Import LibreSSL v2.4.2 to vendor branch
[dragonfly.git] / crypto / libressl / crypto / evp / e_aes.c
blobba8681a115434c0add76bbf0642065c813dd69c2
1 /* $OpenBSD: e_aes.c,v 1.28 2015/06/20 12:01:14 jsing Exp $ */
2 /* ====================================================================
3 * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
52 #include <stdlib.h>
53 #include <string.h>
55 #include <openssl/opensslconf.h>
57 #ifndef OPENSSL_NO_AES
58 #include <openssl/aes.h>
59 #include <openssl/err.h>
60 #include <openssl/evp.h>
62 #include "evp_locl.h"
63 #include "modes_lcl.h"
65 typedef struct {
66 AES_KEY ks;
67 block128_f block;
68 union {
69 cbc128_f cbc;
70 ctr128_f ctr;
71 } stream;
72 } EVP_AES_KEY;
74 typedef struct {
75 AES_KEY ks; /* AES key schedule to use */
76 int key_set; /* Set if key initialised */
77 int iv_set; /* Set if an iv is set */
78 GCM128_CONTEXT gcm;
79 unsigned char *iv; /* Temporary IV store */
80 int ivlen; /* IV length */
81 int taglen;
82 int iv_gen; /* It is OK to generate IVs */
83 int tls_aad_len; /* TLS AAD length */
84 ctr128_f ctr;
85 } EVP_AES_GCM_CTX;
87 typedef struct {
88 AES_KEY ks1, ks2; /* AES key schedules to use */
89 XTS128_CONTEXT xts;
90 void (*stream)(const unsigned char *in, unsigned char *out,
91 size_t length, const AES_KEY *key1, const AES_KEY *key2,
92 const unsigned char iv[16]);
93 } EVP_AES_XTS_CTX;
95 typedef struct {
96 AES_KEY ks; /* AES key schedule to use */
97 int key_set; /* Set if key initialised */
98 int iv_set; /* Set if an iv is set */
99 int tag_set; /* Set if tag is valid */
100 int len_set; /* Set if message length set */
101 int L, M; /* L and M parameters from RFC3610 */
102 CCM128_CONTEXT ccm;
103 ccm128_f str;
104 } EVP_AES_CCM_CTX;
106 #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
108 #ifdef VPAES_ASM
109 int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
110 AES_KEY *key);
111 int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
112 AES_KEY *key);
114 void vpaes_encrypt(const unsigned char *in, unsigned char *out,
115 const AES_KEY *key);
116 void vpaes_decrypt(const unsigned char *in, unsigned char *out,
117 const AES_KEY *key);
119 void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
120 size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
121 #endif
122 #ifdef BSAES_ASM
123 void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
124 size_t length, const AES_KEY *key, unsigned char ivec[16], int enc);
125 void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
126 size_t len, const AES_KEY *key, const unsigned char ivec[16]);
127 void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
128 size_t len, const AES_KEY *key1, const AES_KEY *key2,
129 const unsigned char iv[16]);
130 void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
131 size_t len, const AES_KEY *key1, const AES_KEY *key2,
132 const unsigned char iv[16]);
133 #endif
134 #ifdef AES_CTR_ASM
135 void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
136 size_t blocks, const AES_KEY *key,
137 const unsigned char ivec[AES_BLOCK_SIZE]);
138 #endif
139 #ifdef AES_XTS_ASM
140 void AES_xts_encrypt(const char *inp, char *out, size_t len,
141 const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
142 void AES_xts_decrypt(const char *inp, char *out, size_t len,
143 const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
144 #endif
146 #if defined(AES_ASM) && !defined(I386_ONLY) && ( \
147 ((defined(__i386) || defined(__i386__) || \
148 defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
149 defined(__x86_64) || defined(__x86_64__) || \
150 defined(_M_AMD64) || defined(_M_X64) || \
151 defined(__INTEL__) )
153 extern unsigned int OPENSSL_ia32cap_P[2];
155 #ifdef VPAES_ASM
156 #define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
157 #endif
158 #ifdef BSAES_ASM
159 #define BSAES_CAPABLE VPAES_CAPABLE
160 #endif
162 * AES-NI section
164 #define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
166 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
167 AES_KEY *key);
168 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
169 AES_KEY *key);
171 void aesni_encrypt(const unsigned char *in, unsigned char *out,
172 const AES_KEY *key);
173 void aesni_decrypt(const unsigned char *in, unsigned char *out,
174 const AES_KEY *key);
176 void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out,
177 size_t length, const AES_KEY *key, int enc);
178 void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out,
179 size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
181 void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
182 size_t blocks, const void *key, const unsigned char *ivec);
184 void aesni_xts_encrypt(const unsigned char *in, unsigned char *out,
185 size_t length, const AES_KEY *key1, const AES_KEY *key2,
186 const unsigned char iv[16]);
188 void aesni_xts_decrypt(const unsigned char *in, unsigned char *out,
189 size_t length, const AES_KEY *key1, const AES_KEY *key2,
190 const unsigned char iv[16]);
192 void aesni_ccm64_encrypt_blocks (const unsigned char *in, unsigned char *out,
193 size_t blocks, const void *key, const unsigned char ivec[16],
194 unsigned char cmac[16]);
