Fix bug in as-of mount date specification.
[dragonfly.git] / sys / netinet / ip_input.c
blob07c825d4b212330933381446b31dc26870123448
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.74 2007/11/22 19:57:14 dillon Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
97 #include <machine/stdarg.h>
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/in_pcb.h>
112 #include <netinet/ip_var.h>
113 #include <netinet/ip_icmp.h>
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 #include <net/netmsg2.h>
119 #include <sys/socketvar.h>
121 #include <net/ipfw/ip_fw.h>
122 #include <net/dummynet/ip_dummynet.h>
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #endif
129 #ifdef FAST_IPSEC
130 #include <netproto/ipsec/ipsec.h>
131 #include <netproto/ipsec/key.h>
132 #endif
134 int rsvp_on = 0;
135 static int ip_rsvp_on;
136 struct socket *ip_rsvpd;
138 int ipforwarding = 0;
139 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
140 &ipforwarding, 0, "Enable IP forwarding between interfaces");
142 static int ipsendredirects = 1; /* XXX */
143 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
144 &ipsendredirects, 0, "Enable sending IP redirects");
146 int ip_defttl = IPDEFTTL;
147 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
148 &ip_defttl, 0, "Maximum TTL on IP packets");
150 static int ip_dosourceroute = 0;
151 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
152 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
154 static int ip_acceptsourceroute = 0;
155 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
156 CTLFLAG_RW, &ip_acceptsourceroute, 0,
157 "Enable accepting source routed IP packets");
159 static int ip_keepfaith = 0;
160 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
161 &ip_keepfaith, 0,
162 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
164 static int nipq = 0; /* total # of reass queues */
165 static int maxnipq;
166 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
167 &maxnipq, 0,
168 "Maximum number of IPv4 fragment reassembly queue entries");
170 static int maxfragsperpacket;
171 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
172 &maxfragsperpacket, 0,
173 "Maximum number of IPv4 fragments allowed per packet");
175 static int ip_sendsourcequench = 0;
176 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
177 &ip_sendsourcequench, 0,
178 "Enable the transmission of source quench packets");
180 int ip_do_randomid = 1;
181 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
182 &ip_do_randomid, 0,
183 "Assign random ip_id values");
185 * XXX - Setting ip_checkinterface mostly implements the receive side of
186 * the Strong ES model described in RFC 1122, but since the routing table
187 * and transmit implementation do not implement the Strong ES model,
188 * setting this to 1 results in an odd hybrid.
190 * XXX - ip_checkinterface currently must be disabled if you use ipnat
191 * to translate the destination address to another local interface.
193 * XXX - ip_checkinterface must be disabled if you add IP aliases
194 * to the loopback interface instead of the interface where the
195 * packets for those addresses are received.
197 static int ip_checkinterface = 0;
198 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
199 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
201 #ifdef DIAGNOSTIC
202 static int ipprintfs = 0;
203 #endif
205 extern struct domain inetdomain;
206 extern struct protosw inetsw[];
207 u_char ip_protox[IPPROTO_MAX];
208 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
209 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
210 u_long in_ifaddrhmask; /* mask for hash table */
212 struct ip_stats ipstats_percpu[MAXCPU];
213 #ifdef SMP
214 static int
215 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
217 int cpu, error = 0;
219 for (cpu = 0; cpu < ncpus; ++cpu) {
220 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
221 sizeof(struct ip_stats))))
222 break;
223 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
224 sizeof(struct ip_stats))))
225 break;
228 return (error);
230 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
231 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
232 #else
233 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
234 &ipstat, ip_stats, "IP statistics");
235 #endif
237 /* Packet reassembly stuff */
238 #define IPREASS_NHASH_LOG2 6
239 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
240 #define IPREASS_HMASK (IPREASS_NHASH - 1)
241 #define IPREASS_HASH(x,y) \
242 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
244 static struct ipq ipq[IPREASS_NHASH];
246 #ifdef IPCTL_DEFMTU
247 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
248 &ip_mtu, 0, "Default MTU");
249 #endif
251 #ifdef IPSTEALTH
252 static int ipstealth = 0;
253 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
254 #else
255 static const int ipstealth = 0;
256 #endif
259 /* Firewall hooks */
260 ip_fw_chk_t *ip_fw_chk_ptr;
261 ip_fw_dn_io_t *ip_fw_dn_io_ptr;
262 int fw_enable = 1;
263 int fw_one_pass = 1;
265 struct pfil_head inet_pfil_hook;
268 * XXX this is ugly -- the following two global variables are
269 * used to store packet state while it travels through the stack.
270 * Note that the code even makes assumptions on the size and
271 * alignment of fields inside struct ip_srcrt so e.g. adding some
272 * fields will break the code. This needs to be fixed.
274 * We need to save the IP options in case a protocol wants to respond
275 * to an incoming packet over the same route if the packet got here
276 * using IP source routing. This allows connection establishment and
277 * maintenance when the remote end is on a network that is not known
278 * to us.
280 static int ip_nhops = 0;
282 static struct ip_srcrt {
283 struct in_addr dst; /* final destination */
284 char nop; /* one NOP to align */
285 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
286 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
287 } ip_srcrt;
289 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
290 static struct malloc_pipe ipq_mpipe;
292 static void save_rte (u_char *, struct in_addr);
293 static int ip_dooptions (struct mbuf *m, int,
294 struct sockaddr_in *next_hop);
295 static void ip_forward (struct mbuf *m, boolean_t using_srcrt,
296 struct sockaddr_in *next_hop);
297 static void ip_freef (struct ipq *);
298 static void ip_input_handler (struct netmsg *);
299 static struct mbuf *ip_reass (struct mbuf *, struct ipq *,
300 struct ipq *, u_int32_t *);
303 * IP initialization: fill in IP protocol switch table.
304 * All protocols not implemented in kernel go to raw IP protocol handler.
306 void
307 ip_init(void)
309 struct protosw *pr;
310 int i;
311 #ifdef SMP
312 int cpu;
313 #endif
316 * Make sure we can handle a reasonable number of fragments but
317 * cap it at 4000 (XXX).
319 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
320 IFQ_MAXLEN, 4000, 0, NULL);
321 TAILQ_INIT(&in_ifaddrhead);
322 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
323 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
324 if (pr == NULL)
325 panic("ip_init");
326 for (i = 0; i < IPPROTO_MAX; i++)
327 ip_protox[i] = pr - inetsw;
328 for (pr = inetdomain.dom_protosw;
329 pr < inetdomain.dom_protoswNPROTOSW; pr++)
330 if (pr->pr_domain->dom_family == PF_INET &&
331 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
332 ip_protox[pr->pr_protocol] = pr - inetsw;
334 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
335 inet_pfil_hook.ph_af = AF_INET;
336 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
337 kprintf("%s: WARNING: unable to register pfil hook, "
338 "error %d\n", __func__, i);
341 for (i = 0; i < IPREASS_NHASH; i++)
342 ipq[i].next = ipq[i].prev = &ipq[i];
344 maxnipq = nmbclusters / 32;
345 maxfragsperpacket = 16;
347 ip_id = time_second & 0xffff;
350 * Initialize IP statistics counters for each CPU.
353 #ifdef SMP
354 for (cpu = 0; cpu < ncpus; ++cpu) {
355 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
357 #else
358 bzero(&ipstat, sizeof(struct ip_stats));
359 #endif
361 netisr_register(NETISR_IP, ip_mport, ip_input_handler);
365 * XXX watch out this one. It is perhaps used as a cache for
366 * the most recently used route ? it is cleared in in_addroute()
367 * when a new route is successfully created.
