Import LibreSSL v2.4.2 to vendor branch
[dragonfly.git] / crypto / libressl / crypto / bn / bn_gf2m.c
blob714e303370b9a0ae197781c675ca16cc12ac9855
1 /* $OpenBSD: bn_gf2m.c,v 1.20 2015/06/11 15:55:28 jsing Exp $ */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
91 #include <limits.h>
92 #include <stdio.h>
94 #include <openssl/opensslconf.h>
96 #include <openssl/err.h>
98 #include "bn_lcl.h"
100 #ifndef OPENSSL_NO_EC2M
102 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
103 #define MAX_ITERATIONS 50
105 static const BN_ULONG SQR_tb[16] =
106 { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85 };
108 /* Platform-specific macros to accelerate squaring. */
109 #ifdef _LP64
110 #define SQR1(w) \
111 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
112 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
113 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
114 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
115 #define SQR0(w) \
116 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
117 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
118 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
119 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
120 #else
121 #define SQR1(w) \
122 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
123 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
124 #define SQR0(w) \
125 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
126 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
127 #endif
129 #if !defined(OPENSSL_BN_ASM_GF2m)
130 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131 * result is a polynomial r with degree < 2 * BN_BITS - 1
132 * The caller MUST ensure that the variables have the right amount
133 * of space allocated.
135 static void
136 bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
138 #ifndef _LP64
139 BN_ULONG h, l, s;
140 BN_ULONG tab[8], top2b = a >> 30;
141 BN_ULONG a1, a2, a4;
143 a1 = a & (0x3FFFFFFF);
144 a2 = a1 << 1;
145 a4 = a2 << 1;
147 tab[0] = 0;
148 tab[1] = a1;
149 tab[2] = a2;
150 tab[3] = a1 ^ a2;
151 tab[4] = a4;
152 tab[5] = a1 ^ a4;
153 tab[6] = a2 ^ a4;
154 tab[7] = a1 ^ a2 ^ a4;
156 s = tab[b & 0x7];
157 l = s;
158 s = tab[b >> 3 & 0x7];
159 l ^= s << 3;
160 h = s >> 29;
161 s = tab[b >> 6 & 0x7];
162 l ^= s << 6;
163 h ^= s >> 26;
164 s = tab[b >> 9 & 0x7];
165 l ^= s << 9;
166 h ^= s >> 23;
167 s = tab[b >> 12 & 0x7];
168 l ^= s << 12;
169 h ^= s >> 20;
170 s = tab[b >> 15 & 0x7];
171 l ^= s << 15;
172 h ^= s >> 17;
173 s = tab[b >> 18 & 0x7];
174 l ^= s << 18;
175 h ^= s >> 14;
176 s = tab[b >> 21 & 0x7];
177 l ^= s << 21;
178 h ^= s >> 11;
179 s = tab[b >> 24 & 0x7];
180 l ^= s << 24;
181 h ^= s >> 8;
182 s = tab[b >> 27 & 0x7];
183 l ^= s << 27;
184 h ^= s >> 5;
185 s = tab[b >> 30];
186 l ^= s << 30;
187 h ^= s >> 2;
189 /* compensate for the top two bits of a */
190 if (top2b & 01) {
191 l ^= b << 30;
192 h ^= b >> 2;
194 if (top2b & 02) {
195 l ^= b << 31;
196 h ^= b >> 1;
199 *r1 = h;
200 *r0 = l;
201 #else
202 BN_ULONG h, l, s;
203 BN_ULONG tab[16], top3b = a >> 61;
204 BN_ULONG a1, a2, a4, a8;
206 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
207 a2 = a1 << 1;
208 a4 = a2 << 1;
209 a8 = a4 << 1;
211 tab[0] = 0;
212 tab[1] = a1;