196 void aesni_ccm64_decrypt_blocks (const unsigned char *in, unsigned char *out,
197 size_t blocks, const void *key, const unsigned char ivec[16],
198 unsigned char cmac[16]);
200 static int
201 aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
202 const unsigned char *iv, int enc)
204 int ret, mode;
205 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
207 mode = ctx->cipher->flags & EVP_CIPH_MODE;
208 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
209 !enc) {
210 ret = aesni_set_decrypt_key(key, ctx->key_len * 8,
211 ctx->cipher_data);
212 dat->block = (block128_f)aesni_decrypt;
213 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
214 (cbc128_f)aesni_cbc_encrypt : NULL;
215 } else {
216 ret = aesni_set_encrypt_key(key, ctx->key_len * 8,
217 ctx->cipher_data);
218 dat->block = (block128_f)aesni_encrypt;
219 if (mode == EVP_CIPH_CBC_MODE)
220 dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
221 else if (mode == EVP_CIPH_CTR_MODE)
222 dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
223 else
224 dat->stream.cbc = NULL;
227 if (ret < 0) {
228 EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
229 return 0;
232 return 1;
235 static int
236 aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
237 const unsigned char *in, size_t len)
239 aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv,
240 ctx->encrypt);
242 return 1;
245 static int
246 aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
247 const unsigned char *in, size_t len)
249 size_t bl = ctx->cipher->block_size;
251 if (len < bl)
252 return 1;
254 aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
256 return 1;
259 #define aesni_ofb_cipher aes_ofb_cipher
260 static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
261 const unsigned char *in, size_t len);
263 #define aesni_cfb_cipher aes_cfb_cipher
264 static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
265 const unsigned char *in, size_t len);
267 #define aesni_cfb8_cipher aes_cfb8_cipher
268 static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
269 const unsigned char *in, size_t len);
271 #define aesni_cfb1_cipher aes_cfb1_cipher
272 static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
273 const unsigned char *in, size_t len);
275 #define aesni_ctr_cipher aes_ctr_cipher
276 static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
277 const unsigned char *in, size_t len);
279 static int
280 aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
281 const unsigned char *iv, int enc)
283 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
285 if (!iv && !key)
286 return 1;
287 if (key) {
288 aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks);
289 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
290 (block128_f)aesni_encrypt);
291 gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
292 /* If we have an iv can set it directly, otherwise use
293 * saved IV.
295 if (iv == NULL && gctx->iv_set)
296 iv = gctx->iv;
297 if (iv) {
298 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
299 gctx->iv_set = 1;
301 gctx->key_set = 1;
302 } else {
303 /* If key set use IV, otherwise copy */
304 if (gctx->key_set)
305 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
306 else
307 memcpy(gctx->iv, iv, gctx->ivlen);
308 gctx->iv_set = 1;
309 gctx->iv_gen = 0;
311 return 1;
314 #define aesni_gcm_cipher aes_gcm_cipher
315 static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
316 const unsigned char *in, size_t len);
318 static int
319 aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
320 const unsigned char *iv, int enc)
322 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
324 if (!iv && !key)
325 return 1;
327 if (key) {
328 /* key_len is two AES keys */
329 if (enc) {
330 aesni_set_encrypt_key(key, ctx->key_len * 4,
331 &xctx->ks1);
332 xctx->xts.block1 = (block128_f)aesni_encrypt;
333 xctx->stream = aesni_xts_encrypt;
334 } else {
335 aesni_set_decrypt_key(key, ctx->key_len * 4,
336 &xctx->ks1);
337 xctx->xts.block1 = (block128_f)aesni_decrypt;
338 xctx->stream = aesni_xts_decrypt;
341 aesni_set_encrypt_key(key + ctx->key_len / 2,
342 ctx->key_len * 4, &xctx->ks2);
343 xctx->xts.block2 = (block128_f)aesni_encrypt;
345 xctx->xts.key1 = &xctx->ks1;
348 if (iv) {
349 xctx->xts.key2 = &xctx->ks2;
350 memcpy(ctx->iv, iv, 16);
353 return 1;
356 #define aesni_xts_cipher aes_xts_cipher
357 static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
358 const unsigned char *in, size_t len);
360 static int
361 aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
362 const unsigned char *iv, int enc)
364 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
366 if (!iv && !key)
367 return 1;
368 if (key) {
369 aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
370 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
371 &cctx->ks, (block128_f)aesni_encrypt);
372 cctx->str = enc ? (ccm128_f)aesni_ccm64_encrypt_blocks :
373 (ccm128_f)aesni_ccm64_decrypt_blocks;
374 cctx->key_set = 1;
376 if (iv) {
377 memcpy(ctx->iv, iv, 15 - cctx->L);
378 cctx->iv_set = 1;
380 return 1;
383 #define aesni_ccm_cipher aes_ccm_cipher
384 static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
385 const unsigned char *in, size_t len);
387 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