369 struct route ipforward_rt[MAXCPU];
371 /* Do transport protocol processing. */
372 static void
373 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
374 struct sockaddr_in *nexthop)
377 * Switch out to protocol's input routine.
379 if (nexthop && ip->ip_p == IPPROTO_TCP) {
380 /* TCP needs IPFORWARD info if available */
381 struct m_hdr tag;
383 tag.mh_type = MT_TAG;
384 tag.mh_flags = PACKET_TAG_IPFORWARD;
385 tag.mh_data = (caddr_t)nexthop;
386 tag.mh_next = m;
388 (*inetsw[ip_protox[ip->ip_p]].pr_input)
389 ((struct mbuf *)&tag, hlen, ip->ip_p);
390 } else {
391 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
395 struct netmsg_transport_packet {
396 struct netmsg nm_netmsg;
397 struct mbuf *nm_mbuf;
398 int nm_hlen;
399 boolean_t nm_hasnexthop;
400 struct sockaddr_in nm_nexthop;
403 static void
404 transport_processing_handler(netmsg_t netmsg)
406 struct netmsg_transport_packet *msg = (void *)netmsg;
407 struct sockaddr_in *nexthop;
408 struct ip *ip;
410 ip = mtod(msg->nm_mbuf, struct ip *);
411 nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
412 transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
413 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
416 static void
417 ip_input_handler(struct netmsg *msg0)
419 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
421 ip_input(m);
422 /* msg0 was embedded in the mbuf, do not reply! */
426 * IP input routine. Checksum and byte swap header. If fragmented
427 * try to reassemble. Process options. Pass to next level.
429 void
430 ip_input(struct mbuf *m)
432 struct ip *ip;
433 struct ipq *fp;
434 struct in_ifaddr *ia = NULL;
435 struct ifaddr *ifa;
436 int i, hlen, checkif;
437 u_short sum;
438 struct in_addr pkt_dst;
439 u_int32_t divert_info = 0; /* packet divert/tee info */
440 struct ip_fw_args args;
441 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
442 boolean_t needredispatch = FALSE;
443 struct in_addr odst; /* original dst address(NAT) */
444 struct m_tag *mtag;
445 #ifdef FAST_IPSEC
446 struct tdb_ident *tdbi;
447 struct secpolicy *sp;
448 int error;
449 #endif
451 args.eh = NULL;
452 args.oif = NULL;
453 args.rule = NULL;
454 args.next_hop = NULL;
456 /* Grab info from MT_TAG mbufs prepended to the chain. */
457 while (m != NULL && m->m_type == MT_TAG) {
458 switch(m->_m_tag_id) {
459 case PACKET_TAG_IPFORWARD:
460 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
461 break;
462 default:
463 kprintf("ip_input: unrecognised MT_TAG tag %d\n",
464 m->_m_tag_id);
465 break;
467 m = m->m_next;
469 KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
471 /* Extract info from dummynet tag */
472 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
473 if (mtag != NULL) {
474 args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
476 m_tag_delete(m, mtag);
477 mtag = NULL;
480 if (args.rule != NULL) { /* dummynet already filtered us */
481 ip = mtod(m, struct ip *);
482 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
483 goto iphack;
486 ipstat.ips_total++;
488 /* length checks already done in ip_demux() */
489 KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
491 ip = mtod(m, struct ip *);
493 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
494 ipstat.ips_badvers++;
495 goto bad;
498 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
499 /* length checks already done in ip_demux() */
500 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
501 KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
503 /* 127/8 must not appear on wire - RFC1122 */
504 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
505 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
506 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
507 ipstat.ips_badaddr++;
508 goto bad;
512 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
513 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
514 } else {
515 if (hlen == sizeof(struct ip)) {
516 sum = in_cksum_hdr(ip);
517 } else {
518 sum = in_cksum(m, hlen);
521 if (sum != 0) {
522 ipstat.ips_badsum++;
523 goto bad;
526 #ifdef ALTQ
527 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
528 /* packet is dropped by traffic conditioner */
529 return;
531 #endif
533 * Convert fields to host representation.
535 ip->ip_len = ntohs(ip->ip_len);
536 if (ip->ip_len < hlen) {
537 ipstat.ips_badlen++;
538 goto bad;
540 ip->ip_off = ntohs(ip->ip_off);
543 * Check that the amount of data in the buffers
544 * is as at least much as the IP header would have us expect.
545 * Trim mbufs if longer than we expect.
546 * Drop packet if shorter than we expect.
548 if (m->m_pkthdr.len < ip->ip_len) {
549 ipstat.ips_tooshort++;
550 goto bad;
552 if (m->m_pkthdr.len > ip->ip_len) {
553 if (m->m_len == m->m_pkthdr.len) {
554 m->m_len = ip->ip_len;
555 m->m_pkthdr.len = ip->ip_len;
556 } else
557 m_adj(m, ip->ip_len - m->m_pkthdr.len);
559 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
561 * Bypass packet filtering for packets from a tunnel (gif).
563 if (ipsec_gethist(m, NULL))
564 goto pass;
565 #endif
568 * IpHack's section.
569 * Right now when no processing on packet has done
570 * and it is still fresh out of network we do our black
571 * deals with it.
572 * - Firewall: deny/allow/divert
573 * - Xlate: translate packet's addr/port (NAT).
574 * - Pipe: pass pkt through dummynet.
575 * - Wrap: fake packet's addr/port <unimpl.>
576 * - Encapsulate: put it in another IP and send out. <unimp.>
579 iphack:
582 * Run through list of hooks for input packets.
584 * NB: Beware of the destination address changing (e.g.
585 * by NAT rewriting). When this happens, tell
586 * ip_forward to do the right thing.
588 if (pfil_has_hooks(&inet_pfil_hook)) {
589 odst = ip->ip_dst;
590 if (pfil_run_hooks(&inet_pfil_hook, &m,
591 m->m_pkthdr.rcvif, PFIL_IN)) {
592 return;
594 if (m == NULL) /* consumed by filter */
595 return;
596 ip = mtod(m, struct ip *);
597 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
600 if (fw_enable && IPFW_LOADED) {
602 * If we've been forwarded from the output side, then
603 * skip the firewall a second time
605 if (args.next_hop != NULL)
606 goto ours;
608 args.m = m;
609 i = ip_fw_chk_ptr(&args);
610 m = args.m;
612 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
613 if (m != NULL)
614 m_freem(m);
615 return;
617 ip = mtod(m, struct ip *); /* just in case m changed */
618 if (i == 0 && args.next_hop == NULL) /* common case */
619 goto pass;
620 if (i & IP_FW_PORT_DYNT_FLAG) {
621 /* Send packet to the appropriate pipe */
622 ip_fw_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
623 return;
625 #ifdef IPDIVERT
626 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
627 /* Divert or tee packet */
628 divert_info = i;
629 goto ours;
631 #endif
632 if (i == 0 && args.next_hop != NULL)
633 goto pass;
635 * if we get here, the packet must be dropped
637 m_freem(m);
638 return;
640 pass:
643 * Process options and, if not destined for us,
644 * ship it on. ip_dooptions returns 1 when an
645 * error was detected (causing an icmp message
646 * to be sent and the original packet to be freed).
648 ip_nhops = 0; /* for source routed packets */
649 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
650 return;
652 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
653 * matter if it is destined to another node, or whether it is
654 * a multicast one, RSVP wants it! and prevents it from being forwarded
655 * anywhere else. Also checks if the rsvp daemon is running before
656 * grabbing the packet.
658 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
659 goto ours;
662 * Check our list of addresses, to see if the packet is for us.
