kernel - Add pmap_qenter_noinval()
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
blobee7b47f2a4a8c06e76695eda2900d1dfdae9af62
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2017 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
91 #include <ddb/ddb.h>
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
102 #define MINPV 2048
105 * pmap debugging will report who owns a pv lock when blocking.
107 #ifdef PMAP_DEBUG
109 #define PMAP_DEBUG_DECL ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS , __func__, __LINE__
111 #define PMAP_DEBUG_COPY , func, lineno
113 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp \
114 PMAP_DEBUG_ARGS)
115 #define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
122 #define pv_free(pv, pvp) _pv_free(pv, pvp PMAP_DEBUG_ARGS)
124 #else
126 #define PMAP_DEBUG_DECL
127 #define PMAP_DEBUG_ARGS
128 #define PMAP_DEBUG_COPY
130 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp)
131 #define pv_lock(pv) _pv_lock(pv)
132 #define pv_hold_try(pv) _pv_hold_try(pv)
133 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
134 #define pv_free(pv, pvp) _pv_free(pv, pvp)
136 #endif
139 * Get PDEs and PTEs for user/kernel address space
141 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
143 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
144 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
145 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
146 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
147 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
150 * Given a map and a machine independent protection code,
151 * convert to a vax protection code.
153 #define pte_prot(m, p) \
154 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
155 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
157 struct pmap kernel_pmap;
159 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
161 vm_paddr_t avail_start; /* PA of first available physical page */
162 vm_paddr_t avail_end; /* PA of last available physical page */
163 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
164 vm_offset_t virtual2_end;
165 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
166 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
167 vm_offset_t KvaStart; /* VA start of KVA space */
168 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
169 vm_offset_t KvaSize; /* max size of kernel virtual address space */
170 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
171 //static int pgeflag; /* PG_G or-in */
172 //static int pseflag; /* PG_PS or-in */
173 uint64_t PatMsr;
175 static int ndmpdp;
176 static vm_paddr_t dmaplimit;
177 static int nkpt;
178 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
180 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
181 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
183 static uint64_t KPTbase;
184 static uint64_t KPTphys;
185 static uint64_t KPDphys; /* phys addr of kernel level 2 */
186 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
187 uint64_t KPDPphys; /* phys addr of kernel level 3 */
188 uint64_t KPML4phys; /* phys addr of kernel level 4 */
190 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
191 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
194 * Data for the pv entry allocation mechanism
196 static vm_zone_t pvzone;
197 static struct vm_zone pvzone_store;
198 static int pv_entry_max=0, pv_entry_high_water=0;
199 static int pmap_pagedaemon_waken = 0;
200 static struct pv_entry *pvinit;
203 * All those kernel PT submaps that BSD is so fond of
205 pt_entry_t *CMAP1 = NULL, *ptmmap;
206 caddr_t CADDR1 = NULL, ptvmmap = NULL;
207 static pt_entry_t *msgbufmap;
208 struct msgbuf *msgbufp=NULL;
211 * PMAP default PG_* bits. Needed to be able to add
212 * EPT/NPT pagetable pmap_bits for the VMM module
214 uint64_t pmap_bits_default[] = {
215 REGULAR_PMAP, /* TYPE_IDX 0 */
216 X86_PG_V, /* PG_V_IDX 1 */
217 X86_PG_RW, /* PG_RW_IDX 2 */
218 X86_PG_U, /* PG_U_IDX 3 */
219 X86_PG_A, /* PG_A_IDX 4 */
220 X86_PG_M, /* PG_M_IDX 5 */
221 X86_PG_PS, /* PG_PS_IDX3 6 */
222 X86_PG_G, /* PG_G_IDX 7 */
223 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
224 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
225 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
226 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
227 X86_PG_NX, /* PG_NX_IDX 12 */
230 * Crashdump maps.
232 static pt_entry_t *pt_crashdumpmap;
233 static caddr_t crashdumpmap;
235 static int pmap_debug = 0;
236 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
237 &pmap_debug, 0, "Debug pmap's");
238 #ifdef PMAP_DEBUG2
239 static int pmap_enter_debug = 0;
240 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
241 &pmap_enter_debug, 0, "Debug pmap_enter's");
242 #endif
243 static int pmap_yield_count = 64;
244 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
245 &pmap_yield_count, 0, "Yield during init_pt/release");
246 static int pmap_mmu_optimize = 0;
247 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
248 &pmap_mmu_optimize, 0, "Share page table pages when possible");
249 int pmap_fast_kernel_cpusync = 0;
250 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
251 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
252 int pmap_dynamic_delete = 0;
253 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
254 &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
256 static int pmap_nx_enable = 0;
257 /* needs manual TUNABLE in early probe, see below */
259 #define DISABLE_PSE
261 /* Standard user access funtions */
262 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
263 size_t *lencopied);
264 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
265 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
266 extern int std_fubyte (const uint8_t *base);
267 extern int std_subyte (uint8_t *base, uint8_t byte);
268 extern int32_t std_fuword32 (const uint32_t *base);
269 extern int64_t std_fuword64 (const uint64_t *base);
270 extern int std_suword64 (uint64_t *base, uint64_t word);
271 extern int std_suword32 (uint32_t *base, int word);
272 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
273 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
275 static void pv_hold(pv_entry_t pv);
276 static int _pv_hold_try(pv_entry_t pv
277 PMAP_DEBUG_DECL);
278 static void pv_drop(pv_entry_t pv);
279 static void _pv_lock(pv_entry_t pv
280 PMAP_DEBUG_DECL);
281 static void pv_unlock(pv_entry_t pv);
282 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
283 PMAP_DEBUG_DECL);
284 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
285 PMAP_DEBUG_DECL);
286 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
287 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
288 vm_pindex_t **pmarkp, int *errorp);
289 static void pv_put(pv_entry_t pv);
290 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
291 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
292 pv_entry_t *pvpp);
293 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
294 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
295 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
296 pmap_inval_bulk_t *bulk, int destroy);
297 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
298 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
299 pmap_inval_bulk_t *bulk);
301 struct pmap_scan_info;
302 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
303 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
304 pv_entry_t pt_pv, int sharept,
305 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
306 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
307 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
308 pv_entry_t pt_pv, int sharept,
309 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
311 static void i386_protection_init (void);
312 static void create_pagetables(vm_paddr_t *firstaddr);
313 static void pmap_remove_all (vm_page_t m);
314 static boolean_t pmap_testbit (vm_page_t m, int bit);
316 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
317 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
319 static void pmap_pinit_defaults(struct pmap *pmap);
320 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
321 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
323 static unsigned pdir4mb;
325 static int
326 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
328 if (pv1->pv_pindex < pv2->pv_pindex)
329 return(-1);
330 if (pv1->pv_pindex > pv2->pv_pindex)
331 return(1);
332 return(0);
335 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
336 pv_entry_compare, vm_pindex_t, pv_pindex);
338 static __inline
339 void
340 pmap_page_stats_adding(vm_page_t m)
342 globaldata_t gd = mycpu;
344 if (TAILQ_EMPTY(&m->md.pv_list)) {
345 ++gd->gd_vmtotal.t_arm;
346 } else if (TAILQ_FIRST(&m->md.pv_list) ==
347 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
348 ++gd->gd_vmtotal.t_armshr;
349 ++gd->gd_vmtotal.t_avmshr;
350 } else {
351 ++gd->gd_vmtotal.t_avmshr;
355 static __inline
356 void
357 pmap_page_stats_deleting(vm_page_t m)
359 globaldata_t gd = mycpu;
361 if (TAILQ_EMPTY(&m->md.pv_list)) {
362 --gd->gd_vmtotal.t_arm;
363 } else if (TAILQ_FIRST(&m->md.pv_list) ==
364 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
365 --gd->gd_vmtotal.t_armshr;
366 --gd->gd_vmtotal.t_avmshr;
367 } else {
368 --gd->gd_vmtotal.t_avmshr;
373 * Move the kernel virtual free pointer to the next
374 * 2MB. This is used to help improve performance
375 * by using a large (2MB) page for much of the kernel
376 * (.text, .data, .bss)
378 static
379 vm_offset_t
380 pmap_kmem_choose(vm_offset_t addr)
382 vm_offset_t newaddr = addr;
384 newaddr = roundup2(addr, NBPDR);
385 return newaddr;
389 * pmap_pte_quick:
391 * Super fast pmap_pte routine best used when scanning the pv lists.
392 * This eliminates many course-grained invltlb calls. Note that many of
393 * the pv list scans are across different pmaps and it is very wasteful
394 * to do an entire invltlb when checking a single mapping.
396 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
398 static
399 pt_entry_t *
400 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
402 return pmap_pte(pmap, va);
406 * Returns the pindex of a page table entry (representing a terminal page).
407 * There are NUPTE_TOTAL page table entries possible (a huge number)
409 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
410 * We want to properly translate negative KVAs.
412 static __inline
413 vm_pindex_t
414 pmap_pte_pindex(vm_offset_t va)
416 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
420 * Returns the pindex of a page table.
422 static __inline
423 vm_pindex_t
424 pmap_pt_pindex(vm_offset_t va)
426 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
430 * Returns the pindex of a page directory.
432 static __inline
433 vm_pindex_t
434 pmap_pd_pindex(vm_offset_t va)
436 return (NUPTE_TOTAL + NUPT_TOTAL +
437 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
440 static __inline
441 vm_pindex_t
442 pmap_pdp_pindex(vm_offset_t va)
444 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
445 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
448 static __inline
449 vm_pindex_t
450 pmap_pml4_pindex(void)
452 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
456 * Return various clipped indexes for a given VA
458 * Returns the index of a pt in a page directory, representing a page
459 * table.
461 static __inline
462 vm_pindex_t
463 pmap_pt_index(vm_offset_t va)
465 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
469 * Returns the index of a pd in a page directory page, representing a page
470 * directory.
472 static __inline
473 vm_pindex_t
474 pmap_pd_index(vm_offset_t va)
476 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
480 * Returns the index of a pdp in the pml4 table, representing a page
481 * directory page.
483 static __inline
484 vm_pindex_t
485 pmap_pdp_index(vm_offset_t va)
487 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
491 * The placemarker hash must be broken up into four zones so lock
492 * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
494 * Placemarkers are used to 'lock' page table indices that do not have
495 * a pv_entry. This allows the pmap to support managed and unmanaged
496 * pages and shared page tables.
498 #define PM_PLACE_BASE (PM_PLACEMARKS >> 2)
500 static __inline
501 vm_pindex_t *
502 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
504 int hi;
506 if (pindex < pmap_pt_pindex(0)) /* zone 0 - PTE */
507 hi = 0;
508 else if (pindex < pmap_pd_pindex(0)) /* zone 1 - PT */
509 hi = PM_PLACE_BASE;
510 else if (pindex < pmap_pdp_pindex(0)) /* zone 2 - PD */
511 hi = PM_PLACE_BASE << 1;
512 else /* zone 3 - PDP (and PML4E) */
513 hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
514 hi += pindex & (PM_PLACE_BASE - 1);
516 return (&pmap->pm_placemarks[hi]);
521 * Generic procedure to index a pte from a pt, pd, or pdp.
523 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
524 * a page table page index but is instead of PV lookup index.
526 static
527 void *
528 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
530 pt_entry_t *pte;
532 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
533 return(&pte[pindex]);
537 * Return pointer to PDP slot in the PML4
539 static __inline
540 pml4_entry_t *
541 pmap_pdp(pmap_t pmap, vm_offset_t va)
543 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
547 * Return pointer to PD slot in the PDP given a pointer to the PDP
549 static __inline
550 pdp_entry_t *
551 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
553 pdp_entry_t *pd;
555 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
556 return (&pd[pmap_pd_index(va)]);
560 * Return pointer to PD slot in the PDP.
562 static __inline
563 pdp_entry_t *
564 pmap_pd(pmap_t pmap, vm_offset_t va)
566 pml4_entry_t *pdp;
568 pdp = pmap_pdp(pmap, va);
569 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
570 return NULL;
571 return (pmap_pdp_to_pd(*pdp, va));
575 * Return pointer to PT slot in the PD given a pointer to the PD
577 static __inline
578 pd_entry_t *
579 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
581 pd_entry_t *pt;
583 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
584 return (&pt[pmap_pt_index(va)]);
588 * Return pointer to PT slot in the PD
590 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
591 * so we cannot lookup the PD via the PDP. Instead we
592 * must look it up via the pmap.
594 static __inline
595 pd_entry_t *
596 pmap_pt(pmap_t pmap, vm_offset_t va)
598 pdp_entry_t *pd;
599 pv_entry_t pv;
600 vm_pindex_t pd_pindex;
602 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
603 pd_pindex = pmap_pd_pindex(va);
604 spin_lock(&pmap->pm_spin);
605 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
606 spin_unlock(&pmap->pm_spin);
607 if (pv == NULL || pv->pv_m == NULL)
608 return NULL;
609 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
610 } else {
611 pd = pmap_pd(pmap, va);
612 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
613 return NULL;
614 return (pmap_pd_to_pt(*pd, va));
619 * Return pointer to PTE slot in the PT given a pointer to the PT
621 static __inline
622 pt_entry_t *
623 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
625 pt_entry_t *pte;
627 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
628 return (&pte[pmap_pte_index(va)]);
632 * Return pointer to PTE slot in the PT
634 static __inline
635 pt_entry_t *
636 pmap_pte(pmap_t pmap, vm_offset_t va)
638 pd_entry_t *pt;
640 pt = pmap_pt(pmap, va);
641 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
642 return NULL;
643 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
644 return ((pt_entry_t *)pt);
645 return (pmap_pt_to_pte(*pt, va));
649 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
650 * the PT layer. This will speed up core pmap operations considerably.
652 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
653 * must be in a known associated state (typically by being locked when
654 * the pmap spinlock isn't held). We allow the race for that case.
656 * NOTE: pm_pvhint is only accessed (read) with the spin-lock held, using
657 * cpu_ccfence() to prevent compiler optimizations from reloading the
658 * field.
660 static __inline
661 void
662 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
664 if (pindex >= pmap_pt_pindex(0) && pindex < pmap_pd_pindex(0)) {
665 if (pv->pv_pmap)
666 pv->pv_pmap->pm_pvhint = pv;
672 * Return address of PT slot in PD (KVM only)
674 * Cannot be used for user page tables because it might interfere with
675 * the shared page-table-page optimization (pmap_mmu_optimize).
677 static __inline
678 pd_entry_t *
679 vtopt(vm_offset_t va)
681 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
682 NPML4EPGSHIFT)) - 1);
684 return (PDmap + ((va >> PDRSHIFT) & mask));
688 * KVM - return address of PTE slot in PT
690 static __inline
691 pt_entry_t *
692 vtopte(vm_offset_t va)
694 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
695 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
697 return (PTmap + ((va >> PAGE_SHIFT) & mask));
700 static uint64_t
701 allocpages(vm_paddr_t *firstaddr, long n)
703 uint64_t ret;
705 ret = *firstaddr;
706 bzero((void *)ret, n * PAGE_SIZE);
707 *firstaddr += n * PAGE_SIZE;
708 return (ret);
711 static
712 void
713 create_pagetables(vm_paddr_t *firstaddr)
715 long i; /* must be 64 bits */
716 long nkpt_base;
717 long nkpt_phys;
718 int j;
721 * We are running (mostly) V=P at this point
723 * Calculate NKPT - number of kernel page tables. We have to
724 * accomodoate prealloction of the vm_page_array, dump bitmap,
725 * MSGBUF_SIZE, and other stuff. Be generous.
727 * Maxmem is in pages.
729 * ndmpdp is the number of 1GB pages we wish to map.
731 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
732 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
733 ndmpdp = 4;
734 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
737 * Starting at the beginning of kvm (not KERNBASE).
739 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
740 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
741 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
742 ndmpdp) + 511) / 512;
743 nkpt_phys += 128;
746 * Starting at KERNBASE - map 2G worth of page table pages.
747 * KERNBASE is offset -2G from the end of kvm.
749 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
752 * Allocate pages
754 KPTbase = allocpages(firstaddr, nkpt_base);
755 KPTphys = allocpages(firstaddr, nkpt_phys);
756 KPML4phys = allocpages(firstaddr, 1);
757 KPDPphys = allocpages(firstaddr, NKPML4E);
758 KPDphys = allocpages(firstaddr, NKPDPE);
761 * Calculate the page directory base for KERNBASE,
762 * that is where we start populating the page table pages.
763 * Basically this is the end - 2.
765 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
767 DMPDPphys = allocpages(firstaddr, NDMPML4E);
768 if ((amd_feature & AMDID_PAGE1GB) == 0)
769 DMPDphys = allocpages(firstaddr, ndmpdp);
770 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
773 * Fill in the underlying page table pages for the area around
774 * KERNBASE. This remaps low physical memory to KERNBASE.
776 * Read-only from zero to physfree
777 * XXX not fully used, underneath 2M pages
779 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
780 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
781 ((pt_entry_t *)KPTbase)[i] |=
782 pmap_bits_default[PG_RW_IDX] |
783 pmap_bits_default[PG_V_IDX] |
784 pmap_bits_default[PG_G_IDX];
788 * Now map the initial kernel page tables. One block of page
789 * tables is placed at the beginning of kernel virtual memory,
790 * and another block is placed at KERNBASE to map the kernel binary,
791 * data, bss, and initial pre-allocations.
793 for (i = 0; i < nkpt_base; i++) {
794 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
795 ((pd_entry_t *)KPDbase)[i] |=
796 pmap_bits_default[PG_RW_IDX] |
797 pmap_bits_default[PG_V_IDX];
799 for (i = 0; i < nkpt_phys; i++) {
800 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
801 ((pd_entry_t *)KPDphys)[i] |=
802 pmap_bits_default[PG_RW_IDX] |
803 pmap_bits_default[PG_V_IDX];
807 * Map from zero to end of allocations using 2M pages as an
808 * optimization. This will bypass some of the KPTBase pages
809 * above in the KERNBASE area.
811 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
812 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
813 ((pd_entry_t *)KPDbase)[i] |=
814 pmap_bits_default[PG_RW_IDX] |
815 pmap_bits_default[PG_V_IDX] |
816 pmap_bits_default[PG_PS_IDX] |
817 pmap_bits_default[PG_G_IDX];
821 * And connect up the PD to the PDP. The kernel pmap is expected
822 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
824 for (i = 0; i < NKPDPE; i++) {
825 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
826 KPDphys + (i << PAGE_SHIFT);
827 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
828 pmap_bits_default[PG_RW_IDX] |
829 pmap_bits_default[PG_V_IDX] |
830 pmap_bits_default[PG_U_IDX];
834 * Now set up the direct map space using either 2MB or 1GB pages
835 * Preset PG_M and PG_A because demotion expects it.
837 * When filling in entries in the PD pages make sure any excess
838 * entries are set to zero as we allocated enough PD pages
840 if ((amd_feature & AMDID_PAGE1GB) == 0) {
841 for (i = 0; i < NPDEPG * ndmpdp; i++) {
842 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
843 ((pd_entry_t *)DMPDphys)[i] |=
844 pmap_bits_default[PG_RW_IDX] |
845 pmap_bits_default[PG_V_IDX] |
846 pmap_bits_default[PG_PS_IDX] |
847 pmap_bits_default[PG_G_IDX] |
848 pmap_bits_default[PG_M_IDX] |
849 pmap_bits_default[PG_A_IDX];
853 * And the direct map space's PDP
855 for (i = 0; i < ndmpdp; i++) {
856 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
857 (i << PAGE_SHIFT);
858 ((pdp_entry_t *)DMPDPphys)[i] |=
859 pmap_bits_default[PG_RW_IDX] |
860 pmap_bits_default[PG_V_IDX] |
861 pmap_bits_default[PG_U_IDX];
863 } else {
864 for (i = 0; i < ndmpdp; i++) {
865 ((pdp_entry_t *)DMPDPphys)[i] =
866 (vm_paddr_t)i << PDPSHIFT;
867 ((pdp_entry_t *)DMPDPphys)[i] |=
868 pmap_bits_default[PG_RW_IDX] |
869 pmap_bits_default[PG_V_IDX] |
870 pmap_bits_default[PG_PS_IDX] |
871 pmap_bits_default[PG_G_IDX] |
872 pmap_bits_default[PG_M_IDX] |
873 pmap_bits_default[PG_A_IDX];
877 /* And recursively map PML4 to itself in order to get PTmap */
878 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
879 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
880 pmap_bits_default[PG_RW_IDX] |
881 pmap_bits_default[PG_V_IDX] |
882 pmap_bits_default[PG_U_IDX];
885 * Connect the Direct Map slots up to the PML4
887 for (j = 0; j < NDMPML4E; ++j) {
888 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
889 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
890 pmap_bits_default[PG_RW_IDX] |
891 pmap_bits_default[PG_V_IDX] |
892 pmap_bits_default[PG_U_IDX];
896 * Connect the KVA slot up to the PML4
898 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
899 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
900 pmap_bits_default[PG_RW_IDX] |
901 pmap_bits_default[PG_V_IDX] |
902 pmap_bits_default[PG_U_IDX];
906 * Bootstrap the system enough to run with virtual memory.