388 static const EVP_CIPHER aesni_##keylen##_##mode = { \
389 .nid = n##_##keylen##_##nmode, \
390 .block_size = blocksize, \
391 .key_len = keylen / 8, \
392 .iv_len = ivlen, \
393 .flags = fl | EVP_CIPH_##MODE##_MODE, \
394 .init = aesni_init_key, \
395 .do_cipher = aesni_##mode##_cipher, \
396 .ctx_size = sizeof(EVP_AES_KEY) \
397 }; \
398 static const EVP_CIPHER aes_##keylen##_##mode = { \
399 .nid = n##_##keylen##_##nmode, \
400 .block_size = blocksize, \
401 .key_len = keylen / 8, \
402 .iv_len = ivlen, \
403 .flags = fl | EVP_CIPH_##MODE##_MODE, \
404 .init = aes_init_key, \
405 .do_cipher = aes_##mode##_cipher, \
406 .ctx_size = sizeof(EVP_AES_KEY) \
407 }; \
408 const EVP_CIPHER * \
409 EVP_aes_##keylen##_##mode(void) \
411 return AESNI_CAPABLE ? \
412 &aesni_##keylen##_##mode : &aes_##keylen##_##mode; \
415 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl) \
416 static const EVP_CIPHER aesni_##keylen##_##mode = { \
417 .nid = n##_##keylen##_##mode, \
418 .block_size = blocksize, \
419 .key_len = \
420 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \
421 keylen / 8, \
422 .iv_len = ivlen, \
423 .flags = fl | EVP_CIPH_##MODE##_MODE, \
424 .init = aesni_##mode##_init_key, \
425 .do_cipher = aesni_##mode##_cipher, \
426 .cleanup = aes_##mode##_cleanup, \
427 .ctx_size = sizeof(EVP_AES_##MODE##_CTX), \
428 .ctrl = aes_##mode##_ctrl \
429 }; \
430 static const EVP_CIPHER aes_##keylen##_##mode = { \
431 .nid = n##_##keylen##_##mode, \
432 .block_size = blocksize, \
433 .key_len = \
434 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \
435 keylen / 8, \
436 .iv_len = ivlen, \
437 .flags = fl | EVP_CIPH_##MODE##_MODE, \
438 .init = aes_##mode##_init_key, \
439 .do_cipher = aes_##mode##_cipher, \
440 .cleanup = aes_##mode##_cleanup, \
441 .ctx_size = sizeof(EVP_AES_##MODE##_CTX), \
442 .ctrl = aes_##mode##_ctrl \
443 }; \
444 const EVP_CIPHER * \
445 EVP_aes_##keylen##_##mode(void) \
447 return AESNI_CAPABLE ? \
448 &aesni_##keylen##_##mode : &aes_##keylen##_##mode; \
451 #else
453 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
454 static const EVP_CIPHER aes_##keylen##_##mode = { \
455 .nid = n##_##keylen##_##nmode, \
456 .block_size = blocksize, \
457 .key_len = keylen / 8, \
458 .iv_len = ivlen, \
459 .flags = fl | EVP_CIPH_##MODE##_MODE, \
460 .init = aes_init_key, \
461 .do_cipher = aes_##mode##_cipher, \
462 .ctx_size = sizeof(EVP_AES_KEY) \
463 }; \
464 const EVP_CIPHER * \
465 EVP_aes_##keylen##_##mode(void) \
467 return &aes_##keylen##_##mode; \
470 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl) \
471 static const EVP_CIPHER aes_##keylen##_##mode = { \
472 .nid = n##_##keylen##_##mode, \
473 .block_size = blocksize, \
474 .key_len = \
475 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \
476 keylen / 8, \
477 .iv_len = ivlen, \
478 .flags = fl | EVP_CIPH_##MODE##_MODE, \
479 .init = aes_##mode##_init_key, \
480 .do_cipher = aes_##mode##_cipher, \
481 .cleanup = aes_##mode##_cleanup, \
482 .ctx_size = sizeof(EVP_AES_##MODE##_CTX), \
483 .ctrl = aes_##mode##_ctrl \
484 }; \
485 const EVP_CIPHER * \
486 EVP_aes_##keylen##_##mode(void) \
488 return &aes_##keylen##_##mode; \
491 #endif
493 #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
494 BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
495 BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
496 BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
497 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
498 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
499 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
500 BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
502 static int
503 aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
504 const unsigned char *iv, int enc)
506 int ret, mode;
507 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
509 mode = ctx->cipher->flags & EVP_CIPH_MODE;
510 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
511 !enc)
512 #ifdef BSAES_CAPABLE
513 if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
514 ret = AES_set_decrypt_key(key, ctx->key_len * 8,
515 &dat->ks);
516 dat->block = (block128_f)AES_decrypt;
517 dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
518 } else
519 #endif
520 #ifdef VPAES_CAPABLE
521 if (VPAES_CAPABLE) {
522 ret = vpaes_set_decrypt_key(key, ctx->key_len * 8,
523 &dat->ks);
524 dat->block = (block128_f)vpaes_decrypt;
525 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
526 (cbc128_f)vpaes_cbc_encrypt : NULL;
527 } else
528 #endif
530 ret = AES_set_decrypt_key(key, ctx->key_len * 8,
531 &dat->ks);
532 dat->block = (block128_f)AES_decrypt;
533 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
534 (cbc128_f)AES_cbc_encrypt : NULL;
535 } else
536 #ifdef BSAES_CAPABLE
537 if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
538 ret = AES_set_encrypt_key(key, ctx->key_len * 8,
539 &dat->ks);
540 dat->block = (block128_f)AES_encrypt;
541 dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
542 } else
543 #endif
544 #ifdef VPAES_CAPABLE
545 if (VPAES_CAPABLE) {
546 ret = vpaes_set_encrypt_key(key, ctx->key_len * 8,
547 &dat->ks);
548 dat->block = (block128_f)vpaes_encrypt;