663 * If we don't have any addresses, assume any unicast packet
664 * we receive might be for us (and let the upper layers deal
665 * with it).
667 if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
668 goto ours;
671 * Cache the destination address of the packet; this may be
672 * changed by use of 'ipfw fwd'.
674 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
677 * Enable a consistency check between the destination address
678 * and the arrival interface for a unicast packet (the RFC 1122
679 * strong ES model) if IP forwarding is disabled and the packet
680 * is not locally generated and the packet is not subject to
681 * 'ipfw fwd'.
683 * XXX - Checking also should be disabled if the destination
684 * address is ipnat'ed to a different interface.
686 * XXX - Checking is incompatible with IP aliases added
687 * to the loopback interface instead of the interface where
688 * the packets are received.
690 checkif = ip_checkinterface &&
691 !ipforwarding &&
692 m->m_pkthdr.rcvif != NULL &&
693 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
694 (args.next_hop == NULL);
697 * Check for exact addresses in the hash bucket.
699 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
701 * If the address matches, verify that the packet
702 * arrived via the correct interface if checking is
703 * enabled.
705 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
706 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
707 goto ours;
710 * Check for broadcast addresses.
712 * Only accept broadcast packets that arrive via the matching
713 * interface. Reception of forwarded directed broadcasts would
714 * be handled via ip_forward() and ether_output() with the loopback
715 * into the stack for SIMPLEX interfaces handled by ether_output().
717 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
718 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
719 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
720 continue;
721 if (ifa->ifa_addr->sa_family != AF_INET)
722 continue;
723 ia = ifatoia(ifa);
724 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
725 pkt_dst.s_addr)
726 goto ours;
727 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
728 goto ours;
729 #ifdef BOOTP_COMPAT
730 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
731 goto ours;
732 #endif
735 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
736 struct in_multi *inm;
738 if (ip_mrouter != NULL) {
740 * If we are acting as a multicast router, all
741 * incoming multicast packets are passed to the
742 * kernel-level multicast forwarding function.
743 * The packet is returned (relatively) intact; if
744 * ip_mforward() returns a non-zero value, the packet
745 * must be discarded, else it may be accepted below.
747 if (ip_mforward != NULL &&
748 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
749 ipstat.ips_cantforward++;
750 m_freem(m);
751 return;
755 * The process-level routing daemon needs to receive
756 * all multicast IGMP packets, whether or not this
757 * host belongs to their destination groups.
759 if (ip->ip_p == IPPROTO_IGMP)
760 goto ours;
761 ipstat.ips_forward++;
764 * See if we belong to the destination multicast group on the
765 * arrival interface.
767 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
768 if (inm == NULL) {
769 ipstat.ips_notmember++;
770 m_freem(m);
771 return;
773 goto ours;
775 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
776 goto ours;
777 if (ip->ip_dst.s_addr == INADDR_ANY)
778 goto ours;
781 * FAITH(Firewall Aided Internet Translator)
783 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
784 if (ip_keepfaith) {
785 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
786 goto ours;
788 m_freem(m);
789 return;
793 * Not for us; forward if possible and desirable.
795 if (!ipforwarding) {
796 ipstat.ips_cantforward++;
797 m_freem(m);
798 } else {
799 #ifdef IPSEC
801 * Enforce inbound IPsec SPD.
803 if (ipsec4_in_reject(m, NULL)) {
804 ipsecstat.in_polvio++;
805 goto bad;
807 #endif
808 #ifdef FAST_IPSEC
809 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
810 crit_enter();
811 if (mtag != NULL) {
812 tdbi = (struct tdb_ident *)m_tag_data(mtag);
813 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
814 } else {
815 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
816 IP_FORWARDING, &error);
818 if (sp == NULL) { /* NB: can happen if error */
819 crit_exit();
820 /*XXX error stat???*/
821 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
822 goto bad;
826 * Check security policy against packet attributes.
828 error = ipsec_in_reject(sp, m);
829 KEY_FREESP(&sp);
830 crit_exit();
831 if (error) {
832 ipstat.ips_cantforward++;
833 goto bad;
835 #endif
836 ip_forward(m, using_srcrt, args.next_hop);
838 return;
840 ours:
843 * IPSTEALTH: Process non-routing options only
844 * if the packet is destined for us.
846 if (ipstealth &&
847 hlen > sizeof(struct ip) &&
848 ip_dooptions(m, 1, args.next_hop))
849 return;
851 /* Count the packet in the ip address stats */
852 if (ia != NULL) {
853 ia->ia_ifa.if_ipackets++;
854 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
858 * If offset or IP_MF are set, must reassemble.
859 * Otherwise, nothing need be done.
860 * (We could look in the reassembly queue to see
861 * if the packet was previously fragmented,
862 * but it's not worth the time; just let them time out.)
864 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
866 /* If maxnipq is 0, never accept fragments. */
867 if (maxnipq == 0) {
868 ipstat.ips_fragments++;
869 ipstat.ips_fragdropped++;
870 goto bad;
873 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
875 * Look for queue of fragments
876 * of this datagram.
878 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
879 if (ip->ip_id == fp->ipq_id &&
880 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
881 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
882 ip->ip_p == fp->ipq_p)
883 goto found;
885 fp = NULL;
888 * Enforce upper bound on number of fragmented packets
889 * for which we attempt reassembly;
890 * If maxnipq is -1, accept all fragments without limitation.
892 if ((nipq > maxnipq) && (maxnipq > 0)) {
894 * drop something from the tail of the current queue
895 * before proceeding further
897 if (ipq[sum].prev == &ipq[sum]) { /* gak */
898 for (i = 0; i < IPREASS_NHASH; i++) {
899 if (ipq[i].prev != &ipq[i]) {
900 ipstat.ips_fragtimeout +=
901 ipq[i].prev->ipq_nfrags;
902 ip_freef(ipq[i].prev);
903 break;
906 } else {
907 ipstat.ips_fragtimeout +=
908 ipq[sum].prev->ipq_nfrags;
909 ip_freef(ipq[sum].prev);
912 found:
914 * Adjust ip_len to not reflect header,
915 * convert offset of this to bytes.
917 ip->ip_len -= hlen;
918 if (ip->ip_off & IP_MF) {
920 * Make sure that fragments have a data length
921 * that's a non-zero multiple of 8 bytes.
923 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
924 ipstat.ips_toosmall++; /* XXX */
925 goto bad;
927 m->m_flags |= M_FRAG;
928 } else
929 m->m_flags &= ~M_FRAG;
930 ip->ip_off <<= 3;
933 * Attempt reassembly; if it succeeds, proceed.
934 * ip_reass() will return a different mbuf, and update
935 * the divert info in divert_info.
937 ipstat.ips_fragments++;
938 m->m_pkthdr.header = ip;
939 m = ip_reass(m, fp, &ipq[sum], &divert_info);
940 if (m == NULL)
941 return;
942 ipstat.ips_reassembled++;
943 needredispatch = TRUE;
944 ip = mtod(m, struct ip *);
945 /* Get the header length of the reassembled packet */
946 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
947 #ifdef IPDIVERT
948 /* Restore original checksum before diverting packet */
949 if (divert_info != 0) {
950 ip->ip_len += hlen;
951 ip->ip_len = htons(ip->ip_len);
952 ip->ip_off = htons(ip->ip_off);
953 ip->ip_sum = 0;
954 if (hlen == sizeof(struct ip))
955 ip->ip_sum = in_cksum_hdr(ip);
956 else
957 ip->ip_sum = in_cksum(m, hlen);
958 ip->ip_off = ntohs(ip->ip_off);
959 ip->ip_len = ntohs(ip->ip_len);
960 ip->ip_len -= hlen;
962 #endif
963 } else {
964 ip->ip_len -= hlen;
967 #ifdef IPDIVERT
969 * Divert or tee packet to the divert protocol if required.