213 tab[2] = a2;
214 tab[3] = a1 ^ a2;
215 tab[4] = a4;
216 tab[5] = a1 ^ a4;
217 tab[6] = a2 ^ a4;
218 tab[7] = a1 ^ a2 ^ a4;
219 tab[8] = a8;
220 tab[9] = a1 ^ a8;
221 tab[10] = a2 ^ a8;
222 tab[11] = a1 ^ a2 ^ a8;
223 tab[12] = a4 ^ a8;
224 tab[13] = a1 ^ a4 ^ a8;
225 tab[14] = a2 ^ a4 ^ a8;
226 tab[15] = a1 ^ a2 ^ a4 ^ a8;
228 s = tab[b & 0xF];
229 l = s;
230 s = tab[b >> 4 & 0xF];
231 l ^= s << 4;
232 h = s >> 60;
233 s = tab[b >> 8 & 0xF];
234 l ^= s << 8;
235 h ^= s >> 56;
236 s = tab[b >> 12 & 0xF];
237 l ^= s << 12;
238 h ^= s >> 52;
239 s = tab[b >> 16 & 0xF];
240 l ^= s << 16;
241 h ^= s >> 48;
242 s = tab[b >> 20 & 0xF];
243 l ^= s << 20;
244 h ^= s >> 44;
245 s = tab[b >> 24 & 0xF];
246 l ^= s << 24;
247 h ^= s >> 40;
248 s = tab[b >> 28 & 0xF];
249 l ^= s << 28;
250 h ^= s >> 36;
251 s = tab[b >> 32 & 0xF];
252 l ^= s << 32;
253 h ^= s >> 32;
254 s = tab[b >> 36 & 0xF];
255 l ^= s << 36;
256 h ^= s >> 28;
257 s = tab[b >> 40 & 0xF];
258 l ^= s << 40;
259 h ^= s >> 24;
260 s = tab[b >> 44 & 0xF];
261 l ^= s << 44;
262 h ^= s >> 20;
263 s = tab[b >> 48 & 0xF];
264 l ^= s << 48;
265 h ^= s >> 16;
266 s = tab[b >> 52 & 0xF];
267 l ^= s << 52;
268 h ^= s >> 12;
269 s = tab[b >> 56 & 0xF];
270 l ^= s << 56;
271 h ^= s >> 8;
272 s = tab[b >> 60];
273 l ^= s << 60;
274 h ^= s >> 4;
276 /* compensate for the top three bits of a */
277 if (top3b & 01) {
278 l ^= b << 61;
279 h ^= b >> 3;
281 if (top3b & 02) {
282 l ^= b << 62;
283 h ^= b >> 2;
285 if (top3b & 04) {
286 l ^= b << 63;
287 h ^= b >> 1;
290 *r1 = h;
291 *r0 = l;
292 #endif
295 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
296 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
297 * The caller MUST ensure that the variables have the right amount
298 * of space allocated.
300 static void
301 bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
302 const BN_ULONG b1, const BN_ULONG b0)
304 BN_ULONG m1, m0;
306 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
307 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
308 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
309 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
310 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
311 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
312 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
314 #else
315 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
316 BN_ULONG b0);
317 #endif
319 /* Add polynomials a and b and store result in r; r could be a or b, a and b
320 * could be equal; r is the bitwise XOR of a and b.
323 BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
325 int i;
326 const BIGNUM *at, *bt;
328 bn_check_top(a);
329 bn_check_top(b);
331 if (a->top < b->top) {
332 at = b;
333 bt = a;
334 } else {
335 at = a;
336 bt = b;
339 if (bn_wexpand(r, at->top) == NULL)
340 return 0;
342 for (i = 0; i < bt->top; i++) {
343 r->d[i] = at->d[i] ^ bt->d[i];
345 for (; i < at->top; i++) {
346 r->d[i] = at->d[i];
349 r->top = at->top;
350 bn_correct_top(r);
352 return 1;
356 /* Some functions allow for representation of the irreducible polynomials
357 * as an int[], say p. The irreducible f(t) is then of the form:
358 * t^p[0] + t^p[1] + ... + t^p[k]
359 * where m = p[0] > p[1] > ... > p[k] = 0.
