur_entry
!= NULL
) {
3330 if ((cur_entry
->callback_arg
== csa
->callback_arg
)
3331 && (cur_entry
->callback
== csa
->callback
))
3333 cur_entry
= SLIST_NEXT(cur_entry
, links
);
3336 if (cur_entry
!= NULL
) {
3338 * If the request has no flags set,
3341 added
&= ~cur_entry
->event_enable
;
3342 if (csa
->event_enable
== 0) {
3343 SLIST_REMOVE(async_head
, cur_entry
,
3345 csa
->ccb_h
.path
->device
->refcount
--;
3346 kfree(cur_entry
, M_CAMXPT
);
3348 cur_entry
->event_enable
= csa
->event_enable
;
3351 cur_entry
= kmalloc(sizeof(*cur_entry
),
3352 M_CAMXPT
, M_INTWAIT
);
3353 cur_entry
->event_enable
= csa
->event_enable
;
3354 cur_entry
->callback_arg
= csa
->callback_arg
;
3355 cur_entry
->callback
= csa
->callback
;
3356 SLIST_INSERT_HEAD(async_head
, cur_entry
, links
);
3357 csa
->ccb_h
.path
->device
->refcount
++;
3360 if ((added
& AC_FOUND_DEVICE
) != 0) {
3362 * Get this peripheral up to date with all
3363 * the currently existing devices.
3365 xpt_for_all_devices(xptsetasyncfunc
, cur_entry
);
3367 if ((added
& AC_PATH_REGISTERED
) != 0) {
3369 * Get this peripheral up to date with all
3370 * the currently existing busses.
3372 xpt_for_all_busses(xptsetasyncbusfunc
, cur_entry
);
3374 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3379 struct ccb_relsim
*crs
;
3382 crs
= &start_ccb
->crs
;
3383 dev
= crs
->ccb_h
.path
->device
;
3386 crs
->ccb_h
.status
= CAM_DEV_NOT_THERE
;
3390 if ((crs
->release_flags
& RELSIM_ADJUST_OPENINGS
) != 0) {
3392 if (INQ_DATA_TQ_ENABLED(&dev
->inq_data
)) {
3393 /* Don't ever go below one opening */
3394 if (crs
->openings
> 0) {
3395 xpt_dev_ccbq_resize(crs
->ccb_h
.path
,
3399 xpt_print_path(crs
->ccb_h
.path
);
3400 kprintf("tagged openings "
3408 if ((crs
->release_flags
& RELSIM_RELEASE_AFTER_TIMEOUT
) != 0) {
3410 if ((dev
->flags
& CAM_DEV_REL_TIMEOUT_PENDING
) != 0) {
3413 * Just extend the old timeout and decrement
3414 * the freeze count so that a single timeout
3415 * is sufficient for releasing the queue.
3417 start_ccb
->ccb_h
.flags
&= ~CAM_DEV_QFREEZE
;
3418 callout_stop(&dev
->c_handle
);
3421 start_ccb
->ccb_h
.flags
|= CAM_DEV_QFREEZE
;
3424 callout_reset(&dev
->c_handle
,
3425 (crs
->release_timeout
* hz
) / 1000,
3426 xpt_release_devq_timeout
, dev
);
3428 dev
->flags
|= CAM_DEV_REL_TIMEOUT_PENDING
;
3432 if ((crs
->release_flags
& RELSIM_RELEASE_AFTER_CMDCMPLT
) != 0) {
3434 if ((dev
->flags
& CAM_DEV_REL_ON_COMPLETE
) != 0) {
3436 * Decrement the freeze count so that a single
3437 * completion is still sufficient to unfreeze
3440 start_ccb
->ccb_h
.flags
&= ~CAM_DEV_QFREEZE
;
3443 dev
->flags
|= CAM_DEV_REL_ON_COMPLETE
;
3444 start_ccb
->ccb_h
.flags
|= CAM_DEV_QFREEZE
;
3448 if ((crs
->release_flags
& RELSIM_RELEASE_AFTER_QEMPTY
) != 0) {
3450 if ((dev
->flags
& CAM_DEV_REL_ON_QUEUE_EMPTY
) != 0
3451 || (dev
->ccbq
.dev_active
== 0)) {
3453 start_ccb
->ccb_h
.flags
&= ~CAM_DEV_QFREEZE
;
3456 dev
->flags
|= CAM_DEV_REL_ON_QUEUE_EMPTY
;
3457 start_ccb
->ccb_h
.flags
|= CAM_DEV_QFREEZE
;
3461 if ((start_ccb
->ccb_h
.flags
& CAM_DEV_QFREEZE
) == 0) {
3463 xpt_release_devq(crs
->ccb_h
.path
, /*count*/1,
3466 start_ccb
->crs
.qfrozen_cnt
= dev
->qfrozen_cnt
;
3467 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3471 xpt_scan_bus(start_ccb
->ccb_h
.path
->periph
, start_ccb
);
3474 xpt_scan_lun(start_ccb
->ccb_h
.path
->periph
,
3475 start_ccb
->ccb_h
.path
, start_ccb
->crcn
.flags
,
3480 #ifdef CAM_DEBUG_DELAY
3481 cam_debug_delay
= CAM_DEBUG_DELAY
;
3483 cam_dflags
= start_ccb
->cdbg
.flags
;
3484 if (cam_dpath
!= NULL
) {
3485 xpt_free_path(cam_dpath
);
3489 if (cam_dflags
!= CAM_DEBUG_NONE
) {
3490 if (xpt_create_path(&cam_dpath
, xpt_periph
,
3491 start_ccb
->ccb_h
.path_id
,
3492 start_ccb
->ccb_h
.target_id
,
3493 start_ccb
->ccb_h
.target_lun
) !=
3495 start_ccb
->ccb_h
.status
= CAM_RESRC_UNAVAIL
;
3496 cam_dflags
= CAM_DEBUG_NONE
;
3498 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3499 xpt_print_path(cam_dpath
);
3500 kprintf("debugging flags now %x\n", cam_dflags
);
3504 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3506 #else /* !CAMDEBUG */
3507 start_ccb
->ccb_h
.status
= CAM_FUNC_NOTAVAIL
;
3508 #endif /* CAMDEBUG */
3512 if ((start_ccb
->ccb_h
.flags
& CAM_DEV_QFREEZE
) != 0)
3513 xpt_freeze_devq(start_ccb
->ccb_h
.path
, 1);
3514 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3521 start_ccb
->ccb_h
.status
= CAM_PROVIDE_FAIL
;
3528 xpt_polled_action(union ccb
*start_ccb
)
3531 struct cam_sim
*sim
;
3532 struct cam_devq
*devq
;
3535 timeout
= start_ccb
->ccb_h
.timeout
;
3536 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3538 dev
= start_ccb
->ccb_h
.path
->device
;
3543 * Steal an opening so that no other queued requests
3544 * can get it before us while we simulate interrupts.
3546 dev
->ccbq
.devq_openings
--;
3547 dev
->ccbq
.dev_openings
--;
3549 while(((devq
&& devq
->send_openings
<= 0) || dev
->ccbq
.dev_openings
< 0)
3550 && (--timeout
> 0)) {
3552 (*(sim
->sim_poll
))(sim
);
3553 swi_cambio(NULL
, NULL
);
3556 dev
->ccbq
.devq_openings
++;
3557 dev
->ccbq
.dev_openings
++;
3560 xpt_action(start_ccb
);
3561 while(--timeout
> 0) {
3562 (*(sim
->sim_poll
))(sim
);
3563 swi_cambio(NULL
, NULL
);
3564 if ((start_ccb
->ccb_h
.status
& CAM_STATUS_MASK
)
3571 * XXX Is it worth adding a sim_timeout entry
3572 * point so we can attempt recovery? If
3573 * this is only used for dumps, I don't think
3576 start_ccb
->ccb_h
.status
= CAM_CMD_TIMEOUT
;
3579 start_ccb
->ccb_h
.status
= CAM_RESRC_UNAVAIL
;
3585 * Schedule a peripheral driver to receive a ccb when it's
3586 * target device has space for more transactions.
3589 xpt_schedule(struct cam_periph
*perph
, u_int32_t new_priority
)
3591 struct cam_ed
*device
;
3592 union ccb
*work_ccb
;
3595 CAM_DEBUG(perph
->path
, CAM_DEBUG_TRACE
, ("xpt_schedule\n"));
3596 device
= perph
->path
->device
;
3598 if (periph_is_queued(perph
)) {
3599 /* Simply reorder based on new priority */
3600 CAM_DEBUG(perph
->path
, CAM_DEBUG_SUBTRACE
,
3601 (" change priority to %d\n", new_priority
));
3602 if (new_priority
< perph
->pinfo
.priority
) {
3603 camq_change_priority(&device
->drvq
,
3608 } else if (SIM_DEAD(perph
->path
->bus
->sim
)) {
3609 /* The SIM is gone so just call periph_start directly. */
3610 work_ccb
= xpt_get_ccb(perph
->path
->device
);
3612 if (work_ccb
== NULL
)
3614 xpt_setup_ccb(&work_ccb
->ccb_h
, perph
->path
, new_priority
);
3615 perph
->pinfo
.priority
= new_priority
;
3616 perph
->periph_start(perph
, work_ccb
);
3619 /* New entry on the queue */
3620 CAM_DEBUG(perph
->path
, CAM_DEBUG_SUBTRACE
,
3621 (" added periph to queue\n"));
3622 perph
->pinfo
.priority
= new_priority
;
3623 perph
->pinfo
.generation
= ++device
->drvq
.generation
;
3624 camq_insert(&device
->drvq
, &perph
->pinfo
);
3625 runq
= xpt_schedule_dev_allocq(perph
->path
->bus
, device
);
3629 CAM_DEBUG(perph
->path
, CAM_DEBUG_SUBTRACE
,
3630 (" calling xpt_run_devq\n"));
3631 xpt_run_dev_allocq(perph
->path
->bus
);
3637 * Schedule a device to run on a given queue.
3638 * If the device was inserted as a new entry on the queue,
3639 * return 1 meaning the device queue should be run. If we
3640 * were already queued, implying someone else has already
3641 * started the queue, return 0 so the caller doesn't attempt
3642 * to run the queue. Must be run in a critical section.
3645 xpt_schedule_dev(struct camq
*queue
, cam_pinfo
*pinfo
,
3646 u_int32_t new_priority
)
3649 u_int32_t old_priority
;
3651 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_schedule_dev\n"));
3653 old_priority
= pinfo
->priority
;
3656 * Are we already queued?
3658 if (pinfo
->index
!= CAM_UNQUEUED_INDEX
) {
3659 /* Simply reorder based on new priority */
3660 if (new_priority
< old_priority
) {
3661 camq_change_priority(queue
, pinfo
->index
,
3663 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3664 ("changed priority to %d\n",
3669 /* New entry on the queue */
3670 if (new_priority
< old_priority
)
3671 pinfo
->priority
= new_priority
;
3673 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3674 ("Inserting onto queue\n"));
3675 pinfo
->generation
= ++queue
->generation
;
3676 camq_insert(queue
, pinfo
);
3683 xpt_run_dev_allocq(struct cam_eb
*bus
)
3685 struct cam_devq
*devq
;
3687 if ((devq
= bus
->sim
->devq
) == NULL
) {
3688 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_allocq: NULL devq\n"));
3691 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_allocq\n"));
3693 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3694 (" qfrozen_cnt == 0x%x, entries == %d, "
3695 "openings == %d, active == %d\n",
3696 devq
->alloc_queue
.qfrozen_cnt
,
3697 devq
->alloc_queue
.entries
,
3698 devq
->alloc_openings
,
3699 devq
->alloc_active
));
3702 devq
->alloc_queue
.qfrozen_cnt
++;
3703 while ((devq
->alloc_queue
.entries
> 0)
3704 && (devq
->alloc_openings
> 0)
3705 && (devq
->alloc_queue
.qfrozen_cnt
<= 1)) {
3706 struct cam_ed_qinfo
*qinfo
;
3707 struct cam_ed
*device
;
3708 union ccb
*work_ccb
;
3709 struct cam_periph
*drv
;
3712 qinfo
= (struct cam_ed_qinfo
*)camq_remove(&devq
->alloc_queue
,
3714 device
= qinfo
->device
;
3716 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3717 ("running device %p\n", device
));
3719 drvq
= &device
->drvq
;
3722 if (drvq
->entries
<= 0) {
3723 panic("xpt_run_dev_allocq: "
3724 "Device on queue without any work to do");
3727 if ((work_ccb
= xpt_get_ccb(device
)) != NULL
) {
3728 devq
->alloc_openings
--;
3729 devq
->alloc_active
++;
3730 drv
= (struct cam_periph
*)camq_remove(drvq
, CAMQ_HEAD
);
3732 xpt_setup_ccb(&work_ccb
->ccb_h
, drv
->path
,
3733 drv
->pinfo
.priority
);
3734 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3735 ("calling periph start\n"));
3736 drv
->periph_start(drv
, work_ccb
);
3739 * Malloc failure in alloc_ccb
3742 * XXX add us to a list to be run from free_ccb
3743 * if we don't have any ccbs active on this
3744 * device queue otherwise we may never get run
3750 /* Raise IPL for possible insertion and test at top of loop */
3753 if (drvq
->entries
> 0) {
3754 /* We have more work. Attempt to reschedule */
3755 xpt_schedule_dev_allocq(bus
, device
);
3758 devq
->alloc_queue
.qfrozen_cnt
--;
3763 xpt_run_dev_sendq(struct cam_eb
*bus
)
3765 struct cam_devq
*devq
;
3767 if ((devq
= bus
->sim
->devq
) == NULL
) {
3768 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_sendq: NULL devq\n"));
3771 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_sendq\n"));
3774 devq
->send_queue
.qfrozen_cnt
++;
3775 while ((devq
->send_queue
.entries
> 0)
3776 && (devq
->send_openings
> 0)) {
3777 struct cam_ed_qinfo
*qinfo
;
3778 struct cam_ed
*device
;
3779 union ccb
*work_ccb
;
3780 struct cam_sim
*sim
;
3782 if (devq
->send_queue
.qfrozen_cnt
> 1) {
3786 qinfo
= (struct cam_ed_qinfo
*)camq_remove(&devq
->send_queue
,
3788 device
= qinfo
->device
;
3791 * If the device has been "frozen", don't attempt
3794 if (device
->qfrozen_cnt
> 0) {
3798 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3799 ("running device %p\n", device
));
3801 work_ccb
= cam_ccbq_peek_ccb(&device
->ccbq
, CAMQ_HEAD
);
3802 if (work_ccb
== NULL
) {
3803 kprintf("device on run queue with no ccbs???\n");
3807 if ((work_ccb
->ccb_h
.flags
& CAM_HIGH_POWER
) != 0) {
3809 if (num_highpower
<= 0) {
3811 * We got a high power command, but we
3812 * don't have any available slots. Freeze
3813 * the device queue until we have a slot
3816 device
->qfrozen_cnt
++;
3817 STAILQ_INSERT_TAIL(&highpowerq
,
3824 * Consume a high power slot while
3830 devq
->active_dev
= device
;
3831 cam_ccbq_remove_ccb(&device
->ccbq
, work_ccb
);
3833 cam_ccbq_send_ccb(&device
->ccbq
, work_ccb
);
3835 devq
->send_openings
--;
3836 devq
->send_active
++;
3838 if (device
->ccbq
.queue
.entries
> 0)
3839 xpt_schedule_dev_sendq(bus
, device
);
3841 if (work_ccb
&& (work_ccb
->ccb_h
.flags
& CAM_DEV_QFREEZE
) != 0){
3843 * The client wants to freeze the queue
3844 * after this CCB is sent.