971 if (divert_info != 0) {
972 struct mbuf *clone = NULL;
974 /* Clone packet if we're doing a 'tee' */
975 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
976 clone = m_dup(m, MB_DONTWAIT);
978 /* Restore packet header fields to original values */
979 ip->ip_len += hlen;
980 ip->ip_len = htons(ip->ip_len);
981 ip->ip_off = htons(ip->ip_off);
983 /* Deliver packet to divert input routine */
984 divert_packet(m, 1, divert_info & 0xffff);
985 ipstat.ips_delivered++;
987 /* If 'tee', continue with original packet */
988 if (clone == NULL)
989 return;
990 m = clone;
991 ip = mtod(m, struct ip *);
992 ip->ip_len += hlen;
994 * Jump backwards to complete processing of the
995 * packet. But first clear divert_info to avoid
996 * entering this block again.
997 * We do not need to clear args.divert_rule
998 * or args.next_hop as they will not be used.
1000 * XXX Better safe than sorry, remove the DIVERT tag.
1002 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1003 if (mtag != NULL)
1004 m_tag_delete(m, mtag);
1006 divert_info = 0;
1007 goto pass;
1009 #endif
1011 #ifdef IPSEC
1013 * enforce IPsec policy checking if we are seeing last header.
1014 * note that we do not visit this with protocols with pcb layer
1015 * code - like udp/tcp/raw ip.
1017 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1018 ipsec4_in_reject(m, NULL)) {
1019 ipsecstat.in_polvio++;
1020 goto bad;
1022 #endif
1023 #if FAST_IPSEC
1025 * enforce IPsec policy checking if we are seeing last header.
1026 * note that we do not visit this with protocols with pcb layer
1027 * code - like udp/tcp/raw ip.
1029 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1031 * Check if the packet has already had IPsec processing
1032 * done. If so, then just pass it along. This tag gets
1033 * set during AH, ESP, etc. input handling, before the
1034 * packet is returned to the ip input queue for delivery.
1036 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1037 crit_enter();
1038 if (mtag != NULL) {
1039 tdbi = (struct tdb_ident *)m_tag_data(mtag);
1040 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1041 } else {
1042 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1043 IP_FORWARDING, &error);
1045 if (sp != NULL) {
1047 * Check security policy against packet attributes.
1049 error = ipsec_in_reject(sp, m);
1050 KEY_FREESP(&sp);
1051 } else {
1052 /* XXX error stat??? */
1053 error = EINVAL;
1054 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1055 goto bad;
1057 crit_exit();
1058 if (error)
1059 goto bad;
1061 #endif /* FAST_IPSEC */
1063 ipstat.ips_delivered++;
1064 if (needredispatch) {
1065 struct netmsg_transport_packet *msg;
1066 lwkt_port_t port;
1068 ip->ip_off = htons(ip->ip_off);
1069 ip->ip_len = htons(ip->ip_len);
1070 port = ip_mport(&m);
1071 if (port == NULL)
1072 return;
1074 msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1075 M_INTWAIT | M_NULLOK);
1076 if (msg == NULL)
1077 goto bad;
1079 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1080 transport_processing_handler);
1081 msg->nm_hlen = hlen;
1082 msg->nm_hasnexthop = (args.next_hop != NULL);
1083 if (msg->nm_hasnexthop)
1084 msg->nm_nexthop = *args.next_hop; /* structure copy */
1086 msg->nm_mbuf = m;
1087 ip = mtod(m, struct ip *);
1088 ip->ip_len = ntohs(ip->ip_len);
1089 ip->ip_off = ntohs(ip->ip_off);
1090 lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1091 } else {
1092 transport_processing_oncpu(m, hlen, ip, args.next_hop);
1094 return;
1096 bad:
1097 m_freem(m);
1101 * Take incoming datagram fragment and try to reassemble it into
1102 * whole datagram. If a chain for reassembly of this datagram already
1103 * exists, then it is given as fp; otherwise have to make a chain.
1105 * When IPDIVERT enabled, keep additional state with each packet that
1106 * tells us if we need to divert or tee the packet we're building.
1107 * In particular, *divinfo includes the port and TEE flag.
1110 static struct mbuf *
1111 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1112 u_int32_t *divinfo)
1114 struct ip *ip = mtod(m, struct ip *);
1115 struct mbuf *p = NULL, *q, *nq;
1116 struct mbuf *n;
1117 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1118 int i, next;
1119 #ifdef IPDIVERT
1120 struct m_tag *mtag;
1121 #endif
1124 * If the hardware has not done csum over this fragment
1125 * then csum_data is not valid at all.
1127 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1128 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1129 m->m_pkthdr.csum_data = 0;
1130 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1134 * Presence of header sizes in mbufs
1135 * would confuse code below.
1137 m->m_data += hlen;
1138 m->m_len -= hlen;
1141 * If first fragment to arrive, create a reassembly queue.
1143 if (fp == NULL) {
1144 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1145 goto dropfrag;
1146 insque(fp, where);
1147 nipq++;
1148 fp->ipq_nfrags = 1;
1149 fp->ipq_ttl = IPFRAGTTL;
1150 fp->ipq_p = ip->ip_p;
1151 fp->ipq_id = ip->ip_id;
1152 fp->ipq_src = ip->ip_src;
1153 fp->ipq_dst = ip->ip_dst;
1154 fp->ipq_frags = m;
1155 m->m_nextpkt = NULL;
1156 #ifdef IPDIVERT
1157 fp->ipq_div_info = 0;
1158 #endif
1159 goto inserted;
1160 } else {
1161 fp->ipq_nfrags++;
1164 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1167 * Find a segment which begins after this one does.
1169 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1170 if (GETIP(q)->ip_off > ip->ip_off)
1171 break;
1174 * If there is a preceding segment, it may provide some of
1175 * our data already. If so, drop the data from the incoming
1176 * segment. If it provides all of our data, drop us, otherwise
1177 * stick new segment in the proper place.
1179 * If some of the data is dropped from the the preceding
1180 * segment, then it's checksum is invalidated.
1182 if (p) {
1183 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1184 if (i > 0) {
1185 if (i >= ip->ip_len)
1186 goto dropfrag;
1187 m_adj(m, i);
1188 m->m_pkthdr.csum_flags = 0;
1189 ip->ip_off += i;
1190 ip->ip_len -= i;
1192 m->m_nextpkt = p->m_nextpkt;
1193 p->m_nextpkt = m;
1194 } else {
1195 m->m_nextpkt = fp->ipq_frags;
1196 fp->ipq_frags = m;
1200 * While we overlap succeeding segments trim them or,
1201 * if they are completely covered, dequeue them.
1203 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1204 q = nq) {
1205 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1206 if (i < GETIP(q)->ip_len) {
1207 GETIP(q)->ip_len -= i;
1208 GETIP(q)->ip_off += i;
1209 m_adj(q, i);
1210 q->m_pkthdr.csum_flags = 0;
1211 break;
1213 nq = q->m_nextpkt;
1214 m->m_nextpkt = nq;
1215 ipstat.ips_fragdropped++;
1216 fp->ipq_nfrags--;
1217 q->m_nextpkt = NULL;
1218 m_freem(q);
1221 inserted:
1223 #ifdef IPDIVERT
1225 * Transfer firewall instructions to the fragment structure.
1226 * Only trust info in the fragment at offset 0.