363 /* Performs modular reduction of a and store result in r. r could be a. */
365 BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
367 int j, k;
368 int n, dN, d0, d1;
369 BN_ULONG zz, *z;
371 bn_check_top(a);
373 if (!p[0]) {
374 /* reduction mod 1 => return 0 */
375 BN_zero(r);
376 return 1;
379 /* Since the algorithm does reduction in the r value, if a != r, copy
380 * the contents of a into r so we can do reduction in r.
382 if (a != r) {
383 if (!bn_wexpand(r, a->top))
384 return 0;
385 for (j = 0; j < a->top; j++) {
386 r->d[j] = a->d[j];
388 r->top = a->top;
390 z = r->d;
392 /* start reduction */
393 dN = p[0] / BN_BITS2;
394 for (j = r->top - 1; j > dN; ) {
395 zz = z[j];
396 if (z[j] == 0) {
397 j--;
398 continue;
400 z[j] = 0;
402 for (k = 1; p[k] != 0; k++) {
403 /* reducing component t^p[k] */
404 n = p[0] - p[k];
405 d0 = n % BN_BITS2;
406 d1 = BN_BITS2 - d0;
407 n /= BN_BITS2;
408 z[j - n] ^= (zz >> d0);
409 if (d0)
410 z[j - n - 1] ^= (zz << d1);
413 /* reducing component t^0 */
414 n = dN;
415 d0 = p[0] % BN_BITS2;
416 d1 = BN_BITS2 - d0;
417 z[j - n] ^= (zz >> d0);
418 if (d0)
419 z[j - n - 1] ^= (zz << d1);
422 /* final round of reduction */
423 while (j == dN) {
425 d0 = p[0] % BN_BITS2;
426 zz = z[dN] >> d0;
427 if (zz == 0)
428 break;
429 d1 = BN_BITS2 - d0;
431 /* clear up the top d1 bits */
432 if (d0)
433 z[dN] = (z[dN] << d1) >> d1;
434 else
435 z[dN] = 0;
436 z[0] ^= zz; /* reduction t^0 component */
438 for (k = 1; p[k] != 0; k++) {
439 BN_ULONG tmp_ulong;
441 /* reducing component t^p[k]*/
442 n = p[k] / BN_BITS2;
443 d0 = p[k] % BN_BITS2;
444 d1 = BN_BITS2 - d0;
445 z[n] ^= (zz << d0);
446 tmp_ulong = zz >> d1;
447 if (d0 && tmp_ulong)
448 z[n + 1] ^= tmp_ulong;
454 bn_correct_top(r);
455 return 1;
458 /* Performs modular reduction of a by p and store result in r. r could be a.
460 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
461 * function is only provided for convenience; for best performance, use the
462 * BN_GF2m_mod_arr function.
465 BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
467 int ret = 0;
468 int arr[6];
470 bn_check_top(a);
471 bn_check_top(p);
472 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0]));
473 if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) {
474 BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
475 return 0;
477 ret = BN_GF2m_mod_arr(r, a, arr);
478 bn_check_top(r);
479 return ret;
483 /* Compute the product of two polynomials a and b, reduce modulo p, and store
484 * the result in r. r could be a or b; a could be b.
487 BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[],
488 BN_CTX *ctx)
490 int zlen, i, j, k, ret = 0;
491 BIGNUM *s;
492 BN_ULONG x1, x0, y1, y0, zz[4];
494 bn_check_top(a);
495 bn_check_top(b);
497 if (a == b) {
498 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
501 BN_CTX_start(ctx);
502 if ((s = BN_CTX_get(ctx)) == NULL)
503 goto err;
505 zlen = a->top + b->top + 4;
506 if (!bn_wexpand(s, zlen))
507 goto err;
508 s->top = zlen;
510 for (i = 0; i < zlen; i++)
511 s->d[i] = 0;
513 for (j = 0; j < b->top; j += 2) {
514 y0 = b->d[j];
515 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
516 for (i = 0; i < a->top; i += 2) {
517 x0 = a->d[i];
518 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
519 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
520 for (k = 0; k < 4; k++)
521 s->d[i + j + k] ^= zz[k];
525 bn_correct_top(s);
526 if (BN_GF2m_mod_arr(r, s, p))
527 ret = 1;
528 bn_check_top(r);
530 err:
531 BN_CTX_end(ctx);
532 return ret;
535 /* Compute the product of two polynomials a and b, reduce modulo p, and store
536 * the result in r. r could be a or b; a could equal b.