3846 device
->qfrozen_cnt
++;
3849 /* In Target mode, the peripheral driver knows best... */
3850 if (work_ccb
->ccb_h
.func_code
== XPT_SCSI_IO
) {
3851 if ((device
->inq_flags
& SID_CmdQue
) != 0
3852 && work_ccb
->csio
.tag_action
!= CAM_TAG_ACTION_NONE
)
3853 work_ccb
->ccb_h
.flags
|= CAM_TAG_ACTION_VALID
;
3856 * Clear this in case of a retried CCB that
3857 * failed due to a rejected tag.
3859 work_ccb
->ccb_h
.flags
&= ~CAM_TAG_ACTION_VALID
;
3863 * Device queues can be shared among multiple sim instances
3864 * that reside on different busses. Use the SIM in the queue
3865 * CCB's path, rather than the one in the bus that was passed
3866 * into this function.
3868 sim
= work_ccb
->ccb_h
.path
->bus
->sim
;
3869 (*(sim
->sim_action
))(sim
, work_ccb
);
3871 devq
->active_dev
= NULL
;
3872 /* Raise IPL for possible insertion and test at top of loop */
3874 devq
->send_queue
.qfrozen_cnt
--;
3879 * This function merges stuff from the slave ccb into the master ccb, while
3880 * keeping important fields in the master ccb constant.
3883 xpt_merge_ccb(union ccb
*master_ccb
, union ccb
*slave_ccb
)
3886 * Pull fields that are valid for peripheral drivers to set
3887 * into the master CCB along with the CCB "payload".
3889 master_ccb
->ccb_h
.retry_count
= slave_ccb
->ccb_h
.retry_count
;
3890 master_ccb
->ccb_h
.func_code
= slave_ccb
->ccb_h
.func_code
;
3891 master_ccb
->ccb_h
.timeout
= slave_ccb
->ccb_h
.timeout
;
3892 master_ccb
->ccb_h
.flags
= slave_ccb
->ccb_h
.flags
;
3893 bcopy(&(&slave_ccb
->ccb_h
)[1], &(&master_ccb
->ccb_h
)[1],
3894 sizeof(union ccb
) - sizeof(struct ccb_hdr
));
3898 xpt_setup_ccb(struct ccb_hdr
*ccb_h
, struct cam_path
*path
, u_int32_t priority
)
3900 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_setup_ccb\n"));
3901 callout_init(&ccb_h
->timeout_ch
);
3902 ccb_h
->pinfo
.priority
= priority
;
3904 ccb_h
->path_id
= path
->bus
->path_id
;
3906 ccb_h
->target_id
= path
->target
->target_id
;
3908 ccb_h
->target_id
= CAM_TARGET_WILDCARD
;
3910 ccb_h
->target_lun
= path
->device
->lun_id
;
3911 ccb_h
->pinfo
.generation
= ++path
->device
->ccbq
.queue
.generation
;
3913 ccb_h
->target_lun
= CAM_TARGET_WILDCARD
;
3915 ccb_h
->pinfo
.index
= CAM_UNQUEUED_INDEX
;
3919 /* Path manipulation functions */
3921 xpt_create_path(struct cam_path
**new_path_ptr
, struct cam_periph
*perph
,
3922 path_id_t path_id
, target_id_t target_id
, lun_id_t lun_id
)
3924 struct cam_path
*path
;
3927 path
= kmalloc(sizeof(*path
), M_CAMXPT
, M_INTWAIT
);
3928 status
= xpt_compile_path(path
, perph
, path_id
, target_id
, lun_id
);
3929 if (status
!= CAM_REQ_CMP
) {
3930 kfree(path
, M_CAMXPT
);
3933 *new_path_ptr
= path
;
3938 xpt_compile_path(struct cam_path
*new_path
, struct cam_periph
*perph
,
3939 path_id_t path_id
, target_id_t target_id
, lun_id_t lun_id
)
3942 struct cam_et
*target
;
3943 struct cam_ed
*device
;
3946 status
= CAM_REQ_CMP
; /* Completed without error */
3947 target
= NULL
; /* Wildcarded */
3948 device
= NULL
; /* Wildcarded */
3951 * We will potentially modify the EDT, so block interrupts
3952 * that may attempt to create cam paths.
3955 bus
= xpt_find_bus(path_id
);
3957 status
= CAM_PATH_INVALID
;
3959 target
= xpt_find_target(bus
, target_id
);
3960 if (target
== NULL
) {
3962 struct cam_et
*new_target
;
3964 new_target
= xpt_alloc_target(bus
, target_id
);
3965 if (new_target
== NULL
) {
3966 status
= CAM_RESRC_UNAVAIL
;
3968 target
= new_target
;
3971 if (target
!= NULL
) {
3972 device
= xpt_find_device(target
, lun_id
);
3973 if (device
== NULL
) {
3975 struct cam_ed
*new_device
;
3977 new_device
= xpt_alloc_device(bus
,
3980 if (new_device
== NULL
) {
3981 status
= CAM_RESRC_UNAVAIL
;
3983 device
= new_device
;
3991 * Only touch the user's data if we are successful.
3993 if (status
== CAM_REQ_CMP
) {
3994 new_path
->periph
= perph
;
3995 new_path
->bus
= bus
;
3996 new_path
->target
= target
;
3997 new_path
->device
= device
;
3998 CAM_DEBUG(new_path
, CAM_DEBUG_TRACE
, ("xpt_compile_path\n"));
4001 xpt_release_device(bus
, target
, device
);
4003 xpt_release_target(bus
, target
);
4005 xpt_release_bus(bus
);
4011 xpt_release_path(struct cam_path
*path
)
4013 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_release_path\n"));
4014 if (path
->device
!= NULL
) {
4015 xpt_release_device(path
->bus
, path
->target
, path
->device
);
4016 path
->device
= NULL
;
4018 if (path
->target
!= NULL
) {
4019 xpt_release_target(path
->bus
, path
->target
);
4020 path
->target
= NULL
;
4022 if (path
->bus
!= NULL
) {
4023 xpt_release_bus(path
->bus
);
4029 xpt_free_path(struct cam_path
*path
)
4031 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_free_path\n"));
4032 xpt_release_path(path
);
4033 kfree(path
, M_CAMXPT
);
4038 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4039 * in path1, 2 for match with wildcards in path2.
4042 xpt_path_comp(struct cam_path
*path1
, struct cam_path
*path2
)
4046 if (path1
->bus
!= path2
->bus
) {
4047 if (path1
->bus
->path_id
== CAM_BUS_WILDCARD
)
4049 else if (path2
->bus
->path_id
== CAM_BUS_WILDCARD
)
4054 if (path1
->target
!= path2
->target
) {
4055 if (path1
->target
->target_id
== CAM_TARGET_WILDCARD
) {
4058 } else if (path2
->target
->target_id
== CAM_TARGET_WILDCARD
)
4063 if (path1
->device
!= path2
->device
) {
4064 if (path1
->device
->lun_id
== CAM_LUN_WILDCARD
) {
4067 } else if (path2
->device
->lun_id
== CAM_LUN_WILDCARD
)
4076 xpt_print_path(struct cam_path
*path
)
4079 kprintf("(nopath): ");
4081 if (path
->periph
!= NULL
)
4082 kprintf("(%s%d:", path
->periph
->periph_name
,
4083 path
->periph
->unit_number
);
4085 kprintf("(noperiph:");
4087 if (path
->bus
!= NULL
)
4088 kprintf("%s%d:%d:", path
->bus
->sim
->sim_name
,
4089 path
->bus
->sim
->unit_number
,
4090 path
->bus
->sim
->bus_id
);
4094 if (path
->target
!= NULL
)
4095 kprintf("%d:", path
->target
->target_id
);
4099 if (path
->device
!= NULL
)
4100 kprintf("%d): ", path
->device
->lun_id
);
4107 xpt_path_string(struct cam_path
*path
, char *str
, size_t str_len
)
4111 sbuf_new(&sb
, str
, str_len
, 0);
4114 sbuf_printf(&sb
, "(nopath): ");
4116 if (path
->periph
!= NULL
)
4117 sbuf_printf(&sb
, "(%s%d:", path
->periph
->periph_name
,
4118 path
->periph
->unit_number
);
4120 sbuf_printf(&sb
, "(noperiph:");
4122 if (path
->bus
!= NULL
)
4123 sbuf_printf(&sb
, "%s%d:%d:", path
->bus
->sim
->sim_name
,
4124 path
->bus
->sim
->unit_number
,
4125 path
->bus
->sim
->bus_id
);
4127 sbuf_printf(&sb
, "nobus:");
4129 if (path
->target
!= NULL
)
4130 sbuf_printf(&sb
, "%d:", path
->target
->target_id
);
4132 sbuf_printf(&sb
, "X:");
4134 if (path
->device
!= NULL
)
4135 sbuf_printf(&sb
, "%d): ", path
->device
->lun_id
);
4137 sbuf_printf(&sb
, "X): ");
4141 return(sbuf_len(&sb
));
4145 xpt_path_path_id(struct cam_path
*path
)
4147 return(path
->bus
->path_id
);
4151 xpt_path_target_id(struct cam_path
*path
)
4153 if (path
->target
!= NULL
)
4154 return (path
->target
->target_id
);
4156 return (CAM_TARGET_WILDCARD
);
4160 xpt_path_lun_id(struct cam_path
*path
)
4162 if (path
->device
!= NULL
)
4163 return (path
->device
->lun_id
);
4165 return (CAM_LUN_WILDCARD
);
4169 xpt_path_sim(struct cam_path
*path
)
4171 return (path
->bus
->sim
);
4175 xpt_path_periph(struct cam_path
*path
)
4177 return (path
->periph
);
4181 * Release a CAM control block for the caller. Remit the cost of the structure
4182 * to the device referenced by the path. If the this device had no 'credits'
4183 * and peripheral drivers have registered async callbacks for this notification
4187 xpt_release_ccb(union ccb
*free_ccb
)
4189 struct cam_path
*path
;
4190 struct cam_ed
*device
;
4193 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_release_ccb\n"));
4194 path
= free_ccb
->ccb_h
.path
;
4195 device
= path
->device
;
4198 cam_ccbq_release_opening(&device
->ccbq
);
4199 if (xpt_ccb_count
> xpt_max_ccbs
) {
4200 xpt_free_ccb(free_ccb
);
4203 SLIST_INSERT_HEAD(&ccb_freeq
, &free_ccb
->ccb_h
, xpt_links
.sle
);
4205 if (bus
->sim
->devq
== NULL
) {
4209 bus
->sim
->devq
->alloc_openings
++;
4210 bus
->sim
->devq
->alloc_active
--;
4211 /* XXX Turn this into an inline function - xpt_run_device?? */
4212 if ((device_is_alloc_queued(device
) == 0)
4213 && (device
->drvq
.entries
> 0)) {
4214 xpt_schedule_dev_allocq(bus
, device
);
4217 if (bus
->sim
->devq
&& dev_allocq_is_runnable(bus
->sim
->devq
))
4218 xpt_run_dev_allocq(bus
);
4221 /* Functions accessed by SIM drivers */
4224 * A sim structure, listing the SIM entry points and instance
4225 * identification info is passed to xpt_bus_register to hook the SIM
4226 * into the CAM framework. xpt_bus_register creates a cam_eb entry
4227 * for this new bus and places it in the array of busses and assigns
4228 * it a path_id. The path_id may be influenced by "hard wiring"
4229 * information specified by the user. Once interrupt services are
4230 * availible, the bus will be probed.
4233 xpt_bus_register(struct cam_sim
*sim
, u_int32_t bus
)
4235 struct cam_eb
*new_bus
;
4236 struct cam_eb
*old_bus
;
4237 struct ccb_pathinq cpi
;
4240 new_bus
= kmalloc(sizeof(*new_bus
), M_CAMXPT
, M_INTWAIT
);
4242 if (strcmp(sim
->sim_name
, "xpt") != 0) {
4244 xptpathid(sim
->sim_name
, sim
->unit_number
, sim
->bus_id
);
4247 TAILQ_INIT(&new_bus
->et_entries
);
4248 new_bus
->path_id
= sim
->path_id
;
4251 timevalclear(&new_bus
->last_reset
);
4253 new_bus
->refcount
= 1; /* Held until a bus_deregister event */
4254 new_bus
->generation
= 0;
4256 old_bus
= TAILQ_FIRST(&xpt_busses
);
4257 while (old_bus
!= NULL
4258 && old_bus
->path_id
< new_bus
->path_id
)
4259 old_bus
= TAILQ_NEXT(old_bus
, links
);
4260 if (old_bus
!= NULL
)
4261 TAILQ_INSERT_BEFORE(old_bus
, new_bus
, links
);
4263 TAILQ_INSERT_TAIL(&xpt_busses
, new_bus
, links
);
4267 /* Notify interested parties */
4268 if (sim
->path_id
!= CAM_XPT_PATH_ID
) {
4269 struct cam_path path
;
4271 xpt_compile_path(&path
, /*periph*/NULL
, sim
->path_id
,
4272 CAM_TARGET_WILDCARD
, CAM_LUN_WILDCARD
);
4273 xpt_setup_ccb(&cpi
.ccb_h
, &path
, /*priority*/1);
4274 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
4275 xpt_action((union ccb
*)&cpi
);
4276 xpt_async(AC_PATH_REGISTERED
, &path
, &cpi
);
4277 xpt_release_path(&path
);
4279 return (CAM_SUCCESS
);
4283 * Deregister a bus. We must clean out all transactions pending on the bus.
4284 * This routine is typically called prior to cam_sim_free() (e.g. see
4285 * dev/usbmisc/umass/umass.c)
4288 xpt_bus_deregister(path_id_t pathid
)
4290 struct cam_path bus_path
;
4291 struct cam_ed
*device
;
4292 struct cam_ed_qinfo
*qinfo
;
4293 struct cam_devq
*devq
;
4294 struct cam_periph
*periph
;
4295 struct cam_sim
*ccbsim
;
4296 union ccb
*work_ccb
;
4299 status
= xpt_compile_path(&bus_path
, NULL
, pathid
,
4300 CAM_TARGET_WILDCARD
, CAM_LUN_WILDCARD
);
4301 if (status
!= CAM_REQ_CMP
)
4305 * This should clear out all pending requests and timeouts, but
4306 * the ccb's may be queued to a software interrupt.
4308 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4309 * and it really ought to.
4311 xpt_async(AC_LOST_DEVICE
, &bus_path
, NULL
);
4312 xpt_async(AC_PATH_DEREGISTERED
, &bus_path
, NULL
);
4314 /* The SIM may be gone, so use a dummy SIM for any stray operations. */
4315 devq
= bus_path
.bus
->sim
->devq
;
4316 bus_path
.bus
->sim
= &cam_dead_sim
;
4318 /* Execute any pending operations now. */
4319 while ((qinfo
= (struct cam_ed_qinfo
*)camq_remove(&devq
->send_queue
,
4320 CAMQ_HEAD
)) != NULL
||
4321 (qinfo
= (struct cam_ed_qinfo
*)camq_remove(&devq
->alloc_queue
,
4322 CAMQ_HEAD
)) != NULL
) {
4324 device
= qinfo
->device
;
4325 work_ccb
= cam_ccbq_peek_ccb(&device
->ccbq
, CAMQ_HEAD
);
4326 if (work_ccb
!= NULL
) {
4327 devq
->active_dev
= device
;
4328 cam_ccbq_remove_ccb(&device
->ccbq
, work_ccb
);
4329 cam_ccbq_send_ccb(&device
->ccbq
, work_ccb
);
4330 ccbsim
= work_ccb
->ccb_h
.path
->bus
->sim
;
4331 (*(ccbsim
->sim_action
))(ccbsim
, work_ccb
);
4334 periph
= (struct cam_periph
*)camq_remove(&device
->drvq
,
4337 xpt_schedule(periph
, periph
->pinfo
.priority
);
4338 } while (work_ccb
!= NULL
|| periph
!= NULL
);
4341 /* Make sure all completed CCBs are processed. */
4342 while (!TAILQ_EMPTY(&cam_bioq
)) {
4345 /* Repeat the async's for the benefit of any new devices. */
4346 xpt_async(AC_LOST_DEVICE
, &bus_path
, NULL
);
4347 xpt_async(AC_PATH_DEREGISTERED
, &bus_path
, NULL
);
4350 /* Release the reference count held while registered. */
4351 xpt_release_bus(bus_path
.bus
);
4352 xpt_release_path(&bus_path
);
4354 /* Recheck for more completed CCBs. */
4355 while (!TAILQ_EMPTY(&cam_bioq
))
4358 return (CAM_REQ_CMP
);
4362 xptnextfreepathid(void)
4369 bus
= TAILQ_FIRST(&xpt_busses
);
4371 /* Find an unoccupied pathid */
4373 && bus
->path_id
<= pathid
) {
4374 if (bus
->path_id
== pathid
)
4376 bus
= TAILQ_NEXT(bus
, links
);
4380 * Ensure that this pathid is not reserved for
4381 * a bus that may be registered in the future.