1228 if (ip->ip_off == 0) {
1229 fp->ipq_div_info = *divinfo;
1230 } else {
1231 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1232 if (mtag != NULL)
1233 m_tag_delete(m, mtag);
1235 *divinfo = 0;
1236 #endif
1239 * Check for complete reassembly and perform frag per packet
1240 * limiting.
1242 * Frag limiting is performed here so that the nth frag has
1243 * a chance to complete the packet before we drop the packet.
1244 * As a result, n+1 frags are actually allowed per packet, but
1245 * only n will ever be stored. (n = maxfragsperpacket.)
1248 next = 0;
1249 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1250 if (GETIP(q)->ip_off != next) {
1251 if (fp->ipq_nfrags > maxfragsperpacket) {
1252 ipstat.ips_fragdropped += fp->ipq_nfrags;
1253 ip_freef(fp);
1255 return (NULL);
1257 next += GETIP(q)->ip_len;
1259 /* Make sure the last packet didn't have the IP_MF flag */
1260 if (p->m_flags & M_FRAG) {
1261 if (fp->ipq_nfrags > maxfragsperpacket) {
1262 ipstat.ips_fragdropped += fp->ipq_nfrags;
1263 ip_freef(fp);
1265 return (NULL);
1269 * Reassembly is complete. Make sure the packet is a sane size.
1271 q = fp->ipq_frags;
1272 ip = GETIP(q);
1273 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1274 ipstat.ips_toolong++;
1275 ipstat.ips_fragdropped += fp->ipq_nfrags;
1276 ip_freef(fp);
1277 return (NULL);
1281 * Concatenate fragments.
1283 m = q;
1284 n = m->m_next;
1285 m->m_next = NULL;
1286 m_cat(m, n);
1287 nq = q->m_nextpkt;
1288 q->m_nextpkt = NULL;
1289 for (q = nq; q != NULL; q = nq) {
1290 nq = q->m_nextpkt;
1291 q->m_nextpkt = NULL;
1292 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1293 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1294 m_cat(m, q);
1298 * Clean up the 1's complement checksum. Carry over 16 bits must
1299 * be added back. This assumes no more then 65535 packet fragments
1300 * were reassembled. A second carry can also occur (but not a third).
1302 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1303 (m->m_pkthdr.csum_data >> 16);
1304 if (m->m_pkthdr.csum_data > 0xFFFF)
1305 m->m_pkthdr.csum_data -= 0xFFFF;
1308 #ifdef IPDIVERT
1310 * Extract firewall instructions from the fragment structure.
1312 *divinfo = fp->ipq_div_info;
1313 #endif
1316 * Create header for new ip packet by
1317 * modifying header of first packet;
1318 * dequeue and discard fragment reassembly header.
1319 * Make header visible.
1321 ip->ip_len = next;
1322 ip->ip_src = fp->ipq_src;
1323 ip->ip_dst = fp->ipq_dst;
1324 remque(fp);
1325 nipq--;
1326 mpipe_free(&ipq_mpipe, fp);
1327 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1328 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1329 /* some debugging cruft by sklower, below, will go away soon */
1330 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1331 int plen = 0;
1333 for (n = m; n; n = n->m_next)
1334 plen += n->m_len;
1335 m->m_pkthdr.len = plen;
1337 return (m);
1339 dropfrag:
1340 #ifdef IPDIVERT
1341 *divinfo = 0;
1342 #endif
1343 ipstat.ips_fragdropped++;
1344 if (fp != NULL)
1345 fp->ipq_nfrags--;
1346 m_freem(m);
1347 return (NULL);
1349 #undef GETIP
1353 * Free a fragment reassembly header and all
1354 * associated datagrams.
1356 static void
1357 ip_freef(struct ipq *fp)
1359 struct mbuf *q;
1361 while (fp->ipq_frags) {
1362 q = fp->ipq_frags;
1363 fp->ipq_frags = q->m_nextpkt;
1364 q->m_nextpkt = NULL;
1365 m_freem(q);
1367 remque(fp);
1368 mpipe_free(&ipq_mpipe, fp);
1369 nipq--;
1373 * IP timer processing;
1374 * if a timer expires on a reassembly
1375 * queue, discard it.
1377 void
1378 ip_slowtimo(void)
1380 struct ipq *fp;
1381 int i;
1383 crit_enter();
1384 for (i = 0; i < IPREASS_NHASH; i++) {
1385 fp = ipq[i].next;
1386 if (fp == NULL)
1387 continue;
1388 while (fp != &ipq[i]) {
1389 --fp->ipq_ttl;
1390 fp = fp->next;
1391 if (fp->prev->ipq_ttl == 0) {
1392 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1393 ip_freef(fp->prev);
1398 * If we are over the maximum number of fragments
1399 * (due to the limit being lowered), drain off
1400 * enough to get down to the new limit.
1402 if (maxnipq >= 0 && nipq > maxnipq) {
1403 for (i = 0; i < IPREASS_NHASH; i++) {
1404 while (nipq > maxnipq &&
1405 (ipq[i].next != &ipq[i])) {
1406 ipstat.ips_fragdropped +=
1407 ipq[i].next->ipq_nfrags;
1408 ip_freef(ipq[i].next);
1412 ipflow_slowtimo();
1413 crit_exit();
1417 * Drain off all datagram fragments.
1419 void
1420 ip_drain(void)
1422 int i;
1424 for (i = 0; i < IPREASS_NHASH; i++) {
1425 while (ipq[i].next != &ipq[i]) {
1426 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1427 ip_freef(ipq[i].next);
1430 in_rtqdrain();
1434 * Do option processing on a datagram,
1435 * possibly discarding it if bad options are encountered,
1436 * or forwarding it if source-routed.
1437 * The pass argument is used when operating in the IPSTEALTH
1438 * mode to tell what options to process:
1439 * [LS]SRR (pass 0) or the others (pass 1).
1440 * The reason for as many as two passes is that when doing IPSTEALTH,
1441 * non-routing options should be processed only if the packet is for us.
1442 * Returns 1 if packet has been forwarded/freed,
1443 * 0 if the packet should be processed further.
1445 static int
1446 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1448 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1449 struct ip *ip = mtod(m, struct ip *);
1450 u_char *cp;
1451 struct in_ifaddr *ia;
1452 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1453 boolean_t forward = FALSE;
1454 struct in_addr *sin, dst;
1455 n_time ntime;
1457 dst = ip->ip_dst;
1458 cp = (u_char *)(ip + 1);
1459 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1460 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1461 opt = cp[IPOPT_OPTVAL];
1462 if (opt == IPOPT_EOL)
1463 break;
1464 if (opt == IPOPT_NOP)
1465 optlen = 1;
1466 else {
1467 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1468 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1469 goto bad;
1471 optlen = cp[IPOPT_OLEN];
1472 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1473 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1474 goto bad;
1477 switch (opt) {
1479 default:
1480 break;
1483 * Source routing with record.
1484 * Find interface with current destination address.
1485 * If none on this machine then drop if strictly routed,
1486 * or do nothing if loosely routed.
1487 * Record interface address and bring up next address
1488 * component. If strictly routed make sure next
1489 * address is on directly accessible net.
1491 case IPOPT_LSRR:
1492 case IPOPT_SSRR:
1493 if (ipstealth && pass > 0)
1494 break;
1495 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1496 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1497 goto bad;
1499 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1500 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1501 goto bad;
1503 ipaddr.sin_addr = ip->ip_dst;
1504 ia = (struct in_ifaddr *)
1505 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1506 if (ia == NULL) {
1507 if (opt == IPOPT_SSRR) {
1508 type = ICMP_UNREACH;
1509 code = ICMP_UNREACH_SRCFAIL;
1510 goto bad;
1512 if (!ip_dosourceroute)
1513 goto nosourcerouting;
1515 * Loose routing, and not at next destination
1516 * yet; nothing to do except forward.