549 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
550 (cbc128_f)vpaes_cbc_encrypt : NULL;
551 } else
552 #endif
554 ret = AES_set_encrypt_key(key, ctx->key_len * 8,
555 &dat->ks);
556 dat->block = (block128_f)AES_encrypt;
557 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
558 (cbc128_f)AES_cbc_encrypt : NULL;
559 #ifdef AES_CTR_ASM
560 if (mode == EVP_CIPH_CTR_MODE)
561 dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt;
562 #endif
565 if (ret < 0) {
566 EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
567 return 0;
570 return 1;
573 static int
574 aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
575 const unsigned char *in, size_t len)
577 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
579 if (dat->stream.cbc)
580 (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv,
581 ctx->encrypt);
582 else if (ctx->encrypt)
583 CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv,
584 dat->block);
585 else
586 CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv,
587 dat->block);
589 return 1;
592 static int
593 aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
594 const unsigned char *in, size_t len)
596 size_t bl = ctx->cipher->block_size;
597 size_t i;
598 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
600 if (len < bl)
601 return 1;
603 for (i = 0, len -= bl; i <= len; i += bl)
604 (*dat->block)(in + i, out + i, &dat->ks);
606 return 1;
609 static int
610 aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
611 const unsigned char *in, size_t len)
613 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
615 CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
616 dat->block);
617 return 1;
620 static int
621 aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
622 const unsigned char *in, size_t len)
624 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
626 CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
627 ctx->encrypt, dat->block);
628 return 1;
631 static int
632 aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
633 const unsigned char *in, size_t len)
635 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
637 CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
638 ctx->encrypt, dat->block);
639 return 1;
642 static int
643 aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
644 const unsigned char *in, size_t len)
646 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
648 if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) {
649 CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv,
650 &ctx->num, ctx->encrypt, dat->block);
651 return 1;
654 while (len >= MAXBITCHUNK) {
655 CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK*8, &dat->ks,
656 ctx->iv, &ctx->num, ctx->encrypt, dat->block);
657 len -= MAXBITCHUNK;
659 if (len)
660 CRYPTO_cfb128_1_encrypt(in, out, len*8, &dat->ks,
661 ctx->iv, &ctx->num, ctx->encrypt, dat->block);
663 return 1;
666 static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out,
667 const unsigned char *in, size_t len)
669 unsigned int num = ctx->num;
670 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
672 if (dat->stream.ctr)
673 CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
674 ctx->iv, ctx->buf, &num, dat->stream.ctr);
675 else
676 CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
677 ctx->iv, ctx->buf, &num, dat->block);
678 ctx->num = (size_t)num;
679 return 1;
682 BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS)
683 BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS)
684 BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS)
686 static int
687 aes_gcm_cleanup(EVP_CIPHER_CTX *c)
689 EVP_AES_GCM_CTX *gctx = c->cipher_data;
691 if (gctx->iv != c->iv)
692 free(gctx->iv);
693 explicit_bzero(gctx, sizeof(*gctx));
694 return 1;
697 /* increment counter (64-bit int) by 1 */
698 static void
699 ctr64_inc(unsigned char *counter)
701 int n = 8;
702 unsigned char c;
704 do {
705 --n;
706 c = counter[n];
707 ++c;
708 counter[n] = c;
709 if (c)
710 return;
711 } while (n);
714 static int
715 aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
717 EVP_AES_GCM_CTX *gctx = c->cipher_data;
719 switch (type) {
720 case EVP_CTRL_INIT:
721 gctx->key_set = 0;
722 gctx->iv_set = 0;
723 gctx->ivlen = c->cipher->iv_len;
724 gctx->iv = c->iv;
725 gctx->taglen = -1;
726 gctx->iv_gen = 0;
727 gctx->tls_aad_len = -1;
728 return 1;
730 case EVP_CTRL_GCM_SET_IVLEN:
731 if (arg <= 0)
732 return 0;
733 /* Allocate memory for IV if needed */
734 if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
735 if (gctx->iv != c->iv)
736 free(gctx->iv);
737 gctx->iv = malloc(arg);
738 if (!gctx->iv)
739 return 0;
741 gctx->ivlen = arg;
742 return 1;
744 case EVP_CTRL_GCM_SET_TAG:
745 if (arg <= 0 || arg > 16 || c->encrypt)
746 return 0;
747 memcpy(c->buf, ptr, arg);
748 gctx->taglen = arg;
749 return 1;
751 case EVP_CTRL_GCM_GET_TAG:
752 if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
753 return 0;
754 memcpy(ptr, c->buf, arg);
755 return 1;
757 case EVP_CTRL_GCM_SET_IV_FIXED:
758 /* Special case: -1 length restores whole IV */
759 if (arg == -1) {
760 memcpy(gctx->iv, ptr, gctx->ivlen);
761 gctx->iv_gen = 1;
762 return 1;
764 /* Fixed field must be at least 4 bytes and invocation field
765 * at least 8.