538 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
539 * function is only provided for convenience; for best performance, use the
540 * BN_GF2m_mod_mul_arr function.
543 BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p,
544 BN_CTX *ctx)
546 int ret = 0;
547 const int max = BN_num_bits(p) + 1;
548 int *arr = NULL;
550 bn_check_top(a);
551 bn_check_top(b);
552 bn_check_top(p);
553 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
554 goto err;
555 ret = BN_GF2m_poly2arr(p, arr, max);
556 if (!ret || ret > max) {
557 BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
558 goto err;
560 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
561 bn_check_top(r);
563 err:
564 free(arr);
565 return ret;
569 /* Square a, reduce the result mod p, and store it in a. r could be a. */
571 BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
573 int i, ret = 0;
574 BIGNUM *s;
576 bn_check_top(a);
577 BN_CTX_start(ctx);
578 if ((s = BN_CTX_get(ctx)) == NULL)
579 goto err;
580 if (!bn_wexpand(s, 2 * a->top))
581 goto err;
583 for (i = a->top - 1; i >= 0; i--) {
584 s->d[2 * i + 1] = SQR1(a->d[i]);
585 s->d[2 * i] = SQR0(a->d[i]);
588 s->top = 2 * a->top;
589 bn_correct_top(s);
590 if (!BN_GF2m_mod_arr(r, s, p))
591 goto err;
592 bn_check_top(r);
593 ret = 1;
595 err:
596 BN_CTX_end(ctx);
597 return ret;
600 /* Square a, reduce the result mod p, and store it in a. r could be a.
602 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
603 * function is only provided for convenience; for best performance, use the
604 * BN_GF2m_mod_sqr_arr function.
607 BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
609 int ret = 0;
610 const int max = BN_num_bits(p) + 1;
611 int *arr = NULL;
613 bn_check_top(a);
614 bn_check_top(p);
615 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
616 goto err;
617 ret = BN_GF2m_poly2arr(p, arr, max);
618 if (!ret || ret > max) {
619 BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
620 goto err;
622 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
623 bn_check_top(r);
625 err:
626 free(arr);
627 return ret;
631 /* Invert a, reduce modulo p, and store the result in r. r could be a.
632 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
633 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
634 * of Elliptic Curve Cryptography Over Binary Fields".