4383 if (resource_string_value("scbus", pathid
, "at", &strval
) == 0) {
4385 /* Start the search over */
4392 xptpathid(const char *sim_name
, int sim_unit
, int sim_bus
)
4398 pathid
= CAM_XPT_PATH_ID
;
4399 ksnprintf(buf
, sizeof(buf
), "%s%d", sim_name
, sim_unit
);
4401 while ((i
= resource_query_string(i
, "at", buf
)) != -1) {
4402 if (strcmp(resource_query_name(i
), "scbus")) {
4403 /* Avoid a bit of foot shooting. */
4406 dunit
= resource_query_unit(i
);
4407 if (dunit
< 0) /* unwired?! */
4409 if (resource_int_value("scbus", dunit
, "bus", &val
) == 0) {
4410 if (sim_bus
== val
) {
4414 } else if (sim_bus
== 0) {
4415 /* Unspecified matches bus 0 */
4419 kprintf("Ambiguous scbus configuration for %s%d "
4420 "bus %d, cannot wire down. The kernel "
4421 "config entry for scbus%d should "
4422 "specify a controller bus.\n"
4423 "Scbus will be assigned dynamically.\n",
4424 sim_name
, sim_unit
, sim_bus
, dunit
);
4429 if (pathid
== CAM_XPT_PATH_ID
)
4430 pathid
= xptnextfreepathid();
4435 xpt_async(u_int32_t async_code
, struct cam_path
*path
, void *async_arg
)
4438 struct cam_et
*target
, *next_target
;
4439 struct cam_ed
*device
, *next_device
;
4441 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_async\n"));
4444 * Most async events come from a CAM interrupt context. In
4445 * a few cases, the error recovery code at the peripheral layer,
4446 * which may run from our SWI or a process context, may signal
4447 * deferred events with a call to xpt_async. Ensure async
4448 * notifications are serialized by blocking cam interrupts.
4454 if (async_code
== AC_BUS_RESET
) {
4455 /* Update our notion of when the last reset occurred */
4456 microuptime(&bus
->last_reset
);
4459 for (target
= TAILQ_FIRST(&bus
->et_entries
);
4461 target
= next_target
) {
4463 next_target
= TAILQ_NEXT(target
, links
);
4465 if (path
->target
!= target
4466 && path
->target
->target_id
!= CAM_TARGET_WILDCARD
4467 && target
->target_id
!= CAM_TARGET_WILDCARD
)
4470 if (async_code
== AC_SENT_BDR
) {
4471 /* Update our notion of when the last reset occurred */
4472 microuptime(&path
->target
->last_reset
);
4475 for (device
= TAILQ_FIRST(&target
->ed_entries
);
4477 device
= next_device
) {
4479 next_device
= TAILQ_NEXT(device
, links
);
4481 if (path
->device
!= device
4482 && path
->device
->lun_id
!= CAM_LUN_WILDCARD
4483 && device
->lun_id
!= CAM_LUN_WILDCARD
)
4486 xpt_dev_async(async_code
, bus
, target
,
4489 xpt_async_bcast(&device
->asyncs
, async_code
,
4495 * If this wasn't a fully wildcarded async, tell all
4496 * clients that want all async events.
4498 if (bus
!= xpt_periph
->path
->bus
)
4499 xpt_async_bcast(&xpt_periph
->path
->device
->asyncs
, async_code
,
4505 xpt_async_bcast(struct async_list
*async_head
,
4506 u_int32_t async_code
,
4507 struct cam_path
*path
, void *async_arg
)
4509 struct async_node
*cur_entry
;
4511 cur_entry
= SLIST_FIRST(async_head
);
4512 while (cur_entry
!= NULL
) {
4513 struct async_node
*next_entry
;
4515 * Grab the next list entry before we call the current
4516 * entry's callback. This is because the callback function
4517 * can delete its async callback entry.
4519 next_entry
= SLIST_NEXT(cur_entry
, links
);
4520 if ((cur_entry
->event_enable
& async_code
) != 0)
4521 cur_entry
->callback(cur_entry
->callback_arg
,
4524 cur_entry
= next_entry
;
4529 * Handle any per-device event notifications that require action by the XPT.
4532 xpt_dev_async(u_int32_t async_code
, struct cam_eb
*bus
, struct cam_et
*target
,
4533 struct cam_ed
*device
, void *async_arg
)
4536 struct cam_path newpath
;
4539 * We only need to handle events for real devices.
4541 if (target
->target_id
== CAM_TARGET_WILDCARD
4542 || device
->lun_id
== CAM_LUN_WILDCARD
)
4546 * We need our own path with wildcards expanded to
4547 * handle certain types of events.
4549 if ((async_code
== AC_SENT_BDR
)
4550 || (async_code
== AC_BUS_RESET
)
4551 || (async_code
== AC_INQ_CHANGED
))
4552 status
= xpt_compile_path(&newpath
, NULL
,
4557 status
= CAM_REQ_CMP_ERR
;
4559 if (status
== CAM_REQ_CMP
) {
4562 * Allow transfer negotiation to occur in a
4563 * tag free environment.
4565 if (async_code
== AC_SENT_BDR
4566 || async_code
== AC_BUS_RESET
)
4567 xpt_toggle_tags(&newpath
);
4569 if (async_code
== AC_INQ_CHANGED
) {
4571 * We've sent a start unit command, or
4572 * something similar to a device that
4573 * may have caused its inquiry data to
4574 * change. So we re-scan the device to
4575 * refresh the inquiry data for it.
4577 xpt_scan_lun(newpath
.periph
, &newpath
,
4578 CAM_EXPECT_INQ_CHANGE
, NULL
);
4580 xpt_release_path(&newpath
);
4581 } else if (async_code
== AC_LOST_DEVICE
) {
4583 * When we lose a device the device may be about to detach
4584 * the sim, we have to clear out all pending timeouts and
4585 * requests before that happens. XXX it would be nice if
4586 * we could abort the requests pertaining to the device.
4588 xpt_release_devq_timeout(device
);
4589 if ((device
->flags
& CAM_DEV_UNCONFIGURED
) == 0) {
4590 device
->flags
|= CAM_DEV_UNCONFIGURED
;
4591 xpt_release_device(bus
, target
, device
);
4593 } else if (async_code
== AC_TRANSFER_NEG
) {
4594 struct ccb_trans_settings
*settings
;
4596 settings
= (struct ccb_trans_settings
*)async_arg
;
4597 xpt_set_transfer_settings(settings
, device
,
4598 /*async_update*/TRUE
);
4603 xpt_freeze_devq(struct cam_path
*path
, u_int count
)
4605 struct ccb_hdr
*ccbh
;
4608 path
->device
->qfrozen_cnt
+= count
;
4611 * Mark the last CCB in the queue as needing
4612 * to be requeued if the driver hasn't
4613 * changed it's state yet. This fixes a race
4614 * where a ccb is just about to be queued to
4615 * a controller driver when it's interrupt routine
4616 * freezes the queue. To completly close the
4617 * hole, controller drives must check to see
4618 * if a ccb's status is still CAM_REQ_INPROG
4619 * under critical section protection just before they queue
4620 * the CCB. See ahc_action/ahc_freeze_devq for
4623 ccbh
= TAILQ_LAST(&path
->device
->ccbq
.active_ccbs
, ccb_hdr_tailq
);
4624 if (ccbh
&& ccbh
->status
== CAM_REQ_INPROG
)
4625 ccbh
->status
= CAM_REQUEUE_REQ
;
4627 return (path
->device
->qfrozen_cnt
);
4631 xpt_freeze_simq(struct cam_sim
*sim
, u_int count
)
4633 if (sim
->devq
== NULL
)
4635 sim
->devq
->send_queue
.qfrozen_cnt
+= count
;
4636 if (sim
->devq
->active_dev
!= NULL
) {
4637 struct ccb_hdr
*ccbh
;
4639 ccbh
= TAILQ_LAST(&sim
->devq
->active_dev
->ccbq
.active_ccbs
,
4641 if (ccbh
&& ccbh
->status
== CAM_REQ_INPROG
)
4642 ccbh
->status
= CAM_REQUEUE_REQ
;
4644 return (sim
->devq
->send_queue
.qfrozen_cnt
);
4648 * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4649 * We ref-count the sim (and the bus only NULLs it out when the bus has been
4650 * freed, which is not the case here), but the device queue is also freed XXX
4651 * and we have to check that here.
4653 * XXX fixme: could we simply not null-out the device queue via
4657 xpt_release_devq_timeout(void *arg
)
4659 struct cam_ed
*device
;
4661 device
= (struct cam_ed
*)arg
;
4663 xpt_release_devq_device(device
, /*count*/1, /*run_queue*/TRUE
);
4667 xpt_release_devq(struct cam_path
*path
, u_int count
, int run_queue
)
4669 xpt_release_devq_device(path
->device
, count
, run_queue
);
4673 xpt_release_devq_device(struct cam_ed
*dev
, u_int count
, int run_queue
)
4680 if (dev
->qfrozen_cnt
> 0) {
4682 count
= (count
> dev
->qfrozen_cnt
) ? dev
->qfrozen_cnt
: count
;
4683 dev
->qfrozen_cnt
-= count
;
4684 if (dev
->qfrozen_cnt
== 0) {
4687 * No longer need to wait for a successful
4688 * command completion.
4690 dev
->flags
&= ~CAM_DEV_REL_ON_COMPLETE
;
4693 * Remove any timeouts that might be scheduled
4694 * to release this queue.
4696 if ((dev
->flags
& CAM_DEV_REL_TIMEOUT_PENDING
) != 0) {
4697 callout_stop(&dev
->c_handle
);
4698 dev
->flags
&= ~CAM_DEV_REL_TIMEOUT_PENDING
;
4702 * Now that we are unfrozen schedule the
4703 * device so any pending transactions are
4706 if ((dev
->ccbq
.queue
.entries
> 0)
4707 && (xpt_schedule_dev_sendq(dev
->target
->bus
, dev
))
4708 && (run_queue
!= 0)) {
4714 xpt_run_dev_sendq(dev
->target
->bus
);
4719 xpt_release_simq(struct cam_sim
*sim
, int run_queue
)
4723 if (sim
->devq
== NULL
)
4726 sendq
= &(sim
->devq
->send_queue
);
4729 if (sendq
->qfrozen_cnt
> 0) {
4730 sendq
->qfrozen_cnt
--;
4731 if (sendq
->qfrozen_cnt
== 0) {
4735 * If there is a timeout scheduled to release this
4736 * sim queue, remove it. The queue frozen count is
4739 if ((sim
->flags
& CAM_SIM_REL_TIMEOUT_PENDING
) != 0){
4740 callout_stop(&sim
->c_handle
);
4741 sim
->flags
&= ~CAM_SIM_REL_TIMEOUT_PENDING
;
4743 bus
= xpt_find_bus(sim
->path_id
);
4748 * Now that we are unfrozen run the send queue.
4750 xpt_run_dev_sendq(bus
);
4752 xpt_release_bus(bus
);
4762 xpt_done(union ccb
*done_ccb
)
4766 CAM_DEBUG(done_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("xpt_done\n"));
4767 if ((done_ccb
->ccb_h
.func_code
& XPT_FC_QUEUED
) != 0) {
4769 * Queue up the request for handling by our SWI handler
4770 * any of the "non-immediate" type of ccbs.
4772 switch (done_ccb
->ccb_h
.path
->periph
->type
) {
4773 case CAM_PERIPH_BIO
:
4774 TAILQ_INSERT_TAIL(&cam_bioq
, &done_ccb
->ccb_h
,
4776 done_ccb
->ccb_h
.pinfo
.index
= CAM_DONEQ_INDEX
;
4780 panic("unknown periph type %d",
4781 done_ccb
->ccb_h
.path
->periph
->type
);
4792 new_ccb
= kmalloc(sizeof(*new_ccb
), M_CAMXPT
, M_INTWAIT
);
4797 xpt_free_ccb(union ccb
*free_ccb
)
4799 kfree(free_ccb
, M_CAMXPT
);
4804 /* Private XPT functions */
4807 * Get a CAM control block for the caller. Charge the structure to the device
4808 * referenced by the path. If the this device has no 'credits' then the
4809 * device already has the maximum number of outstanding operations under way
4810 * and we return NULL. If we don't have sufficient resources to allocate more
4811 * ccbs, we also return NULL.
4814 xpt_get_ccb(struct cam_ed
*device
)
4819 if ((new_ccb
= (union ccb
*)SLIST_FIRST(&ccb_freeq
)) == NULL
) {
4820 new_ccb
= kmalloc(sizeof(*new_ccb
), M_CAMXPT
, M_INTWAIT
);
4821 SLIST_INSERT_HEAD(&ccb_freeq
, &new_ccb
->ccb_h
,
4825 cam_ccbq_take_opening(&device
->ccbq
);
4826 SLIST_REMOVE_HEAD(&ccb_freeq
, xpt_links
.sle
);
4832 xpt_release_bus(struct cam_eb
*bus
)
4836 if (bus
->refcount
== 1) {
4837 KKASSERT(TAILQ_FIRST(&bus
->et_entries
) == NULL
);
4838 TAILQ_REMOVE(&xpt_busses
, bus
, links
);
4840 cam_sim_release(bus
->sim
, 0);
4844 KKASSERT(bus
->refcount
== 1);
4845 kfree(bus
, M_CAMXPT
);
4852 static struct cam_et
*
4853 xpt_alloc_target(struct cam_eb
*bus
, target_id_t target_id
)
4855 struct cam_et
*target
;
4856 struct cam_et
*cur_target
;
4858 target
= kmalloc(sizeof(*target
), M_CAMXPT
, M_INTWAIT
);
4860 TAILQ_INIT(&target
->ed_entries
);
4862 target
->target_id
= target_id
;
4863 target
->refcount
= 1;
4864 target
->generation
= 0;
4865 timevalclear(&target
->last_reset
);
4867 * Hold a reference to our parent bus so it
4868 * will not go away before we do.