908 * On the i386 this is called after mapping has already been enabled
909 * and just syncs the pmap module with what has already been done.
910 * [We can't call it easily with mapping off since the kernel is not
911 * mapped with PA == VA, hence we would have to relocate every address
912 * from the linked base (virtual) address "KERNBASE" to the actual
913 * (physical) address starting relative to 0]
915 void
916 pmap_bootstrap(vm_paddr_t *firstaddr)
918 vm_offset_t va;
919 pt_entry_t *pte;
920 int i;
922 KvaStart = VM_MIN_KERNEL_ADDRESS;
923 KvaEnd = VM_MAX_KERNEL_ADDRESS;
924 KvaSize = KvaEnd - KvaStart;
926 avail_start = *firstaddr;
929 * Create an initial set of page tables to run the kernel in.
931 create_pagetables(firstaddr);
933 virtual2_start = KvaStart;
934 virtual2_end = PTOV_OFFSET;
936 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
937 virtual_start = pmap_kmem_choose(virtual_start);
939 virtual_end = VM_MAX_KERNEL_ADDRESS;
941 /* XXX do %cr0 as well */
942 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
943 load_cr3(KPML4phys);
946 * Initialize protection array.
948 i386_protection_init();
951 * The kernel's pmap is statically allocated so we don't have to use
952 * pmap_create, which is unlikely to work correctly at this part of
953 * the boot sequence (XXX and which no longer exists).
955 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
956 kernel_pmap.pm_count = 1;
957 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
958 RB_INIT(&kernel_pmap.pm_pvroot);
959 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
960 for (i = 0; i < PM_PLACEMARKS; ++i)
961 kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
964 * Reserve some special page table entries/VA space for temporary
965 * mapping of pages.
967 #define SYSMAP(c, p, v, n) \
968 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
970 va = virtual_start;
971 pte = vtopte(va);
974 * CMAP1/CMAP2 are used for zeroing and copying pages.
976 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
979 * Crashdump maps.
981 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
984 * ptvmmap is used for reading arbitrary physical pages via
985 * /dev/mem.
987 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
990 * msgbufp is used to map the system message buffer.
991 * XXX msgbufmap is not used.
993 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
994 atop(round_page(MSGBUF_SIZE)))
996 virtual_start = va;
997 virtual_start = pmap_kmem_choose(virtual_start);
999 *CMAP1 = 0;
1002 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1003 * cases rather then invl1pg. Actually, I don't even know why it
1004 * works under UP because self-referential page table mappings
1006 // pgeflag = 0;
1009 * Initialize the 4MB page size flag
1011 // pseflag = 0;
1013 * The 4MB page version of the initial
1014 * kernel page mapping.
1016 pdir4mb = 0;
1018 #if !defined(DISABLE_PSE)
1019 if (cpu_feature & CPUID_PSE) {
1020 pt_entry_t ptditmp;
1022 * Note that we have enabled PSE mode
1024 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
1025 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
1026 ptditmp &= ~(NBPDR - 1);
1027 ptditmp |= pmap_bits_default[PG_V_IDX] |
1028 pmap_bits_default[PG_RW_IDX] |
1029 pmap_bits_default[PG_PS_IDX] |
1030 pmap_bits_default[PG_U_IDX];
1031 // pgeflag;
1032 pdir4mb = ptditmp;
1034 #endif
1035 cpu_invltlb();
1037 /* Initialize the PAT MSR */
1038 pmap_init_pat();
1039 pmap_pinit_defaults(&kernel_pmap);
1041 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1042 &pmap_fast_kernel_cpusync);
1047 * Setup the PAT MSR.
1049 void
1050 pmap_init_pat(void)
1052 uint64_t pat_msr;
1053 u_long cr0, cr4;
1056 * Default values mapping PATi,PCD,PWT bits at system reset.
1057 * The default values effectively ignore the PATi bit by
1058 * repeating the encodings for 0-3 in 4-7, and map the PCD
1059 * and PWT bit combinations to the expected PAT types.
1061 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1062 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1063 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1064 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1065 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1066 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1067 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1068 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1069 pat_pte_index[PAT_WRITE_BACK] = 0;
1070 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1071 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1072 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1073 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1074 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1076 if (cpu_feature & CPUID_PAT) {
1078 * If we support the PAT then set-up entries for
1079 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1080 * 5 and 6.
1082 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1083 PAT_VALUE(5, PAT_WRITE_PROTECTED);
1084 pat_msr = (pat_msr & ~PAT_MASK(6)) |
1085 PAT_VALUE(6, PAT_WRITE_COMBINING);
1086 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1087 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1090 * Then enable the PAT
1093 /* Disable PGE. */
1094 cr4 = rcr4();
1095 load_cr4(cr4 & ~CR4_PGE);
1097 /* Disable caches (CD = 1, NW = 0). */
1098 cr0 = rcr0();
1099 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1101 /* Flushes caches and TLBs. */
1102 wbinvd();
1103 cpu_invltlb();
1105 /* Update PAT and index table. */
1106 wrmsr(MSR_PAT, pat_msr);
1108 /* Flush caches and TLBs again. */
1109 wbinvd();
1110 cpu_invltlb();
1112 /* Restore caches and PGE. */
1113 load_cr0(cr0);
1114 load_cr4(cr4);
1115 PatMsr = pat_msr;
1120 * Set 4mb pdir for mp startup
1122 void
1123 pmap_set_opt(void)
1125 if (cpu_feature & CPUID_PSE) {
1126 load_cr4(rcr4() | CR4_PSE);
1127 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1128 cpu_invltlb();
1134 * Initialize the pmap module.
1135 * Called by vm_init, to initialize any structures that the pmap
1136 * system needs to map virtual memory.
1137 * pmap_init has been enhanced to support in a fairly consistant
1138 * way, discontiguous physical memory.
1140 void
1141 pmap_init(void)
1143 int i;
1144 int initial_pvs;
1147 * Allocate memory for random pmap data structures. Includes the
1148 * pv_head_table.
1151 for (i = 0; i < vm_page_array_size; i++) {
1152 vm_page_t m;
1154 m = &vm_page_array[i];
1155 TAILQ_INIT(&m->md.pv_list);
1159 * init the pv free list
1161 initial_pvs = vm_page_array_size;
1162 if (initial_pvs < MINPV)
1163 initial_pvs = MINPV;
1164 pvzone = &pvzone_store;
1165 pvinit = (void *)kmem_alloc(&kernel_map,
1166 initial_pvs * sizeof (struct pv_entry),
1167 VM_SUBSYS_PVENTRY);
1168 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1169 pvinit, initial_pvs);
1172 * Now it is safe to enable pv_table recording.
1174 pmap_initialized = TRUE;
1178 * Initialize the address space (zone) for the pv_entries. Set a
1179 * high water mark so that the system can recover from excessive
1180 * numbers of pv entries.
1182 void
1183 pmap_init2(void)
1185 int shpgperproc = PMAP_SHPGPERPROC;
1186 int entry_max;
1188 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1189 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1190 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1191 pv_entry_high_water = 9 * (pv_entry_max / 10);
1194 * Subtract out pages already installed in the zone (hack)
1196 entry_max = pv_entry_max - vm_page_array_size;
1197 if (entry_max <= 0)
1198 entry_max = 1;
1200 zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1203 * Enable dynamic deletion of empty higher-level page table pages
1204 * by default only if system memory is < 8GB (use 7GB for slop).
1205 * This can save a little memory, but imposes significant
1206 * performance overhead for things like bulk builds, and for programs
1207 * which do a lot of memory mapping and memory unmapping.
1209 if (pmap_dynamic_delete < 0) {
1210 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1211 pmap_dynamic_delete = 1;
1212 else
1213 pmap_dynamic_delete = 0;
1218 * Typically used to initialize a fictitious page by vm/device_pager.c
1220 void
1221 pmap_page_init(struct vm_page *m)
1223 vm_page_init(m);
1224 TAILQ_INIT(&m->md.pv_list);
1227 /***************************************************
1228 * Low level helper routines.....
1229 ***************************************************/
1232 * this routine defines the region(s) of memory that should
1233 * not be tested for the modified bit.
1235 static __inline
1237 pmap_track_modified(vm_pindex_t pindex)
1239 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1240 if ((va < clean_sva) || (va >= clean_eva))
1241 return 1;
1242 else
1243 return 0;
1247 * Extract the physical page address associated with the map/VA pair.
1248 * The page must be wired for this to work reliably.
1250 vm_paddr_t
1251 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1253 vm_paddr_t rtval;
1254 pv_entry_t pt_pv;
1255 pt_entry_t *ptep;
1257 rtval = 0;
1258 if (va >= VM_MAX_USER_ADDRESS) {
1260 * Kernel page directories might be direct-mapped and
1261 * there is typically no PV tracking of pte's
1263 pd_entry_t *pt;
1265 pt = pmap_pt(pmap, va);
1266 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1267 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1268 rtval = *pt & PG_PS_FRAME;
1269 rtval |= va & PDRMASK;
1270 } else {
1271 ptep = pmap_pt_to_pte(*pt, va);
1272 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1273 rtval = *ptep & PG_FRAME;
1274 rtval |= va & PAGE_MASK;
1278 if (handlep)
1279 *handlep = NULL;
1280 } else {
1282 * User pages currently do not direct-map the page directory
1283 * and some pages might not used managed PVs. But all PT's
1284 * will have a PV.
1286 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1287 if (pt_pv) {
1288 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1289 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1290 rtval = *ptep & PG_FRAME;
1291 rtval |= va & PAGE_MASK;
1293 if (handlep)
1294 *handlep = pt_pv; /* locked until done */
1295 else
1296 pv_put (pt_pv);
1297 } else if (handlep) {
1298 *handlep = NULL;
1301 return rtval;
1304 void
1305 pmap_extract_done(void *handle)
1307 if (handle)
1308 pv_put((pv_entry_t)handle);
1312 * Similar to extract but checks protections, SMP-friendly short-cut for
1313 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1314 * fall-through to the real fault code. Does not work with HVM page
1315 * tables.
1317 * The returned page, if not NULL, is held (and not busied).
1319 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1320 * OR WRITING AS-IS.
1322 vm_page_t
1323 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1325 if (pmap &&
1326 va < VM_MAX_USER_ADDRESS &&
1327 (pmap->pm_flags & PMAP_HVM) == 0) {
1328 pv_entry_t pt_pv;
1329 pv_entry_t pte_pv;
1330 pt_entry_t *ptep;
1331 pt_entry_t req;
1332 vm_page_t m;
1333 int error;
1335 req = pmap->pmap_bits[PG_V_IDX] |
1336 pmap->pmap_bits[PG_U_IDX];
1337 if (prot & VM_PROT_WRITE)
1338 req |= pmap->pmap_bits[PG_RW_IDX];
1340 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1341 if (pt_pv == NULL)
1342 return (NULL);
1343 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1344 if ((*ptep & req) != req) {
1345 pv_put(pt_pv);
1346 return (NULL);
1348 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1349 if (pte_pv && error == 0) {
1350 m = pte_pv->pv_m;
1351 if (prot & VM_PROT_WRITE) {
1352 /* interlocked by presence of pv_entry */
1353 vm_page_dirty(m);
1355 if (busyp) {
1356 if (prot & VM_PROT_WRITE) {
1357 if (vm_page_busy_try(m, TRUE))
1358 m = NULL;
1359 *busyp = 1;
1360 } else {
1361 vm_page_hold(m);
1362 *busyp = 0;
1364 } else {
1365 vm_page_hold(m);
1367 pv_put(pte_pv);
1368 } else if (pte_pv) {
1369 pv_drop(pte_pv);
1370 m = NULL;
1371 } else {
1372 /* error, since we didn't request a placemarker */
1373 m = NULL;
1375 pv_put(pt_pv);
1376 return(m);
1377 } else {
1378 return(NULL);
1383 * Extract the physical page address associated kernel virtual address.
1385 vm_paddr_t
1386 pmap_kextract(vm_offset_t va)
1388 pd_entry_t pt; /* pt entry in pd */
1389 vm_paddr_t pa;
1391 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1392 pa = DMAP_TO_PHYS(va);
1393 } else {
1394 pt = *vtopt(va);
1395 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1396 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1397 } else {
1399 * Beware of a concurrent promotion that changes the
1400 * PDE at this point! For example, vtopte() must not
1401 * be used to access the PTE because it would use the
1402 * new PDE. It is, however, safe to use the old PDE
1403 * because the page table page is preserved by the
1404 * promotion.
1406 pa = *pmap_pt_to_pte(pt, va);
1407 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1410 return pa;
1413 /***************************************************
1414 * Low level mapping routines.....
1415 ***************************************************/
1418 * Routine: pmap_kenter
1419 * Function:
1420 * Add a wired page to the KVA
1421 * NOTE! note that in order for the mapping to take effect -- you
1422 * should do an invltlb after doing the pmap_kenter().
1424 void
1425 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1427 pt_entry_t *ptep;
1428 pt_entry_t npte;
1430 npte = pa |
1431 kernel_pmap.pmap_bits[PG_RW_IDX] |
1432 kernel_pmap.pmap_bits[PG_V_IDX];
1433 // pgeflag;
1434 ptep = vtopte(va);
1435 #if 1
1436 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1437 #else
1438 /* FUTURE */
1439 if (*ptep)
1440 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1441 else
1442 *ptep = npte;
1443 #endif
1447 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1448 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1449 * (caller can conditionalize calling smp_invltlb()).
1452 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1454 pt_entry_t *ptep;
1455 pt_entry_t npte;
1456 int res;
1458 npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1459 kernel_pmap.pmap_bits[PG_V_IDX];
1460 // npte |= pgeflag;
1461 ptep = vtopte(va);
1462 #if 1
1463 res = 1;
1464 #else
1465 /* FUTURE */
1466 res = (*ptep != 0);
1467 #endif
1468 atomic_swap_long(ptep, npte);
1469 cpu_invlpg((void *)va);
1471 return res;
1475 * Enter addresses into the kernel pmap but don't bother
1476 * doing any tlb invalidations. Caller will do a rollup
1477 * invalidation via pmap_rollup_inval().
1480 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1482 pt_entry_t *ptep;
1483 pt_entry_t npte;
1484 int res;
1486 npte = pa |
1487 kernel_pmap.pmap_bits[PG_RW_IDX] |
1488 kernel_pmap.pmap_bits[PG_V_IDX];
1489 // pgeflag;
1490 ptep = vtopte(va);
1491 #if 1
1492 res = 1;
1493 #else
1494 /* FUTURE */
1495 res = (*ptep != 0);
1496 #endif
1497 atomic_swap_long(ptep, npte);
1498 cpu_invlpg((void *)va);
1500 return res;
1504 * remove a page from the kernel pagetables
1506 void
1507 pmap_kremove(vm_offset_t va)
1509 pt_entry_t *ptep;
1511 ptep = vtopte(va);
1512 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1515 void
1516 pmap_kremove_quick(vm_offset_t va)
1518 pt_entry_t *ptep;
1520 ptep = vtopte(va);
1521 (void)pte_load_clear(ptep);
1522 cpu_invlpg((void *)va);
1526 * Remove addresses from the kernel pmap but don't bother
1527 * doing any tlb invalidations. Caller will do a rollup
1528 * invalidation via pmap_rollup_inval().
1530 void
1531 pmap_kremove_noinval(vm_offset_t va)
1533 pt_entry_t *ptep;
1535 ptep = vtopte(va);
1536 (void)pte_load_clear(ptep);
1540 * XXX these need to be recoded. They are not used in any critical path.
1542 void
1543 pmap_kmodify_rw(vm_offset_t va)
1545 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1546 cpu_invlpg((void *)va);
1549 /* NOT USED
1550 void
1551 pmap_kmodify_nc(vm_offset_t va)
1553 atomic_set_long(vtopte(va), PG_N);
1554 cpu_invlpg((void *)va);
1559 * Used to map a range of physical addresses into kernel virtual
1560 * address space during the low level boot, typically to map the
1561 * dump bitmap, message buffer, and vm_page_array.
1563 * These mappings are typically made at some pointer after the end of the
1564 * kernel text+data.
1566 * We could return PHYS_TO_DMAP(start) here and not allocate any
1567 * via (*virtp), but then kmem from userland and kernel dumps won't
1568 * have access to the related pointers.
1570 vm_offset_t
1571 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1573 vm_offset_t va;
1574 vm_offset_t va_start;
1576 /*return PHYS_TO_DMAP(start);*/
1578 va_start = *virtp;
1579 va = va_start;
1581 while (start < end) {
1582 pmap_kenter_quick(va, start);
1583 va += PAGE_SIZE;
1584 start += PAGE_SIZE;
1586 *virtp = va;
1587 return va_start;
1590 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1593 * Remove the specified set of pages from the data and instruction caches.
1595 * In contrast to pmap_invalidate_cache_range(), this function does not
1596 * rely on the CPU's self-snoop feature, because it is intended for use
1597 * when moving pages into a different cache domain.
1599 void
1600 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1602 vm_offset_t daddr, eva;
1603 int i;
1605 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1606 (cpu_feature & CPUID_CLFSH) == 0)
1607 wbinvd();
1608 else {
1609 cpu_mfence();
1610 for (i = 0; i < count; i++) {
1611 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1612 eva = daddr + PAGE_SIZE;
1613 for (; daddr < eva; daddr += cpu_clflush_line_size)
1614 clflush(daddr);
1616 cpu_mfence();
1620 void
1621 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1623 KASSERT((sva & PAGE_MASK) == 0,
1624 ("pmap_invalidate_cache_range: sva not page-aligned"));
1625 KASSERT((eva & PAGE_MASK) == 0,
1626 ("pmap_invalidate_cache_range: eva not page-aligned"));
1628 if (cpu_feature & CPUID_SS) {
1629 ; /* If "Self Snoop" is supported, do nothing. */
1630 } else {
1631 /* Globally invalidate caches */
1632 cpu_wbinvd_on_all_cpus();
1637 * Invalidate the specified range of virtual memory on all cpus associated
1638 * with the pmap.
1640 void
1641 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1643 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1647 * Add a list of wired pages to the kva. This routine is used for temporary
1648 * kernel mappings such as those found in buffer cache buffer. Page
1649 * modifications and accesses are not tracked or recorded.
1651 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1652 * semantics as previous mappings may have been zerod without any
1653 * invalidation.
1655 * The page *must* be wired.
1657 static __inline void
1658 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
1660 vm_offset_t end_va;
1661 vm_offset_t va;
1663 end_va = beg_va + count * PAGE_SIZE;
1665 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1666 pt_entry_t pte;
1667 pt_entry_t *ptep;
1669 ptep = vtopte(va);
1670 pte = VM_PAGE_TO_PHYS(*m) |
1671 kernel_pmap.pmap_bits[PG_RW_IDX] |
1672 kernel_pmap.pmap_bits[PG_V_IDX] |
1673 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1674 // pgeflag;
1675 atomic_swap_long(ptep, pte);
1676 m++;
1678 if (doinval)
1679 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1682 void
1683 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1685 _pmap_qenter(beg_va, m, count, 1);
1688 void
1689 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1691 _pmap_qenter(beg_va, m, count, 0);
1695 * This routine jerks page mappings from the kernel -- it is meant only
1696 * for temporary mappings such as those found in buffer cache buffers.
1697 * No recording modified or access status occurs.
1699 * MPSAFE, INTERRUPT SAFE (cluster callback)
1701 void
1702 pmap_qremove(vm_offset_t beg_va, int count)
1704 vm_offset_t end_va;
1705 vm_offset_t va;
1707 end_va = beg_va + count * PAGE_SIZE;
1709 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1710 pt_entry_t *pte;
1712 pte = vtopte(va);
1713 (void)pte_load_clear(pte);
1714 cpu_invlpg((void *)va);
1716 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1720 * This routine removes temporary kernel mappings, only invalidating them
1721 * on the current cpu. It should only be used under carefully controlled
1722 * conditions.