637 BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
639 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
640 int ret = 0;
642 bn_check_top(a);
643 bn_check_top(p);
645 BN_CTX_start(ctx);
647 if ((b = BN_CTX_get(ctx)) == NULL)
648 goto err;
649 if ((c = BN_CTX_get(ctx)) == NULL)
650 goto err;
651 if ((u = BN_CTX_get(ctx)) == NULL)
652 goto err;
653 if ((v = BN_CTX_get(ctx)) == NULL)
654 goto err;
656 if (!BN_GF2m_mod(u, a, p))
657 goto err;
658 if (BN_is_zero(u))
659 goto err;
661 if (!BN_copy(v, p))
662 goto err;
663 #if 0
664 if (!BN_one(b))
665 goto err;
667 while (1) {
668 while (!BN_is_odd(u)) {
669 if (BN_is_zero(u))
670 goto err;
671 if (!BN_rshift1(u, u))
672 goto err;
673 if (BN_is_odd(b)) {
674 if (!BN_GF2m_add(b, b, p))
675 goto err;
677 if (!BN_rshift1(b, b))
678 goto err;
681 if (BN_abs_is_word(u, 1))
682 break;
684 if (BN_num_bits(u) < BN_num_bits(v)) {
685 tmp = u;
686 u = v;
687 v = tmp;
688 tmp = b;
689 b = c;
690 c = tmp;
693 if (!BN_GF2m_add(u, u, v))
694 goto err;
695 if (!BN_GF2m_add(b, b, c))
696 goto err;
698 #else
700 int i, ubits = BN_num_bits(u),
701 vbits = BN_num_bits(v), /* v is copy of p */
702 top = p->top;
703 BN_ULONG *udp, *bdp, *vdp, *cdp;
705 if (!bn_wexpand(u, top))
706 goto err;
707 udp = u->d;
708 for (i = u->top; i < top; i++)
709 udp[i] = 0;
710 u->top = top;
711 if (!bn_wexpand(b, top))
712 goto err;
713 bdp = b->d;
714 bdp[0] = 1;
715 for (i = 1; i < top; i++)
716 bdp[i] = 0;
717 b->top = top;
718 if (!bn_wexpand(c, top))
719 goto err;
720 cdp = c->d;
721 for (i = 0; i < top; i++)
722 cdp[i] = 0;
723 c->top = top;
724 vdp = v->d; /* It pays off to "cache" *->d pointers, because
725 * it allows optimizer to be more aggressive.
726 * But we don't have to "cache" p->d, because *p
727 * is declared 'const'... */
728 while (1) {
729 while (ubits && !(udp[0]&1)) {
730 BN_ULONG u0, u1, b0, b1, mask;
732 u0 = udp[0];
733 b0 = bdp[0];
734 mask = (BN_ULONG)0 - (b0 & 1);
735 b0 ^= p->d[0] & mask;
736 for (i = 0; i < top - 1; i++) {
737 u1 = udp[i + 1];
738 udp[i] = ((u0 >> 1) |
739 (u1 << (BN_BITS2 - 1))) & BN_MASK2;
740 u0 = u1;
741 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
742 bdp[i] = ((b0 >> 1) |
743 (b1 << (BN_BITS2 - 1))) & BN_MASK2;
744 b0 = b1;
746 udp[i] = u0 >> 1;
747 bdp[i] = b0 >> 1;
748 ubits--;
751 if (ubits <= BN_BITS2) {
752 /* See if poly was reducible. */
753 if (udp[0] == 0)
754 goto err;
755 if (udp[0] == 1)
756 break;
759 if (ubits < vbits) {
760 i = ubits;
761 ubits = vbits;
762 vbits = i;
763 tmp = u;
764 u = v;
765 v = tmp;
766 tmp = b;
767 b = c;
768 c = tmp;
769 udp = vdp;
770 vdp = v->d;
771 bdp = cdp;
772 cdp = c->d;
774 for (i = 0; i < top; i++) {
775 udp[i] ^= vdp[i];
776 bdp[i] ^= cdp[i];
778 if (ubits == vbits) {
779 BN_ULONG ul;
780 int utop = (ubits - 1) / BN_BITS2;
782 while ((ul = udp[utop]) == 0 && utop)
783 utop--;
784 ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
787 bn_correct_top(b);
789 #endif
791 if (!BN_copy(r, b))
792 goto err;
793 bn_check_top(r);
794 ret = 1;
796 err:
797 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
798 bn_correct_top(c);
799 bn_correct_top(u);
800 bn_correct_top(v);
801 #endif
802 BN_CTX_end(ctx);
803 return ret;
806 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
808 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
809 * function is only provided for convenience; for best performance, use the
810 * BN_GF2m_mod_inv function.
813 BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
815 BIGNUM *field;
816 int ret = 0;
818 bn_check_top(xx);
819 BN_CTX_start(ctx);
820 if ((field = BN_CTX_get(ctx)) == NULL)
821 goto err;
822 if (!BN_GF2m_arr2poly(p, field))
823 goto err;
825 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
826 bn_check_top(r);
828 err:
829 BN_CTX_end(ctx);
830 return ret;
834 #ifndef OPENSSL_SUN_GF2M_DIV
835 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
836 * or y, x could equal y.