4872 /* Insertion sort into our bus's target list */
4873 cur_target
= TAILQ_FIRST(&bus
->et_entries
);
4874 while (cur_target
!= NULL
&& cur_target
->target_id
< target_id
)
4875 cur_target
= TAILQ_NEXT(cur_target
, links
);
4877 if (cur_target
!= NULL
) {
4878 TAILQ_INSERT_BEFORE(cur_target
, target
, links
);
4880 TAILQ_INSERT_TAIL(&bus
->et_entries
, target
, links
);
4887 xpt_release_target(struct cam_eb
*bus
, struct cam_et
*target
)
4890 if (target
->refcount
== 1) {
4891 KKASSERT(TAILQ_FIRST(&target
->ed_entries
) == NULL
);
4892 TAILQ_REMOVE(&bus
->et_entries
, target
, links
);
4894 xpt_release_bus(bus
);
4895 KKASSERT(target
->refcount
== 1);
4896 kfree(target
, M_CAMXPT
);
4903 static struct cam_ed
*
4904 xpt_alloc_device(struct cam_eb
*bus
, struct cam_et
*target
, lun_id_t lun_id
)
4906 #ifdef CAM_NEW_TRAN_CODE
4907 struct cam_path path
;
4908 #endif /* CAM_NEW_TRAN_CODE */
4909 struct cam_ed
*device
;
4910 struct cam_devq
*devq
;
4913 if (SIM_DEAD(bus
->sim
))
4916 /* Make space for us in the device queue on our bus */
4917 if (bus
->sim
->devq
== NULL
)
4919 devq
= bus
->sim
->devq
;
4920 status
= cam_devq_resize(devq
, devq
->alloc_queue
.array_size
+ 1);
4922 if (status
!= CAM_REQ_CMP
) {
4925 device
= kmalloc(sizeof(*device
), M_CAMXPT
, M_INTWAIT
);
4928 if (device
!= NULL
) {
4929 struct cam_ed
*cur_device
;
4931 cam_init_pinfo(&device
->alloc_ccb_entry
.pinfo
);
4932 device
->alloc_ccb_entry
.device
= device
;
4933 cam_init_pinfo(&device
->send_ccb_entry
.pinfo
);
4934 device
->send_ccb_entry
.device
= device
;
4935 device
->target
= target
;
4936 device
->lun_id
= lun_id
;
4937 /* Initialize our queues */
4938 if (camq_init(&device
->drvq
, 0) != 0) {
4939 kfree(device
, M_CAMXPT
);
4942 if (cam_ccbq_init(&device
->ccbq
,
4943 bus
->sim
->max_dev_openings
) != 0) {
4944 camq_fini(&device
->drvq
);
4945 kfree(device
, M_CAMXPT
);
4948 SLIST_INIT(&device
->asyncs
);
4949 SLIST_INIT(&device
->periphs
);
4950 device
->generation
= 0;
4951 device
->owner
= NULL
;
4953 * Take the default quirk entry until we have inquiry
4954 * data and can determine a better quirk to use.
4956 device
->quirk
= &xpt_quirk_table
[xpt_quirk_table_size
- 1];
4957 bzero(&device
->inq_data
, sizeof(device
->inq_data
));
4958 device
->inq_flags
= 0;
4959 device
->queue_flags
= 0;
4960 device
->serial_num
= NULL
;
4961 device
->serial_num_len
= 0;
4962 device
->qfrozen_cnt
= 0;
4963 device
->flags
= CAM_DEV_UNCONFIGURED
;
4964 device
->tag_delay_count
= 0;
4965 device
->tag_saved_openings
= 0;
4966 device
->refcount
= 1;
4967 callout_init(&device
->c_handle
);
4970 * Hold a reference to our parent target so it
4971 * will not go away before we do.
4976 * XXX should be limited by number of CCBs this bus can
4979 xpt_max_ccbs
+= device
->ccbq
.devq_openings
;
4980 /* Insertion sort into our target's device list */
4981 cur_device
= TAILQ_FIRST(&target
->ed_entries
);
4982 while (cur_device
!= NULL
&& cur_device
->lun_id
< lun_id
)
4983 cur_device
= TAILQ_NEXT(cur_device
, links
);
4984 if (cur_device
!= NULL
) {
4985 TAILQ_INSERT_BEFORE(cur_device
, device
, links
);
4987 TAILQ_INSERT_TAIL(&target
->ed_entries
, device
, links
);
4989 target
->generation
++;
4990 #ifdef CAM_NEW_TRAN_CODE
4991 if (lun_id
!= CAM_LUN_WILDCARD
) {
4992 xpt_compile_path(&path
,
4997 xpt_devise_transport(&path
);
4998 xpt_release_path(&path
);
5000 #endif /* CAM_NEW_TRAN_CODE */
5006 xpt_reference_device(struct cam_ed
*device
)
5012 xpt_release_device(struct cam_eb
*bus
, struct cam_et
*target
,
5013 struct cam_ed
*device
)
5015 struct cam_devq
*devq
;
5018 if (device
->refcount
== 1) {
5019 KKASSERT(device
->flags
& CAM_DEV_UNCONFIGURED
);
5021 if (device
->alloc_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
5022 || device
->send_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
)
5023 panic("Removing device while still queued for ccbs");
5025 if ((device
->flags
& CAM_DEV_REL_TIMEOUT_PENDING
) != 0) {
5026 device
->flags
&= ~CAM_DEV_REL_TIMEOUT_PENDING
;
5027 callout_stop(&device
->c_handle
);
5030 TAILQ_REMOVE(&target
->ed_entries
, device
,links
);
5031 target
->generation
++;
5032 xpt_max_ccbs
-= device
->ccbq
.devq_openings
;
5033 if (!SIM_DEAD(bus
->sim
)) {
5034 /* Release our slot in the devq */
5035 devq
= bus
->sim
->devq
;
5036 cam_devq_resize(devq
, devq
->alloc_queue
.array_size
- 1);
5038 camq_fini(&device
->drvq
);
5039 camq_fini(&device
->ccbq
.queue
);
5040 xpt_release_target(bus
, target
);
5041 KKASSERT(device
->refcount
== 1);
5042 kfree(device
, M_CAMXPT
);
5050 xpt_dev_ccbq_resize(struct cam_path
*path
, int newopenings
)
5060 diff
= newopenings
- (dev
->ccbq
.dev_active
+ dev
->ccbq
.dev_openings
);
5061 result
= cam_ccbq_resize(&dev
->ccbq
, newopenings
);
5062 if (result
== CAM_REQ_CMP
&& (diff
< 0)) {
5063 dev
->flags
|= CAM_DEV_RESIZE_QUEUE_NEEDED
;
5065 if ((dev
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
5066 || (dev
->inq_flags
& SID_CmdQue
) != 0)
5067 dev
->tag_saved_openings
= newopenings
;
5068 /* Adjust the global limit */
5069 xpt_max_ccbs
+= diff
;
5074 static struct cam_eb
*
5075 xpt_find_bus(path_id_t path_id
)
5079 TAILQ_FOREACH(bus
, &xpt_busses
, links
) {
5080 if (bus
->path_id
== path_id
) {
5088 static struct cam_et
*
5089 xpt_find_target(struct cam_eb
*bus
, target_id_t target_id
)
5091 struct cam_et
*target
;
5093 TAILQ_FOREACH(target
, &bus
->et_entries
, links
) {
5094 if (target
->target_id
== target_id
) {
5102 static struct cam_ed
*
5103 xpt_find_device(struct cam_et
*target
, lun_id_t lun_id
)
5105 struct cam_ed
*device
;
5107 TAILQ_FOREACH(device
, &target
->ed_entries
, links
) {
5108 if (device
->lun_id
== lun_id
) {
5117 union ccb
*request_ccb
;
5118 struct ccb_pathinq
*cpi
;
5120 } xpt_scan_bus_info
;
5123 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5124 * As the scan progresses, xpt_scan_bus is used as the
5125 * callback on completion function.
5128 xpt_scan_bus(struct cam_periph
*periph
, union ccb
*request_ccb
)
5130 CAM_DEBUG(request_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
,
5131 ("xpt_scan_bus\n"));
5132 switch (request_ccb
->ccb_h
.func_code
) {
5135 xpt_scan_bus_info
*scan_info
;
5136 union ccb
*work_ccb
;
5137 struct cam_path
*path
;
5142 /* Find out the characteristics of the bus */
5143 work_ccb
= xpt_alloc_ccb();
5144 xpt_setup_ccb(&work_ccb
->ccb_h
, request_ccb
->ccb_h
.path
,
5145 request_ccb
->ccb_h
.pinfo
.priority
);
5146 work_ccb
->ccb_h
.func_code
= XPT_PATH_INQ
;
5147 xpt_action(work_ccb
);
5148 if (work_ccb
->ccb_h
.status
!= CAM_REQ_CMP
) {
5149 request_ccb
->ccb_h
.status
= work_ccb
->ccb_h
.status
;
5150 xpt_free_ccb(work_ccb
);
5151 xpt_done(request_ccb
);
5155 if ((work_ccb
->cpi
.hba_misc
& PIM_NOINITIATOR
) != 0) {
5157 * Can't scan the bus on an adapter that
5158 * cannot perform the initiator role.
5160 request_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5161 xpt_free_ccb(work_ccb
);
5162 xpt_done(request_ccb
);
5166 /* Save some state for use while we probe for devices */
5167 scan_info
= (xpt_scan_bus_info
*)
5168 kmalloc(sizeof(xpt_scan_bus_info
), M_TEMP
, M_INTWAIT
);
5169 scan_info
->request_ccb
= request_ccb
;
5170 scan_info
->cpi
= &work_ccb
->cpi
;
5172 /* Cache on our stack so we can work asynchronously */
5173 max_target
= scan_info
->cpi
->max_target
;
5174 initiator_id
= scan_info
->cpi
->initiator_id
;
5178 * We can scan all targets in parallel, or do it sequentially.
5180 if (scan_info
->cpi
->hba_misc
& PIM_SEQSCAN
) {
5182 scan_info
->counter
= 0;
5184 scan_info
->counter
= scan_info
->cpi
->max_target
+ 1;
5185 if (scan_info
->cpi
->initiator_id
< scan_info
->counter
) {
5186 scan_info
->counter
--;
5190 for (i
= 0; i
<= max_target
; i
++) {
5192 if (i
== initiator_id
)
5195 status
= xpt_create_path(&path
, xpt_periph
,
5196 request_ccb
->ccb_h
.path_id
,
5198 if (status
!= CAM_REQ_CMP
) {
5199 kprintf("xpt_scan_bus: xpt_create_path failed"
5200 " with status %#x, bus scan halted\n",
5202 kfree(scan_info
, M_TEMP
);
5203 request_ccb
->ccb_h
.status
= status
;
5204 xpt_free_ccb(work_ccb
);
5205 xpt_done(request_ccb
);
5208 work_ccb
= xpt_alloc_ccb();
5209 xpt_setup_ccb(&work_ccb
->ccb_h
, path
,
5210 request_ccb
->ccb_h
.pinfo
.priority
);
5211 work_ccb
->ccb_h
.func_code
= XPT_SCAN_LUN
;
5212 work_ccb
->ccb_h
.cbfcnp
= xpt_scan_bus
;
5213 work_ccb
->ccb_h
.ppriv_ptr0
= scan_info
;
5214 work_ccb
->crcn
.flags
= request_ccb
->crcn
.flags
;
5215 xpt_action(work_ccb
);
5222 struct cam_path
*path
;
5223 xpt_scan_bus_info
*scan_info
;
5225 target_id_t target_id
;
5228 /* Reuse the same CCB to query if a device was really found */
5229 scan_info
= (xpt_scan_bus_info
*)request_ccb
->ccb_h
.ppriv_ptr0
;
5230 xpt_setup_ccb(&request_ccb
->ccb_h
, request_ccb
->ccb_h
.path
,
5231 request_ccb
->ccb_h
.pinfo
.priority
);
5232 request_ccb
->ccb_h
.func_code
= XPT_GDEV_TYPE
;
5234 path_id
= request_ccb
->ccb_h
.path_id
;
5235 target_id
= request_ccb
->ccb_h
.target_id
;
5236 lun_id
= request_ccb
->ccb_h
.target_lun
;
5237 xpt_action(request_ccb
);
5239 if (request_ccb
->ccb_h
.status
!= CAM_REQ_CMP
) {
5240 struct cam_ed
*device
;
5241 struct cam_et
*target
;
5245 * If we already probed lun 0 successfully, or
5246 * we have additional configured luns on this
5247 * target that might have "gone away", go onto
5250 target
= request_ccb
->ccb_h
.path
->target
;
5252 * We may touch devices that we don't
5253 * hold references too, so ensure they
5254 * don't disappear out from under us.
5255 * The target above is referenced by the
5256 * path in the request ccb.
5260 device
= TAILQ_FIRST(&target
->ed_entries
);
5261 if (device
!= NULL
) {
5262 phl
= CAN_SRCH_HI_SPARSE(device
);
5263 if (device
->lun_id
== 0)
5264 device
= TAILQ_NEXT(device
, links
);
5267 if ((lun_id
!= 0) || (device
!= NULL
)) {
5268 if (lun_id
< (CAM_SCSI2_MAXLUN
-1) || phl
)
5272 struct cam_ed
*device
;
5274 device
= request_ccb
->ccb_h
.path
->device
;
5276 if ((device
->quirk
->quirks
& CAM_QUIRK_NOLUNS
) == 0) {
5277 /* Try the next lun */
5278 if (lun_id
< (CAM_SCSI2_MAXLUN
-1)
5279 || CAN_SRCH_HI_DENSE(device
))
5285 * Free the current request path- we're done with it.
5287 xpt_free_path(request_ccb
->ccb_h
.path
);
5290 * Check to see if we scan any further luns.
5292 if (lun_id
== request_ccb
->ccb_h
.target_lun
5293 || lun_id
> scan_info
->cpi
->max_lun
) {
5298 if (scan_info
->cpi
->hba_misc
& PIM_SEQSCAN
) {
5299 scan_info
->counter
++;
5300 if (scan_info
->counter
==
5301 scan_info
->cpi
->initiator_id
) {
5302 scan_info
->counter
++;
5304 if (scan_info
->counter
>=
5305 scan_info
->cpi
->max_target
+1) {
5309 scan_info
->counter
--;
5310 if (scan_info
->counter
== 0) {
5315 xpt_free_ccb(request_ccb
);
5316 xpt_free_ccb((union ccb
*)scan_info
->cpi
);
5317 request_ccb
= scan_info
->request_ccb
;
5318 kfree(scan_info
, M_TEMP
);
5319 request_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5320 xpt_done(request_ccb
);
5324 if ((scan_info
->cpi
->hba_misc
& PIM_SEQSCAN
) == 0) {
5327 status
= xpt_create_path(&path
, xpt_periph
,
5328 scan_info
->request_ccb
->ccb_h
.path_id
,
5329 scan_info
->counter
, 0);
5330 if (status
!= CAM_REQ_CMP
) {
5331 kprintf("xpt_scan_bus: xpt_create_path failed"
5332 " with status %#x, bus scan halted\n",
5334 xpt_free_ccb(request_ccb
);
5335 xpt_free_ccb((union ccb
*)scan_info
->cpi
);
5336 request_ccb
= scan_info
->request_ccb
;
5337 kfree(scan_info
, M_TEMP
);
5338 request_ccb
->ccb_h
.status
= status
;
5339 xpt_done(request_ccb
);
5342 xpt_setup_ccb(&request_ccb
->ccb_h
, path
,
5343 request_ccb
->ccb_h
.pinfo
.priority
);
5344 request_ccb
->ccb_h
.func_code
= XPT_SCAN_LUN
;
5345 request_ccb
->ccb_h
.cbfcnp
= xpt_scan_bus
;
5346 request_ccb
->ccb_h
.ppriv_ptr0
= scan_info
;
5347 request_ccb
->crcn
.flags
=
5348 scan_info
->request_ccb
->crcn
.flags
;
5350 status
= xpt_create_path(&path
, xpt_periph
,
5351 path_id
, target_id
, lun_id
);
5352 if (status
!= CAM_REQ_CMP
) {
5353 kprintf("xpt_scan_bus: xpt_create_path failed "
5354 "with status %#x, halting LUN scan\n",
5358 xpt_setup_ccb(&request_ccb
->ccb_h
, path
,
5359 request_ccb
->ccb_h
.pinfo
.priority
);
5360 request_ccb
->ccb_h
.func_code
= XPT_SCAN_LUN
;
5361 request_ccb
->ccb_h
.cbfcnp
= xpt_scan_bus
;
5362 request_ccb
->ccb_h
.ppriv_ptr0
= scan_info
;
5363 request_ccb
->crcn
.flags
=
5364 scan_info
->request_ccb
->crcn
.flags
;
5366 xpt_action(request_ccb
);
5380 PROBE_TUR_FOR_NEGOTIATION
5384 PROBE_INQUIRY_CKSUM
= 0x01,
5385 PROBE_SERIAL_CKSUM
= 0x02,
5386 PROBE_NO_ANNOUNCE
= 0x04
5390 TAILQ_HEAD(, ccb_hdr
) request_ccbs
;
5391 probe_action action
;
5392 union ccb saved_ccb
;
5395 u_int8_t digest
[16];
5399 xpt_scan_lun(struct cam_periph
*periph
, struct cam_path
*path
,
5400 cam_flags flags
, union ccb
*request_ccb
)
5402 struct ccb_pathinq cpi
;
5404 struct cam_path
*new_path
;
5405 struct cam_periph
*old_periph
;
5407 CAM_DEBUG(request_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
,
5408 ("xpt_scan_lun\n"));
5410 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
5411 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
5412 xpt_action((union ccb
*)&cpi
);
5414 if (cpi
.ccb_h
.status
!= CAM_REQ_CMP
) {
5415 if (request_ccb
!= NULL
) {
5416 request_ccb
->ccb_h
.status
= cpi
.ccb_h
.status
;
5417 xpt_done(request_ccb
);
5422 if ((cpi
.hba_misc
& PIM_NOINITIATOR
) != 0) {
5424 * Can't scan the bus on an adapter that
5425 * cannot perform the initiator role.