1724 void
1725 pmap_qremove_quick(vm_offset_t beg_va, int count)
1727 vm_offset_t end_va;
1728 vm_offset_t va;
1730 end_va = beg_va + count * PAGE_SIZE;
1732 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1733 pt_entry_t *pte;
1735 pte = vtopte(va);
1736 (void)pte_load_clear(pte);
1737 cpu_invlpg((void *)va);
1742 * This routine removes temporary kernel mappings *without* invalidating
1743 * the TLB. It can only be used on permanent kva reservations such as those
1744 * found in buffer cache buffers, under carefully controlled circumstances.
1746 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1747 * (pmap_qenter() does unconditional invalidation).
1749 void
1750 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1752 vm_offset_t end_va;
1753 vm_offset_t va;
1755 end_va = beg_va + count * PAGE_SIZE;
1757 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1758 pt_entry_t *pte;
1760 pte = vtopte(va);
1761 (void)pte_load_clear(pte);
1766 * Create a new thread and optionally associate it with a (new) process.
1767 * NOTE! the new thread's cpu may not equal the current cpu.
1769 void
1770 pmap_init_thread(thread_t td)
1772 /* enforce pcb placement & alignment */
1773 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1774 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1775 td->td_savefpu = &td->td_pcb->pcb_save;
1776 td->td_sp = (char *)td->td_pcb; /* no -16 */
1780 * This routine directly affects the fork perf for a process.
1782 void
1783 pmap_init_proc(struct proc *p)
1787 static void
1788 pmap_pinit_defaults(struct pmap *pmap)
1790 bcopy(pmap_bits_default, pmap->pmap_bits,
1791 sizeof(pmap_bits_default));
1792 bcopy(protection_codes, pmap->protection_codes,
1793 sizeof(protection_codes));
1794 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1795 sizeof(pat_pte_index));
1796 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1797 pmap->copyinstr = std_copyinstr;
1798 pmap->copyin = std_copyin;
1799 pmap->copyout = std_copyout;
1800 pmap->fubyte = std_fubyte;
1801 pmap->subyte = std_subyte;
1802 pmap->fuword32 = std_fuword32;
1803 pmap->fuword64 = std_fuword64;
1804 pmap->suword32 = std_suword32;
1805 pmap->suword64 = std_suword64;
1806 pmap->swapu32 = std_swapu32;
1807 pmap->swapu64 = std_swapu64;
1810 * Initialize pmap0/vmspace0.
1812 * On architectures where the kernel pmap is not integrated into the user
1813 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1814 * kernel_pmap should be used to directly access the kernel_pmap.
1816 void
1817 pmap_pinit0(struct pmap *pmap)
1819 int i;
1821 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1822 pmap->pm_count = 1;
1823 CPUMASK_ASSZERO(pmap->pm_active);
1824 pmap->pm_pvhint = NULL;
1825 RB_INIT(&pmap->pm_pvroot);
1826 spin_init(&pmap->pm_spin, "pmapinit0");
1827 for (i = 0; i < PM_PLACEMARKS; ++i)
1828 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1829 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1830 pmap_pinit_defaults(pmap);
1834 * Initialize a preallocated and zeroed pmap structure,
1835 * such as one in a vmspace structure.
1837 static void
1838 pmap_pinit_simple(struct pmap *pmap)
1840 int i;
1843 * Misc initialization
1845 pmap->pm_count = 1;
1846 CPUMASK_ASSZERO(pmap->pm_active);
1847 pmap->pm_pvhint = NULL;
1848 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1850 pmap_pinit_defaults(pmap);
1853 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1854 * for this).
1856 if (pmap->pm_pmlpv == NULL) {
1857 RB_INIT(&pmap->pm_pvroot);
1858 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1859 spin_init(&pmap->pm_spin, "pmapinitsimple");
1860 for (i = 0; i < PM_PLACEMARKS; ++i)
1861 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1865 void
1866 pmap_pinit(struct pmap *pmap)
1868 pv_entry_t pv;
1869 int j;
1871 if (pmap->pm_pmlpv) {
1872 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1873 pmap_puninit(pmap);
1877 pmap_pinit_simple(pmap);
1878 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1881 * No need to allocate page table space yet but we do need a valid
1882 * page directory table.
1884 if (pmap->pm_pml4 == NULL) {
1885 pmap->pm_pml4 =
1886 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1887 PAGE_SIZE,
1888 VM_SUBSYS_PML4);
1892 * Allocate the page directory page, which wires it even though
1893 * it isn't being entered into some higher level page table (it
1894 * being the highest level). If one is already cached we don't
1895 * have to do anything.
1897 if ((pv = pmap->pm_pmlpv) == NULL) {
1898 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1899 pmap->pm_pmlpv = pv;
1900 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1901 VM_PAGE_TO_PHYS(pv->pv_m));
1902 pv_put(pv);
1905 * Install DMAP and KMAP.
1907 for (j = 0; j < NDMPML4E; ++j) {
1908 pmap->pm_pml4[DMPML4I + j] =
1909 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1910 pmap->pmap_bits[PG_RW_IDX] |
1911 pmap->pmap_bits[PG_V_IDX] |
1912 pmap->pmap_bits[PG_U_IDX];
1914 pmap->pm_pml4[KPML4I] = KPDPphys |
1915 pmap->pmap_bits[PG_RW_IDX] |
1916 pmap->pmap_bits[PG_V_IDX] |
1917 pmap->pmap_bits[PG_U_IDX];
1920 * install self-referential address mapping entry
1922 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1923 pmap->pmap_bits[PG_V_IDX] |
1924 pmap->pmap_bits[PG_RW_IDX] |
1925 pmap->pmap_bits[PG_A_IDX] |
1926 pmap->pmap_bits[PG_M_IDX];
1927 } else {
1928 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1929 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1931 KKASSERT(pmap->pm_pml4[255] == 0);
1932 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1933 KKASSERT(pv->pv_entry.rbe_left == NULL);
1934 KKASSERT(pv->pv_entry.rbe_right == NULL);
1938 * Clean up a pmap structure so it can be physically freed. This routine
1939 * is called by the vmspace dtor function. A great deal of pmap data is
1940 * left passively mapped to improve vmspace management so we have a bit
1941 * of cleanup work to do here.
1943 void
1944 pmap_puninit(pmap_t pmap)
1946 pv_entry_t pv;
1947 vm_page_t p;
1949 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1950 if ((pv = pmap->pm_pmlpv) != NULL) {
1951 if (pv_hold_try(pv) == 0)
1952 pv_lock(pv);
1953 KKASSERT(pv == pmap->pm_pmlpv);
1954 p = pmap_remove_pv_page(pv);
1955 pv_free(pv, NULL);
1956 pv = NULL; /* safety */
1957 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1958 vm_page_busy_wait(p, FALSE, "pgpun");
1959 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1960 vm_page_unwire(p, 0);
1961 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1964 * XXX eventually clean out PML4 static entries and
1965 * use vm_page_free_zero()
1967 vm_page_free(p);
1968 pmap->pm_pmlpv = NULL;
1970 if (pmap->pm_pml4) {
1971 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1972 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1973 pmap->pm_pml4 = NULL;
1975 KKASSERT(pmap->pm_stats.resident_count == 0);
1976 KKASSERT(pmap->pm_stats.wired_count == 0);
1980 * This function is now unused (used to add the pmap to the pmap_list)
1982 void
1983 pmap_pinit2(struct pmap *pmap)
1988 * This routine is called when various levels in the page table need to
1989 * be populated. This routine cannot fail.
1991 * This function returns two locked pv_entry's, one representing the
1992 * requested pv and one representing the requested pv's parent pv. If
1993 * an intermediate page table does not exist it will be created, mapped,
1994 * wired, and the parent page table will be given an additional hold
1995 * count representing the presence of the child pv_entry.
1997 static
1998 pv_entry_t
1999 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2001 pt_entry_t *ptep;
2002 pv_entry_t pv;
2003 pv_entry_t pvp;
2004 pt_entry_t v;
2005 vm_pindex_t pt_pindex;
2006 vm_page_t m;
2007 int isnew;
2008 int ispt;
2011 * If the pv already exists and we aren't being asked for the
2012 * parent page table page we can just return it. A locked+held pv
2013 * is returned. The pv will also have a second hold related to the
2014 * pmap association that we don't have to worry about.
2016 ispt = 0;
2017 pv = pv_alloc(pmap, ptepindex, &isnew);
2018 if (isnew == 0 && pvpp == NULL)
2019 return(pv);
2022 * Special case terminal PVs. These are not page table pages so
2023 * no vm_page is allocated (the caller supplied the vm_page). If
2024 * pvpp is non-NULL we are being asked to also removed the pt_pv
2025 * for this pv.
2027 * Note that pt_pv's are only returned for user VAs. We assert that
2028 * a pt_pv is not being requested for kernel VAs. The kernel
2029 * pre-wires all higher-level page tables so don't overload managed
2030 * higher-level page tables on top of it!
2032 if (ptepindex < pmap_pt_pindex(0)) {
2033 if (ptepindex >= NUPTE_USER) {
2034 /* kernel manages this manually for KVM */
2035 KKASSERT(pvpp == NULL);
2036 } else {
2037 KKASSERT(pvpp != NULL);
2038 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
2039 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
2040 if (isnew)
2041 vm_page_wire_quick(pvp->pv_m);
2042 *pvpp = pvp;
2044 return(pv);
2048 * The kernel never uses managed PT/PD/PDP pages.
2050 KKASSERT(pmap != &kernel_pmap);
2053 * Non-terminal PVs allocate a VM page to represent the page table,
2054 * so we have to resolve pvp and calculate ptepindex for the pvp
2055 * and then for the page table entry index in the pvp for
2056 * fall-through.
2058 if (ptepindex < pmap_pd_pindex(0)) {
2060 * pv is PT, pvp is PD
2062 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2063 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2064 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2067 * PT index in PD
2069 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2070 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2071 ispt = 1;
2072 } else if (ptepindex < pmap_pdp_pindex(0)) {
2074 * pv is PD, pvp is PDP
2076 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2077 * the PD.
2079 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2080 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2082 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2083 KKASSERT(pvpp == NULL);
2084 pvp = NULL;
2085 } else {
2086 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2090 * PD index in PDP
2092 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2093 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2094 } else if (ptepindex < pmap_pml4_pindex()) {
2096 * pv is PDP, pvp is the root pml4 table
2098 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2101 * PDP index in PML4
2103 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2104 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2105 } else {
2107 * pv represents the top-level PML4, there is no parent.
2109 pvp = NULL;
2112 if (isnew == 0)
2113 goto notnew;
2116 * (isnew) is TRUE, pv is not terminal.
2118 * (1) Add a wire count to the parent page table (pvp).
2119 * (2) Allocate a VM page for the page table.
2120 * (3) Enter the VM page into the parent page table.
2122 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2124 if (pvp)
2125 vm_page_wire_quick(pvp->pv_m);
2127 for (;;) {
2128 m = vm_page_alloc(NULL, pv->pv_pindex,
2129 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2130 VM_ALLOC_INTERRUPT);
2131 if (m)
2132 break;
2133 vm_wait(0);
2135 vm_page_wire(m); /* wire for mapping in parent */
2136 vm_page_unmanage(m); /* m must be spinunlocked */
2137 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2138 m->valid = VM_PAGE_BITS_ALL;
2140 vm_page_spin_lock(m);
2141 pmap_page_stats_adding(m);
2142 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2143 pv->pv_m = m;
2144 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2145 vm_page_spin_unlock(m);
2148 * (isnew) is TRUE, pv is not terminal.
2150 * Wire the page into pvp. Bump the resident_count for the pmap.
2151 * There is no pvp for the top level, address the pm_pml4[] array
2152 * directly.
2154 * If the caller wants the parent we return it, otherwise
2155 * we just put it away.
2157 * No interlock is needed for pte 0 -> non-zero.
2159 * In the situation where *ptep is valid we might have an unmanaged
2160 * page table page shared from another page table which we need to
2161 * unshare before installing our private page table page.
2163 if (pvp) {
2164 v = VM_PAGE_TO_PHYS(m) |
2165 (pmap->pmap_bits[PG_U_IDX] |
2166 pmap->pmap_bits[PG_RW_IDX] |
2167 pmap->pmap_bits[PG_V_IDX] |
2168 pmap->pmap_bits[PG_A_IDX] |
2169 pmap->pmap_bits[PG_M_IDX]);
2170 ptep = pv_pte_lookup(pvp, ptepindex);
2171 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2172 pt_entry_t pte;
2174 if (ispt == 0) {
2175 panic("pmap_allocpte: unexpected pte %p/%d",
2176 pvp, (int)ptepindex);
2178 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, v);
2179 if (vm_page_unwire_quick(
2180 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2181 panic("pmap_allocpte: shared pgtable "
2182 "pg bad wirecount");
2184 } else {
2185 pt_entry_t pte;
2187 pte = atomic_swap_long(ptep, v);
2188 if (pte != 0) {
2189 kprintf("install pgtbl mixup 0x%016jx "
2190 "old/new 0x%016jx/0x%016jx\n",
2191 (intmax_t)ptepindex, pte, v);
2195 vm_page_wakeup(m);
2198 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2200 notnew:
2201 if (pvp) {
2202 KKASSERT(pvp->pv_m != NULL);
2203 ptep = pv_pte_lookup(pvp, ptepindex);
2204 v = VM_PAGE_TO_PHYS(pv->pv_m) |
2205 (pmap->pmap_bits[PG_U_IDX] |
2206 pmap->pmap_bits[PG_RW_IDX] |
2207 pmap->pmap_bits[PG_V_IDX] |
2208 pmap->pmap_bits[PG_A_IDX] |
2209 pmap->pmap_bits[PG_M_IDX]);
2210 if (*ptep != v) {
2211 kprintf("mismatched upper level pt %016jx/%016jx\n",
2212 *ptep, v);
2215 if (pvpp)
2216 *pvpp = pvp;
2217 else if (pvp)
2218 pv_put(pvp);
2219 return (pv);
2223 * This version of pmap_allocpte() checks for possible segment optimizations
2224 * that would allow page-table sharing. It can be called for terminal
2225 * page or page table page ptepindex's.
2227 * The function is called with page table page ptepindex's for fictitious
2228 * and unmanaged terminal pages. That is, we don't want to allocate a
2229 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2230 * for this case.
2232 * This function can return a pv and *pvpp associated with the passed in pmap
2233 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2234 * an unmanaged page table page will be entered into the pass in pmap.
2236 static
2237 pv_entry_t
2238 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2239 vm_map_entry_t entry, vm_offset_t va)
2241 vm_object_t object;
2242 pmap_t obpmap;
2243 pmap_t *obpmapp;
2244 vm_offset_t b;
2245 pv_entry_t pte_pv; /* in original or shared pmap */
2246 pv_entry_t pt_pv; /* in original or shared pmap */
2247 pv_entry_t proc_pd_pv; /* in original pmap */
2248 pv_entry_t proc_pt_pv; /* in original pmap */
2249 pv_entry_t xpv; /* PT in shared pmap */
2250 pd_entry_t *pt; /* PT entry in PD of original pmap */
2251 pd_entry_t opte; /* contents of *pt */
2252 pd_entry_t npte; /* contents of *pt */
2253 vm_page_t m;
2256 * Basic tests, require a non-NULL vm_map_entry, require proper
2257 * alignment and type for the vm_map_entry, require that the
2258 * underlying object already be allocated.
2260 * We allow almost any type of object to use this optimization.
2261 * The object itself does NOT have to be sized to a multiple of the
2262 * segment size, but the memory mapping does.
2264 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2265 * won't work as expected.
2267 if (entry == NULL ||
2268 pmap_mmu_optimize == 0 || /* not enabled */
2269 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2270 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2271 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2272 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2273 entry->object.vm_object == NULL || /* needs VM object */
2274 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2275 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2276 (entry->offset & SEG_MASK) || /* must be aligned */
2277 (entry->start & SEG_MASK)) {
2278 return(pmap_allocpte(pmap, ptepindex, pvpp));
2282 * Make sure the full segment can be represented.
2284 b = va & ~(vm_offset_t)SEG_MASK;
2285 if (b < entry->start || b + SEG_SIZE > entry->end)
2286 return(pmap_allocpte(pmap, ptepindex, pvpp));
2289 * If the full segment can be represented dive the VM object's
2290 * shared pmap, allocating as required.
2292 object = entry->object.vm_object;
2294 if (entry->protection & VM_PROT_WRITE)
2295 obpmapp = &object->md.pmap_rw;
2296 else
2297 obpmapp = &object->md.pmap_ro;
2299 #ifdef PMAP_DEBUG2
2300 if (pmap_enter_debug > 0) {
2301 --pmap_enter_debug;
2302 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2303 "obpmapp %p %p\n",
2304 va, entry->protection, object,
2305 obpmapp, *obpmapp);
2306 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2307 entry, entry->start, entry->end);
2309 #endif
2312 * We allocate what appears to be a normal pmap but because portions
2313 * of this pmap are shared with other unrelated pmaps we have to
2314 * set pm_active to point to all cpus.
2316 * XXX Currently using pmap_spin to interlock the update, can't use
2317 * vm_object_hold/drop because the token might already be held
2318 * shared OR exclusive and we don't know.
2320 while ((obpmap = *obpmapp) == NULL) {
2321 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2322 pmap_pinit_simple(obpmap);
2323 pmap_pinit2(obpmap);
2324 spin_lock(&pmap_spin);
2325 if (*obpmapp != NULL) {
2327 * Handle race
2329 spin_unlock(&pmap_spin);
2330 pmap_release(obpmap);
2331 pmap_puninit(obpmap);
2332 kfree(obpmap, M_OBJPMAP);
2333 obpmap = *obpmapp; /* safety */
2334 } else {
2335 obpmap->pm_active = smp_active_mask;
2336 obpmap->pm_flags |= PMAP_SEGSHARED;
2337 *obpmapp = obpmap;
2338 spin_unlock(&pmap_spin);
2343 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2344 * pte/pt using the shared pmap from the object but also adjust
2345 * the process pmap's page table page as a side effect.
2349 * Resolve the terminal PTE and PT in the shared pmap. This is what
2350 * we will return. This is true if ptepindex represents a terminal
2351 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2352 * the PD.
2354 pt_pv = NULL;
2355 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2356 retry:
2357 if (ptepindex >= pmap_pt_pindex(0))
2358 xpv = pte_pv;
2359 else
2360 xpv = pt_pv;
2363 * Resolve the PD in the process pmap so we can properly share the
2364 * page table page. Lock order is bottom-up (leaf first)!
2366 * NOTE: proc_pt_pv can be NULL.
2368 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), NULL);
2369 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2370 #ifdef PMAP_DEBUG2
2371 if (pmap_enter_debug > 0) {
2372 --pmap_enter_debug;
2373 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2374 proc_pt_pv,
2375 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2376 proc_pd_pv,
2377 va);
2379 #endif
2382 * xpv is the page table page pv from the shared object
2383 * (for convenience), from above.
2385 * Calculate the pte value for the PT to load into the process PD.
2386 * If we have to change it we must properly dispose of the previous
2387 * entry.
2389 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2390 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2391 (pmap->pmap_bits[PG_U_IDX] |
2392 pmap->pmap_bits[PG_RW_IDX] |
2393 pmap->pmap_bits[PG_V_IDX] |
2394 pmap->pmap_bits[PG_A_IDX] |
2395 pmap->pmap_bits[PG_M_IDX]);
2398 * Dispose of previous page table page if it was local to the
2399 * process pmap. If the old pt is not empty we cannot dispose of it
2400 * until we clean it out. This case should not arise very often so
2401 * it is not optimized.
2403 * Leave pt_pv and pte_pv (in our object pmap) locked and intact
2404 * for the retry.
2406 if (proc_pt_pv) {
2407 pmap_inval_bulk_t bulk;
2409 if (proc_pt_pv->pv_m->wire_count != 1) {
2410 pv_put(proc_pd_pv);
2411 pv_put(proc_pt_pv);
2412 pmap_remove(pmap,
2413 va & ~(vm_offset_t)SEG_MASK,
2414 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2415 goto retry;
2419 * The release call will indirectly clean out *pt
2421 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2422 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2423 pmap_inval_bulk_flush(&bulk);
2424 proc_pt_pv = NULL;
2425 /* relookup */
2426 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2430 * Handle remaining cases.