839 BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p,
840 BN_CTX *ctx)
842 BIGNUM *xinv = NULL;
843 int ret = 0;
845 bn_check_top(y);
846 bn_check_top(x);
847 bn_check_top(p);
849 BN_CTX_start(ctx);
850 if ((xinv = BN_CTX_get(ctx)) == NULL)
851 goto err;
853 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
854 goto err;
855 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
856 goto err;
857 bn_check_top(r);
858 ret = 1;
860 err:
861 BN_CTX_end(ctx);
862 return ret;
864 #else
865 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
866 * or y, x could equal y.
867 * Uses algorithm Modular_Division_GF(2^m) from
868 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
869 * the Great Divide".
872 BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p,
873 BN_CTX *ctx)
875 BIGNUM *a, *b, *u, *v;
876 int ret = 0;
878 bn_check_top(y);
879 bn_check_top(x);
880 bn_check_top(p);
882 BN_CTX_start(ctx);
884 if ((a = BN_CTX_get(ctx)) == NULL)
885 goto err;
886 if ((b = BN_CTX_get(ctx)) == NULL)
887 goto err;
888 if ((u = BN_CTX_get(ctx)) == NULL)
889 goto err;
890 if ((v = BN_CTX_get(ctx)) == NULL)
891 goto err;
893 /* reduce x and y mod p */
894 if (!BN_GF2m_mod(u, y, p))
895 goto err;
896 if (!BN_GF2m_mod(a, x, p))
897 goto err;
898 if (!BN_copy(b, p))
899 goto err;
901 while (!BN_is_odd(a)) {
902 if (!BN_rshift1(a, a))
903 goto err;
904 if (BN_is_odd(u))
905 if (!BN_GF2m_add(u, u, p))
906 goto err;
907 if (!BN_rshift1(u, u))
908 goto err;
911 do {
912 if (BN_GF2m_cmp(b, a) > 0) {
913 if (!BN_GF2m_add(b, b, a))
914 goto err;
915 if (!BN_GF2m_add(v, v, u))
916 goto err;
917 do {
918 if (!BN_rshift1(b, b))
919 goto err;
920 if (BN_is_odd(v))
921 if (!BN_GF2m_add(v, v, p))
922 goto err;
923 if (!BN_rshift1(v, v))
924 goto err;
925 } while (!BN_is_odd(b));
926 } else if (BN_abs_is_word(a, 1))
927 break;
928 else {
929 if (!BN_GF2m_add(a, a, b))
930 goto err;
931 if (!BN_GF2m_add(u, u, v))
932 goto err;
933 do {
934 if (!BN_rshift1(a, a))
935 goto err;
936 if (BN_is_odd(u))
937 if (!BN_GF2m_add(u, u, p))
938 goto err;
939 if (!BN_rshift1(u, u))
940 goto err;
941 } while (!BN_is_odd(a));
943 } while (1);
945 if (!BN_copy(r, u))
946 goto err;
947 bn_check_top(r);
948 ret = 1;
950 err:
951 BN_CTX_end(ctx);
952 return ret;
954 #endif
956 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
957 * or yy, xx could equal yy.
959 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
960 * function is only provided for convenience; for best performance, use the
961 * BN_GF2m_mod_div function.
964 BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
965 const int p[], BN_CTX *ctx)
967 BIGNUM *field;
968 int ret = 0;
970 bn_check_top(yy);
971 bn_check_top(xx);
973 BN_CTX_start(ctx);
974 if ((field = BN_CTX_get(ctx)) == NULL)
975 goto err;
976 if (!BN_GF2m_arr2poly(p, field))
977 goto err;
979 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
980 bn_check_top(r);
982 err:
983 BN_CTX_end(ctx);
984 return ret;
988 /* Compute the bth power of a, reduce modulo p, and store
989 * the result in r. r could be a.