1518 break;
1520 off--; /* 0 origin */
1521 if (off > optlen - (int)sizeof(struct in_addr)) {
1523 * End of source route. Should be for us.
1525 if (!ip_acceptsourceroute)
1526 goto nosourcerouting;
1527 save_rte(cp, ip->ip_src);
1528 break;
1530 if (ipstealth)
1531 goto dropit;
1532 if (!ip_dosourceroute) {
1533 if (ipforwarding) {
1534 char buf[sizeof "aaa.bbb.ccc.ddd"];
1537 * Acting as a router, so generate ICMP
1539 nosourcerouting:
1540 strcpy(buf, inet_ntoa(ip->ip_dst));
1541 log(LOG_WARNING,
1542 "attempted source route from %s to %s\n",
1543 inet_ntoa(ip->ip_src), buf);
1544 type = ICMP_UNREACH;
1545 code = ICMP_UNREACH_SRCFAIL;
1546 goto bad;
1547 } else {
1549 * Not acting as a router,
1550 * so silently drop.
1552 dropit:
1553 ipstat.ips_cantforward++;
1554 m_freem(m);
1555 return (1);
1560 * locate outgoing interface
1562 memcpy(&ipaddr.sin_addr, cp + off,
1563 sizeof ipaddr.sin_addr);
1565 if (opt == IPOPT_SSRR) {
1566 #define INA struct in_ifaddr *
1567 #define SA struct sockaddr *
1568 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1569 == NULL)
1570 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1571 } else
1572 ia = ip_rtaddr(ipaddr.sin_addr,
1573 &ipforward_rt[mycpuid]);
1574 if (ia == NULL) {
1575 type = ICMP_UNREACH;
1576 code = ICMP_UNREACH_SRCFAIL;
1577 goto bad;
1579 ip->ip_dst = ipaddr.sin_addr;
1580 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1581 sizeof(struct in_addr));
1582 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1584 * Let ip_intr's mcast routing check handle mcast pkts
1586 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1587 break;
1589 case IPOPT_RR:
1590 if (ipstealth && pass == 0)
1591 break;
1592 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1593 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1594 goto bad;
1596 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1597 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1598 goto bad;
1601 * If no space remains, ignore.
1603 off--; /* 0 origin */
1604 if (off > optlen - (int)sizeof(struct in_addr))
1605 break;
1606 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1607 sizeof ipaddr.sin_addr);
1609 * locate outgoing interface; if we're the destination,
1610 * use the incoming interface (should be same).
1612 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1613 (ia = ip_rtaddr(ipaddr.sin_addr,
1614 &ipforward_rt[mycpuid]))
1615 == NULL) {
1616 type = ICMP_UNREACH;
1617 code = ICMP_UNREACH_HOST;
1618 goto bad;
1620 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1621 sizeof(struct in_addr));
1622 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1623 break;
1625 case IPOPT_TS:
1626 if (ipstealth && pass == 0)
1627 break;
1628 code = cp - (u_char *)ip;
1629 if (optlen < 4 || optlen > 40) {
1630 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1631 goto bad;
1633 if ((off = cp[IPOPT_OFFSET]) < 5) {
1634 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1635 goto bad;
1637 if (off > optlen - (int)sizeof(int32_t)) {
1638 cp[IPOPT_OFFSET + 1] += (1 << 4);
1639 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1640 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1641 goto bad;
1643 break;
1645 off--; /* 0 origin */
1646 sin = (struct in_addr *)(cp + off);
1647 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1649 case IPOPT_TS_TSONLY:
1650 break;
1652 case IPOPT_TS_TSANDADDR:
1653 if (off + sizeof(n_time) +
1654 sizeof(struct in_addr) > optlen) {
1655 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1656 goto bad;
1658 ipaddr.sin_addr = dst;
1659 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1660 m->m_pkthdr.rcvif);
1661 if (ia == NULL)
1662 continue;
1663 memcpy(sin, &IA_SIN(ia)->sin_addr,
1664 sizeof(struct in_addr));
1665 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1666 off += sizeof(struct in_addr);
1667 break;
1669 case IPOPT_TS_PRESPEC:
1670 if (off + sizeof(n_time) +
1671 sizeof(struct in_addr) > optlen) {
1672 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1673 goto bad;
1675 memcpy(&ipaddr.sin_addr, sin,
1676 sizeof(struct in_addr));
1677 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1678 continue;
1679 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1680 off += sizeof(struct in_addr);
1681 break;
1683 default:
1684 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1685 goto bad;
1687 ntime = iptime();
1688 memcpy(cp + off, &ntime, sizeof(n_time));
1689 cp[IPOPT_OFFSET] += sizeof(n_time);
1692 if (forward && ipforwarding) {
1693 ip_forward(m, TRUE, next_hop);
1694 return (1);
1696 return (0);
1697 bad:
1698 icmp_error(m, type, code, 0, 0);
1699 ipstat.ips_badoptions++;
1700 return (1);
1704 * Given address of next destination (final or next hop),
1705 * return internet address info of interface to be used to get there.
1707 struct in_ifaddr *
1708 ip_rtaddr(struct in_addr dst, struct route *ro)
1710 struct sockaddr_in *sin;
1712 sin = (struct sockaddr_in *)&ro->ro_dst;
1714 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1715 if (ro->ro_rt != NULL) {
1716 RTFREE(ro->ro_rt);
1717 ro->ro_rt = NULL;
1719 sin->sin_family = AF_INET;
1720 sin->sin_len = sizeof *sin;
1721 sin->sin_addr = dst;
1722 rtalloc_ign(ro, RTF_PRCLONING);
1725 if (ro->ro_rt == NULL)
1726 return (NULL);
1728 return (ifatoia(ro->ro_rt->rt_ifa));
1732 * Save incoming source route for use in replies,
1733 * to be picked up later by ip_srcroute if the receiver is interested.
1735 void
1736 save_rte(u_char *option, struct in_addr dst)
1738 unsigned olen;
1740 olen = option[IPOPT_OLEN];
1741 #ifdef DIAGNOSTIC
1742 if (ipprintfs)
1743 kprintf("save_rte: olen %d\n", olen);
1744 #endif
1745 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1746 return;
1747 bcopy(option, ip_srcrt.srcopt, olen);
1748 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1749 ip_srcrt.dst = dst;
1753 * Retrieve incoming source route for use in replies,
1754 * in the same form used by setsockopt.
1755 * The first hop is placed before the options, will be removed later.
1757 struct mbuf *
1758 ip_srcroute(void)
1760 struct in_addr *p, *q;
1761 struct mbuf *m;
1763 if (ip_nhops == 0)
1764 return (NULL);
1765 m = m_get(MB_DONTWAIT, MT_HEADER);
1766 if (m == NULL)
1767 return (NULL);
1769 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1771 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1772 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1773 OPTSIZ;
1774 #ifdef DIAGNOSTIC
1775 if (ipprintfs)
1776 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1777 #endif
1780 * First save first hop for return route
1782 p = &ip_srcrt.route[ip_nhops - 1];
1783 *(mtod(m, struct in_addr *)) = *p--;
1784 #ifdef DIAGNOSTIC
1785 if (ipprintfs)
1786 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1787 #endif
1790 * Copy option fields and padding (nop) to mbuf.