767 if ((arg < 4) || (gctx->ivlen - arg) < 8)
768 return 0;
769 if (arg)
770 memcpy(gctx->iv, ptr, arg);
771 if (c->encrypt)
772 arc4random_buf(gctx->iv + arg, gctx->ivlen - arg);
773 gctx->iv_gen = 1;
774 return 1;
776 case EVP_CTRL_GCM_IV_GEN:
777 if (gctx->iv_gen == 0 || gctx->key_set == 0)
778 return 0;
779 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
780 if (arg <= 0 || arg > gctx->ivlen)
781 arg = gctx->ivlen;
782 memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
783 /* Invocation field will be at least 8 bytes in size and
784 * so no need to check wrap around or increment more than
785 * last 8 bytes.
787 ctr64_inc(gctx->iv + gctx->ivlen - 8);
788 gctx->iv_set = 1;
789 return 1;
791 case EVP_CTRL_GCM_SET_IV_INV:
792 if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
793 return 0;
794 memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
795 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
796 gctx->iv_set = 1;
797 return 1;
799 case EVP_CTRL_AEAD_TLS1_AAD:
800 /* Save the AAD for later use */
801 if (arg != 13)
802 return 0;
803 memcpy(c->buf, ptr, arg);
804 gctx->tls_aad_len = arg;
806 unsigned int len = c->buf[arg - 2] << 8 |
807 c->buf[arg - 1];
809 /* Correct length for explicit IV */
810 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
812 /* If decrypting correct for tag too */
813 if (!c->encrypt)
814 len -= EVP_GCM_TLS_TAG_LEN;
815 c->buf[arg - 2] = len >> 8;
816 c->buf[arg - 1] = len & 0xff;
818 /* Extra padding: tag appended to record */
819 return EVP_GCM_TLS_TAG_LEN;
821 case EVP_CTRL_COPY:
823 EVP_CIPHER_CTX *out = ptr;
824 EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
826 if (gctx->gcm.key) {
827 if (gctx->gcm.key != &gctx->ks)
828 return 0;
829 gctx_out->gcm.key = &gctx_out->ks;
831 if (gctx->iv == c->iv)
832 gctx_out->iv = out->iv;
833 else {
834 gctx_out->iv = malloc(gctx->ivlen);
835 if (!gctx_out->iv)
836 return 0;
837 memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
839 return 1;
842 default:
843 return -1;
848 static ctr128_f
849 aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
850 const unsigned char *key, size_t key_len)
852 #ifdef BSAES_CAPABLE
853 if (BSAES_CAPABLE) {
854 AES_set_encrypt_key(key, key_len * 8, aes_key);
855 CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
856 return (ctr128_f)bsaes_ctr32_encrypt_blocks;
857 } else
858 #endif
859 #ifdef VPAES_CAPABLE
860 if (VPAES_CAPABLE) {
861 vpaes_set_encrypt_key(key, key_len * 8, aes_key);
862 CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt);
863 return NULL;
864 } else
865 #endif
866 (void)0; /* terminate potentially open 'else' */
868 AES_set_encrypt_key(key, key_len * 8, aes_key);
869 CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
870 #ifdef AES_CTR_ASM
871 return (ctr128_f)AES_ctr32_encrypt;
872 #else
873 return NULL;
874 #endif
877 static int
878 aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
879 const unsigned char *iv, int enc)
881 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
883 if (!iv && !key)
884 return 1;
885 if (key) {
886 gctx->ctr = aes_gcm_set_key(&gctx->ks, &gctx->gcm,
887 key, ctx->key_len);
889 /* If we have an iv can set it directly, otherwise use
890 * saved IV.
892 if (iv == NULL && gctx->iv_set)
893 iv = gctx->iv;
894 if (iv) {
895 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
896 gctx->iv_set = 1;
898 gctx->key_set = 1;
899 } else {
900 /* If key set use IV, otherwise copy */
901 if (gctx->key_set)
902 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
903 else
904 memcpy(gctx->iv, iv, gctx->ivlen);
905 gctx->iv_set = 1;
906 gctx->iv_gen = 0;
908 return 1;
911 /* Handle TLS GCM packet format. This consists of the last portion of the IV
912 * followed by the payload and finally the tag. On encrypt generate IV,
913 * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
914 * and verify tag.
917 static int
918 aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
919 const unsigned char *in, size_t len)
921 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
922 int rv = -1;
924 /* Encrypt/decrypt must be performed in place */
925 if (out != in ||
926 len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
927 return -1;
929 /* Set IV from start of buffer or generate IV and write to start
930 * of buffer.
932 if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ?