990 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
993 BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[],
994 BN_CTX *ctx)
996 int ret = 0, i, n;
997 BIGNUM *u;
999 bn_check_top(a);
1000 bn_check_top(b);
1002 if (BN_is_zero(b))
1003 return (BN_one(r));
1005 if (BN_abs_is_word(b, 1))
1006 return (BN_copy(r, a) != NULL);
1008 BN_CTX_start(ctx);
1009 if ((u = BN_CTX_get(ctx)) == NULL)
1010 goto err;
1012 if (!BN_GF2m_mod_arr(u, a, p))
1013 goto err;
1015 n = BN_num_bits(b) - 1;
1016 for (i = n - 1; i >= 0; i--) {
1017 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1018 goto err;
1019 if (BN_is_bit_set(b, i)) {
1020 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1021 goto err;
1024 if (!BN_copy(r, u))
1025 goto err;
1026 bn_check_top(r);
1027 ret = 1;
1029 err:
1030 BN_CTX_end(ctx);
1031 return ret;
1034 /* Compute the bth power of a, reduce modulo p, and store
1035 * the result in r. r could be a.
1037 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
1038 * function is only provided for convenience; for best performance, use the
1039 * BN_GF2m_mod_exp_arr function.
1042 BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p,
1043 BN_CTX *ctx)
1045 int ret = 0;
1046 const int max = BN_num_bits(p) + 1;
1047 int *arr = NULL;
1049 bn_check_top(a);
1050 bn_check_top(b);
1051 bn_check_top(p);
1052 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1053 goto err;
1054 ret = BN_GF2m_poly2arr(p, arr, max);
1055 if (!ret || ret > max) {
1056 BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1057 goto err;
1059 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1060 bn_check_top(r);
1062 err:
1063 free(arr);
1064 return ret;
1067 /* Compute the square root of a, reduce modulo p, and store
1068 * the result in r. r could be a.
1069 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1072 BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
1074 int ret = 0;
1075 BIGNUM *u;
1077 bn_check_top(a);
1079 if (!p[0]) {
1080 /* reduction mod 1 => return 0 */
1081 BN_zero(r);
1082 return 1;
1085 BN_CTX_start(ctx);
1086 if ((u = BN_CTX_get(ctx)) == NULL)
1087 goto err;
1089 if (!BN_set_bit(u, p[0] - 1))
1090 goto err;
1091 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1092 bn_check_top(r);
1094 err:
1095 BN_CTX_end(ctx);
1096 return ret;
1099 /* Compute the square root of a, reduce modulo p, and store
1100 * the result in r. r could be a.
1102 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
1103 * function is only provided for convenience; for best performance, use the
1104 * BN_GF2m_mod_sqrt_arr function.