2432 if (*pt == 0) {
2433 atomic_swap_long(pt, npte);
2434 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2435 vm_page_wire_quick(proc_pd_pv->pv_m); /* proc pd for sh pt */
2436 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2437 } else if (*pt != npte) {
2438 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2440 #if 0
2441 opte = pte_load_clear(pt);
2442 KKASSERT(opte && opte != npte);
2444 *pt = npte;
2445 #endif
2446 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2449 * Clean up opte, bump the wire_count for the process
2450 * PD page representing the new entry if it was
2451 * previously empty.
2453 * If the entry was not previously empty and we have
2454 * a PT in the proc pmap then opte must match that
2455 * pt. The proc pt must be retired (this is done
2456 * later on in this procedure).
2458 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2459 * stays the same.
2461 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2462 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2463 if (vm_page_unwire_quick(m)) {
2464 panic("pmap_allocpte_seg: "
2465 "bad wire count %p",
2471 * The existing process page table was replaced and must be destroyed
2472 * here.
2474 if (proc_pd_pv)
2475 pv_put(proc_pd_pv);
2476 if (pvpp)
2477 *pvpp = pt_pv;
2478 else
2479 pv_put(pt_pv);
2481 return (pte_pv);
2485 * Release any resources held by the given physical map.
2487 * Called when a pmap initialized by pmap_pinit is being released. Should
2488 * only be called if the map contains no valid mappings.
2490 struct pmap_release_info {
2491 pmap_t pmap;
2492 int retry;
2493 pv_entry_t pvp;
2496 static int pmap_release_callback(pv_entry_t pv, void *data);
2498 void
2499 pmap_release(struct pmap *pmap)
2501 struct pmap_release_info info;
2503 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2504 ("pmap still active! %016jx",
2505 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2508 * There is no longer a pmap_list, if there were we would remove the
2509 * pmap from it here.
2513 * Pull pv's off the RB tree in order from low to high and release
2514 * each page.
2516 info.pmap = pmap;
2517 do {
2518 info.retry = 0;
2519 info.pvp = NULL;
2521 spin_lock(&pmap->pm_spin);
2522 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2523 pmap_release_callback, &info);
2524 spin_unlock(&pmap->pm_spin);
2526 if (info.pvp)
2527 pv_put(info.pvp);
2528 } while (info.retry);
2532 * One resident page (the pml4 page) should remain.
2533 * No wired pages should remain.
2535 #if 1
2536 if (pmap->pm_stats.resident_count !=
2537 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1) ||
2538 pmap->pm_stats.wired_count != 0) {
2539 kprintf("fatal pmap problem - pmap %p flags %08x "
2540 "rescnt=%jd wirecnt=%jd\n",
2541 pmap,
2542 pmap->pm_flags,
2543 pmap->pm_stats.resident_count,
2544 pmap->pm_stats.wired_count);
2545 tsleep(pmap, 0, "DEAD", 0);
2547 #else
2548 KKASSERT(pmap->pm_stats.resident_count ==
2549 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2550 KKASSERT(pmap->pm_stats.wired_count == 0);
2551 #endif
2555 * Called from low to high. We must cache the proper parent pv so we
2556 * can adjust its wired count.
2558 static int
2559 pmap_release_callback(pv_entry_t pv, void *data)
2561 struct pmap_release_info *info = data;
2562 pmap_t pmap = info->pmap;
2563 vm_pindex_t pindex;
2564 int r;
2567 * Acquire a held and locked pv, check for release race
2569 pindex = pv->pv_pindex;
2570 if (info->pvp == pv) {
2571 spin_unlock(&pmap->pm_spin);
2572 info->pvp = NULL;
2573 } else if (pv_hold_try(pv)) {
2574 spin_unlock(&pmap->pm_spin);
2575 } else {
2576 spin_unlock(&pmap->pm_spin);
2577 pv_lock(pv);
2578 pv_put(pv);
2579 info->retry = 1;
2580 spin_lock(&pmap->pm_spin);
2582 return -1;
2584 KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2586 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2588 * I am PTE, parent is PT
2590 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2591 pindex += NUPTE_TOTAL;
2592 } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2594 * I am PT, parent is PD
2596 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2597 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2598 } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2600 * I am PD, parent is PDP
2602 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2603 NPDPEPGSHIFT;
2604 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2605 } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2607 * I am PDP, parent is PML4 (there's only one)
2609 #if 0
2610 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2611 NUPD_TOTAL) >> NPML4EPGSHIFT;
2612 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2613 #endif
2614 pindex = pmap_pml4_pindex();
2615 } else {
2617 * parent is NULL
2619 if (info->pvp) {
2620 pv_put(info->pvp);
2621 info->pvp = NULL;
2623 pindex = 0;
2625 if (pindex) {
2626 if (info->pvp && info->pvp->pv_pindex != pindex) {
2627 pv_put(info->pvp);
2628 info->pvp = NULL;
2630 if (info->pvp == NULL)
2631 info->pvp = pv_get(pmap, pindex, NULL);
2632 } else {
2633 if (info->pvp) {
2634 pv_put(info->pvp);
2635 info->pvp = NULL;
2638 r = pmap_release_pv(pv, info->pvp, NULL);
2639 spin_lock(&pmap->pm_spin);
2641 return(r);
2645 * Called with held (i.e. also locked) pv. This function will dispose of
2646 * the lock along with the pv.
2648 * If the caller already holds the locked parent page table for pv it
2649 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2650 * pass NULL for pvp.
2652 static int
2653 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2655 vm_page_t p;
2658 * The pmap is currently not spinlocked, pv is held+locked.
2659 * Remove the pv's page from its parent's page table. The
2660 * parent's page table page's wire_count will be decremented.
2662 * This will clean out the pte at any level of the page table.
2663 * If smp != 0 all cpus are affected.
2665 * Do not tear-down recursively, its faster to just let the
2666 * release run its course.
2668 pmap_remove_pv_pte(pv, pvp, bulk, 0);
2671 * Terminal pvs are unhooked from their vm_pages. Because
2672 * terminal pages aren't page table pages they aren't wired
2673 * by us, so we have to be sure not to unwire them either.
2675 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2676 pmap_remove_pv_page(pv);
2677 goto skip;
2681 * We leave the top-level page table page cached, wired, and
2682 * mapped in the pmap until the dtor function (pmap_puninit())
2683 * gets called.
2685 * Since we are leaving the top-level pv intact we need
2686 * to break out of what would otherwise be an infinite loop.
2688 if (pv->pv_pindex == pmap_pml4_pindex()) {
2689 pv_put(pv);
2690 return(-1);
2694 * For page table pages (other than the top-level page),
2695 * remove and free the vm_page. The representitive mapping
2696 * removed above by pmap_remove_pv_pte() did not undo the
2697 * last wire_count so we have to do that as well.
2699 p = pmap_remove_pv_page(pv);
2700 vm_page_busy_wait(p, FALSE, "pmaprl");
2701 if (p->wire_count != 1) {
2702 kprintf("p->wire_count was %016lx %d\n",
2703 pv->pv_pindex, p->wire_count);
2705 KKASSERT(p->wire_count == 1);
2706 KKASSERT(p->flags & PG_UNMANAGED);
2708 vm_page_unwire(p, 0);
2709 KKASSERT(p->wire_count == 0);
2711 vm_page_free(p);
2712 skip:
2713 pv_free(pv, pvp);
2715 return 0;
2719 * This function will remove the pte associated with a pv from its parent.
2720 * Terminal pv's are supported. All cpus specified by (bulk) are properly
2721 * invalidated.
2723 * The wire count will be dropped on the parent page table. The wire
2724 * count on the page being removed (pv->pv_m) from the parent page table
2725 * is NOT touched. Note that terminal pages will not have any additional
2726 * wire counts while page table pages will have at least one representing
2727 * the mapping, plus others representing sub-mappings.
2729 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2730 * pages and user page table and terminal pages.
2732 * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2733 * be freshly allocated and not imply that the pte is managed. In this
2734 * case pv->pv_m should be NULL.
2736 * The pv must be locked. The pvp, if supplied, must be locked. All
2737 * supplied pv's will remain locked on return.
2739 * XXX must lock parent pv's if they exist to remove pte XXX
2741 static
2742 void
2743 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2744 int destroy)
2746 vm_pindex_t ptepindex = pv->pv_pindex;
2747 pmap_t pmap = pv->pv_pmap;
2748 vm_page_t p;
2749 int gotpvp = 0;
2751 KKASSERT(pmap);
2753 if (ptepindex == pmap_pml4_pindex()) {
2755 * We are the top level PML4E table, there is no parent.
2757 p = pmap->pm_pmlpv->pv_m;
2758 KKASSERT(pv->pv_m == p); /* debugging */
2759 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2761 * Remove a PDP page from the PML4E. This can only occur
2762 * with user page tables. We do not have to lock the
2763 * pml4 PV so just ignore pvp.
2765 vm_pindex_t pml4_pindex;
2766 vm_pindex_t pdp_index;
2767 pml4_entry_t *pdp;
2769 pdp_index = ptepindex - pmap_pdp_pindex(0);
2770 if (pvp == NULL) {
2771 pml4_pindex = pmap_pml4_pindex();
2772 pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2773 KKASSERT(pvp);
2774 gotpvp = 1;
2777 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2778 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2779 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2780 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2781 KKASSERT(pv->pv_m == p); /* debugging */
2782 } else if (ptepindex >= pmap_pd_pindex(0)) {
2784 * Remove a PD page from the PDP
2786 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2787 * of a simple pmap because it stops at
2788 * the PD page.
2790 vm_pindex_t pdp_pindex;
2791 vm_pindex_t pd_index;
2792 pdp_entry_t *pd;
2794 pd_index = ptepindex - pmap_pd_pindex(0);
2796 if (pvp == NULL) {
2797 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2798 (pd_index >> NPML4EPGSHIFT);
2799 pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2800 gotpvp = 1;
2803 if (pvp) {
2804 pd = pv_pte_lookup(pvp, pd_index &
2805 ((1ul << NPDPEPGSHIFT) - 1));
2806 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2807 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2808 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2809 } else {
2810 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2811 p = pv->pv_m; /* degenerate test later */
2813 KKASSERT(pv->pv_m == p); /* debugging */
2814 } else if (ptepindex >= pmap_pt_pindex(0)) {
2816 * Remove a PT page from the PD
2818 vm_pindex_t pd_pindex;
2819 vm_pindex_t pt_index;
2820 pd_entry_t *pt;
2822 pt_index = ptepindex - pmap_pt_pindex(0);
2824 if (pvp == NULL) {
2825 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2826 (pt_index >> NPDPEPGSHIFT);
2827 pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
2828 KKASSERT(pvp);
2829 gotpvp = 1;
2832 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2833 #if 0
2834 KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
2835 ("*pt unexpectedly invalid %016jx "
2836 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
2837 *pt, gotpvp, ptepindex, pt_index, pv, pvp));
2838 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2839 #else
2840 if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
2841 kprintf("*pt unexpectedly invalid %016jx "
2842 "gotpvp=%d ptepindex=%ld ptindex=%ld "
2843 "pv=%p pvp=%p\n",
2844 *pt, gotpvp, ptepindex, pt_index, pv, pvp);
2845 tsleep(pt, 0, "DEAD", 0);
2846 p = pv->pv_m;
2847 } else {
2848 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2850 #endif
2851 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2852 KKASSERT(pv->pv_m == p); /* debugging */
2853 } else {
2855 * Remove a PTE from the PT page. The PV might exist even if
2856 * the PTE is not managed, in whichcase pv->pv_m should be
2857 * NULL.
2859 * NOTE: Userland pmaps manage the parent PT/PD/PDP page
2860 * table pages but the kernel_pmap does not.
2862 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2863 * pv is a pte_pv so we can safely lock pt_pv.
2865 * NOTE: FICTITIOUS pages may have multiple physical mappings
2866 * so PHYS_TO_VM_PAGE() will not necessarily work for
2867 * terminal ptes.
2869 vm_pindex_t pt_pindex;
2870 pt_entry_t *ptep;
2871 pt_entry_t pte;
2872 vm_offset_t va;
2874 pt_pindex = ptepindex >> NPTEPGSHIFT;
2875 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2877 if (ptepindex >= NUPTE_USER) {
2878 ptep = vtopte(ptepindex << PAGE_SHIFT);
2879 KKASSERT(pvp == NULL);
2880 /* pvp remains NULL */
2881 } else {
2882 if (pvp == NULL) {
2883 pt_pindex = NUPTE_TOTAL +
2884 (ptepindex >> NPDPEPGSHIFT);
2885 pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
2886 KKASSERT(pvp);
2887 gotpvp = 1;
2889 ptep = pv_pte_lookup(pvp, ptepindex &
2890 ((1ul << NPDPEPGSHIFT) - 1));
2892 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2893 if (bulk == NULL) /* XXX */
2894 cpu_invlpg((void *)va); /* XXX */
2897 * Now update the vm_page_t
2899 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
2900 (pte & pmap->pmap_bits[PG_V_IDX])) {
2902 * Valid managed page, adjust (p).
2904 if (pte & pmap->pmap_bits[PG_DEVICE_IDX]) {
2905 p = pv->pv_m;
2906 } else {
2907 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2908 KKASSERT(pv->pv_m == p);
2910 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2911 if (pmap_track_modified(ptepindex))
2912 vm_page_dirty(p);
2914 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2915 vm_page_flag_set(p, PG_REFERENCED);
2917 } else {
2919 * Unmanaged page, do not try to adjust the vm_page_t.
2920 * pv could be freshly allocated for a pmap_enter(),
2921 * replacing an unmanaged page with a managed one.
2923 * pv->pv_m might reflect the new page and not the
2924 * existing page.
2926 * We could extract p from the physical address and
2927 * adjust it but we explicitly do not for unmanaged
2928 * pages.
2930 p = NULL;
2932 if (pte & pmap->pmap_bits[PG_W_IDX])
2933 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2934 if (pte & pmap->pmap_bits[PG_G_IDX])
2935 cpu_invlpg((void *)va);
2939 * If requested, scrap the underlying pv->pv_m and the underlying
2940 * pv. If this is a page-table-page we must also free the page.
2942 * pvp must be returned locked.
2944 if (destroy == 1) {
2946 * page table page (PT, PD, PDP, PML4), caller was responsible
2947 * for testing wired_count.
2949 KKASSERT(pv->pv_m->wire_count == 1);
2950 p = pmap_remove_pv_page(pv);
2951 pv_free(pv, pvp);
2952 pv = NULL;
2954 vm_page_busy_wait(p, FALSE, "pgpun");
2955 vm_page_unwire(p, 0);
2956 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2957 vm_page_free(p);
2958 } else if (destroy == 2) {
2960 * Normal page, remove from pmap and leave the underlying
2961 * page untouched.
2963 pmap_remove_pv_page(pv);
2964 pv_free(pv, pvp);
2965 pv = NULL; /* safety */
2969 * If we acquired pvp ourselves then we are responsible for
2970 * recursively deleting it.
2972 if (pvp && gotpvp) {
2974 * Recursively destroy higher-level page tables.
2976 * This is optional. If we do not, they will still
2977 * be destroyed when the process exits.
2979 * NOTE: Do not destroy pv_entry's with extra hold refs,
2980 * a caller may have unlocked it and intends to
2981 * continue to use it.
2983 if (pmap_dynamic_delete &&
2984 pvp->pv_m &&
2985 pvp->pv_m->wire_count == 1 &&
2986 (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
2987 pvp->pv_pindex != pmap_pml4_pindex()) {
2988 if (pmap_dynamic_delete == 2)
2989 kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
2990 if (pmap != &kernel_pmap) {
2991 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
2992 pvp = NULL; /* safety */
2993 } else {
2994 kprintf("Attempt to remove kernel_pmap pindex "
2995 "%jd\n", pvp->pv_pindex);
2996 pv_put(pvp);
2998 } else {
2999 pv_put(pvp);
3005 * Remove the vm_page association to a pv. The pv must be locked.
3007 static
3008 vm_page_t
3009 pmap_remove_pv_page(pv_entry_t pv)
3011 vm_page_t m;
3013 m = pv->pv_m;
3014 vm_page_spin_lock(m);
3015 KKASSERT(m && m == pv->pv_m);
3016 pv->pv_m = NULL;
3017 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3018 pmap_page_stats_deleting(m);
3019 if (TAILQ_EMPTY(&m->md.pv_list))
3020 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3021 vm_page_spin_unlock(m);
3023 return(m);
3027 * Grow the number of kernel page table entries, if needed.
3029 * This routine is always called to validate any address space
3030 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
3031 * space below KERNBASE.
3033 * kernel_map must be locked exclusively by the caller.
3035 void
3036 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3038 vm_paddr_t paddr;
3039 vm_offset_t ptppaddr;
3040 vm_page_t nkpg;
3041 pd_entry_t *pt, newpt;
3042 pdp_entry_t newpd;
3043 int update_kernel_vm_end;
3046 * bootstrap kernel_vm_end on first real VM use
3048 if (kernel_vm_end == 0) {
3049 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3050 nkpt = 0;
3051 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3052 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3053 ~(PAGE_SIZE * NPTEPG - 1);
3054 nkpt++;
3055 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3056 kernel_vm_end = kernel_map.max_offset;
3057 break;
3063 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
3064 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
3065 * do not want to force-fill 128G worth of page tables.
3067 if (kstart < KERNBASE) {
3068 if (kstart > kernel_vm_end)
3069 kstart = kernel_vm_end;
3070 KKASSERT(kend <= KERNBASE);
3071 update_kernel_vm_end = 1;
3072 } else {
3073 update_kernel_vm_end = 0;
3076 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
3077 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
3079 if (kend - 1 >= kernel_map.max_offset)
3080 kend = kernel_map.max_offset;
3082 while (kstart < kend) {
3083 pt = pmap_pt(&kernel_pmap, kstart);
3084 if (pt == NULL) {
3085 /* We need a new PD entry */
3086 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3087 VM_ALLOC_NORMAL |
3088 VM_ALLOC_SYSTEM |
3089 VM_ALLOC_INTERRUPT);
3090 if (nkpg == NULL) {
3091 panic("pmap_growkernel: no memory to grow "
3092 "kernel");
3094 paddr = VM_PAGE_TO_PHYS(nkpg);
3095 pmap_zero_page(paddr);
3096 newpd = (pdp_entry_t)
3097 (paddr |
3098 kernel_pmap.pmap_bits[PG_V_IDX] |
3099 kernel_pmap.pmap_bits[PG_RW_IDX] |
3100 kernel_pmap.pmap_bits[PG_A_IDX] |
3101 kernel_pmap.pmap_bits[PG_M_IDX]);
3102 *pmap_pd(&kernel_pmap, kstart) = newpd;
3103 continue; /* try again */
3105 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3106 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3107 ~(PAGE_SIZE * NPTEPG - 1);
3108 if (kstart - 1 >= kernel_map.max_offset) {
3109 kstart = kernel_map.max_offset;
3110 break;
3112 continue;
3116 * We need a new PT
3118 * This index is bogus, but out of the way
3120 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3121 VM_ALLOC_NORMAL |
3122 VM_ALLOC_SYSTEM |
3123 VM_ALLOC_INTERRUPT);
3124 if (nkpg == NULL)
3125 panic("pmap_growkernel: no memory to grow kernel");
3127 vm_page_wire(nkpg);
3128 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3129 pmap_zero_page(ptppaddr);
3130 newpt = (pd_entry_t)(ptppaddr |
3131 kernel_pmap.pmap_bits[PG_V_IDX] |
3132 kernel_pmap.pmap_bits[PG_RW_IDX] |
3133 kernel_pmap.pmap_bits[PG_A_IDX] |
3134 kernel_pmap.pmap_bits[PG_M_IDX]);
3135 atomic_swap_long(pmap_pt(&kernel_pmap, kstart), newpt);
3137 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3138 ~(PAGE_SIZE * NPTEPG - 1);
3140 if (kstart - 1 >= kernel_map.max_offset) {
3141 kstart = kernel_map.max_offset;
3142 break;
3147 * Only update kernel_vm_end for areas below KERNBASE.
3149 if (update_kernel_vm_end && kernel_vm_end < kstart)
3150 kernel_vm_end = kstart;
3154 * Add a reference to the specified pmap.
3156 void
3157 pmap_reference(pmap_t pmap)
3159 if (pmap != NULL)
3160 atomic_add_int(&pmap->pm_count, 1);
3163 /***************************************************
3164 * page management routines.