933 EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,
934 EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
935 goto err;
937 /* Use saved AAD */
938 if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
939 goto err;
941 /* Fix buffer and length to point to payload */
942 in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
943 out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
944 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
945 if (ctx->encrypt) {
946 /* Encrypt payload */
947 if (gctx->ctr) {
948 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in, out,
949 len, gctx->ctr))
950 goto err;
951 } else {
952 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len))
953 goto err;
955 out += len;
957 /* Finally write tag */
958 CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
959 rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
960 } else {
961 /* Decrypt */
962 if (gctx->ctr) {
963 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in, out,
964 len, gctx->ctr))
965 goto err;
966 } else {
967 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len))
968 goto err;
970 /* Retrieve tag */
971 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
973 /* If tag mismatch wipe buffer */
974 if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
975 explicit_bzero(out, len);
976 goto err;
978 rv = len;
981 err:
982 gctx->iv_set = 0;
983 gctx->tls_aad_len = -1;
984 return rv;
987 static int
988 aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
989 const unsigned char *in, size_t len)
991 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
993 /* If not set up, return error */
994 if (!gctx->key_set)
995 return -1;
997 if (gctx->tls_aad_len >= 0)
998 return aes_gcm_tls_cipher(ctx, out, in, len);
1000 if (!gctx->iv_set)
1001 return -1;
1003 if (in) {
1004 if (out == NULL) {
1005 if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
1006 return -1;
1007 } else if (ctx->encrypt) {
1008 if (gctx->ctr) {
1009 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
1010 in, out, len, gctx->ctr))
1011 return -1;
1012 } else {
1013 if (CRYPTO_gcm128_encrypt(&gctx->gcm,
1014 in, out, len))
1015 return -1;
1017 } else {
1018 if (gctx->ctr) {
1019 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
1020 in, out, len, gctx->ctr))
1021 return -1;
1022 } else {
1023 if (CRYPTO_gcm128_decrypt(&gctx->gcm,
1024 in, out, len))
1025 return -1;
1028 return len;
1029 } else {
1030 if (!ctx->encrypt) {
1031 if (gctx->taglen < 0)
1032 return -1;
1033 if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf,
1034 gctx->taglen) != 0)
1035 return -1;
1036 gctx->iv_set = 0;
1037 return 0;
1039 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
1040 gctx->taglen = 16;
1042 /* Don't reuse the IV */
1043 gctx->iv_set = 0;
1044 return 0;
1049 #define CUSTOM_FLAGS \
1050 ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
1051 EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | \
1052 EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
1054 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
1055 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1056 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
1057 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1058 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
1059 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1061 static int
1062 aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1064 EVP_AES_XTS_CTX *xctx = c->cipher_data;
1066 switch (type) {
1067 case EVP_CTRL_INIT:
1069 * key1 and key2 are used as an indicator both key and IV
1070 * are set
1072 xctx->xts.key1 = NULL;
1073 xctx->xts.key2 = NULL;
1074 return 1;
1076 case EVP_CTRL_COPY:
1078 EVP_CIPHER_CTX *out = ptr;
1079 EVP_AES_XTS_CTX *xctx_out = out->cipher_data;
1081 if (xctx->xts.key1) {
1082 if (xctx->xts.key1 != &xctx->ks1)
1083 return 0;
1084 xctx_out->xts.key1 = &xctx_out->ks1;
1086 if (xctx->xts.key2) {
1087 if (xctx->xts.key2 != &xctx->ks2)
1088 return 0;
1089 xctx_out->xts.key2 = &xctx_out->ks2;
1091 return 1;
1094 return -1;
1097 static int
1098 aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1099 const unsigned char *iv, int enc)
1101 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1103 if (!iv && !key)
1104 return 1;
1106 if (key) do {
1107 #ifdef AES_XTS_ASM
1108 xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
1109 #else
1110 xctx->stream = NULL;
1111 #endif
1112 /* key_len is two AES keys */
1113 #ifdef BSAES_CAPABLE
1114 if (BSAES_CAPABLE)
1115 xctx->stream = enc ? bsaes_xts_encrypt :
1116 bsaes_xts_decrypt;
1117 else
1118 #endif
1119 #ifdef VPAES_CAPABLE
1120 if (VPAES_CAPABLE) {
1121 if (enc) {
1122 vpaes_set_encrypt_key(key, ctx->key_len * 4,
1123 &xctx->ks1);
1124 xctx->xts.block1 = (block128_f)vpaes_encrypt;
1125 } else {
1126 vpaes_set_decrypt_key(key, ctx->key_len * 4,
1127 &xctx->ks1);
1128 xctx->xts.block1 = (block128_f)vpaes_decrypt;
1131 vpaes_set_encrypt_key(key + ctx->key_len / 2,
1132 ctx->key_len * 4, &xctx->ks2);
1133 xctx->xts.block2 = (block128_f)vpaes_encrypt;
1135 xctx->xts.key1 = &xctx->ks1;
1136 break;
1137 } else
1138 #endif
1139 (void)0; /* terminate potentially open 'else' */