1107 BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1109 int ret = 0;
1110 const int max = BN_num_bits(p) + 1;
1111 int *arr = NULL;
1112 bn_check_top(a);
1113 bn_check_top(p);
1114 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1115 goto err;
1116 ret = BN_GF2m_poly2arr(p, arr, max);
1117 if (!ret || ret > max) {
1118 BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1119 goto err;
1121 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1122 bn_check_top(r);
1124 err:
1125 free(arr);
1126 return ret;
1129 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1130 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1133 BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1134 BN_CTX *ctx)
1136 int ret = 0, count = 0, j;
1137 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1139 bn_check_top(a_);
1141 if (!p[0]) {
1142 /* reduction mod 1 => return 0 */
1143 BN_zero(r);
1144 return 1;
1147 BN_CTX_start(ctx);
1148 if ((a = BN_CTX_get(ctx)) == NULL)
1149 goto err;
1150 if ((z = BN_CTX_get(ctx)) == NULL)
1151 goto err;
1152 if ((w = BN_CTX_get(ctx)) == NULL)
1153 goto err;
1155 if (!BN_GF2m_mod_arr(a, a_, p))
1156 goto err;
1158 if (BN_is_zero(a)) {
1159 BN_zero(r);
1160 ret = 1;
1161 goto err;
1164 if (p[0] & 0x1) /* m is odd */
1166 /* compute half-trace of a */
1167 if (!BN_copy(z, a))
1168 goto err;
1169 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1170 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1171 goto err;
1172 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1173 goto err;
1174 if (!BN_GF2m_add(z, z, a))
1175 goto err;
1179 else /* m is even */
1181 if ((rho = BN_CTX_get(ctx)) == NULL)
1182 goto err;
1183 if ((w2 = BN_CTX_get(ctx)) == NULL)
1184 goto err;
1185 if ((tmp = BN_CTX_get(ctx)) == NULL)
1186 goto err;
1187 do {
1188 if (!BN_rand(rho, p[0], 0, 0))
1189 goto err;
1190 if (!BN_GF2m_mod_arr(rho, rho, p))
1191 goto err;
1192 BN_zero(z);
1193 if (!BN_copy(w, rho))
1194 goto err;
1195 for (j = 1; j <= p[0] - 1; j++) {
1196 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1197 goto err;
1198 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1199 goto err;
1200 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1201 goto err;
1202 if (!BN_GF2m_add(z, z, tmp))
1203 goto err;
1204 if (!BN_GF2m_add(w, w2, rho))
1205 goto err;
1207 count++;
1208 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1209 if (BN_is_zero(w)) {
1210 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,
1211 BN_R_TOO_MANY_ITERATIONS);
1212 goto err;
1216 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1217 goto err;
1218 if (!BN_GF2m_add(w, z, w))
1219 goto err;
1220 if (BN_GF2m_cmp(w, a)) {
1221 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1222 goto err;
1225 if (!BN_copy(r, z))
1226 goto err;
1227 bn_check_top(r);
1229 ret = 1;
1231 err:
1232 BN_CTX_end(ctx);
1233 return ret;
1236 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1238 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1239 * function is only provided for convenience; for best performance, use the
1240 * BN_GF2m_mod_solve_quad_arr function.
1243 BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1245 int ret = 0;
1246 const int max = BN_num_bits(p) + 1;
1247 int *arr = NULL;
1249 bn_check_top(a);
1250 bn_check_top(p);
1251 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1252 goto err;
1253 ret = BN_GF2m_poly2arr(p, arr, max);
1254 if (!ret || ret > max) {
1255 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1256 goto err;
1258 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1259 bn_check_top(r);
1261 err:
1262 free(arr);
1263 return ret;
1266 /* Convert the bit-string representation of a polynomial
1267 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1268 * to the bits with non-zero coefficient. Array is terminated with -1.
1269 * Up to max elements of the array will be filled. Return value is total
1270 * number of array elements that would be filled if array was large enough.
1273 BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1275 int i, j, k = 0;
1276 BN_ULONG mask;
1278 if (BN_is_zero(a))
1279 return 0;
1281 for (i = a->top - 1; i >= 0; i--) {
1282 if (!a->d[i])
1283 /* skip word if a->d[i] == 0 */
1284 continue;
1285 mask = BN_TBIT;
1286 for (j = BN_BITS2 - 1; j >= 0; j--) {
1287 if (a->d[i] & mask) {
1288 if (k < max)
1289 p[k] = BN_BITS2 * i + j;
1290 k++;
1292 mask >>= 1;
1296 if (k < max) {
1297 p[k] = -1;
1298 k++;
1301 return k;
1304 /* Convert the coefficient array representation of a polynomial to a
1305 * bit-string. The array must be terminated by -1.
1308 BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1310 int i;
1312 bn_check_top(a);
1313 BN_zero(a);
1314 for (i = 0; p[i] != -1; i++) {
1315 if (BN_set_bit(a, p[i]) == 0)
1316 return 0;
1318 bn_check_top(a);
1320 return 1;
1323 #endif