3165 ***************************************************/
3168 * Hold a pv without locking it
3170 static void
3171 pv_hold(pv_entry_t pv)
3173 atomic_add_int(&pv->pv_hold, 1);
3177 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
3178 * was successfully locked, FALSE if it wasn't. The caller must dispose of
3179 * the pv properly.
3181 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3182 * pv list via its page) must be held by the caller in order to stabilize
3183 * the pv.
3185 static int
3186 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3188 u_int count;
3191 * Critical path shortcut expects pv to already have one ref
3192 * (for the pv->pv_pmap).
3194 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3195 #ifdef PMAP_DEBUG
3196 pv->pv_func = func;
3197 pv->pv_line = lineno;
3198 #endif
3199 return TRUE;
3202 for (;;) {
3203 count = pv->pv_hold;
3204 cpu_ccfence();
3205 if ((count & PV_HOLD_LOCKED) == 0) {
3206 if (atomic_cmpset_int(&pv->pv_hold, count,
3207 (count + 1) | PV_HOLD_LOCKED)) {
3208 #ifdef PMAP_DEBUG
3209 pv->pv_func = func;
3210 pv->pv_line = lineno;
3211 #endif
3212 return TRUE;
3214 } else {
3215 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3216 return FALSE;
3218 /* retry */
3223 * Drop a previously held pv_entry which could not be locked, allowing its
3224 * destruction.
3226 * Must not be called with a spinlock held as we might zfree() the pv if it
3227 * is no longer associated with a pmap and this was the last hold count.
3229 static void
3230 pv_drop(pv_entry_t pv)
3232 u_int count;
3234 for (;;) {
3235 count = pv->pv_hold;
3236 cpu_ccfence();
3237 KKASSERT((count & PV_HOLD_MASK) > 0);
3238 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3239 (PV_HOLD_LOCKED | 1));
3240 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3241 if ((count & PV_HOLD_MASK) == 1) {
3242 #ifdef PMAP_DEBUG2
3243 if (pmap_enter_debug > 0) {
3244 --pmap_enter_debug;
3245 kprintf("pv_drop: free pv %p\n", pv);
3247 #endif
3248 KKASSERT(count == 1);
3249 KKASSERT(pv->pv_pmap == NULL);
3250 zfree(pvzone, pv);
3252 return;
3254 /* retry */
3259 * Find or allocate the requested PV entry, returning a locked, held pv.
3261 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3262 * for the caller and one representing the pmap and vm_page association.
3264 * If (*isnew) is zero, the returned pv will have only one hold count.
3266 * Since both associations can only be adjusted while the pv is locked,
3267 * together they represent just one additional hold.
3269 static
3270 pv_entry_t
3271 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3273 pv_entry_t pv;
3274 pv_entry_t pnew;
3275 struct mdglobaldata *md = mdcpu;
3277 pnew = NULL;
3278 if (md->gd_newpv) {
3279 #if 0
3280 pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3281 #else
3282 crit_enter();
3283 pnew = md->gd_newpv; /* might race NULL */
3284 md->gd_newpv = NULL;
3285 crit_exit();
3286 #endif
3288 if (pnew == NULL)
3289 pnew = zalloc(pvzone);
3291 spin_lock(&pmap->pm_spin);
3292 for (;;) {
3294 * Shortcut cache
3296 pv = pmap->pm_pvhint;
3297 cpu_ccfence();
3298 if (pv == NULL ||
3299 pv->pv_pmap != pmap ||
3300 pv->pv_pindex != pindex) {
3301 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3302 pindex);
3304 if (pv == NULL) {
3305 vm_pindex_t *pmark;
3308 * We need to block if someone is holding our
3309 * placemarker. As long as we determine the
3310 * placemarker has not been aquired we do not
3311 * need to get it as acquision also requires
3312 * the pmap spin lock.
3314 * However, we can race the wakeup.
3316 pmark = pmap_placemarker_hash(pmap, pindex);
3318 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3319 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3320 tsleep_interlock(pmark, 0);
3321 if (((*pmark ^ pindex) &
3322 ~PM_PLACEMARK_WAKEUP) == 0) {
3323 spin_unlock(&pmap->pm_spin);
3324 tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3325 spin_lock(&pmap->pm_spin);
3327 continue;
3331 * Setup the new entry
3333 pnew->pv_pmap = pmap;
3334 pnew->pv_pindex = pindex;
3335 pnew->pv_hold = PV_HOLD_LOCKED | 2;
3336 #ifdef PMAP_DEBUG
3337 pnew->pv_func = func;
3338 pnew->pv_line = lineno;
3339 if (pnew->pv_line_lastfree > 0) {
3340 pnew->pv_line_lastfree =
3341 -pnew->pv_line_lastfree;
3343 #endif
3344 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3345 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3346 spin_unlock(&pmap->pm_spin);
3347 *isnew = 1;
3349 KKASSERT(pv == NULL);
3350 return(pnew);
3354 * We already have an entry, cleanup the staged pnew if
3355 * we can get the lock, otherwise block and retry.
3357 if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3358 spin_unlock(&pmap->pm_spin);
3359 #if 0
3360 pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3361 if (pnew)
3362 zfree(pvzone, pnew);
3363 #else
3364 crit_enter();
3365 if (md->gd_newpv == NULL)
3366 md->gd_newpv = pnew;
3367 else
3368 zfree(pvzone, pnew);
3369 crit_exit();
3370 #endif
3371 KKASSERT(pv->pv_pmap == pmap &&
3372 pv->pv_pindex == pindex);
3373 *isnew = 0;
3374 return(pv);
3376 spin_unlock(&pmap->pm_spin);
3377 _pv_lock(pv PMAP_DEBUG_COPY);
3378 pv_put(pv);
3379 spin_lock(&pmap->pm_spin);
3381 /* NOT REACHED */
3385 * Find the requested PV entry, returning a locked+held pv or NULL
3387 static
3388 pv_entry_t
3389 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3391 pv_entry_t pv;
3393 spin_lock(&pmap->pm_spin);
3394 for (;;) {
3396 * Shortcut cache
3398 pv = pmap->pm_pvhint;
3399 cpu_ccfence();
3400 if (pv == NULL ||
3401 pv->pv_pmap != pmap ||
3402 pv->pv_pindex != pindex) {
3403 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3404 pindex);
3406 if (pv == NULL) {
3408 * Block if there is ANY placemarker. If we are to
3409 * return it, we must also aquire the spot, so we
3410 * have to block even if the placemarker is held on
3411 * a different address.
3413 * OPTIMIZATION: If pmarkp is passed as NULL the
3414 * caller is just probing (or looking for a real
3415 * pv_entry), and in this case we only need to check
3416 * to see if the placemarker matches pindex.
3418 vm_pindex_t *pmark;
3420 pmark = pmap_placemarker_hash(pmap, pindex);
3422 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3423 ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3424 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3425 tsleep_interlock(pmark, 0);
3426 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3427 ((*pmark ^ pindex) &
3428 ~PM_PLACEMARK_WAKEUP) == 0) {
3429 spin_unlock(&pmap->pm_spin);
3430 tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3431 spin_lock(&pmap->pm_spin);
3433 continue;
3435 if (pmarkp) {
3436 if (atomic_swap_long(pmark, pindex) !=
3437 PM_NOPLACEMARK) {
3438 panic("_pv_get: pmark race");
3440 *pmarkp = pmark;
3442 spin_unlock(&pmap->pm_spin);
3443 return NULL;
3445 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3446 pv_cache(pv, pindex);
3447 spin_unlock(&pmap->pm_spin);
3448 KKASSERT(pv->pv_pmap == pmap &&
3449 pv->pv_pindex == pindex);
3450 return(pv);
3452 spin_unlock(&pmap->pm_spin);
3453 _pv_lock(pv PMAP_DEBUG_COPY);
3454 pv_put(pv);
3455 spin_lock(&pmap->pm_spin);
3460 * Lookup, hold, and attempt to lock (pmap,pindex).
3462 * If the entry does not exist NULL is returned and *errorp is set to 0
3464 * If the entry exists and could be successfully locked it is returned and
3465 * errorp is set to 0.
3467 * If the entry exists but could NOT be successfully locked it is returned
3468 * held and *errorp is set to 1.
3470 * If the entry is placemarked by someone else NULL is returned and *errorp
3471 * is set to 1.
3473 static
3474 pv_entry_t
3475 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3477 pv_entry_t pv;
3479 spin_lock_shared(&pmap->pm_spin);
3481 pv = pmap->pm_pvhint;
3482 cpu_ccfence();
3483 if (pv == NULL ||
3484 pv->pv_pmap != pmap ||
3485 pv->pv_pindex != pindex) {
3486 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3489 if (pv == NULL) {
3490 vm_pindex_t *pmark;
3492 pmark = pmap_placemarker_hash(pmap, pindex);
3494 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3495 *errorp = 1;
3496 } else if (pmarkp &&
3497 atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3498 *errorp = 0;
3499 } else {
3501 * Can't set a placemark with a NULL pmarkp, or if
3502 * pmarkp is non-NULL but we failed to set our
3503 * placemark.
3505 *errorp = 1;
3507 if (pmarkp)
3508 *pmarkp = pmark;
3509 spin_unlock_shared(&pmap->pm_spin);
3511 return NULL;
3515 * XXX This has problems if the lock is shared, why?
3517 if (pv_hold_try(pv)) {
3518 pv_cache(pv, pindex); /* overwrite ok (shared lock) */
3519 spin_unlock_shared(&pmap->pm_spin);
3520 *errorp = 0;
3521 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3522 return(pv); /* lock succeeded */
3524 spin_unlock_shared(&pmap->pm_spin);
3525 *errorp = 1;
3527 return (pv); /* lock failed */
3531 * Lock a held pv, keeping the hold count
3533 static
3534 void
3535 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3537 u_int count;
3539 for (;;) {
3540 count = pv->pv_hold;
3541 cpu_ccfence();
3542 if ((count & PV_HOLD_LOCKED) == 0) {
3543 if (atomic_cmpset_int(&pv->pv_hold, count,
3544 count | PV_HOLD_LOCKED)) {
3545 #ifdef PMAP_DEBUG
3546 pv->pv_func = func;
3547 pv->pv_line = lineno;
3548 #endif
3549 return;
3551 continue;
3553 tsleep_interlock(pv, 0);
3554 if (atomic_cmpset_int(&pv->pv_hold, count,
3555 count | PV_HOLD_WAITING)) {
3556 #ifdef PMAP_DEBUG2
3557 if (pmap_enter_debug > 0) {
3558 --pmap_enter_debug;
3559 kprintf("pv waiting on %s:%d\n",
3560 pv->pv_func, pv->pv_line);
3562 #endif
3563 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3565 /* retry */
3570 * Unlock a held and locked pv, keeping the hold count.
3572 static
3573 void
3574 pv_unlock(pv_entry_t pv)
3576 u_int count;
3578 for (;;) {
3579 count = pv->pv_hold;
3580 cpu_ccfence();
3581 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3582 (PV_HOLD_LOCKED | 1));
3583 if (atomic_cmpset_int(&pv->pv_hold, count,
3584 count &
3585 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3586 if (count & PV_HOLD_WAITING)
3587 wakeup(pv);
3588 break;
3594 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3595 * and the hold count drops to zero we will free it.
3597 * Caller should not hold any spin locks. We are protected from hold races
3598 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3599 * lock held. A pv cannot be located otherwise.
3601 static
3602 void
3603 pv_put(pv_entry_t pv)
3605 #ifdef PMAP_DEBUG2
3606 if (pmap_enter_debug > 0) {
3607 --pmap_enter_debug;
3608 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3610 #endif
3613 * Normal put-aways must have a pv_m associated with the pv,
3614 * but allow the case where the pv has been destructed due
3615 * to pmap_dynamic_delete.
3617 KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3620 * Fast - shortcut most common condition
3622 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3623 return;
3626 * Slow
3628 pv_unlock(pv);
3629 pv_drop(pv);
3633 * Remove the pmap association from a pv, require that pv_m already be removed,
3634 * then unlock and drop the pv. Any pte operations must have already been
3635 * completed. This call may result in a last-drop which will physically free
3636 * the pv.
3638 * Removing the pmap association entails an additional drop.
3640 * pv must be exclusively locked on call and will be disposed of on return.
3642 static
3643 void
3644 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3646 pmap_t pmap;
3648 #ifdef PMAP_DEBUG
3649 pv->pv_func_lastfree = func;
3650 pv->pv_line_lastfree = lineno;
3651 #endif
3652 KKASSERT(pv->pv_m == NULL);
3653 KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3654 (PV_HOLD_LOCKED|1));
3655 if ((pmap = pv->pv_pmap) != NULL) {
3656 spin_lock(&pmap->pm_spin);
3657 KKASSERT(pv->pv_pmap == pmap);
3658 if (pmap->pm_pvhint == pv)
3659 pmap->pm_pvhint = NULL;
3660 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3661 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3662 pv->pv_pmap = NULL;
3663 pv->pv_pindex = 0;
3664 spin_unlock(&pmap->pm_spin);
3667 * Try to shortcut three atomic ops, otherwise fall through
3668 * and do it normally. Drop two refs and the lock all in
3669 * one go.
3671 if (pvp)
3672 vm_page_unwire_quick(pvp->pv_m);
3673 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3674 #ifdef PMAP_DEBUG2
3675 if (pmap_enter_debug > 0) {
3676 --pmap_enter_debug;
3677 kprintf("pv_free: free pv %p\n", pv);
3679 #endif
3680 zfree(pvzone, pv);
3681 return;
3683 pv_drop(pv); /* ref for pv_pmap */
3685 pv_unlock(pv);
3686 pv_drop(pv);
3690 * This routine is very drastic, but can save the system
3691 * in a pinch.
3693 void
3694 pmap_collect(void)
3696 int i;
3697 vm_page_t m;
3698 static int warningdone=0;
3700 if (pmap_pagedaemon_waken == 0)
3701 return;
3702 pmap_pagedaemon_waken = 0;
3703 if (warningdone < 5) {
3704 kprintf("pmap_collect: collecting pv entries -- "
3705 "suggest increasing PMAP_SHPGPERPROC\n");
3706 warningdone++;
3709 for (i = 0; i < vm_page_array_size; i++) {
3710 m = &vm_page_array[i];
3711 if (m->wire_count || m->hold_count)
3712 continue;
3713 if (vm_page_busy_try(m, TRUE) == 0) {
3714 if (m->wire_count == 0 && m->hold_count == 0) {
3715 pmap_remove_all(m);
3717 vm_page_wakeup(m);
3723 * Scan the pmap for active page table entries and issue a callback.
3724 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3725 * its parent page table.
3727 * pte_pv will be NULL if the page or page table is unmanaged.
3728 * pt_pv will point to the page table page containing the pte for the page.
3730 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3731 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3732 * process pmap's PD and page to the callback function. This can be
3733 * confusing because the pt_pv is really a pd_pv, and the target page
3734 * table page is simply aliased by the pmap and not owned by it.
3736 * It is assumed that the start and end are properly rounded to the page size.
3738 * It is assumed that PD pages and above are managed and thus in the RB tree,
3739 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3741 struct pmap_scan_info {
3742 struct pmap *pmap;
3743 vm_offset_t sva;
3744 vm_offset_t eva;
3745 vm_pindex_t sva_pd_pindex;
3746 vm_pindex_t eva_pd_pindex;
3747 void (*func)(pmap_t, struct pmap_scan_info *,
3748 pv_entry_t, vm_pindex_t *, pv_entry_t,
3749 int, vm_offset_t,
3750 pt_entry_t *, void *);
3751 void *arg;
3752 pmap_inval_bulk_t bulk_core;
3753 pmap_inval_bulk_t *bulk;
3754 int count;
3755 int stop;
3758 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3759 static int pmap_scan_callback(pv_entry_t pv, void *data);
3761 static void
3762 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3764 struct pmap *pmap = info->pmap;
3765 pv_entry_t pd_pv; /* A page directory PV */
3766 pv_entry_t pt_pv; /* A page table PV */
3767 pv_entry_t pte_pv; /* A page table entry PV */
3768 vm_pindex_t *pte_placemark;
3769 vm_pindex_t *pt_placemark;
3770 pt_entry_t *ptep;
3771 pt_entry_t oldpte;
3772 struct pv_entry dummy_pv;
3774 info->stop = 0;
3775 if (pmap == NULL)
3776 return;
3777 if (info->sva == info->eva)
3778 return;
3779 if (smp_inval) {
3780 info->bulk = &info->bulk_core;
3781 pmap_inval_bulk_init(&info->bulk_core, pmap);
3782 } else {
3783 info->bulk = NULL;
3787 * Hold the token for stability; if the pmap is empty we have nothing
3788 * to do.
3790 #if 0
3791 if (pmap->pm_stats.resident_count == 0) {
3792 return;
3794 #endif
3796 info->count = 0;
3799 * Special handling for scanning one page, which is a very common
3800 * operation (it is?).
3802 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3804 if (info->sva + PAGE_SIZE == info->eva) {
3805 if (info->sva >= VM_MAX_USER_ADDRESS) {
3807 * Kernel mappings do not track wire counts on
3808 * page table pages and only maintain pd_pv and
3809 * pte_pv levels so pmap_scan() works.
3811 pt_pv = NULL;
3812 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3813 &pte_placemark);
3814 ptep = vtopte(info->sva);
3815 } else {
3817 * User pages which are unmanaged will not have a
3818 * pte_pv. User page table pages which are unmanaged
3819 * (shared from elsewhere) will also not have a pt_pv.
3820 * The func() callback will pass both pte_pv and pt_pv
3821 * as NULL in that case.
3823 * We hold pte_placemark across the operation for
3824 * unmanaged pages.
3826 * WARNING! We must hold pt_placemark across the
3827 * *ptep test to prevent misintepreting
3828 * a non-zero *ptep as a shared page
3829 * table page. Hold it across the function
3830 * callback as well for SMP safety.
3832 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3833 &pte_placemark);
3834 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
3835 &pt_placemark);
3836 if (pt_pv == NULL) {
3837 KKASSERT(pte_pv == NULL);
3838 pd_pv = pv_get(pmap,
3839 pmap_pd_pindex(info->sva),
3840 NULL);
3841 if (pd_pv) {
3842 ptep = pv_pte_lookup(pd_pv,
3843 pmap_pt_index(info->sva));
3844 if (*ptep) {
3845 info->func(pmap, info,
3846 NULL, pt_placemark,
3847 pd_pv, 1,
3848 info->sva, ptep,
3849 info->arg);
3850 } else {
3851 pv_placemarker_wakeup(pmap,
3852 pt_placemark);
3854 pv_put(pd_pv);
3855 } else {
3856 pv_placemarker_wakeup(pmap,
3857 pt_placemark);
3859 pv_placemarker_wakeup(pmap, pte_placemark);
3860 goto fast_skip;
3862 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3866 * NOTE: *ptep can't be ripped out from under us if we hold
3867 * pte_pv (or pte_placemark) locked, but bits can
3868 * change.
3870 oldpte = *ptep;
3871 cpu_ccfence();
3872 if (oldpte == 0) {
3873 KKASSERT(pte_pv == NULL);
3874 pv_placemarker_wakeup(pmap, pte_placemark);
3875 } else if (pte_pv) {
3876 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3877 pmap->pmap_bits[PG_V_IDX])) ==
3878 (pmap->pmap_bits[PG_MANAGED_IDX] |
3879 pmap->pmap_bits[PG_V_IDX]),
3880 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
3881 *ptep, oldpte, info->sva, pte_pv));
3882 info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
3883 info->sva, ptep, info->arg);
3884 } else {
3885 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3886 pmap->pmap_bits[PG_V_IDX])) ==
3887 pmap->pmap_bits[PG_V_IDX],
3888 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
3889 *ptep, oldpte, info->sva));
3890 info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
3891 info->sva, ptep, info->arg);
3893 if (pt_pv)
3894 pv_put(pt_pv);
3895 fast_skip:
3896 pmap_inval_bulk_flush(info->bulk);
3897 return;
3901 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3902 * there.
3904 * WARNING! eva can overflow our standard ((N + mask) >> bits)
3905 * bounds, resulting in a pd_pindex of 0. To solve the
3906 * problem we use an inclusive range.
3908 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3909 info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
3911 if (info->sva >= VM_MAX_USER_ADDRESS) {
3913 * The kernel does not currently maintain any pv_entry's for
3914 * higher-level page tables.