5427 if (request_ccb
!= NULL
) {
5428 request_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5429 xpt_done(request_ccb
);
5434 if (request_ccb
== NULL
) {
5435 request_ccb
= kmalloc(sizeof(union ccb
), M_TEMP
, M_INTWAIT
);
5436 new_path
= kmalloc(sizeof(*new_path
), M_TEMP
, M_INTWAIT
);
5437 status
= xpt_compile_path(new_path
, xpt_periph
,
5439 path
->target
->target_id
,
5440 path
->device
->lun_id
);
5442 if (status
!= CAM_REQ_CMP
) {
5443 xpt_print_path(path
);
5444 kprintf("xpt_scan_lun: can't compile path, can't "
5446 kfree(request_ccb
, M_TEMP
);
5447 kfree(new_path
, M_TEMP
);
5450 xpt_setup_ccb(&request_ccb
->ccb_h
, new_path
, /*priority*/ 1);
5451 request_ccb
->ccb_h
.cbfcnp
= xptscandone
;
5452 request_ccb
->ccb_h
.func_code
= XPT_SCAN_LUN
;
5453 request_ccb
->crcn
.flags
= flags
;
5457 if ((old_periph
= cam_periph_find(path
, "probe")) != NULL
) {
5460 softc
= (probe_softc
*)old_periph
->softc
;
5461 TAILQ_INSERT_TAIL(&softc
->request_ccbs
, &request_ccb
->ccb_h
,
5464 status
= cam_periph_alloc(proberegister
, NULL
, probecleanup
,
5465 probestart
, "probe",
5467 request_ccb
->ccb_h
.path
, NULL
, 0,
5470 if (status
!= CAM_REQ_CMP
) {
5471 xpt_print_path(path
);
5472 kprintf("xpt_scan_lun: cam_alloc_periph returned an "
5473 "error, can't continue probe\n");
5474 request_ccb
->ccb_h
.status
= status
;
5475 xpt_done(request_ccb
);
5482 xptscandone(struct cam_periph
*periph
, union ccb
*done_ccb
)
5484 xpt_release_path(done_ccb
->ccb_h
.path
);
5485 kfree(done_ccb
->ccb_h
.path
, M_TEMP
);
5486 kfree(done_ccb
, M_TEMP
);
5490 proberegister(struct cam_periph
*periph
, void *arg
)
5492 union ccb
*request_ccb
; /* CCB representing the probe request */
5495 request_ccb
= (union ccb
*)arg
;
5496 if (periph
== NULL
) {
5497 kprintf("proberegister: periph was NULL!!\n");
5498 return(CAM_REQ_CMP_ERR
);
5501 if (request_ccb
== NULL
) {
5502 kprintf("proberegister: no probe CCB, "
5503 "can't register device\n");
5504 return(CAM_REQ_CMP_ERR
);
5507 softc
= kmalloc(sizeof(*softc
), M_TEMP
, M_INTWAIT
| M_ZERO
);
5508 TAILQ_INIT(&softc
->request_ccbs
);
5509 TAILQ_INSERT_TAIL(&softc
->request_ccbs
, &request_ccb
->ccb_h
,
5512 periph
->softc
= softc
;
5513 cam_periph_acquire(periph
);
5515 * Ensure we've waited at least a bus settle
5516 * delay before attempting to probe the device.
5517 * For HBAs that don't do bus resets, this won't make a difference.
5519 cam_periph_freeze_after_event(periph
, &periph
->path
->bus
->last_reset
,
5521 probeschedule(periph
);
5522 return(CAM_REQ_CMP
);
5526 probeschedule(struct cam_periph
*periph
)
5528 struct ccb_pathinq cpi
;
5532 softc
= (probe_softc
*)periph
->softc
;
5533 ccb
= (union ccb
*)TAILQ_FIRST(&softc
->request_ccbs
);
5535 xpt_setup_ccb(&cpi
.ccb_h
, periph
->path
, /*priority*/1);
5536 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
5537 xpt_action((union ccb
*)&cpi
);
5540 * If a device has gone away and another device, or the same one,
5541 * is back in the same place, it should have a unit attention
5542 * condition pending. It will not report the unit attention in
5543 * response to an inquiry, which may leave invalid transfer
5544 * negotiations in effect. The TUR will reveal the unit attention
5545 * condition. Only send the TUR for lun 0, since some devices
5546 * will get confused by commands other than inquiry to non-existent
5547 * luns. If you think a device has gone away start your scan from
5548 * lun 0. This will insure that any bogus transfer settings are
5551 * If we haven't seen the device before and the controller supports
5552 * some kind of transfer negotiation, negotiate with the first
5553 * sent command if no bus reset was performed at startup. This
5554 * ensures that the device is not confused by transfer negotiation
5555 * settings left over by loader or BIOS action.
5557 if (((ccb
->ccb_h
.path
->device
->flags
& CAM_DEV_UNCONFIGURED
) == 0)
5558 && (ccb
->ccb_h
.target_lun
== 0)) {
5559 softc
->action
= PROBE_TUR
;
5560 } else if ((cpi
.hba_inquiry
& (PI_WIDE_32
|PI_WIDE_16
|PI_SDTR_ABLE
)) != 0
5561 && (cpi
.hba_misc
& PIM_NOBUSRESET
) != 0) {
5562 proberequestdefaultnegotiation(periph
);
5563 softc
->action
= PROBE_INQUIRY
;
5565 softc
->action
= PROBE_INQUIRY
;
5568 if (ccb
->crcn
.flags
& CAM_EXPECT_INQ_CHANGE
)
5569 softc
->flags
|= PROBE_NO_ANNOUNCE
;
5571 softc
->flags
&= ~PROBE_NO_ANNOUNCE
;
5573 xpt_schedule(periph
, ccb
->ccb_h
.pinfo
.priority
);
5577 probestart(struct cam_periph
*periph
, union ccb
*start_ccb
)
5579 /* Probe the device that our peripheral driver points to */
5580 struct ccb_scsiio
*csio
;
5583 CAM_DEBUG(start_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("probestart\n"));
5585 softc
= (probe_softc
*)periph
->softc
;
5586 csio
= &start_ccb
->csio
;
5588 switch (softc
->action
) {
5590 case PROBE_TUR_FOR_NEGOTIATION
:
5592 scsi_test_unit_ready(csio
,
5601 case PROBE_FULL_INQUIRY
:
5604 struct scsi_inquiry_data
*inq_buf
;
5606 inq_buf
= &periph
->path
->device
->inq_data
;
5608 * If the device is currently configured, we calculate an
5609 * MD5 checksum of the inquiry data, and if the serial number
5610 * length is greater than 0, add the serial number data
5611 * into the checksum as well. Once the inquiry and the
5612 * serial number check finish, we attempt to figure out
5613 * whether we still have the same device.
5615 if ((periph
->path
->device
->flags
& CAM_DEV_UNCONFIGURED
) == 0) {
5617 MD5Init(&softc
->context
);
5618 MD5Update(&softc
->context
, (unsigned char *)inq_buf
,
5619 sizeof(struct scsi_inquiry_data
));
5620 softc
->flags
|= PROBE_INQUIRY_CKSUM
;
5621 if (periph
->path
->device
->serial_num_len
> 0) {
5622 MD5Update(&softc
->context
,
5623 periph
->path
->device
->serial_num
,
5624 periph
->path
->device
->serial_num_len
);
5625 softc
->flags
|= PROBE_SERIAL_CKSUM
;
5627 MD5Final(softc
->digest
, &softc
->context
);
5630 if (softc
->action
== PROBE_INQUIRY
)
5631 inquiry_len
= SHORT_INQUIRY_LENGTH
;
5633 inquiry_len
= inq_buf
->additional_length
5634 + offsetof(struct scsi_inquiry_data
,
5635 additional_length
) + 1;
5638 * Some parallel SCSI devices fail to send an
5639 * ignore wide residue message when dealing with
5640 * odd length inquiry requests. Round up to be
5643 inquiry_len
= roundup2(inquiry_len
, 2);
5649 (u_int8_t
*)inq_buf
,
5654 /*timeout*/60 * 1000);
5657 case PROBE_MODE_SENSE
:
5662 mode_buf_len
= sizeof(struct scsi_mode_header_6
)
5663 + sizeof(struct scsi_mode_blk_desc
)
5664 + sizeof(struct scsi_control_page
);
5665 mode_buf
= kmalloc(mode_buf_len
, M_TEMP
, M_INTWAIT
);
5666 scsi_mode_sense(csio
,
5671 SMS_PAGE_CTRL_CURRENT
,
5672 SMS_CONTROL_MODE_PAGE
,
5679 case PROBE_SERIAL_NUM
:
5681 struct scsi_vpd_unit_serial_number
*serial_buf
;
5682 struct cam_ed
* device
;
5685 device
= periph
->path
->device
;
5686 device
->serial_num
= NULL
;
5687 device
->serial_num_len
= 0;
5689 if ((device
->quirk
->quirks
& CAM_QUIRK_NOSERIAL
) == 0) {
5690 serial_buf
= kmalloc(sizeof(*serial_buf
), M_TEMP
,
5691 M_INTWAIT
| M_ZERO
);
5696 (u_int8_t
*)serial_buf
,
5697 sizeof(*serial_buf
),
5699 SVPD_UNIT_SERIAL_NUMBER
,
5701 /*timeout*/60 * 1000);
5705 * We'll have to do without, let our probedone
5706 * routine finish up for us.
5708 start_ccb
->csio
.data_ptr
= NULL
;
5709 probedone(periph
, start_ccb
);
5713 xpt_action(start_ccb
);
5717 proberequestdefaultnegotiation(struct cam_periph
*periph
)
5719 struct ccb_trans_settings cts
;
5721 xpt_setup_ccb(&cts
.ccb_h
, periph
->path
, /*priority*/1);
5722 cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
5723 #ifdef CAM_NEW_TRAN_CODE
5724 cts
.type
= CTS_TYPE_USER_SETTINGS
;
5725 #else /* CAM_NEW_TRAN_CODE */
5726 cts
.flags
= CCB_TRANS_USER_SETTINGS
;
5727 #endif /* CAM_NEW_TRAN_CODE */
5728 xpt_action((union ccb
*)&cts
);
5729 cts
.ccb_h
.func_code
= XPT_SET_TRAN_SETTINGS
;
5730 #ifdef CAM_NEW_TRAN_CODE
5731 cts
.type
= CTS_TYPE_CURRENT_SETTINGS
;
5732 #else /* CAM_NEW_TRAN_CODE */
5733 cts
.flags
&= ~CCB_TRANS_USER_SETTINGS
;
5734 cts
.flags
|= CCB_TRANS_CURRENT_SETTINGS
;
5735 #endif /* CAM_NEW_TRAN_CODE */
5736 xpt_action((union ccb
*)&cts
);
5740 probedone(struct cam_periph
*periph
, union ccb
*done_ccb
)
5743 struct cam_path
*path
;
5746 CAM_DEBUG(done_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("probedone\n"));
5748 softc
= (probe_softc
*)periph
->softc
;
5749 path
= done_ccb
->ccb_h
.path
;
5750 priority
= done_ccb
->ccb_h
.pinfo
.priority
;
5752 switch (softc
->action
) {
5755 if ((done_ccb
->ccb_h
.status
& CAM_STATUS_MASK
) != CAM_REQ_CMP
) {
5757 if (cam_periph_error(done_ccb
, 0,
5758 SF_NO_PRINT
, NULL
) == ERESTART
)
5760 else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0)
5761 /* Don't wedge the queue */
5762 xpt_release_devq(done_ccb
->ccb_h
.path
,
5766 softc
->action
= PROBE_INQUIRY
;
5767 xpt_release_ccb(done_ccb
);
5768 xpt_schedule(periph
, priority
);
5772 case PROBE_FULL_INQUIRY
:
5774 if ((done_ccb
->ccb_h
.status
& CAM_STATUS_MASK
) == CAM_REQ_CMP
) {
5775 struct scsi_inquiry_data
*inq_buf
;
5776 u_int8_t periph_qual
;
5778 path
->device
->flags
|= CAM_DEV_INQUIRY_DATA_VALID
;
5779 inq_buf
= &path
->device
->inq_data
;
5781 periph_qual
= SID_QUAL(inq_buf
);
5783 switch(periph_qual
) {
5784 case SID_QUAL_LU_CONNECTED
:
5789 * We conservatively request only
5790 * SHORT_INQUIRY_LEN bytes of inquiry
5791 * information during our first try
5792 * at sending an INQUIRY. If the device
5793 * has more information to give,
5794 * perform a second request specifying
5795 * the amount of information the device
5796 * is willing to give.
5798 len
= inq_buf
->additional_length
5799 + offsetof(struct scsi_inquiry_data
,
5800 additional_length
) + 1;
5801 if (softc
->action
== PROBE_INQUIRY
5802 && len
> SHORT_INQUIRY_LENGTH
) {
5803 softc
->action
= PROBE_FULL_INQUIRY
;
5804 xpt_release_ccb(done_ccb
);
5805 xpt_schedule(periph
, priority
);
5809 xpt_find_quirk(path
->device
);
5811 #ifdef CAM_NEW_TRAN_CODE
5812 xpt_devise_transport(path
);
5813 #endif /* CAM_NEW_TRAN_CODE */
5814 if (INQ_DATA_TQ_ENABLED(inq_buf
))
5815 softc
->action
= PROBE_MODE_SENSE
;
5817 softc
->action
= PROBE_SERIAL_NUM
;
5819 path
->device
->flags
&= ~CAM_DEV_UNCONFIGURED
;
5820 xpt_reference_device(path
->device
);
5822 xpt_release_ccb(done_ccb
);
5823 xpt_schedule(periph
, priority
);
5829 } else if (cam_periph_error(done_ccb
, 0,
5830 done_ccb
->ccb_h
.target_lun
> 0
5831 ? SF_RETRY_UA
|SF_QUIET_IR
5833 &softc
->saved_ccb
) == ERESTART
) {
5835 } else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5836 /* Don't wedge the queue */
5837 xpt_release_devq(done_ccb
->ccb_h
.path
, /*count*/1,
5841 * If we get to this point, we got an error status back
5842 * from the inquiry and the error status doesn't require
5843 * automatically retrying the command. Therefore, the
5844 * inquiry failed. If we had inquiry information before
5845 * for this device, but this latest inquiry command failed,
5846 * the device has probably gone away. If this device isn't
5847 * already marked unconfigured, notify the peripheral
5848 * drivers that this device is no more.