1792 ip_srcrt.nop = IPOPT_NOP;
1793 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1794 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1795 OPTSIZ);
1796 q = (struct in_addr *)(mtod(m, caddr_t) +
1797 sizeof(struct in_addr) + OPTSIZ);
1798 #undef OPTSIZ
1800 * Record return path as an IP source route,
1801 * reversing the path (pointers are now aligned).
1803 while (p >= ip_srcrt.route) {
1804 #ifdef DIAGNOSTIC
1805 if (ipprintfs)
1806 kprintf(" %x", ntohl(q->s_addr));
1807 #endif
1808 *q++ = *p--;
1811 * Last hop goes to final destination.
1813 *q = ip_srcrt.dst;
1814 #ifdef DIAGNOSTIC
1815 if (ipprintfs)
1816 kprintf(" %x\n", ntohl(q->s_addr));
1817 #endif
1818 return (m);
1822 * Strip out IP options.
1824 void
1825 ip_stripoptions(struct mbuf *m)
1827 int datalen;
1828 struct ip *ip = mtod(m, struct ip *);
1829 caddr_t opts;
1830 int optlen;
1832 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1833 opts = (caddr_t)(ip + 1);
1834 datalen = m->m_len - (sizeof(struct ip) + optlen);
1835 bcopy(opts + optlen, opts, datalen);
1836 m->m_len -= optlen;
1837 if (m->m_flags & M_PKTHDR)
1838 m->m_pkthdr.len -= optlen;
1839 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1842 u_char inetctlerrmap[PRC_NCMDS] = {
1843 0, 0, 0, 0,
1844 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1845 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1846 EMSGSIZE, EHOSTUNREACH, 0, 0,
1847 0, 0, 0, 0,
1848 ENOPROTOOPT, ECONNREFUSED
1852 * Forward a packet. If some error occurs return the sender
1853 * an icmp packet. Note we can't always generate a meaningful
1854 * icmp message because icmp doesn't have a large enough repertoire
1855 * of codes and types.
1857 * If not forwarding, just drop the packet. This could be confusing
1858 * if ipforwarding was zero but some routing protocol was advancing
1859 * us as a gateway to somewhere. However, we must let the routing
1860 * protocol deal with that.
1862 * The using_srcrt parameter indicates whether the packet is being forwarded
1863 * via a source route.
1865 static void
1866 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1868 struct ip *ip = mtod(m, struct ip *);
1869 struct sockaddr_in *ipforward_rtaddr;
1870 struct rtentry *rt;
1871 int error, type = 0, code = 0, destmtu = 0;
1872 struct mbuf *mcopy;
1873 n_long dest;
1874 struct in_addr pkt_dst;
1875 struct m_hdr tag;
1876 struct route *cache_rt = &ipforward_rt[mycpuid];
1878 dest = INADDR_ANY;
1880 * Cache the destination address of the packet; this may be
1881 * changed by use of 'ipfw fwd'.
1883 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1885 #ifdef DIAGNOSTIC
1886 if (ipprintfs)
1887 kprintf("forward: src %x dst %x ttl %x\n",
1888 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1889 #endif
1891 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1892 ipstat.ips_cantforward++;
1893 m_freem(m);
1894 return;
1896 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1897 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1898 return;
1901 ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1902 if (cache_rt->ro_rt == NULL ||
1903 ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1904 if (cache_rt->ro_rt != NULL) {
1905 RTFREE(cache_rt->ro_rt);
1906 cache_rt->ro_rt = NULL;
1908 ipforward_rtaddr->sin_family = AF_INET;
1909 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1910 ipforward_rtaddr->sin_addr = pkt_dst;
1911 rtalloc_ign(cache_rt, RTF_PRCLONING);
1912 if (cache_rt->ro_rt == NULL) {
1913 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1914 return;
1917 rt = cache_rt->ro_rt;
1920 * Save the IP header and at most 8 bytes of the payload,
1921 * in case we need to generate an ICMP message to the src.
1923 * XXX this can be optimized a lot by saving the data in a local
1924 * buffer on the stack (72 bytes at most), and only allocating the
1925 * mbuf if really necessary. The vast majority of the packets
1926 * are forwarded without having to send an ICMP back (either
1927 * because unnecessary, or because rate limited), so we are
1928 * really we are wasting a lot of work here.
1930 * We don't use m_copy() because it might return a reference
1931 * to a shared cluster. Both this function and ip_output()
1932 * assume exclusive access to the IP header in `m', so any
1933 * data in a cluster may change before we reach icmp_error().
1935 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1936 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1938 * It's probably ok if the pkthdr dup fails (because
1939 * the deep copy of the tag chain failed), but for now
1940 * be conservative and just discard the copy since
1941 * code below may some day want the tags.
1943 m_free(mcopy);
1944 mcopy = NULL;
1946 if (mcopy != NULL) {
1947 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1948 (int)ip->ip_len);
1949 mcopy->m_pkthdr.len = mcopy->m_len;
1950 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1953 if (!ipstealth)
1954 ip->ip_ttl -= IPTTLDEC;
1957 * If forwarding packet using same interface that it came in on,
1958 * perhaps should send a redirect to sender to shortcut a hop.
1959 * Only send redirect if source is sending directly to us,
1960 * and if packet was not source routed (or has any options).
1961 * Also, don't send redirect if forwarding using a default route
1962 * or a route modified by a redirect.
1964 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1965 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1966 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1967 ipsendredirects && !using_srcrt && next_hop == NULL) {
1968 u_long src = ntohl(ip->ip_src.s_addr);
1969 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1971 if (rt_ifa != NULL &&
1972 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1973 if (rt->rt_flags & RTF_GATEWAY)
1974 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1975 else
1976 dest = pkt_dst.s_addr;
1978 * Router requirements says to only send
1979 * host redirects.
1981 type = ICMP_REDIRECT;
1982 code = ICMP_REDIRECT_HOST;
1983 #ifdef DIAGNOSTIC
1984 if (ipprintfs)
1985 kprintf("redirect (%d) to %x\n", code, dest);
1986 #endif
1990 if (next_hop != NULL) {
1991 /* Pass IPFORWARD info if available */
1992 tag.mh_type = MT_TAG;
1993 tag.mh_flags = PACKET_TAG_IPFORWARD;
1994 tag.mh_data = (caddr_t)next_hop;
1995 tag.mh_next = m;
1996 m = (struct mbuf *)&tag;
1999 error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
2000 NULL);
2001 if (error == 0) {
2002 ipstat.ips_forward++;
2003 if (type == 0) {
2004 if (mcopy) {
2005 ipflow_create(cache_rt, mcopy);
2006 m_freem(mcopy);
2008 return; /* most common case */
2009 } else {
2010 ipstat.ips_redirectsent++;
2012 } else {
2013 ipstat.ips_cantforward++;
2016 if (mcopy == NULL)
2017 return;
2020 * Send ICMP message.
2023 switch (error) {
2025 case 0: /* forwarded, but need redirect */
2026 /* type, code set above */
2027 break;
2029 case ENETUNREACH: /* shouldn't happen, checked above */
2030 case EHOSTUNREACH:
2031 case ENETDOWN:
2032 case EHOSTDOWN:
2033 default:
2034 type = ICMP_UNREACH;
2035 code = ICMP_UNREACH_HOST;
2036 break;
2038 case EMSGSIZE:
2039 type = ICMP_UNREACH;
2040 code = ICMP_UNREACH_NEEDFRAG;
2041 #ifdef IPSEC
2043 * If the packet is routed over IPsec tunnel, tell the
2044 * originator the tunnel MTU.
2045 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2046 * XXX quickhack!!!