3916 bzero(&dummy_pv, sizeof(dummy_pv));
3917 dummy_pv.pv_pindex = info->sva_pd_pindex;
3918 spin_lock(&pmap->pm_spin);
3919 while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
3920 pmap_scan_callback(&dummy_pv, info);
3921 ++dummy_pv.pv_pindex;
3922 if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
3923 break;
3925 spin_unlock(&pmap->pm_spin);
3926 } else {
3928 * User page tables maintain local PML4, PDP, and PD
3929 * pv_entry's at the very least. PT pv's might be
3930 * unmanaged and thus not exist. PTE pv's might be
3931 * unmanaged and thus not exist.
3933 spin_lock(&pmap->pm_spin);
3934 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
3935 pmap_scan_callback, info);
3936 spin_unlock(&pmap->pm_spin);
3938 pmap_inval_bulk_flush(info->bulk);
3942 * WARNING! pmap->pm_spin held
3944 * WARNING! eva can overflow our standard ((N + mask) >> bits)
3945 * bounds, resulting in a pd_pindex of 0. To solve the
3946 * problem we use an inclusive range.
3948 static int
3949 pmap_scan_cmp(pv_entry_t pv, void *data)
3951 struct pmap_scan_info *info = data;
3952 if (pv->pv_pindex < info->sva_pd_pindex)
3953 return(-1);
3954 if (pv->pv_pindex > info->eva_pd_pindex)
3955 return(1);
3956 return(0);
3960 * pmap_scan() by PDs
3962 * WARNING! pmap->pm_spin held
3964 static int
3965 pmap_scan_callback(pv_entry_t pv, void *data)
3967 struct pmap_scan_info *info = data;
3968 struct pmap *pmap = info->pmap;
3969 pv_entry_t pd_pv; /* A page directory PV */
3970 pv_entry_t pt_pv; /* A page table PV */
3971 vm_pindex_t *pt_placemark;
3972 pt_entry_t *ptep;
3973 pt_entry_t oldpte;
3974 vm_offset_t sva;
3975 vm_offset_t eva;
3976 vm_offset_t va_next;
3977 vm_pindex_t pd_pindex;
3978 int error;
3981 * Stop if requested
3983 if (info->stop)
3984 return -1;
3987 * Pull the PD pindex from the pv before releasing the spinlock.
3989 * WARNING: pv is faked for kernel pmap scans.
3991 pd_pindex = pv->pv_pindex;
3992 spin_unlock(&pmap->pm_spin);
3993 pv = NULL; /* invalid after spinlock unlocked */
3996 * Calculate the page range within the PD. SIMPLE pmaps are
3997 * direct-mapped for the entire 2^64 address space. Normal pmaps
3998 * reflect the user and kernel address space which requires
3999 * cannonicalization w/regards to converting pd_pindex's back
4000 * into addresses.
4002 sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4003 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4004 (sva & PML4_SIGNMASK)) {
4005 sva |= PML4_SIGNMASK;
4007 eva = sva + NBPDP; /* can overflow */
4008 if (sva < info->sva)
4009 sva = info->sva;
4010 if (eva < info->sva || eva > info->eva)
4011 eva = info->eva;
4014 * NOTE: kernel mappings do not track page table pages, only
4015 * terminal pages.
4017 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4018 * However, for the scan to be efficient we try to
4019 * cache items top-down.
4021 pd_pv = NULL;
4022 pt_pv = NULL;
4024 for (; sva < eva; sva = va_next) {
4025 if (info->stop)
4026 break;
4027 if (sva >= VM_MAX_USER_ADDRESS) {
4028 if (pt_pv) {
4029 pv_put(pt_pv);
4030 pt_pv = NULL;
4032 goto kernel_skip;
4036 * PD cache, scan shortcut if it doesn't exist.
4038 if (pd_pv == NULL) {
4039 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4040 } else if (pd_pv->pv_pmap != pmap ||
4041 pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4042 pv_put(pd_pv);
4043 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4045 if (pd_pv == NULL) {
4046 va_next = (sva + NBPDP) & ~PDPMASK;
4047 if (va_next < sva)
4048 va_next = eva;
4049 continue;
4053 * PT cache
4055 * NOTE: The cached pt_pv can be removed from the pmap when
4056 * pmap_dynamic_delete is enabled.
4058 if (pt_pv && (pt_pv->pv_pmap != pmap ||
4059 pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4060 pv_put(pt_pv);
4061 pt_pv = NULL;
4063 if (pt_pv == NULL) {
4064 pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4065 &pt_placemark, &error);
4066 if (error) {
4067 pv_put(pd_pv); /* lock order */
4068 pd_pv = NULL;
4069 if (pt_pv) {
4070 pv_lock(pt_pv);
4071 pv_put(pt_pv);
4072 pt_pv = NULL;
4073 } else {
4074 pv_placemarker_wait(pmap, pt_placemark);
4076 va_next = sva;
4077 continue;
4079 /* may have to re-check later if pt_pv is NULL here */
4083 * If pt_pv is NULL we either have an shared page table
4084 * page and must issue a callback specific to that case,
4085 * or there is no page table page.
4087 * Either way we can skip the page table page.
4089 * WARNING! pt_pv can also be NULL due to a pv creation
4090 * race where we find it to be NULL and then
4091 * later see a pte_pv. But its possible the pt_pv
4092 * got created inbetween the two operations, so
4093 * we must check.
4095 if (pt_pv == NULL) {
4097 * Possible unmanaged (shared from another pmap)
4098 * page table page.
4100 * WARNING! We must hold pt_placemark across the
4101 * *ptep test to prevent misintepreting
4102 * a non-zero *ptep as a shared page
4103 * table page. Hold it across the function
4104 * callback as well for SMP safety.
4106 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4107 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4108 info->func(pmap, info, NULL, pt_placemark,
4109 pd_pv, 1,
4110 sva, ptep, info->arg);
4111 } else {
4112 pv_placemarker_wakeup(pmap, pt_placemark);
4116 * Done, move to next page table page.
4118 va_next = (sva + NBPDR) & ~PDRMASK;
4119 if (va_next < sva)
4120 va_next = eva;
4121 continue;
4125 * From this point in the loop testing pt_pv for non-NULL
4126 * means we are in UVM, else if it is NULL we are in KVM.
4128 * Limit our scan to either the end of the va represented
4129 * by the current page table page, or to the end of the
4130 * range being removed.
4132 kernel_skip:
4133 va_next = (sva + NBPDR) & ~PDRMASK;
4134 if (va_next < sva)
4135 va_next = eva;
4136 if (va_next > eva)
4137 va_next = eva;
4140 * Scan the page table for pages. Some pages may not be
4141 * managed (might not have a pv_entry).
4143 * There is no page table management for kernel pages so
4144 * pt_pv will be NULL in that case, but otherwise pt_pv
4145 * is non-NULL, locked, and referenced.
4149 * At this point a non-NULL pt_pv means a UVA, and a NULL
4150 * pt_pv means a KVA.
4152 if (pt_pv)
4153 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4154 else
4155 ptep = vtopte(sva);
4157 while (sva < va_next) {
4158 pv_entry_t pte_pv;
4159 vm_pindex_t *pte_placemark;
4162 * Yield every 64 pages, stop if requested.
4164 if ((++info->count & 63) == 0)
4165 lwkt_user_yield();
4166 if (info->stop)
4167 break;
4170 * We can shortcut our scan if *ptep == 0. This is
4171 * an unlocked check.
4173 if (*ptep == 0) {
4174 sva += PAGE_SIZE;
4175 ++ptep;
4176 continue;
4178 cpu_ccfence();
4181 * Acquire the related pte_pv, if any. If *ptep == 0
4182 * the related pte_pv should not exist, but if *ptep
4183 * is not zero the pte_pv may or may not exist (e.g.
4184 * will not exist for an unmanaged page).
4186 * However a multitude of races are possible here
4187 * so if we cannot lock definite state we clean out
4188 * our cache and break the inner while() loop to
4189 * force a loop up to the top of the for().
4191 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4192 * validity instead of looping up?
4194 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4195 &pte_placemark, &error);
4196 if (error) {
4197 pv_put(pd_pv); /* lock order */
4198 pd_pv = NULL;
4199 if (pt_pv) {
4200 pv_put(pt_pv); /* lock order */
4201 pt_pv = NULL;
4203 if (pte_pv) { /* block */
4204 pv_lock(pte_pv);
4205 pv_put(pte_pv);
4206 pte_pv = NULL;
4207 } else {
4208 pv_placemarker_wait(pmap,
4209 pte_placemark);
4211 va_next = sva; /* retry */
4212 break;
4216 * Reload *ptep after successfully locking the
4217 * pindex. If *ptep == 0 we had better NOT have a
4218 * pte_pv.
4220 cpu_ccfence();
4221 oldpte = *ptep;
4222 if (oldpte == 0) {
4223 if (pte_pv) {
4224 kprintf("Unexpected non-NULL pte_pv "
4225 "%p pt_pv %p "
4226 "*ptep = %016lx/%016lx\n",
4227 pte_pv, pt_pv, *ptep, oldpte);
4228 panic("Unexpected non-NULL pte_pv");
4229 } else {
4230 pv_placemarker_wakeup(pmap, pte_placemark);
4232 sva += PAGE_SIZE;
4233 ++ptep;
4234 continue;
4238 * We can't hold pd_pv across the callback (because
4239 * we don't pass it to the callback and the callback
4240 * might deadlock)
4242 if (pd_pv) {
4243 vm_page_wire_quick(pd_pv->pv_m);
4244 pv_unlock(pd_pv);
4248 * Ready for the callback. The locked pte_pv (if any)
4249 * is consumed by the callback. pte_pv will exist if
4250 * the page is managed, and will not exist if it
4251 * isn't.
4253 if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4255 * Managed pte
4257 KASSERT(pte_pv &&
4258 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4259 ("badC *ptep %016lx/%016lx sva %016lx "
4260 "pte_pv %p",
4261 *ptep, oldpte, sva, pte_pv));
4263 * We must unlock pd_pv across the callback
4264 * to avoid deadlocks on any recursive
4265 * disposal. Re-check that it still exists
4266 * after re-locking.
4268 * Call target disposes of pte_pv and may
4269 * destroy but will not dispose of pt_pv.
4271 info->func(pmap, info, pte_pv, NULL,
4272 pt_pv, 0,
4273 sva, ptep, info->arg);
4274 } else {
4276 * Unmanaged pte
4278 * We must unlock pd_pv across the callback
4279 * to avoid deadlocks on any recursive
4280 * disposal. Re-check that it still exists
4281 * after re-locking.
4283 * Call target disposes of pte_pv or
4284 * pte_placemark and may destroy but will
4285 * not dispose of pt_pv.
4287 KASSERT(pte_pv == NULL &&
4288 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4289 ("badD *ptep %016lx/%016lx sva %016lx "
4290 "pte_pv %p pte_pv->pv_m %p ",
4291 *ptep, oldpte, sva,
4292 pte_pv, (pte_pv ? pte_pv->pv_m : NULL)));
4293 if (pte_pv)
4294 kprintf("RaceD\n");
4295 if (pte_pv) {
4296 info->func(pmap, info,
4297 pte_pv, NULL,
4298 pt_pv, 0,
4299 sva, ptep, info->arg);
4300 } else {
4301 info->func(pmap, info,
4302 NULL, pte_placemark,
4303 pt_pv, 0,
4304 sva, ptep, info->arg);
4307 if (pd_pv) {
4308 pv_lock(pd_pv);
4309 vm_page_unwire_quick(pd_pv->pv_m);
4310 if (pd_pv->pv_pmap == NULL) {
4311 va_next = sva; /* retry */
4312 break;
4317 * NOTE: The cached pt_pv can be removed from the
4318 * pmap when pmap_dynamic_delete is enabled,
4319 * which will cause ptep to become stale.
4321 * This also means that no pages remain under
4322 * the PT, so we can just break out of the inner
4323 * loop and let the outer loop clean everything
4324 * up.
4326 if (pt_pv && pt_pv->pv_pmap != pmap)
4327 break;
4328 pte_pv = NULL;
4329 sva += PAGE_SIZE;
4330 ++ptep;
4333 if (pd_pv) {
4334 pv_put(pd_pv);
4335 pd_pv = NULL;
4337 if (pt_pv) {
4338 pv_put(pt_pv);
4339 pt_pv = NULL;
4341 if ((++info->count & 7) == 0)
4342 lwkt_user_yield();
4345 * Relock before returning.
4347 spin_lock(&pmap->pm_spin);
4348 return (0);
4351 void
4352 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4354 struct pmap_scan_info info;
4356 info.pmap = pmap;
4357 info.sva = sva;
4358 info.eva = eva;
4359 info.func = pmap_remove_callback;
4360 info.arg = NULL;
4361 pmap_scan(&info, 1);
4362 #if 0
4363 cpu_invltlb();
4364 if (eva - sva < 1024*1024) {
4365 while (sva < eva) {
4366 cpu_invlpg((void *)sva);
4367 sva += PAGE_SIZE;
4370 #endif
4373 static void
4374 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4376 struct pmap_scan_info info;
4378 info.pmap = pmap;
4379 info.sva = sva;
4380 info.eva = eva;
4381 info.func = pmap_remove_callback;
4382 info.arg = NULL;
4383 pmap_scan(&info, 0);
4386 static void
4387 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4388 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4389 pv_entry_t pt_pv, int sharept,
4390 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4392 pt_entry_t pte;
4394 if (pte_pv) {
4396 * Managed entry
4398 * This will also drop pt_pv's wire_count. Note that
4399 * terminal pages are not wired based on mmu presence.
4401 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4403 KKASSERT(pte_pv->pv_m != NULL);
4404 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4405 pte_pv = NULL; /* safety */
4408 * Recursively destroy higher-level page tables.
4410 * This is optional. If we do not, they will still
4411 * be destroyed when the process exits.
4413 * NOTE: Do not destroy pv_entry's with extra hold refs,
4414 * a caller may have unlocked it and intends to
4415 * continue to use it.
4417 if (pmap_dynamic_delete &&
4418 pt_pv &&
4419 pt_pv->pv_m &&
4420 pt_pv->pv_m->wire_count == 1 &&
4421 (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4422 pt_pv->pv_pindex != pmap_pml4_pindex()) {
4423 if (pmap_dynamic_delete == 2)
4424 kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4425 pv_hold(pt_pv); /* extra hold */
4426 pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4427 pv_lock(pt_pv); /* prior extra hold + relock */
4429 } else if (sharept == 0) {
4431 * Unmanaged pte (pte_placemark is non-NULL)
4433 * pt_pv's wire_count is still bumped by unmanaged pages
4434 * so we must decrement it manually.
4436 * We have to unwire the target page table page.
4438 pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4439 if (pte & pmap->pmap_bits[PG_W_IDX])
4440 atomic_add_long(&pmap->pm_stats.wired_count, -1);
4441 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4442 if (vm_page_unwire_quick(pt_pv->pv_m))
4443 panic("pmap_remove: insufficient wirecount");
4444 pv_placemarker_wakeup(pmap, pte_placemark);
4445 } else {
4447 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4448 * a shared page table.
4450 * pt_pv is actually the pd_pv for our pmap (not the shared
4451 * object pmap).
4453 * We have to unwire the target page table page and we
4454 * have to unwire our page directory page.
4456 * It is unclear how we can invalidate a segment so we
4457 * invalidate -1 which invlidates the tlb.
4459 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4460 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4461 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4462 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4463 panic("pmap_remove: shared pgtable1 bad wirecount");
4464 if (vm_page_unwire_quick(pt_pv->pv_m))
4465 panic("pmap_remove: shared pgtable2 bad wirecount");
4466 pv_placemarker_wakeup(pmap, pte_placemark);
4471 * Removes this physical page from all physical maps in which it resides.
4472 * Reflects back modify bits to the pager.
4474 * This routine may not be called from an interrupt.
4476 static
4477 void
4478 pmap_remove_all(vm_page_t m)
4480 pv_entry_t pv;
4481 pmap_inval_bulk_t bulk;
4483 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4484 return;
4486 vm_page_spin_lock(m);
4487 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4488 KKASSERT(pv->pv_m == m);
4489 if (pv_hold_try(pv)) {
4490 vm_page_spin_unlock(m);
4491 } else {
4492 vm_page_spin_unlock(m);
4493 pv_lock(pv);
4494 pv_put(pv);
4495 vm_page_spin_lock(m);
4496 continue;
4498 KKASSERT(pv->pv_pmap && pv->pv_m == m);
4501 * Holding no spinlocks, pv is locked. Once we scrap
4502 * pv we can no longer use it as a list iterator (but
4503 * we are doing a TAILQ_FIRST() so we are ok).
4505 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4506 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4507 pv = NULL; /* safety */
4508 pmap_inval_bulk_flush(&bulk);
4509 vm_page_spin_lock(m);
4511 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4512 vm_page_spin_unlock(m);
4516 * Removes the page from a particular pmap
4518 void
4519 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4521 pv_entry_t pv;
4522 pmap_inval_bulk_t bulk;
4524 if (!pmap_initialized)
4525 return;
4527 again:
4528 vm_page_spin_lock(m);
4529 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4530 if (pv->pv_pmap != pmap)
4531 continue;
4532 KKASSERT(pv->pv_m == m);
4533 if (pv_hold_try(pv)) {
4534 vm_page_spin_unlock(m);
4535 } else {
4536 vm_page_spin_unlock(m);
4537 pv_lock(pv);
4538 pv_put(pv);
4539 goto again;
4541 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
4544 * Holding no spinlocks, pv is locked. Once gone it can't
4545 * be used as an iterator. In fact, because we couldn't
4546 * necessarily lock it atomically it may have moved within
4547 * the list and ALSO cannot be used as an iterator.
4549 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4550 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4551 pv = NULL; /* safety */
4552 pmap_inval_bulk_flush(&bulk);
4553 goto again;
4555 vm_page_spin_unlock(m);
4559 * Set the physical protection on the specified range of this map
4560 * as requested. This function is typically only used for debug watchpoints
4561 * and COW pages.
4563 * This function may not be called from an interrupt if the map is
4564 * not the kernel_pmap.
4566 * NOTE! For shared page table pages we just unmap the page.
4568 void
4569 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4571 struct pmap_scan_info info;
4572 /* JG review for NX */
4574 if (pmap == NULL)
4575 return;
4576 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4577 pmap_remove(pmap, sva, eva);
4578 return;
4580 if (prot & VM_PROT_WRITE)
4581 return;
4582 info.pmap = pmap;
4583 info.sva = sva;
4584 info.eva = eva;
4585 info.func = pmap_protect_callback;
4586 info.arg = &prot;
4587 pmap_scan(&info, 1);
4590 static
4591 void
4592 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4593 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4594 pv_entry_t pt_pv, int sharept,
4595 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4597 pt_entry_t pbits;
4598 pt_entry_t cbits;
4599 pt_entry_t pte;
4600 vm_page_t m;
4602 again:
4603 pbits = *ptep;
4604 cbits = pbits;
4605 if (pte_pv) {
4606 KKASSERT(pte_pv->pv_m != NULL);
4607 m = NULL;
4608 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4609 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4610 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4611 KKASSERT(m == pte_pv->pv_m);
4612 vm_page_flag_set(m, PG_REFERENCED);
4614 cbits &= ~pmap->pmap_bits[PG_A_IDX];
4616 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4617 if (pmap_track_modified(pte_pv->pv_pindex)) {
4618 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4619 if (m == NULL) {
4620 m = PHYS_TO_VM_PAGE(pbits &
4621 PG_FRAME);
4623 vm_page_dirty(m);
4625 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4628 } else if (sharept) {
4630 * Unmanaged page table, pt_pv is actually the pd_pv
4631 * for our pmap (not the object's shared pmap).
4633 * When asked to protect something in a shared page table
4634 * page we just unmap the page table page. We have to
4635 * invalidate the tlb in this situation.
4637 * XXX Warning, shared page tables will not be used for
4638 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4639 * so PHYS_TO_VM_PAGE() should be safe here.