5850 if ((path
->device
->flags
& CAM_DEV_UNCONFIGURED
) == 0) {
5851 /* Send the async notification. */
5852 xpt_async(AC_LOST_DEVICE
, path
, NULL
);
5855 xpt_release_ccb(done_ccb
);
5858 case PROBE_MODE_SENSE
:
5860 struct ccb_scsiio
*csio
;
5861 struct scsi_mode_header_6
*mode_hdr
;
5863 csio
= &done_ccb
->csio
;
5864 mode_hdr
= (struct scsi_mode_header_6
*)csio
->data_ptr
;
5865 if ((csio
->ccb_h
.status
& CAM_STATUS_MASK
) == CAM_REQ_CMP
) {
5866 struct scsi_control_page
*page
;
5869 offset
= ((u_int8_t
*)&mode_hdr
[1])
5870 + mode_hdr
->blk_desc_len
;
5871 page
= (struct scsi_control_page
*)offset
;
5872 path
->device
->queue_flags
= page
->queue_flags
;
5873 } else if (cam_periph_error(done_ccb
, 0,
5874 SF_RETRY_UA
|SF_NO_PRINT
,
5875 &softc
->saved_ccb
) == ERESTART
) {
5877 } else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5878 /* Don't wedge the queue */
5879 xpt_release_devq(done_ccb
->ccb_h
.path
,
5880 /*count*/1, /*run_queue*/TRUE
);
5882 xpt_release_ccb(done_ccb
);
5883 kfree(mode_hdr
, M_TEMP
);
5884 softc
->action
= PROBE_SERIAL_NUM
;
5885 xpt_schedule(periph
, priority
);
5888 case PROBE_SERIAL_NUM
:
5890 struct ccb_scsiio
*csio
;
5891 struct scsi_vpd_unit_serial_number
*serial_buf
;
5898 csio
= &done_ccb
->csio
;
5899 priority
= done_ccb
->ccb_h
.pinfo
.priority
;
5901 (struct scsi_vpd_unit_serial_number
*)csio
->data_ptr
;
5903 /* Clean up from previous instance of this device */
5904 if (path
->device
->serial_num
!= NULL
) {
5905 kfree(path
->device
->serial_num
, M_CAMXPT
);
5906 path
->device
->serial_num
= NULL
;
5907 path
->device
->serial_num_len
= 0;
5910 if (serial_buf
== NULL
) {
5912 * Don't process the command as it was never sent
5914 } else if ((csio
->ccb_h
.status
& CAM_STATUS_MASK
) == CAM_REQ_CMP
5915 && (serial_buf
->length
> 0)) {
5918 path
->device
->serial_num
=
5919 kmalloc((serial_buf
->length
+ 1),
5920 M_CAMXPT
, M_INTWAIT
);
5921 bcopy(serial_buf
->serial_num
,
5922 path
->device
->serial_num
,
5923 serial_buf
->length
);
5924 path
->device
->serial_num_len
= serial_buf
->length
;
5925 path
->device
->serial_num
[serial_buf
->length
] = '\0';
5926 } else if (cam_periph_error(done_ccb
, 0,
5927 SF_RETRY_UA
|SF_NO_PRINT
,
5928 &softc
->saved_ccb
) == ERESTART
) {
5930 } else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5931 /* Don't wedge the queue */
5932 xpt_release_devq(done_ccb
->ccb_h
.path
, /*count*/1,
5937 * Let's see if we have seen this device before.
5939 if ((softc
->flags
& PROBE_INQUIRY_CKSUM
) != 0) {
5941 u_int8_t digest
[16];
5946 (unsigned char *)&path
->device
->inq_data
,
5947 sizeof(struct scsi_inquiry_data
));
5950 MD5Update(&context
, serial_buf
->serial_num
,
5951 serial_buf
->length
);
5953 MD5Final(digest
, &context
);
5954 if (bcmp(softc
->digest
, digest
, 16) == 0)
5958 * XXX Do we need to do a TUR in order to ensure
5959 * that the device really hasn't changed???
5962 && ((softc
->flags
& PROBE_NO_ANNOUNCE
) == 0))
5963 xpt_async(AC_LOST_DEVICE
, path
, NULL
);
5965 if (serial_buf
!= NULL
)
5966 kfree(serial_buf
, M_TEMP
);
5970 * Now that we have all the necessary
5971 * information to safely perform transfer
5972 * negotiations... Controllers don't perform
5973 * any negotiation or tagged queuing until
5974 * after the first XPT_SET_TRAN_SETTINGS ccb is
5975 * received. So, on a new device, just retreive
5976 * the user settings, and set them as the current
5977 * settings to set the device up.
5979 proberequestdefaultnegotiation(periph
);
5980 xpt_release_ccb(done_ccb
);
5983 * Perform a TUR to allow the controller to
5984 * perform any necessary transfer negotiation.
5986 softc
->action
= PROBE_TUR_FOR_NEGOTIATION
;
5987 xpt_schedule(periph
, priority
);
5990 xpt_release_ccb(done_ccb
);
5993 case PROBE_TUR_FOR_NEGOTIATION
:
5994 if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5995 /* Don't wedge the queue */
5996 xpt_release_devq(done_ccb
->ccb_h
.path
, /*count*/1,
6000 path
->device
->flags
&= ~CAM_DEV_UNCONFIGURED
;
6001 xpt_reference_device(path
->device
);
6003 if ((softc
->flags
& PROBE_NO_ANNOUNCE
) == 0) {
6004 /* Inform the XPT that a new device has been found */
6005 done_ccb
->ccb_h
.func_code
= XPT_GDEV_TYPE
;
6006 xpt_action(done_ccb
);
6008 xpt_async(AC_FOUND_DEVICE
, done_ccb
->ccb_h
.path
,
6011 xpt_release_ccb(done_ccb
);
6014 done_ccb
= (union ccb
*)TAILQ_FIRST(&softc
->request_ccbs
);
6015 TAILQ_REMOVE(&softc
->request_ccbs
, &done_ccb
->ccb_h
, periph_links
.tqe
);
6016 done_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
6018 if (TAILQ_FIRST(&softc
->request_ccbs
) == NULL
) {
6019 cam_periph_invalidate(periph
);
6020 cam_periph_release(periph
);
6022 probeschedule(periph
);
6027 probecleanup(struct cam_periph
*periph
)
6029 kfree(periph
->softc
, M_TEMP
);
6033 xpt_find_quirk(struct cam_ed
*device
)
6037 match
= cam_quirkmatch((caddr_t
)&device
->inq_data
,
6038 (caddr_t
)xpt_quirk_table
,
6039 sizeof(xpt_quirk_table
)/sizeof(*xpt_quirk_table
),
6040 sizeof(*xpt_quirk_table
), scsi_inquiry_match
);
6043 panic("xpt_find_quirk: device didn't match wildcard entry!!");
6045 device
->quirk
= (struct xpt_quirk_entry
*)match
;
6049 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS
)
6054 error
= sysctl_handle_int(oidp
, &bool, sizeof(bool), req
);
6055 if (error
!= 0 || req
->newptr
== NULL
)
6057 if (bool == 0 || bool == 1) {
6065 #ifdef CAM_NEW_TRAN_CODE
6068 xpt_devise_transport(struct cam_path
*path
)
6070 struct ccb_pathinq cpi
;
6071 struct ccb_trans_settings cts
;
6072 struct scsi_inquiry_data
*inq_buf
;
6074 /* Get transport information from the SIM */
6075 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
6076 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
6077 xpt_action((union ccb
*)&cpi
);
6080 if ((path
->device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0)
6081 inq_buf
= &path
->device
->inq_data
;
6082 path
->device
->protocol
= PROTO_SCSI
;
6083 path
->device
->protocol_version
=
6084 inq_buf
!= NULL
? SID_ANSI_REV(inq_buf
) : cpi
.protocol_version
;
6085 path
->device
->transport
= cpi
.transport
;
6086 path
->device
->transport_version
= cpi
.transport_version
;
6089 * Any device not using SPI3 features should
6090 * be considered SPI2 or lower.
6092 if (inq_buf
!= NULL
) {
6093 if (path
->device
->transport
== XPORT_SPI
6094 && (inq_buf
->spi3data
& SID_SPI_MASK
) == 0
6095 && path
->device
->transport_version
> 2)
6096 path
->device
->transport_version
= 2;
6098 struct cam_ed
* otherdev
;
6100 for (otherdev
= TAILQ_FIRST(&path
->target
->ed_entries
);
6102 otherdev
= TAILQ_NEXT(otherdev
, links
)) {
6103 if (otherdev
!= path
->device
)
6107 if (otherdev
!= NULL
) {
6109 * Initially assume the same versioning as
6110 * prior luns for this target.
6112 path
->device
->protocol_version
=
6113 otherdev
->protocol_version
;
6114 path
->device
->transport_version
=
6115 otherdev
->transport_version
;
6117 /* Until we know better, opt for safty */
6118 path
->device
->protocol_version
= 2;
6119 if (path
->device
->transport
== XPORT_SPI
)
6120 path
->device
->transport_version
= 2;
6122 path
->device
->transport_version
= 0;
6128 * For a device compliant with SPC-2 we should be able
6129 * to determine the transport version supported by
6130 * scrutinizing the version descriptors in the
6134 /* Tell the controller what we think */
6135 xpt_setup_ccb(&cts
.ccb_h
, path
, /*priority*/1);
6136 cts
.ccb_h
.func_code
= XPT_SET_TRAN_SETTINGS
;
6137 cts
.type
= CTS_TYPE_CURRENT_SETTINGS
;
6138 cts
.transport
= path
->device
->transport
;
6139 cts
.transport_version
= path
->device
->transport_version
;
6140 cts
.protocol
= path
->device
->protocol
;
6141 cts
.protocol_version
= path
->device
->protocol_version
;
6142 cts
.proto_specific
.valid
= 0;
6143 cts
.xport_specific
.valid
= 0;
6144 xpt_action((union ccb
*)&cts
);
6148 xpt_set_transfer_settings(struct ccb_trans_settings
*cts
, struct cam_ed
*device
,
6151 struct ccb_pathinq cpi
;
6152 struct ccb_trans_settings cur_cts
;
6153 struct ccb_trans_settings_scsi
*scsi
;
6154 struct ccb_trans_settings_scsi
*cur_scsi
;
6155 struct cam_sim
*sim
;
6156 struct scsi_inquiry_data
*inq_data
;
6158 if (device
== NULL
) {
6159 cts
->ccb_h
.status
= CAM_PATH_INVALID
;
6160 xpt_done((union ccb
*)cts
);
6164 if (cts
->protocol
== PROTO_UNKNOWN
6165 || cts
->protocol
== PROTO_UNSPECIFIED
) {
6166 cts
->protocol
= device
->protocol
;
6167 cts
->protocol_version
= device
->protocol_version
;
6170 if (cts
->protocol_version
== PROTO_VERSION_UNKNOWN
6171 || cts
->protocol_version
== PROTO_VERSION_UNSPECIFIED
)
6172 cts
->protocol_version
= device
->protocol_version
;
6174 if (cts
->protocol
!= device
->protocol
) {
6175 xpt_print_path(cts
->ccb_h
.path
);
6176 printf("Uninitialized Protocol %x:%x?\n",
6177 cts
->protocol
, device
->protocol
);
6178 cts
->protocol
= device
->protocol
;
6181 if (cts
->protocol_version
> device
->protocol_version
) {
6183 xpt_print_path(cts
->ccb_h
.path
);
6184 printf("Down reving Protocol Version from %d to %d?\n",
6185 cts
->protocol_version
, device
->protocol_version
);
6187 cts
->protocol_version
= device
->protocol_version
;
6190 if (cts
->transport
== XPORT_UNKNOWN
6191 || cts
->transport
== XPORT_UNSPECIFIED
) {
6192 cts
->transport
= device
->transport
;
6193 cts
->transport_version
= device
->transport_version
;
6196 if (cts
->transport_version
== XPORT_VERSION_UNKNOWN
6197 || cts
->transport_version
== XPORT_VERSION_UNSPECIFIED
)
6198 cts
->transport_version
= device
->transport_version
;
6200 if (cts
->transport
!= device
->transport
) {
6201 xpt_print_path(cts
->ccb_h
.path
);
6202 printf("Uninitialized Transport %x:%x?\n",
6203 cts
->transport
, device
->transport
);
6204 cts
->transport
= device
->transport
;
6207 if (cts
->transport_version
> device
->transport_version
) {
6209 xpt_print_path(cts
->ccb_h
.path
);
6210 printf("Down reving Transport Version from %d to %d?\n",
6211 cts
->transport_version
,
6212 device
->transport_version
);
6214 cts
->transport_version
= device
->transport_version
;
6217 sim
= cts
->ccb_h
.path
->bus
->sim
;
6220 * Nothing more of interest to do unless
6221 * this is a device connected via the
6224 if (cts
->protocol
!= PROTO_SCSI
) {
6225 if (async_update
== FALSE
)
6226 (*(sim
->sim_action
))(sim
, (union ccb
*)cts
);
6230 inq_data
= &device
->inq_data
;
6231 scsi
= &cts
->proto_specific
.scsi
;
6232 xpt_setup_ccb(&cpi
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6233 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
6234 xpt_action((union ccb
*)&cpi
);
6236 /* SCSI specific sanity checking */
6237 if ((cpi
.hba_inquiry
& PI_TAG_ABLE
) == 0
6238 || (INQ_DATA_TQ_ENABLED(inq_data
)) == 0
6239 || (device
->queue_flags
& SCP_QUEUE_DQUE
) != 0
6240 || (device
->quirk
->mintags
== 0)) {
6242 * Can't tag on hardware that doesn't support tags,
6243 * doesn't have it enabled, or has broken tag support.
6245 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6248 if (async_update
== FALSE
) {
6250 * Perform sanity checking against what the
6251 * controller and device can do.