1141 if (enc) {
1142 AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1143 xctx->xts.block1 = (block128_f)AES_encrypt;
1144 } else {
1145 AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1146 xctx->xts.block1 = (block128_f)AES_decrypt;
1149 AES_set_encrypt_key(key + ctx->key_len / 2,
1150 ctx->key_len * 4, &xctx->ks2);
1151 xctx->xts.block2 = (block128_f)AES_encrypt;
1153 xctx->xts.key1 = &xctx->ks1;
1154 } while (0);
1156 if (iv) {
1157 xctx->xts.key2 = &xctx->ks2;
1158 memcpy(ctx->iv, iv, 16);
1161 return 1;
1164 static int
1165 aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1166 const unsigned char *in, size_t len)
1168 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1170 if (!xctx->xts.key1 || !xctx->xts.key2)
1171 return 0;
1172 if (!out || !in || len < AES_BLOCK_SIZE)
1173 return 0;
1175 if (xctx->stream)
1176 (*xctx->stream)(in, out, len, xctx->xts.key1, xctx->xts.key2,
1177 ctx->iv);
1178 else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
1179 ctx->encrypt))
1180 return 0;
1181 return 1;
1184 #define aes_xts_cleanup NULL
1186 #define XTS_FLAGS \
1187 ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
1188 EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
1190 BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
1191 BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
1193 static int
1194 aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1196 EVP_AES_CCM_CTX *cctx = c->cipher_data;
1198 switch (type) {
1199 case EVP_CTRL_INIT:
1200 cctx->key_set = 0;
1201 cctx->iv_set = 0;
1202 cctx->L = 8;
1203 cctx->M = 12;
1204 cctx->tag_set = 0;
1205 cctx->len_set = 0;
1206 return 1;
1208 case EVP_CTRL_CCM_SET_IVLEN:
1209 arg = 15 - arg;
1211 case EVP_CTRL_CCM_SET_L:
1212 if (arg < 2 || arg > 8)
1213 return 0;
1214 cctx->L = arg;
1215 return 1;
1217 case EVP_CTRL_CCM_SET_TAG:
1218 if ((arg & 1) || arg < 4 || arg > 16)
1219 return 0;
1220 if ((c->encrypt && ptr) || (!c->encrypt && !ptr))
1221 return 0;
1222 if (ptr) {
1223 cctx->tag_set = 1;
1224 memcpy(c->buf, ptr, arg);
1226 cctx->M = arg;
1227 return 1;
1229 case EVP_CTRL_CCM_GET_TAG:
1230 if (!c->encrypt || !cctx->tag_set)
1231 return 0;
1232 if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
1233 return 0;
1234 cctx->tag_set = 0;
1235 cctx->iv_set = 0;
1236 cctx->len_set = 0;
1237 return 1;
1239 case EVP_CTRL_COPY:
1241 EVP_CIPHER_CTX *out = ptr;
1242 EVP_AES_CCM_CTX *cctx_out = out->cipher_data;
1244 if (cctx->ccm.key) {
1245 if (cctx->ccm.key != &cctx->ks)
1246 return 0;
1247 cctx_out->ccm.key = &cctx_out->ks;
1249 return 1;
1252 default:
1253 return -1;
1257 static int
1258 aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1259 const unsigned char *iv, int enc)
1261 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1263 if (!iv && !key)
1264 return 1;
1265 if (key) do {
1266 #ifdef VPAES_CAPABLE
1267 if (VPAES_CAPABLE) {
1268 vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks);
1269 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1270 &cctx->ks, (block128_f)vpaes_encrypt);
1271 cctx->str = NULL;
1272 cctx->key_set = 1;
1273 break;
1275 #endif
1276 AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
1277 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1278 &cctx->ks, (block128_f)AES_encrypt);
1279 cctx->str = NULL;
1280 cctx->key_set = 1;
1281 } while (0);
1282 if (iv) {
1283 memcpy(ctx->iv, iv, 15 - cctx->L);
1284 cctx->iv_set = 1;
1286 return 1;
1289 static int
1290 aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1291 const unsigned char *in, size_t len)
1293 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1294 CCM128_CONTEXT *ccm = &cctx->ccm;
1296 /* If not set up, return error */
1297 if (!cctx->iv_set && !cctx->key_set)
1298 return -1;
1299 if (!ctx->encrypt && !cctx->tag_set)
1300 return -1;
1302 if (!out) {
1303 if (!in) {
1304 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,
1305 len))
1306 return -1;
1307 cctx->len_set = 1;
1308 return len;
1310 /* If have AAD need message length */
1311 if (!cctx->len_set && len)
1312 return -1;
1313 CRYPTO_ccm128_aad(ccm, in, len);
1314 return len;
1316 /* EVP_*Final() doesn't return any data */
1317 if (!in)
1318 return 0;
1319 /* If not set length yet do it */
1320 if (!cctx->len_set) {
1321 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
1322 return -1;
1323 cctx->len_set = 1;
1325 if (ctx->encrypt) {
1326 if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
1327 cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len))
1328 return -1;
1329 cctx->tag_set = 1;
1330 return len;
1331 } else {
1332 int rv = -1;
1333 if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
1334 cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
1335 unsigned char tag[16];
1336 if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
1337 if (!memcmp(tag, ctx->buf, cctx->M))
1338 rv = len;
1341 if (rv == -1)
1342 explicit_bzero(out, len);
1343 cctx->iv_set = 0;
1344 cctx->tag_set = 0;
1345 cctx->len_set = 0;
1346 return rv;
1351 #define aes_ccm_cleanup NULL
1353 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
1354 EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1355 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