2048 if (cache_rt->ro_rt != NULL) {
2049 struct secpolicy *sp = NULL;
2050 int ipsecerror;
2051 int ipsechdr;
2052 struct route *ro;
2054 sp = ipsec4_getpolicybyaddr(mcopy,
2055 IPSEC_DIR_OUTBOUND,
2056 IP_FORWARDING,
2057 &ipsecerror);
2059 if (sp == NULL)
2060 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2061 else {
2062 /* count IPsec header size */
2063 ipsechdr = ipsec4_hdrsiz(mcopy,
2064 IPSEC_DIR_OUTBOUND,
2065 NULL);
2068 * find the correct route for outer IPv4
2069 * header, compute tunnel MTU.
2072 if (sp->req != NULL && sp->req->sav != NULL &&
2073 sp->req->sav->sah != NULL) {
2074 ro = &sp->req->sav->sah->sa_route;
2075 if (ro->ro_rt != NULL &&
2076 ro->ro_rt->rt_ifp != NULL) {
2077 destmtu =
2078 ro->ro_rt->rt_ifp->if_mtu;
2079 destmtu -= ipsechdr;
2083 key_freesp(sp);
2086 #elif FAST_IPSEC
2088 * If the packet is routed over IPsec tunnel, tell the
2089 * originator the tunnel MTU.
2090 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2091 * XXX quickhack!!!
2093 if (cache_rt->ro_rt != NULL) {
2094 struct secpolicy *sp = NULL;
2095 int ipsecerror;
2096 int ipsechdr;
2097 struct route *ro;
2099 sp = ipsec_getpolicybyaddr(mcopy,
2100 IPSEC_DIR_OUTBOUND,
2101 IP_FORWARDING,
2102 &ipsecerror);
2104 if (sp == NULL)
2105 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2106 else {
2107 /* count IPsec header size */
2108 ipsechdr = ipsec4_hdrsiz(mcopy,
2109 IPSEC_DIR_OUTBOUND,
2110 NULL);
2113 * find the correct route for outer IPv4
2114 * header, compute tunnel MTU.
2117 if (sp->req != NULL &&
2118 sp->req->sav != NULL &&
2119 sp->req->sav->sah != NULL) {
2120 ro = &sp->req->sav->sah->sa_route;
2121 if (ro->ro_rt != NULL &&
2122 ro->ro_rt->rt_ifp != NULL) {
2123 destmtu =
2124 ro->ro_rt->rt_ifp->if_mtu;
2125 destmtu -= ipsechdr;
2129 KEY_FREESP(&sp);
2132 #else /* !IPSEC && !FAST_IPSEC */
2133 if (cache_rt->ro_rt != NULL)
2134 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2135 #endif /*IPSEC*/
2136 ipstat.ips_cantfrag++;
2137 break;
2139 case ENOBUFS:
2141 * A router should not generate ICMP_SOURCEQUENCH as
2142 * required in RFC1812 Requirements for IP Version 4 Routers.
2143 * Source quench could be a big problem under DoS attacks,
2144 * or if the underlying interface is rate-limited.
2145 * Those who need source quench packets may re-enable them
2146 * via the net.inet.ip.sendsourcequench sysctl.
2148 if (!ip_sendsourcequench) {
2149 m_freem(mcopy);
2150 return;
2151 } else {
2152 type = ICMP_SOURCEQUENCH;
2153 code = 0;
2155 break;
2157 case EACCES: /* ipfw denied packet */
2158 m_freem(mcopy);
2159 return;
2161 icmp_error(mcopy, type, code, dest, destmtu);
2164 void
2165 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2166 struct mbuf *m)
2168 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2169 struct timeval tv;
2171 microtime(&tv);
2172 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2173 SCM_TIMESTAMP, SOL_SOCKET);
2174 if (*mp)
2175 mp = &(*mp)->m_next;
2177 if (inp->inp_flags & INP_RECVDSTADDR) {
2178 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2179 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2180 if (*mp)
2181 mp = &(*mp)->m_next;
2183 if (inp->inp_flags & INP_RECVTTL) {
2184 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2185 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2186 if (*mp)
2187 mp = &(*mp)->m_next;
2189 #ifdef notyet
2190 /* XXX
2191 * Moving these out of udp_input() made them even more broken
2192 * than they already were.
2194 /* options were tossed already */
2195 if (inp->inp_flags & INP_RECVOPTS) {
2196 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2197 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2198 if (*mp)
2199 mp = &(*mp)->m_next;
2201 /* ip_srcroute doesn't do what we want here, need to fix */
2202 if (inp->inp_flags & INP_RECVRETOPTS) {
2203 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2204 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2205 if (*mp)
2206 mp = &(*mp)->m_next;
2208 #endif
2209 if (inp->inp_flags & INP_RECVIF) {
2210 struct ifnet *ifp;
2211 struct sdlbuf {
2212 struct sockaddr_dl sdl;
2213 u_char pad[32];
2214 } sdlbuf;
2215 struct sockaddr_dl *sdp;
2216 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2218 if (((ifp = m->m_pkthdr.rcvif)) &&
2219 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2220 sdp = IF_LLSOCKADDR(ifp);
2222 * Change our mind and don't try copy.
2224 if ((sdp->sdl_family != AF_LINK) ||
2225 (sdp->sdl_len > sizeof(sdlbuf))) {
2226 goto makedummy;
2228 bcopy(sdp, sdl2, sdp->sdl_len);
2229 } else {
2230 makedummy:
2231 sdl2->sdl_len =
2232 offsetof(struct sockaddr_dl, sdl_data[0]);
2233 sdl2->sdl_family = AF_LINK;
2234 sdl2->sdl_index = 0;
2235 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2237 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2238 IP_RECVIF, IPPROTO_IP);
2239 if (*mp)
2240 mp = &(*mp)->m_next;
2245 * XXX these routines are called from the upper part of the kernel.
2247 * They could also be moved to ip_mroute.c, since all the RSVP
2248 * handling is done there already.
2251 ip_rsvp_init(struct socket *so)
2253 if (so->so_type != SOCK_RAW ||
2254 so->so_proto->pr_protocol != IPPROTO_RSVP)
2255 return EOPNOTSUPP;
2257 if (ip_rsvpd != NULL)
2258 return EADDRINUSE;
2260 ip_rsvpd = so;
2262 * This may seem silly, but we need to be sure we don't over-increment
2263 * the RSVP counter, in case something slips up.
2265 if (!ip_rsvp_on) {
2266 ip_rsvp_on = 1;
2267 rsvp_on++;
2270 return 0;
2274 ip_rsvp_done(void)
2276 ip_rsvpd = NULL;
2278 * This may seem silly, but we need to be sure we don't over-decrement
2279 * the RSVP counter, in case something slips up.
2281 if (ip_rsvp_on) {
2282 ip_rsvp_on = 0;
2283 rsvp_on--;
2285 return 0;
2288 void
2289 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2291 int off, proto;
2292 __va_list ap;
2294 __va_start(ap, m);
2295 off = __va_arg(ap, int);
2296 proto = __va_arg(ap, int);
2297 __va_end(ap);
2299 if (rsvp_input_p) { /* call the real one if loaded */
2300 rsvp_input_p(m, off, proto);
2301 return;
2304 /* Can still get packets with rsvp_on = 0 if there is a local member
2305 * of the group to which the RSVP packet is addressed. But in this
2306 * case we want to throw the packet away.
2309 if (!rsvp_on) {
2310 m_freem(m);
2311 return;
2314 if (ip_rsvpd != NULL) {
2315 rip_input(m, off, proto);
2316 return;
2318 /* Drop the packet */
2319 m_freem(m);