6253 xpt_setup_ccb(&cur_cts
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6254 cur_cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
6255 cur_cts
.type
= cts
->type
;
6256 xpt_action((union ccb
*)&cur_cts
);
6258 cur_scsi
= &cur_cts
.proto_specific
.scsi
;
6259 if ((scsi
->valid
& CTS_SCSI_VALID_TQ
) == 0) {
6260 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6261 scsi
->flags
|= cur_scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
;
6263 if ((cur_scsi
->valid
& CTS_SCSI_VALID_TQ
) == 0)
6264 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6267 /* SPI specific sanity checking */
6268 if (cts
->transport
== XPORT_SPI
&& async_update
== FALSE
) {
6270 struct ccb_trans_settings_spi
*spi
;
6271 struct ccb_trans_settings_spi
*cur_spi
;
6273 spi
= &cts
->xport_specific
.spi
;
6275 cur_spi
= &cur_cts
.xport_specific
.spi
;
6277 /* Fill in any gaps in what the user gave us */
6278 if ((spi
->valid
& CTS_SPI_VALID_SYNC_RATE
) == 0)
6279 spi
->sync_period
= cur_spi
->sync_period
;
6280 if ((cur_spi
->valid
& CTS_SPI_VALID_SYNC_RATE
) == 0)
6281 spi
->sync_period
= 0;
6282 if ((spi
->valid
& CTS_SPI_VALID_SYNC_OFFSET
) == 0)
6283 spi
->sync_offset
= cur_spi
->sync_offset
;
6284 if ((cur_spi
->valid
& CTS_SPI_VALID_SYNC_OFFSET
) == 0)
6285 spi
->sync_offset
= 0;
6286 if ((spi
->valid
& CTS_SPI_VALID_PPR_OPTIONS
) == 0)
6287 spi
->ppr_options
= cur_spi
->ppr_options
;
6288 if ((cur_spi
->valid
& CTS_SPI_VALID_PPR_OPTIONS
) == 0)
6289 spi
->ppr_options
= 0;
6290 if ((spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) == 0)
6291 spi
->bus_width
= cur_spi
->bus_width
;
6292 if ((cur_spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) == 0)
6294 if ((spi
->valid
& CTS_SPI_VALID_DISC
) == 0) {
6295 spi
->flags
&= ~CTS_SPI_FLAGS_DISC_ENB
;
6296 spi
->flags
|= cur_spi
->flags
& CTS_SPI_FLAGS_DISC_ENB
;
6298 if ((cur_spi
->valid
& CTS_SPI_VALID_DISC
) == 0)
6299 spi
->flags
&= ~CTS_SPI_FLAGS_DISC_ENB
;
6300 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0
6301 && (inq_data
->flags
& SID_Sync
) == 0
6302 && cts
->type
== CTS_TYPE_CURRENT_SETTINGS
)
6303 || ((cpi
.hba_inquiry
& PI_SDTR_ABLE
) == 0)
6304 || (spi
->sync_offset
== 0)
6305 || (spi
->sync_period
== 0)) {
6307 spi
->sync_period
= 0;
6308 spi
->sync_offset
= 0;
6311 switch (spi
->bus_width
) {
6312 case MSG_EXT_WDTR_BUS_32_BIT
:
6313 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6314 || (inq_data
->flags
& SID_WBus32
) != 0
6315 || cts
->type
== CTS_TYPE_USER_SETTINGS
)
6316 && (cpi
.hba_inquiry
& PI_WIDE_32
) != 0)
6318 /* Fall Through to 16-bit */
6319 case MSG_EXT_WDTR_BUS_16_BIT
:
6320 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6321 || (inq_data
->flags
& SID_WBus16
) != 0
6322 || cts
->type
== CTS_TYPE_USER_SETTINGS
)
6323 && (cpi
.hba_inquiry
& PI_WIDE_16
) != 0) {
6324 spi
->bus_width
= MSG_EXT_WDTR_BUS_16_BIT
;
6327 /* Fall Through to 8-bit */
6328 default: /* New bus width?? */
6329 case MSG_EXT_WDTR_BUS_8_BIT
:
6330 /* All targets can do this */
6331 spi
->bus_width
= MSG_EXT_WDTR_BUS_8_BIT
;
6335 spi3caps
= cpi
.xport_specific
.spi
.ppr_options
;
6336 if ((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0
6337 && cts
->type
== CTS_TYPE_CURRENT_SETTINGS
)
6338 spi3caps
&= inq_data
->spi3data
;
6340 if ((spi3caps
& SID_SPI_CLOCK_DT
) == 0)
6341 spi
->ppr_options
&= ~MSG_EXT_PPR_DT_REQ
;
6343 if ((spi3caps
& SID_SPI_IUS
) == 0)
6344 spi
->ppr_options
&= ~MSG_EXT_PPR_IU_REQ
;
6346 if ((spi3caps
& SID_SPI_QAS
) == 0)
6347 spi
->ppr_options
&= ~MSG_EXT_PPR_QAS_REQ
;
6349 /* No SPI Transfer settings are allowed unless we are wide */
6350 if (spi
->bus_width
== 0)
6351 spi
->ppr_options
= 0;
6353 if ((spi
->flags
& CTS_SPI_FLAGS_DISC_ENB
) == 0) {
6355 * Can't tag queue without disconnection.
6357 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6358 scsi
->valid
|= CTS_SCSI_VALID_TQ
;
6362 * If we are currently performing tagged transactions to
6363 * this device and want to change its negotiation parameters,
6364 * go non-tagged for a bit to give the controller a chance to
6365 * negotiate unhampered by tag messages.
6367 if (cts
->type
== CTS_TYPE_CURRENT_SETTINGS
6368 && (device
->inq_flags
& SID_CmdQue
) != 0
6369 && (scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) != 0
6370 && (spi
->flags
& (CTS_SPI_VALID_SYNC_RATE
|
6371 CTS_SPI_VALID_SYNC_OFFSET
|
6372 CTS_SPI_VALID_BUS_WIDTH
)) != 0)
6373 xpt_toggle_tags(cts
->ccb_h
.path
);
6376 if (cts
->type
== CTS_TYPE_CURRENT_SETTINGS
6377 && (scsi
->valid
& CTS_SCSI_VALID_TQ
) != 0) {
6381 * If we are transitioning from tags to no-tags or
6382 * vice-versa, we need to carefully freeze and restart
6383 * the queue so that we don't overlap tagged and non-tagged
6384 * commands. We also temporarily stop tags if there is
6385 * a change in transfer negotiation settings to allow
6386 * "tag-less" negotiation.
6388 if ((device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
6389 || (device
->inq_flags
& SID_CmdQue
) != 0)
6390 device_tagenb
= TRUE
;
6392 device_tagenb
= FALSE
;
6394 if (((scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) != 0
6395 && device_tagenb
== FALSE
)
6396 || ((scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) == 0
6397 && device_tagenb
== TRUE
)) {
6399 if ((scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) != 0) {
6401 * Delay change to use tags until after a
6402 * few commands have gone to this device so
6403 * the controller has time to perform transfer
6404 * negotiations without tagged messages getting
6407 device
->tag_delay_count
= CAM_TAG_DELAY_COUNT
;
6408 device
->flags
|= CAM_DEV_TAG_AFTER_COUNT
;
6410 struct ccb_relsim crs
;
6412 xpt_freeze_devq(cts
->ccb_h
.path
, /*count*/1);
6413 device
->inq_flags
&= ~SID_CmdQue
;
6414 xpt_dev_ccbq_resize(cts
->ccb_h
.path
,
6415 sim
->max_dev_openings
);
6416 device
->flags
&= ~CAM_DEV_TAG_AFTER_COUNT
;
6417 device
->tag_delay_count
= 0;
6419 xpt_setup_ccb(&crs
.ccb_h
, cts
->ccb_h
.path
,
6421 crs
.ccb_h
.func_code
= XPT_REL_SIMQ
;
6422 crs
.release_flags
= RELSIM_RELEASE_AFTER_QEMPTY
;
6424 = crs
.release_timeout
6427 xpt_action((union ccb
*)&crs
);
6431 if (async_update
== FALSE
)
6432 (*(sim
->sim_action
))(sim
, (union ccb
*)cts
);
6435 #else /* CAM_NEW_TRAN_CODE */
6438 xpt_set_transfer_settings(struct ccb_trans_settings
*cts
, struct cam_ed
*device
,
6441 struct cam_sim
*sim
;
6444 sim
= cts
->ccb_h
.path
->bus
->sim
;
6445 if (async_update
== FALSE
) {
6446 struct scsi_inquiry_data
*inq_data
;
6447 struct ccb_pathinq cpi
;
6448 struct ccb_trans_settings cur_cts
;
6450 if (device
== NULL
) {
6451 cts
->ccb_h
.status
= CAM_PATH_INVALID
;
6452 xpt_done((union ccb
*)cts
);
6457 * Perform sanity checking against what the
6458 * controller and device can do.
6460 xpt_setup_ccb(&cpi
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6461 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
6462 xpt_action((union ccb
*)&cpi
);
6463 xpt_setup_ccb(&cur_cts
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6464 cur_cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
6465 cur_cts
.flags
= CCB_TRANS_CURRENT_SETTINGS
;
6466 xpt_action((union ccb
*)&cur_cts
);
6467 inq_data
= &device
->inq_data
;
6469 /* Fill in any gaps in what the user gave us */
6470 if ((cts
->valid
& CCB_TRANS_SYNC_RATE_VALID
) == 0)
6471 cts
->sync_period
= cur_cts
.sync_period
;
6472 if ((cts
->valid
& CCB_TRANS_SYNC_OFFSET_VALID
) == 0)
6473 cts
->sync_offset
= cur_cts
.sync_offset
;
6474 if ((cts
->valid
& CCB_TRANS_BUS_WIDTH_VALID
) == 0)
6475 cts
->bus_width
= cur_cts
.bus_width
;
6476 if ((cts
->valid
& CCB_TRANS_DISC_VALID
) == 0) {
6477 cts
->flags
&= ~CCB_TRANS_DISC_ENB
;
6478 cts
->flags
|= cur_cts
.flags
& CCB_TRANS_DISC_ENB
;
6480 if ((cts
->valid
& CCB_TRANS_TQ_VALID
) == 0) {
6481 cts
->flags
&= ~CCB_TRANS_TAG_ENB
;
6482 cts
->flags
|= cur_cts
.flags
& CCB_TRANS_TAG_ENB
;
6485 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0
6486 && (inq_data
->flags
& SID_Sync
) == 0)
6487 || ((cpi
.hba_inquiry
& PI_SDTR_ABLE
) == 0)
6488 || (cts
->sync_offset
== 0)
6489 || (cts
->sync_period
== 0)) {
6491 cts
->sync_period
= 0;
6492 cts
->sync_offset
= 0;
6493 } else if ((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0) {
6495 if ((inq_data
->spi3data
& SID_SPI_CLOCK_DT
) == 0
6496 && cts
->sync_period
<= 0x9) {
6498 * Don't allow DT transmission rates if the
6499 * device does not support it.
6501 cts
->sync_period
= 0xa;
6503 if ((inq_data
->spi3data
& SID_SPI_IUS
) == 0
6504 && cts
->sync_period
<= 0x8) {
6506 * Don't allow PACE transmission rates
6507 * if the device does support packetized
6510 cts
->sync_period
= 0x9;
6514 switch (cts
->bus_width
) {
6515 case MSG_EXT_WDTR_BUS_32_BIT
:
6516 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6517 || (inq_data
->flags
& SID_WBus32
) != 0)
6518 && (cpi
.hba_inquiry
& PI_WIDE_32
) != 0)
6520 /* Fall Through to 16-bit */
6521 case MSG_EXT_WDTR_BUS_16_BIT
:
6522 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6523 || (inq_data
->flags
& SID_WBus16
) != 0)
6524 && (cpi
.hba_inquiry
& PI_WIDE_16
) != 0) {
6525 cts
->bus_width
= MSG_EXT_WDTR_BUS_16_BIT
;
6528 /* Fall Through to 8-bit */
6529 default: /* New bus width?? */
6530 case MSG_EXT_WDTR_BUS_8_BIT
:
6531 /* All targets can do this */
6532 cts
->bus_width
= MSG_EXT_WDTR_BUS_8_BIT
;
6536 if ((cts
->flags
& CCB_TRANS_DISC_ENB
) == 0) {
6538 * Can't tag queue without disconnection.
6540 cts
->flags
&= ~CCB_TRANS_TAG_ENB
;
6541 cts
->valid
|= CCB_TRANS_TQ_VALID
;
6544 if ((cpi
.hba_inquiry
& PI_TAG_ABLE
) == 0
6545 || (INQ_DATA_TQ_ENABLED(inq_data
)) == 0
6546 || (device
->queue_flags
& SCP_QUEUE_DQUE
) != 0
6547 || (device
->quirk
->mintags
== 0)) {
6549 * Can't tag on hardware that doesn't support,
6550 * doesn't have it enabled, or has broken tag support.
6552 cts
->flags
&= ~CCB_TRANS_TAG_ENB
;
6557 if ((cts
->valid
& CCB_TRANS_TQ_VALID
) != 0) {
6561 * If we are transitioning from tags to no-tags or
6562 * vice-versa, we need to carefully freeze and restart
6563 * the queue so that we don't overlap tagged and non-tagged
6564 * commands. We also temporarily stop tags if there is
6565 * a change in transfer negotiation settings to allow
6566 * "tag-less" negotiation.
6568 if ((device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
6569 || (device
->inq_flags
& SID_CmdQue
) != 0)
6570 device_tagenb
= TRUE
;
6572 device_tagenb
= FALSE
;
6574 if (((cts
->flags
& CCB_TRANS_TAG_ENB
) != 0
6575 && device_tagenb
== FALSE
)
6576 || ((cts
->flags
& CCB_TRANS_TAG_ENB
) == 0
6577 && device_tagenb
== TRUE
)) {
6579 if ((cts
->flags
& CCB_TRANS_TAG_ENB
) != 0) {
6581 * Delay change to use tags until after a
6582 * few commands have gone to this device so
6583 * the controller has time to perform transfer
6584 * negotiations without tagged messages getting
6587 device
->tag_delay_count
= CAM_TAG_DELAY_COUNT
;
6588 device
->flags
|= CAM_DEV_TAG_AFTER_COUNT
;
6590 xpt_freeze_devq(cts
->ccb_h
.path
, /*count*/1);
6592 device
->inq_flags
&= ~SID_CmdQue
;
6593 xpt_dev_ccbq_resize(cts
->ccb_h
.path
,
6594 sim
->max_dev_openings
);
6595 device
->flags
&= ~CAM_DEV_TAG_AFTER_COUNT
;
6596 device
->tag_delay_count
= 0;
6601 if (async_update
== FALSE
) {
6603 * If we are currently performing tagged transactions to
6604 * this device and want to change its negotiation parameters,
6605 * go non-tagged for a bit to give the controller a chance to
6606 * negotiate unhampered by tag messages.
6608 if ((device
->inq_flags
& SID_CmdQue
) != 0
6609 && (cts
->flags
& (CCB_TRANS_SYNC_RATE_VALID
|
6610 CCB_TRANS_SYNC_OFFSET_VALID
|
6611 CCB_TRANS_BUS_WIDTH_VALID
)) != 0)
6612 xpt_toggle_tags(cts
->ccb_h
.path
);
6614 (*(sim
->sim_action
))(sim
, (union ccb
*)cts
);
6618 struct ccb_relsim crs
;
6620 xpt_setup_ccb(&crs
.ccb_h
, cts
->ccb_h
.path
,
6622 crs
.ccb_h
.func_code
= XPT_REL_SIMQ
;
6623 crs
.release_flags
= RELSIM_RELEASE_AFTER_QEMPTY
;
6625 = crs
.release_timeout
6628 xpt_action((union ccb
*)&crs
);
6633 #endif /* CAM_NEW_TRAN_CODE */
6636 xpt_toggle_tags(struct cam_path
*path
)
6641 * Give controllers a chance to renegotiate
6642 * before starting tag operations. We
6643 * "toggle" tagged queuing off then on
6644 * which causes the tag enable command delay
6645 * counter to come into effect.