4641 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4642 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4643 panic("pmap_protect: pgtable1 pg bad wirecount");
4644 if (vm_page_unwire_quick(pt_pv->pv_m))
4645 panic("pmap_protect: pgtable2 pg bad wirecount");
4646 ptep = NULL;
4648 /* else unmanaged page, adjust bits, no wire changes */
4650 if (ptep) {
4651 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4652 #ifdef PMAP_DEBUG2
4653 if (pmap_enter_debug > 0) {
4654 --pmap_enter_debug;
4655 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4656 "pt_pv=%p cbits=%08lx\n",
4657 va, ptep, pte_pv,
4658 pt_pv, cbits
4661 #endif
4662 if (pbits != cbits) {
4663 vm_offset_t xva;
4665 xva = (sharept) ? (vm_offset_t)-1 : va;
4666 if (!pmap_inval_smp_cmpset(pmap, xva,
4667 ptep, pbits, cbits)) {
4668 goto again;
4672 if (pte_pv)
4673 pv_put(pte_pv);
4674 else
4675 pv_placemarker_wakeup(pmap, pte_placemark);
4679 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4680 * mapping at that address. Set protection and wiring as requested.
4682 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4683 * possible. If it is we enter the page into the appropriate shared pmap
4684 * hanging off the related VM object instead of the passed pmap, then we
4685 * share the page table page from the VM object's pmap into the current pmap.
4687 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4688 * lazy-evaluate.
4690 * NOTE: If (m) is PG_UNMANAGED it may also be a temporary fake vm_page_t.
4691 * never record it.
4693 void
4694 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4695 boolean_t wired, vm_map_entry_t entry)
4697 pv_entry_t pt_pv; /* page table */
4698 pv_entry_t pte_pv; /* page table entry */
4699 vm_pindex_t *pte_placemark;
4700 pt_entry_t *ptep;
4701 vm_paddr_t opa;
4702 pt_entry_t origpte, newpte;
4703 vm_paddr_t pa;
4705 if (pmap == NULL)
4706 return;
4707 va = trunc_page(va);
4708 #ifdef PMAP_DIAGNOSTIC
4709 if (va >= KvaEnd)
4710 panic("pmap_enter: toobig");
4711 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4712 panic("pmap_enter: invalid to pmap_enter page table "
4713 "pages (va: 0x%lx)", va);
4714 #endif
4715 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4716 kprintf("Warning: pmap_enter called on UVA with "
4717 "kernel_pmap\n");
4718 #ifdef DDB
4719 db_print_backtrace();
4720 #endif
4722 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4723 kprintf("Warning: pmap_enter called on KVA without"
4724 "kernel_pmap\n");
4725 #ifdef DDB
4726 db_print_backtrace();
4727 #endif
4731 * Get locked PV entries for our new page table entry (pte_pv or
4732 * pte_placemark) and for its parent page table (pt_pv). We need
4733 * the parent so we can resolve the location of the ptep.
4735 * Only hardware MMU actions can modify the ptep out from
4736 * under us.
4738 * if (m) is fictitious or unmanaged we do not create a managing
4739 * pte_pv for it. Any pre-existing page's management state must
4740 * match (avoiding code complexity).
4742 * If the pmap is still being initialized we assume existing
4743 * page tables.
4745 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4747 * WARNING! If replacing a managed mapping with an unmanaged mapping
4748 * pte_pv will wind up being non-NULL and must be handled
4749 * below.
4751 if (pmap_initialized == FALSE) {
4752 pte_pv = NULL;
4753 pt_pv = NULL;
4754 pte_placemark = NULL;
4755 ptep = vtopte(va);
4756 origpte = *ptep;
4757 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4758 pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4759 KKASSERT(pte_pv == NULL);
4760 if (va >= VM_MAX_USER_ADDRESS) {
4761 pt_pv = NULL;
4762 ptep = vtopte(va);
4763 } else {
4764 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4765 NULL, entry, va);
4766 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4768 origpte = *ptep;
4769 cpu_ccfence();
4770 KASSERT(origpte == 0 ||
4771 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4772 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4773 } else {
4774 if (va >= VM_MAX_USER_ADDRESS) {
4776 * Kernel map, pv_entry-tracked.
4778 pt_pv = NULL;
4779 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4780 ptep = vtopte(va);
4781 } else {
4783 * User map
4785 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4786 &pt_pv, entry, va);
4787 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4789 pte_placemark = NULL; /* safety */
4790 origpte = *ptep;
4791 cpu_ccfence();
4792 KASSERT(origpte == 0 ||
4793 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4794 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4797 pa = VM_PAGE_TO_PHYS(m);
4798 opa = origpte & PG_FRAME;
4801 * Calculate the new PTE. Note that pte_pv alone does not mean
4802 * the new pte_pv is managed, it could exist because the old pte
4803 * was managed even if the new one is not.
4805 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4806 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4807 if (wired)
4808 newpte |= pmap->pmap_bits[PG_W_IDX];
4809 if (va < VM_MAX_USER_ADDRESS)
4810 newpte |= pmap->pmap_bits[PG_U_IDX];
4811 if (pte_pv && (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) == 0)
4812 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4813 // if (pmap == &kernel_pmap)
4814 // newpte |= pgeflag;
4815 newpte |= pmap->pmap_cache_bits[m->pat_mode];
4816 if (m->flags & PG_FICTITIOUS)
4817 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4820 * It is possible for multiple faults to occur in threaded
4821 * environments, the existing pte might be correct.
4823 if (((origpte ^ newpte) &
4824 ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4825 pmap->pmap_bits[PG_A_IDX])) == 0) {
4826 goto done;
4830 * Ok, either the address changed or the protection or wiring
4831 * changed.
4833 * Clear the current entry, interlocking the removal. For managed
4834 * pte's this will also flush the modified state to the vm_page.
4835 * Atomic ops are mandatory in order to ensure that PG_M events are
4836 * not lost during any transition.
4838 * WARNING: The caller has busied the new page but not the original
4839 * vm_page which we are trying to replace. Because we hold
4840 * the pte_pv lock, but have not busied the page, PG bits
4841 * can be cleared out from under us.
4843 if (opa) {
4844 if (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4846 * Old page was managed. Expect pte_pv to exist.
4847 * (it might also exist if the old page was unmanaged).
4849 * NOTE: pt_pv won't exist for a kernel page
4850 * (managed or otherwise).
4852 * NOTE: We may be reusing the pte_pv so we do not
4853 * destroy it in pmap_remove_pv_pte().
4855 KKASSERT(pte_pv && pte_pv->pv_m);
4856 if (prot & VM_PROT_NOSYNC) {
4857 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
4858 } else {
4859 pmap_inval_bulk_t bulk;
4861 pmap_inval_bulk_init(&bulk, pmap);
4862 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
4863 pmap_inval_bulk_flush(&bulk);
4865 pmap_remove_pv_page(pte_pv);
4866 /* will either set pte_pv->pv_m or pv_free() later */
4867 } else {
4869 * Old page was not managed. If we have a pte_pv
4870 * it better not have a pv_m assigned to it. If the
4871 * new page is managed the pte_pv will be destroyed
4872 * near the end (we need its interlock).
4874 * NOTE: We leave the wire count on the PT page
4875 * intact for the followup enter, but adjust
4876 * the wired-pages count on the pmap.
4878 KKASSERT(pte_pv == NULL);
4879 if (prot & VM_PROT_NOSYNC) {
4881 * NOSYNC (no mmu sync) requested.
4883 (void)pte_load_clear(ptep);
4884 cpu_invlpg((void *)va);
4885 } else {
4887 * Nominal SYNC
4889 pmap_inval_smp(pmap, va, 1, ptep, 0);
4893 * We must adjust pm_stats manually for unmanaged
4894 * pages.
4896 if (pt_pv) {
4897 atomic_add_long(&pmap->pm_stats.
4898 resident_count, -1);
4900 if (origpte & pmap->pmap_bits[PG_W_IDX]) {
4901 atomic_add_long(&pmap->pm_stats.
4902 wired_count, -1);
4905 KKASSERT(*ptep == 0);
4908 #ifdef PMAP_DEBUG2
4909 if (pmap_enter_debug > 0) {
4910 --pmap_enter_debug;
4911 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4912 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4913 va, m,
4914 origpte, newpte, ptep,
4915 pte_pv, pt_pv, opa, prot);
4917 #endif
4919 if ((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4921 * Entering an unmanaged page. We must wire the pt_pv unless
4922 * we retained the wiring from an unmanaged page we had
4923 * removed (if we retained it via pte_pv that will go away
4924 * soon).
4926 if (pt_pv && (opa == 0 ||
4927 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]))) {
4928 vm_page_wire_quick(pt_pv->pv_m);
4930 if (wired)
4931 atomic_add_long(&pmap->pm_stats.wired_count, 1);
4934 * Unmanaged pages need manual resident_count tracking.
4936 if (pt_pv) {
4937 atomic_add_long(&pt_pv->pv_pmap->pm_stats.
4938 resident_count, 1);
4940 if (newpte & pmap->pmap_bits[PG_RW_IDX])
4941 vm_page_flag_set(m, PG_WRITEABLE);
4942 } else {
4944 * Entering a managed page. Our pte_pv takes care of the
4945 * PT wiring, so if we had removed an unmanaged page before
4946 * we must adjust.
4948 * We have to take care of the pmap wired count ourselves.
4950 * Enter on the PV list if part of our managed memory.
4952 KKASSERT(pte_pv && (pte_pv->pv_m == NULL || pte_pv->pv_m == m));
4953 vm_page_spin_lock(m);
4954 pte_pv->pv_m = m;
4955 pmap_page_stats_adding(m);
4956 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4957 vm_page_flag_set(m, PG_MAPPED);
4958 if (newpte & pmap->pmap_bits[PG_RW_IDX])
4959 vm_page_flag_set(m, PG_WRITEABLE);
4960 vm_page_spin_unlock(m);
4962 if (pt_pv && opa &&
4963 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4964 vm_page_unwire_quick(pt_pv->pv_m);
4968 * Adjust pmap wired pages count for new entry.
4970 if (wired) {
4971 atomic_add_long(&pte_pv->pv_pmap->pm_stats.
4972 wired_count, 1);
4977 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4979 * User VMAs do not because those will be zero->non-zero, so no
4980 * stale entries to worry about at this point.
4982 * For KVM there appear to still be issues. Theoretically we
4983 * should be able to scrap the interlocks entirely but we
4984 * get crashes.
4986 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4987 pmap_inval_smp(pmap, va, 1, ptep, newpte);
4988 } else {
4989 origpte = atomic_swap_long(ptep, newpte);
4990 if (origpte & pmap->pmap_bits[PG_M_IDX]) {
4991 kprintf("pmap [M] race @ %016jx\n", va);
4992 atomic_set_long(ptep, pmap->pmap_bits[PG_M_IDX]);
4994 if (pt_pv == NULL)
4995 cpu_invlpg((void *)va);
4999 * Cleanup
5001 done:
5002 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5003 (m->flags & PG_MAPPED));
5006 * Cleanup the pv entry, allowing other accessors. If the new page
5007 * is not managed but we have a pte_pv (which was locking our
5008 * operation), we can free it now. pte_pv->pv_m should be NULL.
5010 if (pte_pv && (newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5011 pv_free(pte_pv, pt_pv);
5012 } else if (pte_pv) {
5013 pv_put(pte_pv);
5014 } else if (pte_placemark) {
5015 pv_placemarker_wakeup(pmap, pte_placemark);
5017 if (pt_pv)
5018 pv_put(pt_pv);
5022 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
5023 * This code also assumes that the pmap has no pre-existing entry for this
5024 * VA.
5026 * This code currently may only be used on user pmaps, not kernel_pmap.
5028 void
5029 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
5031 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
5035 * Make a temporary mapping for a physical address. This is only intended
5036 * to be used for panic dumps.
5038 * The caller is responsible for calling smp_invltlb().
5040 void *
5041 pmap_kenter_temporary(vm_paddr_t pa, long i)
5043 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5044 return ((void *)crashdumpmap);
5047 #define MAX_INIT_PT (96)
5050 * This routine preloads the ptes for a given object into the specified pmap.
5051 * This eliminates the blast of soft faults on process startup and
5052 * immediately after an mmap.
5054 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5056 void
5057 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
5058 vm_object_t object, vm_pindex_t pindex,
5059 vm_size_t size, int limit)
5061 struct rb_vm_page_scan_info info;
5062 struct lwp *lp;
5063 vm_size_t psize;
5066 * We can't preinit if read access isn't set or there is no pmap
5067 * or object.
5069 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5070 return;
5073 * We can't preinit if the pmap is not the current pmap
5075 lp = curthread->td_lwp;
5076 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5077 return;
5080 * Misc additional checks
5082 psize = x86_64_btop(size);
5084 if ((object->type != OBJT_VNODE) ||
5085 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5086 (object->resident_page_count > MAX_INIT_PT))) {
5087 return;
5090 if (pindex + psize > object->size) {
5091 if (object->size < pindex)
5092 return;
5093 psize = object->size - pindex;
5096 if (psize == 0)
5097 return;
5100 * If everything is segment-aligned do not pre-init here. Instead
5101 * allow the normal vm_fault path to pass a segment hint to
5102 * pmap_enter() which will then use an object-referenced shared
5103 * page table page.
5105 if ((addr & SEG_MASK) == 0 &&
5106 (ctob(psize) & SEG_MASK) == 0 &&
5107 (ctob(pindex) & SEG_MASK) == 0) {
5108 return;
5112 * Use a red-black scan to traverse the requested range and load
5113 * any valid pages found into the pmap.
5115 * We cannot safely scan the object's memq without holding the
5116 * object token.
5118 info.start_pindex = pindex;
5119 info.end_pindex = pindex + psize - 1;
5120 info.limit = limit;
5121 info.mpte = NULL;
5122 info.addr = addr;
5123 info.pmap = pmap;
5125 vm_object_hold_shared(object);
5126 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
5127 pmap_object_init_pt_callback, &info);
5128 vm_object_drop(object);
5131 static
5133 pmap_object_init_pt_callback(vm_page_t p, void *data)
5135 struct rb_vm_page_scan_info *info = data;
5136 vm_pindex_t rel_index;
5139 * don't allow an madvise to blow away our really
5140 * free pages allocating pv entries.
5142 if ((info->limit & MAP_PREFAULT_MADVISE) &&
5143 vmstats.v_free_count < vmstats.v_free_reserved) {
5144 return(-1);
5148 * Ignore list markers and ignore pages we cannot instantly
5149 * busy (while holding the object token).
5151 if (p->flags & PG_MARKER)
5152 return 0;
5153 if (vm_page_busy_try(p, TRUE))
5154 return 0;
5155 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5156 (p->flags & PG_FICTITIOUS) == 0) {
5157 if ((p->queue - p->pc) == PQ_CACHE)
5158 vm_page_deactivate(p);
5159 rel_index = p->pindex - info->start_pindex;
5160 pmap_enter_quick(info->pmap,
5161 info->addr + x86_64_ptob(rel_index), p);
5163 vm_page_wakeup(p);
5164 lwkt_yield();
5165 return(0);
5169 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5170 * address.
5172 * Returns FALSE if it would be non-trivial or if a pte is already loaded
5173 * into the slot.
5175 * XXX This is safe only because page table pages are not freed.
5178 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5180 pt_entry_t *pte;
5182 /*spin_lock(&pmap->pm_spin);*/
5183 if ((pte = pmap_pte(pmap, addr)) != NULL) {
5184 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5185 /*spin_unlock(&pmap->pm_spin);*/
5186 return FALSE;
5189 /*spin_unlock(&pmap->pm_spin);*/
5190 return TRUE;
5194 * Change the wiring attribute for a pmap/va pair. The mapping must already
5195 * exist in the pmap. The mapping may or may not be managed. The wiring in
5196 * the page is not changed, the page is returned so the caller can adjust
5197 * its wiring (the page is not locked in any way).
5199 * Wiring is not a hardware characteristic so there is no need to invalidate
5200 * TLB. However, in an SMP environment we must use a locked bus cycle to
5201 * update the pte (if we are not using the pmap_inval_*() API that is)...
5202 * it's ok to do this for simple wiring changes.
5204 vm_page_t
5205 pmap_unwire(pmap_t pmap, vm_offset_t va)
5207 pt_entry_t *ptep;
5208 pv_entry_t pt_pv;
5209 vm_paddr_t pa;
5210 vm_page_t m;
5212 if (pmap == NULL)
5213 return NULL;
5216 * Assume elements in the kernel pmap are stable
5218 if (pmap == &kernel_pmap) {
5219 if (pmap_pt(pmap, va) == 0)
5220 return NULL;
5221 ptep = pmap_pte_quick(pmap, va);
5222 if (pmap_pte_v(pmap, ptep)) {
5223 if (pmap_pte_w(pmap, ptep))
5224 atomic_add_long(&pmap->pm_stats.wired_count,-1);
5225 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5226 pa = *ptep & PG_FRAME;
5227 m = PHYS_TO_VM_PAGE(pa);
5228 } else {
5229 m = NULL;
5231 } else {
5233 * We can only [un]wire pmap-local pages (we cannot wire
5234 * shared pages)
5236 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5237 if (pt_pv == NULL)
5238 return NULL;
5240 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5241 if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5242 pv_put(pt_pv);
5243 return NULL;
5246 if (pmap_pte_w(pmap, ptep)) {
5247 atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5248 -1);
5250 /* XXX else return NULL so caller doesn't unwire m ? */
5252 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5254 pa = *ptep & PG_FRAME;
5255 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
5256 pv_put(pt_pv);
5258 return m;
5262 * Copy the range specified by src_addr/len from the source map to
5263 * the range dst_addr/len in the destination map.
5265 * This routine is only advisory and need not do anything.
5267 void
5268 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5269 vm_size_t len, vm_offset_t src_addr)
5274 * pmap_zero_page:
5276 * Zero the specified physical page.
5278 * This function may be called from an interrupt and no locking is
5279 * required.
5281 void
5282 pmap_zero_page(vm_paddr_t phys)
5284 vm_offset_t va = PHYS_TO_DMAP(phys);
5286 pagezero((void *)va);
5290 * pmap_zero_page:
5292 * Zero part of a physical page by mapping it into memory and clearing
5293 * its contents with bzero.
5295 * off and size may not cover an area beyond a single hardware page.
5297 void
5298 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5300 vm_offset_t virt = PHYS_TO_DMAP(phys);
5302 bzero((char *)virt + off, size);
5306 * pmap_copy_page:
5308 * Copy the physical page from the source PA to the target PA.
5309 * This function may be called from an interrupt. No locking
5310 * is required.
5312 void
5313 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5315 vm_offset_t src_virt, dst_virt;
5317 src_virt = PHYS_TO_DMAP(src);
5318 dst_virt = PHYS_TO_DMAP(dst);
5319 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5323 * pmap_copy_page_frag:
5325 * Copy the physical page from the source PA to the target PA.
5326 * This function may be called from an interrupt. No locking
5327 * is required.
5329 void
5330 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5332 vm_offset_t src_virt, dst_virt;
5334 src_virt = PHYS_TO_DMAP(src);
5335 dst_virt = PHYS_TO_DMAP(dst);
5337 bcopy((char *)src_virt + (src & PAGE_MASK),
5338 (char *)dst_virt + (dst & PAGE_MASK),
5339 bytes);
5343 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5344 * this page. This count may be changed upwards or downwards in the future;
5345 * it is only necessary that true be returned for a small subset of pmaps
5346 * for proper page aging.
5348 boolean_t
5349 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5351 pv_entry_t pv;
5352 int loops = 0;
5354 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5355 return FALSE;
5357 vm_page_spin_lock(m);
5358 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5359 if (pv->pv_pmap == pmap) {
5360 vm_page_spin_unlock(m);
5361 return TRUE;
5363 loops++;
5364 if (loops >= 16)
5365 break;
5367 vm_page_spin_unlock(m);
5368 return (FALSE);
5372 * Remove all pages from specified address space this aids process exit
5373 * speeds. Also, this code may be special cased for the current process
5374 * only.
5376 void
5377 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5379 pmap_remove_noinval(pmap, sva, eva);
5380 cpu_invltlb();
5384 * pmap_testbit tests bits in pte's note that the testbit/clearbit
5385 * routines are inline, and a lot of things compile-time evaluate.
5387 static
5388 boolean_t
5389 pmap_testbit(vm_page_t m, int bit)
5391 pv_entry_t pv;
5392 pt_entry_t *pte;
5393 pmap_t pmap;
5395 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5396 return FALSE;
5398 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5399 return FALSE;
5400 vm_page_spin_lock(m);
5401 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5402 vm_page_spin_unlock(m);
5403 return FALSE;
5406 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5408 #if defined(PMAP_DIAGNOSTIC)
5409 if (pv->pv_pmap == NULL) {
5410 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5411 pv->pv_pindex);
5412 continue;
5414 #endif
5415 pmap = pv->pv_pmap;
5418 * If the bit being tested is the modified bit, then
5419 * mark clean_map and ptes as never
5420 * modified.