1356 EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1357 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
1358 EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1360 #define EVP_AEAD_AES_GCM_TAG_LEN 16
1362 struct aead_aes_gcm_ctx {
1363 union {
1364 double align;
1365 AES_KEY ks;
1366 } ks;
1367 GCM128_CONTEXT gcm;
1368 ctr128_f ctr;
1369 unsigned char tag_len;
1372 static int
1373 aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const unsigned char *key, size_t key_len,
1374 size_t tag_len)
1376 struct aead_aes_gcm_ctx *gcm_ctx;
1377 const size_t key_bits = key_len * 8;
1379 /* EVP_AEAD_CTX_init should catch this. */
1380 if (key_bits != 128 && key_bits != 256) {
1381 EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_BAD_KEY_LENGTH);
1382 return 0;
1385 if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH)
1386 tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1388 if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
1389 EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_TAG_TOO_LARGE);
1390 return 0;
1393 gcm_ctx = malloc(sizeof(struct aead_aes_gcm_ctx));
1394 if (gcm_ctx == NULL)
1395 return 0;
1397 #ifdef AESNI_CAPABLE
1398 if (AESNI_CAPABLE) {
1399 aesni_set_encrypt_key(key, key_bits, &gcm_ctx->ks.ks);
1400 CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks,
1401 (block128_f)aesni_encrypt);
1402 gcm_ctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
1403 } else
1404 #endif
1406 gcm_ctx->ctr = aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm,
1407 key, key_len);
1409 gcm_ctx->tag_len = tag_len;
1410 ctx->aead_state = gcm_ctx;
1412 return 1;
1415 static void
1416 aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx)
1418 struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1420 explicit_bzero(gcm_ctx, sizeof(*gcm_ctx));
1421 free(gcm_ctx);
1424 static int
1425 aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
1426 size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
1427 const unsigned char *in, size_t in_len, const unsigned char *ad,
1428 size_t ad_len)
1430 const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1431 GCM128_CONTEXT gcm;
1432 size_t bulk = 0;
1434 if (max_out_len < in_len + gcm_ctx->tag_len) {
1435 EVPerr(EVP_F_AEAD_AES_GCM_SEAL, EVP_R_BUFFER_TOO_SMALL);
1436 return 0;
1439 memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
1440 CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
1442 if (ad_len > 0 && CRYPTO_gcm128_aad(&gcm, ad, ad_len))
1443 return 0;
1445 if (gcm_ctx->ctr) {
1446 if (CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk,
1447 in_len - bulk, gcm_ctx->ctr))
1448 return 0;
1449 } else {
1450 if (CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk,
1451 in_len - bulk))
1452 return 0;
1455 CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len);
1456 *out_len = in_len + gcm_ctx->tag_len;
1458 return 1;
1461 static int
1462 aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
1463 size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
1464 const unsigned char *in, size_t in_len, const unsigned char *ad,
1465 size_t ad_len)
1467 const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1468 unsigned char tag[EVP_AEAD_AES_GCM_TAG_LEN];
1469 GCM128_CONTEXT gcm;
1470 size_t plaintext_len;
1471 size_t bulk = 0;
1473 if (in_len < gcm_ctx->tag_len) {
1474 EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT);
1475 return 0;
1478 plaintext_len = in_len - gcm_ctx->tag_len;
1480 if (max_out_len < plaintext_len) {
1481 EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BUFFER_TOO_SMALL);
1482 return 0;
1485 memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
1486 CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
1488 if (CRYPTO_gcm128_aad(&gcm, ad, ad_len))
1489 return 0;
1491 if (gcm_ctx->ctr) {
1492 if (CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk,
1493 in_len - bulk - gcm_ctx->tag_len, gcm_ctx->ctr))
1494 return 0;
1495 } else {
1496 if (CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk,
1497 in_len - bulk - gcm_ctx->tag_len))
1498 return 0;
1501 CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len);
1502 if (timingsafe_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) {
1503 EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT);
1504 return 0;
1507 *out_len = plaintext_len;
1509 return 1;
1512 static const EVP_AEAD aead_aes_128_gcm = {
1513 .key_len = 16,
1514 .nonce_len = 12,
1515 .overhead = EVP_AEAD_AES_GCM_TAG_LEN,
1516 .max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
1518 .init = aead_aes_gcm_init,
1519 .cleanup = aead_aes_gcm_cleanup,
1520 .seal = aead_aes_gcm_seal,
1521 .open = aead_aes_gcm_open,
1524 static const EVP_AEAD aead_aes_256_gcm = {
1525 .key_len = 32,
1526 .nonce_len = 12,
1527 .overhead = EVP_AEAD_AES_GCM_TAG_LEN,
1528 .max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
1530 .init = aead_aes_gcm_init,
1531 .cleanup = aead_aes_gcm_cleanup,
1532 .seal = aead_aes_gcm_seal,
1533 .open = aead_aes_gcm_open,
1536 const EVP_AEAD *
1537 EVP_aead_aes_128_gcm(void)
1539 return &aead_aes_128_gcm;
1542 const EVP_AEAD *
1543 EVP_aead_aes_256_gcm(void)
1545 return &aead_aes_256_gcm;
1548 #endif