6648 if ((dev
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
6649 || ((dev
->inq_flags
& SID_CmdQue
) != 0
6650 && (dev
->inq_flags
& (SID_Sync
|SID_WBus16
|SID_WBus32
)) != 0)) {
6651 struct ccb_trans_settings cts
;
6653 xpt_setup_ccb(&cts
.ccb_h
, path
, 1);
6654 #ifdef CAM_NEW_TRAN_CODE
6655 cts
.protocol
= PROTO_SCSI
;
6656 cts
.protocol_version
= PROTO_VERSION_UNSPECIFIED
;
6657 cts
.transport
= XPORT_UNSPECIFIED
;
6658 cts
.transport_version
= XPORT_VERSION_UNSPECIFIED
;
6659 cts
.proto_specific
.scsi
.flags
= 0;
6660 cts
.proto_specific
.scsi
.valid
= CTS_SCSI_VALID_TQ
;
6661 #else /* CAM_NEW_TRAN_CODE */
6663 cts
.valid
= CCB_TRANS_TQ_VALID
;
6664 #endif /* CAM_NEW_TRAN_CODE */
6665 xpt_set_transfer_settings(&cts
, path
->device
,
6666 /*async_update*/TRUE
);
6667 #ifdef CAM_NEW_TRAN_CODE
6668 cts
.proto_specific
.scsi
.flags
= CTS_SCSI_FLAGS_TAG_ENB
;
6669 #else /* CAM_NEW_TRAN_CODE */
6670 cts
.flags
= CCB_TRANS_TAG_ENB
;
6671 #endif /* CAM_NEW_TRAN_CODE */
6672 xpt_set_transfer_settings(&cts
, path
->device
,
6673 /*async_update*/TRUE
);
6678 xpt_start_tags(struct cam_path
*path
)
6680 struct ccb_relsim crs
;
6681 struct cam_ed
*device
;
6682 struct cam_sim
*sim
;
6685 device
= path
->device
;
6686 sim
= path
->bus
->sim
;
6687 device
->flags
&= ~CAM_DEV_TAG_AFTER_COUNT
;
6688 xpt_freeze_devq(path
, /*count*/1);
6689 device
->inq_flags
|= SID_CmdQue
;
6690 if (device
->tag_saved_openings
!= 0)
6691 newopenings
= device
->tag_saved_openings
;
6693 newopenings
= min(device
->quirk
->maxtags
,
6694 sim
->max_tagged_dev_openings
);
6695 xpt_dev_ccbq_resize(path
, newopenings
);
6696 xpt_setup_ccb(&crs
.ccb_h
, path
, /*priority*/1);
6697 crs
.ccb_h
.func_code
= XPT_REL_SIMQ
;
6698 crs
.release_flags
= RELSIM_RELEASE_AFTER_QEMPTY
;
6700 = crs
.release_timeout
6703 xpt_action((union ccb
*)&crs
);
6706 static int busses_to_config
;
6707 static int busses_to_reset
;
6710 xptconfigbuscountfunc(struct cam_eb
*bus
, void *arg
)
6712 if (bus
->path_id
!= CAM_XPT_PATH_ID
) {
6713 struct cam_path path
;
6714 struct ccb_pathinq cpi
;
6718 xpt_compile_path(&path
, NULL
, bus
->path_id
,
6719 CAM_TARGET_WILDCARD
, CAM_LUN_WILDCARD
);
6720 xpt_setup_ccb(&cpi
.ccb_h
, &path
, /*priority*/1);
6721 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
6722 xpt_action((union ccb
*)&cpi
);
6723 can_negotiate
= cpi
.hba_inquiry
;
6724 can_negotiate
&= (PI_WIDE_32
|PI_WIDE_16
|PI_SDTR_ABLE
);
6725 if ((cpi
.hba_misc
& PIM_NOBUSRESET
) == 0
6728 xpt_release_path(&path
);
6735 xptconfigfunc(struct cam_eb
*bus
, void *arg
)
6737 struct cam_path
*path
;
6738 union ccb
*work_ccb
;
6740 if (bus
->path_id
!= CAM_XPT_PATH_ID
) {
6744 work_ccb
= xpt_alloc_ccb();
6745 if ((status
= xpt_create_path(&path
, xpt_periph
, bus
->path_id
,
6746 CAM_TARGET_WILDCARD
,
6747 CAM_LUN_WILDCARD
)) !=CAM_REQ_CMP
){
6748 kprintf("xptconfigfunc: xpt_create_path failed with "
6749 "status %#x for bus %d\n", status
, bus
->path_id
);
6750 kprintf("xptconfigfunc: halting bus configuration\n");
6751 xpt_free_ccb(work_ccb
);
6753 xpt_finishconfig(xpt_periph
, NULL
);
6756 xpt_setup_ccb(&work_ccb
->ccb_h
, path
, /*priority*/1);
6757 work_ccb
->ccb_h
.func_code
= XPT_PATH_INQ
;
6758 xpt_action(work_ccb
);
6759 if (work_ccb
->ccb_h
.status
!= CAM_REQ_CMP
) {
6760 kprintf("xptconfigfunc: CPI failed on bus %d "
6761 "with status %d\n", bus
->path_id
,
6762 work_ccb
->ccb_h
.status
);
6763 xpt_finishconfig(xpt_periph
, work_ccb
);
6767 can_negotiate
= work_ccb
->cpi
.hba_inquiry
;
6768 can_negotiate
&= (PI_WIDE_32
|PI_WIDE_16
|PI_SDTR_ABLE
);
6769 if ((work_ccb
->cpi
.hba_misc
& PIM_NOBUSRESET
) == 0
6770 && (can_negotiate
!= 0)) {
6771 xpt_setup_ccb(&work_ccb
->ccb_h
, path
, /*priority*/1);
6772 work_ccb
->ccb_h
.func_code
= XPT_RESET_BUS
;
6773 work_ccb
->ccb_h
.cbfcnp
= NULL
;
6774 CAM_DEBUG(path
, CAM_DEBUG_SUBTRACE
,
6775 ("Resetting Bus\n"));
6776 xpt_action(work_ccb
);
6777 xpt_finishconfig(xpt_periph
, work_ccb
);
6779 /* Act as though we performed a successful BUS RESET */
6780 work_ccb
->ccb_h
.func_code
= XPT_RESET_BUS
;
6781 xpt_finishconfig(xpt_periph
, work_ccb
);
6789 xpt_config(void *arg
)
6792 * Now that interrupts are enabled, go find our devices
6796 /* Setup debugging flags and path */
6797 #ifdef CAM_DEBUG_FLAGS
6798 cam_dflags
= CAM_DEBUG_FLAGS
;
6799 #else /* !CAM_DEBUG_FLAGS */
6800 cam_dflags
= CAM_DEBUG_NONE
;
6801 #endif /* CAM_DEBUG_FLAGS */
6802 #ifdef CAM_DEBUG_BUS
6803 if (cam_dflags
!= CAM_DEBUG_NONE
) {
6804 if (xpt_create_path(&cam_dpath
, xpt_periph
,
6805 CAM_DEBUG_BUS
, CAM_DEBUG_TARGET
,
6806 CAM_DEBUG_LUN
) != CAM_REQ_CMP
) {
6807 kprintf("xpt_config: xpt_create_path() failed for debug"
6808 " target %d:%d:%d, debugging disabled\n",
6809 CAM_DEBUG_BUS
, CAM_DEBUG_TARGET
, CAM_DEBUG_LUN
);
6810 cam_dflags
= CAM_DEBUG_NONE
;
6814 #else /* !CAM_DEBUG_BUS */
6816 #endif /* CAM_DEBUG_BUS */
6817 #endif /* CAMDEBUG */
6820 * Scan all installed busses.
6822 xpt_for_all_busses(xptconfigbuscountfunc
, NULL
);
6824 if (busses_to_config
== 0) {
6825 /* Call manually because we don't have any busses */
6826 xpt_finishconfig(xpt_periph
, NULL
);
6828 if (busses_to_reset
> 0 && scsi_delay
>= 2000) {
6829 kprintf("Waiting %d seconds for SCSI "
6830 "devices to settle\n", scsi_delay
/1000);
6832 xpt_for_all_busses(xptconfigfunc
, NULL
);
6837 * If the given device only has one peripheral attached to it, and if that
6838 * peripheral is the passthrough driver, announce it. This insures that the
6839 * user sees some sort of announcement for every peripheral in their system.
6842 xptpassannouncefunc(struct cam_ed
*device
, void *arg
)
6844 struct cam_periph
*periph
;
6847 for (periph
= SLIST_FIRST(&device
->periphs
), i
= 0; periph
!= NULL
;
6848 periph
= SLIST_NEXT(periph
, periph_links
), i
++);
6850 periph
= SLIST_FIRST(&device
->periphs
);
6852 && (strncmp(periph
->periph_name
, "pass", 4) == 0))
6853 xpt_announce_periph(periph
, NULL
);
6859 xpt_finishconfig(struct cam_periph
*periph
, union ccb
*done_ccb
)
6861 struct periph_driver
**p_drv
;
6864 if (done_ccb
!= NULL
) {
6865 CAM_DEBUG(done_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
,
6866 ("xpt_finishconfig\n"));
6867 switch(done_ccb
->ccb_h
.func_code
) {
6869 if (done_ccb
->ccb_h
.status
== CAM_REQ_CMP
) {
6870 done_ccb
->ccb_h
.func_code
= XPT_SCAN_BUS
;
6871 done_ccb
->ccb_h
.cbfcnp
= xpt_finishconfig
;
6872 done_ccb
->crcn
.flags
= 0;
6873 xpt_action(done_ccb
);
6879 xpt_free_path(done_ccb
->ccb_h
.path
);
6885 if (busses_to_config
== 0) {
6886 /* Register all the peripheral drivers */
6887 /* XXX This will have to change when we have loadable modules */
6888 p_drv
= periph_drivers
;
6889 for (i
= 0; p_drv
[i
] != NULL
; i
++) {
6890 (*p_drv
[i
]->init
)();
6894 * Check for devices with no "standard" peripheral driver
6895 * attached. For any devices like that, announce the
6896 * passthrough driver so the user will see something.
6898 xpt_for_all_devices(xptpassannouncefunc
, NULL
);
6900 /* Release our hook so that the boot can continue. */
6901 config_intrhook_disestablish(xpt_config_hook
);
6902 kfree(xpt_config_hook
, M_TEMP
);
6903 xpt_config_hook
= NULL
;
6905 if (done_ccb
!= NULL
)
6906 xpt_free_ccb(done_ccb
);
6910 xptaction(struct cam_sim
*sim
, union ccb
*work_ccb
)
6912 CAM_DEBUG(work_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("xptaction\n"));
6914 switch (work_ccb
->ccb_h
.func_code
) {
6915 /* Common cases first */
6916 case XPT_PATH_INQ
: /* Path routing inquiry */
6918 struct ccb_pathinq
*cpi
;
6920 cpi
= &work_ccb
->cpi
;
6921 cpi
->version_num
= 1; /* XXX??? */
6922 cpi
->hba_inquiry
= 0;
6923 cpi
->target_sprt
= 0;
6925 cpi
->hba_eng_cnt
= 0;
6926 cpi
->max_target
= 0;
6928 cpi
->initiator_id
= 0;
6929 strncpy(cpi
->sim_vid
, "FreeBSD", SIM_IDLEN
);
6930 strncpy(cpi
->hba_vid
, "", HBA_IDLEN
);
6931 strncpy(cpi
->dev_name
, sim
->sim_name
, DEV_IDLEN
);
6932 cpi
->unit_number
= sim
->unit_number
;
6933 cpi
->bus_id
= sim
->bus_id
;
6934 cpi
->base_transfer_speed
= 0;
6935 #ifdef CAM_NEW_TRAN_CODE
6936 cpi
->protocol
= PROTO_UNSPECIFIED
;
6937 cpi
->protocol_version
= PROTO_VERSION_UNSPECIFIED
;
6938 cpi
->transport
= XPORT_UNSPECIFIED
;
6939 cpi
->transport_version
= XPORT_VERSION_UNSPECIFIED
;
6940 #endif /* CAM_NEW_TRAN_CODE */
6941 cpi
->ccb_h
.status
= CAM_REQ_CMP
;
6946 work_ccb
->ccb_h
.status
= CAM_REQ_INVALID
;
6953 * The xpt as a "controller" has no interrupt sources, so polling
6957 xptpoll(struct cam_sim
*sim
)
6962 * Should only be called by the machine interrupt dispatch routines,
6963 * so put these prototypes here instead of in the header.
6967 swi_cambio(void *arg
, void *frame
)
6973 camisr(cam_isrq_t
*queue
)
6975 struct ccb_hdr
*ccb_h
;
6978 while ((ccb_h
= TAILQ_FIRST(queue
)) != NULL
) {
6981 TAILQ_REMOVE(queue
, ccb_h
, sim_links
.tqe
);
6982 ccb_h
->pinfo
.index
= CAM_UNQUEUED_INDEX
;
6985 CAM_DEBUG(ccb_h
->path
, CAM_DEBUG_TRACE
,
6990 if (ccb_h
->flags
& CAM_HIGH_POWER
) {
6991 struct highpowerlist
*hphead
;
6992 struct cam_ed
*device
;
6993 union ccb
*send_ccb
;
6995 hphead
= &highpowerq
;
6997 send_ccb
= (union ccb
*)STAILQ_FIRST(hphead
);
7000 * Increment the count since this command is done.
7005 * Any high powered commands queued up?
7007 if (send_ccb
!= NULL
) {
7008 device
= send_ccb
->ccb_h
.path
->device
;
7010 STAILQ_REMOVE_HEAD(hphead
, xpt_links
.stqe
);
7012 xpt_release_devq(send_ccb
->ccb_h
.path
,
7013 /*count*/1, /*runqueue*/TRUE
);
7016 if ((ccb_h
->func_code
& XPT_FC_USER_CCB
) == 0) {
7019 dev
= ccb_h
->path
->device
;
7021 cam_ccbq_ccb_done(&dev
->ccbq
, (union ccb
*)ccb_h
);
7023 if (!SIM_DEAD(ccb_h
->path
->bus
->sim
)) {
7024 ccb_h
->path
->bus
->sim
->devq
->send_active
--;
7025 ccb_h
->path
->bus
->sim
->devq
->send_openings
++;
7028 if (((dev
->flags
& CAM_DEV_REL_ON_COMPLETE
) != 0
7029 && (ccb_h
->status
&CAM_STATUS_MASK
) != CAM_REQUEUE_REQ
)
7030 || ((dev
->flags
& CAM_DEV_REL_ON_QUEUE_EMPTY
) != 0
7031 && (dev
->ccbq
.dev_active
== 0))) {
7033 xpt_release_devq(ccb_h
->path
, /*count*/1,
7037 if ((dev
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
7038 && (--dev
->tag_delay_count
== 0))
7039 xpt_start_tags(ccb_h
->path
);
7041 if ((dev
->ccbq
.queue
.entries
> 0)
7042 && (dev
->qfrozen_cnt
== 0)
7043 && (device_is_send_queued(dev
) == 0)) {
7044 runq
= xpt_schedule_dev_sendq(ccb_h
->path
->bus
,
7049 if (ccb_h
->status
& CAM_RELEASE_SIMQ
) {
7050 xpt_release_simq(ccb_h
->path
->bus
->sim
,
7052 ccb_h
->status
&= ~CAM_RELEASE_SIMQ
;
7056 if ((ccb_h
->flags
& CAM_DEV_QFRZDIS
)
7057 && (ccb_h
->status
& CAM_DEV_QFRZN
)) {
7058 xpt_release_devq(ccb_h
->path
, /*count*/1,
7060 ccb_h
->status
&= ~CAM_DEV_QFRZN
;
7062 xpt_run_dev_sendq(ccb_h
->path
->bus
);
7065 /* Call the peripheral driver's callback */
7066 (*ccb_h
->cbfcnp
)(ccb_h
->path
->periph
, (union ccb
*)ccb_h
);
7072 dead_sim_action(struct cam_sim
*sim
, union ccb
*ccb
)
7075 ccb
->ccb_h
.status
= CAM_DEV_NOT_THERE
;
7080 dead_sim_poll(struct cam_sim
*sim
)