5422 * WARNING! Because we do not lock the pv, *pte can be in a
5423 * state of flux. Despite this the value of *pte
5424 * will still be related to the vm_page in some way
5425 * because the pv cannot be destroyed as long as we
5426 * hold the vm_page spin lock.
5428 if (bit == PG_A_IDX || bit == PG_M_IDX) {
5429 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5430 if (!pmap_track_modified(pv->pv_pindex))
5431 continue;
5434 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5435 if (*pte & pmap->pmap_bits[bit]) {
5436 vm_page_spin_unlock(m);
5437 return TRUE;
5440 vm_page_spin_unlock(m);
5441 return (FALSE);
5445 * This routine is used to modify bits in ptes. Only one bit should be
5446 * specified. PG_RW requires special handling.
5448 * Caller must NOT hold any spin locks
5450 static __inline
5451 void
5452 pmap_clearbit(vm_page_t m, int bit_index)
5454 pv_entry_t pv;
5455 pt_entry_t *pte;
5456 pt_entry_t pbits;
5457 pmap_t pmap;
5459 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5460 if (bit_index == PG_RW_IDX)
5461 vm_page_flag_clear(m, PG_WRITEABLE);
5462 return;
5466 * PG_M or PG_A case
5468 * Loop over all current mappings setting/clearing as appropos If
5469 * setting RO do we need to clear the VAC?
5471 * NOTE: When clearing PG_M we could also (not implemented) drop
5472 * through to the PG_RW code and clear PG_RW too, forcing
5473 * a fault on write to redetect PG_M for virtual kernels, but
5474 * it isn't necessary since virtual kernels invalidate the
5475 * pte when they clear the VPTE_M bit in their virtual page
5476 * tables.
5478 * NOTE: Does not re-dirty the page when clearing only PG_M.
5480 * NOTE: Because we do not lock the pv, *pte can be in a state of
5481 * flux. Despite this the value of *pte is still somewhat
5482 * related while we hold the vm_page spin lock.
5484 * *pte can be zero due to this race. Since we are clearing
5485 * bits we basically do no harm when this race occurs.
5487 if (bit_index != PG_RW_IDX) {
5488 vm_page_spin_lock(m);
5489 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5490 #if defined(PMAP_DIAGNOSTIC)
5491 if (pv->pv_pmap == NULL) {
5492 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5493 pv->pv_pindex);
5494 continue;
5496 #endif
5497 pmap = pv->pv_pmap;
5498 pte = pmap_pte_quick(pv->pv_pmap,
5499 pv->pv_pindex << PAGE_SHIFT);
5500 pbits = *pte;
5501 if (pbits & pmap->pmap_bits[bit_index])
5502 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5504 vm_page_spin_unlock(m);
5505 return;
5509 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
5510 * was set.
5512 restart:
5513 vm_page_spin_lock(m);
5514 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5516 * don't write protect pager mappings
5518 if (!pmap_track_modified(pv->pv_pindex))
5519 continue;
5521 #if defined(PMAP_DIAGNOSTIC)
5522 if (pv->pv_pmap == NULL) {
5523 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5524 pv->pv_pindex);
5525 continue;
5527 #endif
5528 pmap = pv->pv_pmap;
5531 * Skip pages which do not have PG_RW set.
5533 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5534 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5535 continue;
5538 * We must lock the PV to be able to safely test the pte.
5540 if (pv_hold_try(pv)) {
5541 vm_page_spin_unlock(m);
5542 } else {
5543 vm_page_spin_unlock(m);
5544 pv_lock(pv); /* held, now do a blocking lock */
5545 pv_put(pv);
5546 goto restart;
5550 * Reload pte after acquiring pv.
5552 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5553 #if 0
5554 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0) {
5555 pv_put(pv);
5556 goto restart;
5558 #endif
5560 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
5561 for (;;) {
5562 pt_entry_t nbits;
5564 pbits = *pte;
5565 cpu_ccfence();
5566 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5567 pmap->pmap_bits[PG_M_IDX]);
5568 if (pmap_inval_smp_cmpset(pmap,
5569 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5570 pte, pbits, nbits)) {
5571 break;
5573 cpu_pause();
5577 * If PG_M was found to be set while we were clearing PG_RW
5578 * we also clear PG_M (done above) and mark the page dirty.
5579 * Callers expect this behavior.
5581 * we lost pv so it cannot be used as an iterator. In fact,
5582 * because we couldn't necessarily lock it atomically it may
5583 * have moved within the list and ALSO cannot be used as an
5584 * iterator.
5586 vm_page_spin_lock(m);
5587 if (pbits & pmap->pmap_bits[PG_M_IDX])
5588 vm_page_dirty(m);
5589 vm_page_spin_unlock(m);
5590 pv_put(pv);
5591 goto restart;
5593 if (bit_index == PG_RW_IDX)
5594 vm_page_flag_clear(m, PG_WRITEABLE);
5595 vm_page_spin_unlock(m);
5599 * Lower the permission for all mappings to a given page.
5601 * Page must be busied by caller. Because page is busied by caller this
5602 * should not be able to race a pmap_enter().
5604 void
5605 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5607 /* JG NX support? */
5608 if ((prot & VM_PROT_WRITE) == 0) {
5609 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5611 * NOTE: pmap_clearbit(.. PG_RW) also clears
5612 * the PG_WRITEABLE flag in (m).
5614 pmap_clearbit(m, PG_RW_IDX);
5615 } else {
5616 pmap_remove_all(m);
5621 vm_paddr_t
5622 pmap_phys_address(vm_pindex_t ppn)
5624 return (x86_64_ptob(ppn));
5628 * Return a count of reference bits for a page, clearing those bits.
5629 * It is not necessary for every reference bit to be cleared, but it
5630 * is necessary that 0 only be returned when there are truly no
5631 * reference bits set.
5633 * XXX: The exact number of bits to check and clear is a matter that
5634 * should be tested and standardized at some point in the future for
5635 * optimal aging of shared pages.
5637 * This routine may not block.
5640 pmap_ts_referenced(vm_page_t m)
5642 pv_entry_t pv;
5643 pt_entry_t *pte;
5644 pmap_t pmap;
5645 int rtval = 0;
5647 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5648 return (rtval);
5650 vm_page_spin_lock(m);
5651 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5652 if (!pmap_track_modified(pv->pv_pindex))
5653 continue;
5654 pmap = pv->pv_pmap;
5655 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5656 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5657 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5658 rtval++;
5659 if (rtval > 4)
5660 break;
5663 vm_page_spin_unlock(m);
5664 return (rtval);
5668 * pmap_is_modified:
5670 * Return whether or not the specified physical page was modified
5671 * in any physical maps.
5673 boolean_t
5674 pmap_is_modified(vm_page_t m)
5676 boolean_t res;
5678 res = pmap_testbit(m, PG_M_IDX);
5679 return (res);
5683 * Clear the modify bits on the specified physical page.
5685 void
5686 pmap_clear_modify(vm_page_t m)
5688 pmap_clearbit(m, PG_M_IDX);
5692 * pmap_clear_reference:
5694 * Clear the reference bit on the specified physical page.
5696 void
5697 pmap_clear_reference(vm_page_t m)
5699 pmap_clearbit(m, PG_A_IDX);
5703 * Miscellaneous support routines follow
5706 static
5707 void
5708 i386_protection_init(void)
5710 uint64_t *kp;
5711 int prot;
5714 * NX supported? (boot time loader.conf override only)
5716 TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
5717 if (pmap_nx_enable == 0 || (amd_feature & AMDID_NX) == 0)
5718 pmap_bits_default[PG_NX_IDX] = 0;
5721 * 0 is basically read-only access, but also set the NX (no-execute)
5722 * bit when VM_PROT_EXECUTE is not specified.
5724 kp = protection_codes;
5725 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5726 switch (prot) {
5727 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5729 * This case handled elsewhere
5731 *kp++ = 0;
5732 break;
5733 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5735 * Read-only is 0|NX
5737 *kp++ = pmap_bits_default[PG_NX_IDX];
5738 break;
5739 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5740 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5742 * Execute requires read access
5744 *kp++ = 0;
5745 break;
5746 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5747 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5749 * Write without execute is RW|NX
5751 *kp++ = pmap_bits_default[PG_RW_IDX] |
5752 pmap_bits_default[PG_NX_IDX];
5753 break;
5754 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5755 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5757 * Write with execute is RW
5759 *kp++ = pmap_bits_default[PG_RW_IDX];
5760 break;
5766 * Map a set of physical memory pages into the kernel virtual
5767 * address space. Return a pointer to where it is mapped. This
5768 * routine is intended to be used for mapping device memory,
5769 * NOT real memory.
5771 * NOTE: We can't use pgeflag unless we invalidate the pages one at
5772 * a time.
5774 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5775 * work whether the cpu supports PAT or not. The remaining PAT
5776 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5777 * supports PAT.
5779 void *
5780 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5782 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5785 void *
5786 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5788 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5791 void *
5792 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5794 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5798 * Map a set of physical memory pages into the kernel virtual
5799 * address space. Return a pointer to where it is mapped. This
5800 * routine is intended to be used for mapping device memory,
5801 * NOT real memory.
5803 void *
5804 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5806 vm_offset_t va, tmpva, offset;
5807 pt_entry_t *pte;
5808 vm_size_t tmpsize;
5810 offset = pa & PAGE_MASK;
5811 size = roundup(offset + size, PAGE_SIZE);
5813 va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5814 if (va == 0)
5815 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5817 pa = pa & ~PAGE_MASK;
5818 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5819 pte = vtopte(tmpva);
5820 *pte = pa |
5821 kernel_pmap.pmap_bits[PG_RW_IDX] |
5822 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5823 kernel_pmap.pmap_cache_bits[mode];
5824 tmpsize -= PAGE_SIZE;
5825 tmpva += PAGE_SIZE;
5826 pa += PAGE_SIZE;
5828 pmap_invalidate_range(&kernel_pmap, va, va + size);
5829 pmap_invalidate_cache_range(va, va + size);
5831 return ((void *)(va + offset));
5834 void
5835 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5837 vm_offset_t base, offset;
5839 base = va & ~PAGE_MASK;
5840 offset = va & PAGE_MASK;
5841 size = roundup(offset + size, PAGE_SIZE);
5842 pmap_qremove(va, size >> PAGE_SHIFT);
5843 kmem_free(&kernel_map, base, size);
5847 * Sets the memory attribute for the specified page.
5849 void
5850 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5853 m->pat_mode = ma;
5856 * If "m" is a normal page, update its direct mapping. This update
5857 * can be relied upon to perform any cache operations that are
5858 * required for data coherence.
5860 if ((m->flags & PG_FICTITIOUS) == 0)
5861 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5865 * Change the PAT attribute on an existing kernel memory map. Caller
5866 * must ensure that the virtual memory in question is not accessed
5867 * during the adjustment.
5869 void
5870 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5872 pt_entry_t *pte;
5873 vm_offset_t base;
5874 int changed = 0;
5876 if (va == 0)
5877 panic("pmap_change_attr: va is NULL");
5878 base = trunc_page(va);
5880 while (count) {
5881 pte = vtopte(va);
5882 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5883 kernel_pmap.pmap_cache_bits[mode];
5884 --count;
5885 va += PAGE_SIZE;
5888 changed = 1; /* XXX: not optimal */
5891 * Flush CPU caches if required to make sure any data isn't cached that
5892 * shouldn't be, etc.
5894 if (changed) {
5895 pmap_invalidate_range(&kernel_pmap, base, va);
5896 pmap_invalidate_cache_range(base, va);
5901 * perform the pmap work for mincore
5904 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5906 pt_entry_t *ptep, pte;
5907 vm_page_t m;
5908 int val = 0;
5910 ptep = pmap_pte(pmap, addr);
5912 if (ptep && (pte = *ptep) != 0) {
5913 vm_offset_t pa;
5915 val = MINCORE_INCORE;
5916 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5917 goto done;
5919 pa = pte & PG_FRAME;
5921 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5922 m = NULL;
5923 else
5924 m = PHYS_TO_VM_PAGE(pa);
5927 * Modified by us
5929 if (pte & pmap->pmap_bits[PG_M_IDX])
5930 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5932 * Modified by someone
5934 else if (m && (m->dirty || pmap_is_modified(m)))
5935 val |= MINCORE_MODIFIED_OTHER;
5937 * Referenced by us
5939 if (pte & pmap->pmap_bits[PG_A_IDX])
5940 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5943 * Referenced by someone
5945 else if (m && ((m->flags & PG_REFERENCED) ||
5946 pmap_ts_referenced(m))) {
5947 val |= MINCORE_REFERENCED_OTHER;
5948 vm_page_flag_set(m, PG_REFERENCED);
5951 done:
5953 return val;
5957 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
5958 * vmspace will be ref'd and the old one will be deref'd.
5960 * The vmspace for all lwps associated with the process will be adjusted
5961 * and cr3 will be reloaded if any lwp is the current lwp.
5963 * The process must hold the vmspace->vm_map.token for oldvm and newvm
5965 void
5966 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5968 struct vmspace *oldvm;
5969 struct lwp *lp;
5971 oldvm = p->p_vmspace;
5972 if (oldvm != newvm) {
5973 if (adjrefs)
5974 vmspace_ref(newvm);
5975 p->p_vmspace = newvm;
5976 KKASSERT(p->p_nthreads == 1);
5977 lp = RB_ROOT(&p->p_lwp_tree);
5978 pmap_setlwpvm(lp, newvm);
5979 if (adjrefs)
5980 vmspace_rel(oldvm);
5985 * Set the vmspace for a LWP. The vmspace is almost universally set the
5986 * same as the process vmspace, but virtual kernels need to swap out contexts
5987 * on a per-lwp basis.
5989 * Caller does not necessarily hold any vmspace tokens. Caller must control
5990 * the lwp (typically be in the context of the lwp). We use a critical
5991 * section to protect against statclock and hardclock (statistics collection).
5993 void
5994 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5996 struct vmspace *oldvm;
5997 struct pmap *pmap;
5999 oldvm = lp->lwp_vmspace;
6001 if (oldvm != newvm) {
6002 crit_enter();
6003 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
6004 lp->lwp_vmspace = newvm;
6005 if (curthread->td_lwp == lp) {
6006 pmap = vmspace_pmap(newvm);
6007 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
6008 if (pmap->pm_active_lock & CPULOCK_EXCL)
6009 pmap_interlock_wait(newvm);
6010 #if defined(SWTCH_OPTIM_STATS)
6011 tlb_flush_count++;
6012 #endif
6013 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6014 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6015 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6016 curthread->td_pcb->pcb_cr3 = KPML4phys;
6017 } else {
6018 panic("pmap_setlwpvm: unknown pmap type\n");
6020 load_cr3(curthread->td_pcb->pcb_cr3);
6021 pmap = vmspace_pmap(oldvm);
6022 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6023 mycpu->gd_cpuid);
6025 crit_exit();
6030 * Called when switching to a locked pmap, used to interlock against pmaps
6031 * undergoing modifications to prevent us from activating the MMU for the
6032 * target pmap until all such modifications have completed. We have to do
6033 * this because the thread making the modifications has already set up its
6034 * SMP synchronization mask.
6036 * This function cannot sleep!
6038 * No requirements.
6040 void
6041 pmap_interlock_wait(struct vmspace *vm)
6043 struct pmap *pmap = &vm->vm_pmap;
6045 if (pmap->pm_active_lock & CPULOCK_EXCL) {
6046 crit_enter();
6047 KKASSERT(curthread->td_critcount >= 2);
6048 DEBUG_PUSH_INFO("pmap_interlock_wait");
6049 while (pmap->pm_active_lock & CPULOCK_EXCL) {
6050 cpu_ccfence();
6051 lwkt_process_ipiq();
6053 DEBUG_POP_INFO();
6054 crit_exit();
6058 vm_offset_t
6059 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6062 if ((obj == NULL) || (size < NBPDR) ||
6063 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6064 return addr;
6067 addr = roundup2(addr, NBPDR);
6068 return addr;
6072 * Used by kmalloc/kfree, page already exists at va
6074 vm_page_t
6075 pmap_kvtom(vm_offset_t va)
6077 pt_entry_t *ptep = vtopte(va);
6079 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
6080 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6084 * Initialize machine-specific shared page directory support. This
6085 * is executed when a VM object is created.
6087 void
6088 pmap_object_init(vm_object_t object)
6090 object->md.pmap_rw = NULL;
6091 object->md.pmap_ro = NULL;
6095 * Clean up machine-specific shared page directory support. This
6096 * is executed when a VM object is destroyed.
6098 void
6099 pmap_object_free(vm_object_t object)
6101 pmap_t pmap;
6103 if ((pmap = object->md.pmap_rw) != NULL) {
6104 object->md.pmap_rw = NULL;
6105 pmap_remove_noinval(pmap,
6106 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6107 CPUMASK_ASSZERO(pmap->pm_active);
6108 pmap_release(pmap);
6109 pmap_puninit(pmap);
6110 kfree(pmap, M_OBJPMAP);
6112 if ((pmap = object->md.pmap_ro) != NULL) {
6113 object->md.pmap_ro = NULL;
6114 pmap_remove_noinval(pmap,
6115 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6116 CPUMASK_ASSZERO(pmap->pm_active);
6117 pmap_release(pmap);
6118 pmap_puninit(pmap);
6119 kfree(pmap, M_OBJPMAP);
6124 * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6125 * VM page and issue a pginfo->callback.
6127 * We are expected to dispose of any non-NULL pte_pv.
6129 static
6130 void
6131 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6132 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
6133 pv_entry_t pt_pv, int sharept,
6134 vm_offset_t va, pt_entry_t *ptep, void *arg)
6136 struct pmap_pgscan_info *pginfo = arg;
6137 vm_page_t m;
6139 if (pte_pv) {
6141 * Try to busy the page while we hold the pte_pv locked.
6143 KKASSERT(pte_pv->pv_m);
6144 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6145 if (vm_page_busy_try(m, TRUE) == 0) {
6146 if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6148 * The callback is issued with the pte_pv
6149 * unlocked and put away, and the pt_pv
6150 * unlocked.
6152 pv_put(pte_pv);
6153 if (pt_pv) {
6154 vm_page_wire_quick(pt_pv->pv_m);
6155 pv_unlock(pt_pv);
6157 if (pginfo->callback(pginfo, va, m) < 0)
6158 info->stop = 1;
6159 if (pt_pv) {
6160 pv_lock(pt_pv);
6161 vm_page_unwire_quick(pt_pv->pv_m);
6163 } else {
6164 vm_page_wakeup(m);
6165 pv_put(pte_pv);
6167 } else {
6168 ++pginfo->busycount;
6169 pv_put(pte_pv);
6171 } else {
6173 * Shared page table or unmanaged page (sharept or !sharept)
6175 pv_placemarker_wakeup(pmap, pte_placemark);
6179 void
6180 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6182 struct pmap_scan_info info;
6184 pginfo->offset = pginfo->beg_addr;
6185 info.pmap = pginfo->pmap;
6186 info.sva = pginfo->beg_addr;
6187 info.eva = pginfo->end_addr;
6188 info.func = pmap_pgscan_callback;
6189 info.arg = pginfo;
6190 pmap_scan(&info, 0);
6191 if (info.stop == 0)
6192 pginfo->offset = pginfo->end_addr;
6196 * Wait for a placemarker that we do not own to clear. The placemarker
6197 * in question is not necessarily set to the pindex we want, we may have
6198 * to wait on the element because we want to reserve it ourselves.
6200 * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6201 * PM_NOPLACEMARK, so it does not interfere with placemarks
6202 * which have already been woken up.
6204 static
6205 void
6206 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6208 if (*pmark != PM_NOPLACEMARK) {
6209 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
6210 tsleep_interlock(pmark, 0);
6211 if (*pmark != PM_NOPLACEMARK)
6212 tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6217 * Wakeup a placemarker that we own. Replace the entry with
6218 * PM_NOPLACEMARK and issue a wakeup() if necessary.
6220 static
6221 void
6222 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6224 vm_pindex_t pindex;
6226 pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6227 KKASSERT(pindex != PM_NOPLACEMARK);
6228 if (pindex & PM_PLACEMARK_WAKEUP)
6229 wakeup(pmark);