kernel/libc: Remove sigstack() remains.
[dragonfly.git] / sys / kern / kern_clock.c
blobd1e5e0c37867982dcf1de5280f289a8e775a8412
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
71 #include "opt_ntp.h"
72 #include "opt_pctrack.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/kernel.h>
78 #include <sys/kinfo.h>
79 #include <sys/proc.h>
80 #include <sys/malloc.h>
81 #include <sys/resource.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/priv.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <sys/lock.h>
89 #include <sys/sysctl.h>
90 #include <sys/kcollect.h>
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
97 #include <sys/thread2.h>
98 #include <sys/spinlock2.h>
100 #include <machine/cpu.h>
101 #include <machine/limits.h>
102 #include <machine/smp.h>
103 #include <machine/cpufunc.h>
104 #include <machine/specialreg.h>
105 #include <machine/clock.h>
107 #ifdef GPROF
108 #include <sys/gmon.h>
109 #endif
111 #ifdef DEBUG_PCTRACK
112 static void do_pctrack(struct intrframe *frame, int which);
113 #endif
115 static void initclocks (void *dummy);
116 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
119 * Some of these don't belong here, but it's easiest to concentrate them.
120 * Note that cpu_time counts in microseconds, but most userland programs
121 * just compare relative times against the total by delta.
123 struct kinfo_cputime cputime_percpu[MAXCPU];
124 #ifdef DEBUG_PCTRACK
125 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
126 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
127 #endif
129 static int sniff_enable = 1;
130 static int sniff_target = -1;
131 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , "");
132 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , "");
134 static int
135 sysctl_cputime(SYSCTL_HANDLER_ARGS)
137 int cpu, error = 0;
138 int root_error;
139 size_t size = sizeof(struct kinfo_cputime);
140 struct kinfo_cputime tmp;
143 * NOTE: For security reasons, only root can sniff %rip
145 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0);
147 for (cpu = 0; cpu < ncpus; ++cpu) {
148 tmp = cputime_percpu[cpu];
149 if (root_error == 0) {
150 tmp.cp_sample_pc =
151 (int64_t)globaldata_find(cpu)->gd_sample_pc;
152 tmp.cp_sample_sp =
153 (int64_t)globaldata_find(cpu)->gd_sample_sp;
155 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0)
156 break;
159 if (root_error == 0) {
160 if (sniff_enable) {
161 int n = sniff_target;
162 if (n < 0)
163 smp_sniff();
164 else if (n < ncpus)
165 cpu_sniff(n);
169 return (error);
171 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
172 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
174 static int
175 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
177 long cpu_states[CPUSTATES] = {0};
178 int cpu, error = 0;
179 size_t size = sizeof(cpu_states);
181 for (cpu = 0; cpu < ncpus; ++cpu) {
182 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
183 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
184 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
185 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
186 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
189 error = SYSCTL_OUT(req, cpu_states, size);
191 return (error);
194 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
195 sysctl_cp_time, "LU", "CPU time statistics");
197 static int
198 sysctl_cp_times(SYSCTL_HANDLER_ARGS)
200 long cpu_states[CPUSTATES] = {0};
201 int cpu, error;
202 size_t size = sizeof(cpu_states);
204 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) {
205 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user;
206 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice;
207 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys;
208 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr;
209 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle;
210 error = SYSCTL_OUT(req, cpu_states, size);
213 return (error);
216 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
217 sysctl_cp_times, "LU", "per-CPU time statistics");
220 * boottime is used to calculate the 'real' uptime. Do not confuse this with
221 * microuptime(). microtime() is not drift compensated. The real uptime
222 * with compensation is nanotime() - bootime. boottime is recalculated
223 * whenever the real time is set based on the compensated elapsed time
224 * in seconds (gd->gd_time_seconds).
226 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
227 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
228 * the real time.
230 * WARNING! time_second can backstep on time corrections. Also, unlike
231 * time_second, time_uptime is not a "real" time_t (seconds
232 * since the Epoch) but seconds since booting.
234 struct timespec boottime; /* boot time (realtime) for reference only */
235 time_t time_second; /* read-only 'passive' realtime in seconds */
236 time_t time_uptime; /* read-only 'passive' uptime in seconds */
239 * basetime is used to calculate the compensated real time of day. The
240 * basetime can be modified on a per-tick basis by the adjtime(),
241 * ntp_adjtime(), and sysctl-based time correction APIs.
243 * Note that frequency corrections can also be made by adjusting
244 * gd_cpuclock_base.
246 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
247 * used on both SMP and UP systems to avoid MP races between cpu's and
248 * interrupt races on UP systems.
250 struct hardtime {
251 __uint32_t time_second;
252 sysclock_t cpuclock_base;
255 #define BASETIME_ARYSIZE 16
256 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
257 static struct timespec basetime[BASETIME_ARYSIZE];
258 static struct hardtime hardtime[BASETIME_ARYSIZE];
259 static volatile int basetime_index;
261 static int
262 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
264 struct timespec *bt;
265 int error;
266 int index;
269 * Because basetime data and index may be updated by another cpu,
270 * a load fence is required to ensure that the data we read has
271 * not been speculatively read relative to a possibly updated index.
273 index = basetime_index;
274 cpu_lfence();
275 bt = &basetime[index];
276 error = SYSCTL_OUT(req, bt, sizeof(*bt));
277 return (error);
280 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
281 &boottime, timespec, "System boottime");
282 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
283 sysctl_get_basetime, "S,timespec", "System basetime");
285 static void hardclock(systimer_t info, int, struct intrframe *frame);
286 static void statclock(systimer_t info, int, struct intrframe *frame);
287 static void schedclock(systimer_t info, int, struct intrframe *frame);
288 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
290 int ticks; /* system master ticks at hz */
291 int clocks_running; /* tsleep/timeout clocks operational */
292 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
293 int64_t nsec_acc; /* accumulator */
294 int sched_ticks; /* global schedule clock ticks */
296 /* NTPD time correction fields */
297 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
298 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
299 int64_t ntp_delta; /* one-time correction in nsec */
300 int64_t ntp_big_delta = 1000000000;
301 int32_t ntp_tick_delta; /* current adjustment rate */
302 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
303 time_t ntp_leap_second; /* time of next leap second */
304 int ntp_leap_insert; /* whether to insert or remove a second */
305 struct spinlock ntp_spin;
308 * Finish initializing clock frequencies and start all clocks running.
310 /* ARGSUSED*/
311 static void
312 initclocks(void *dummy)
314 /*psratio = profhz / stathz;*/
315 spin_init(&ntp_spin, "ntp");
316 initclocks_pcpu();
317 clocks_running = 1;
318 if (kpmap) {
319 kpmap->tsc_freq = tsc_frequency;
320 kpmap->tick_freq = hz;
325 * Called on a per-cpu basis from the idle thread bootstrap on each cpu
326 * during SMP initialization.
328 * This routine is called concurrently during low-level SMP initialization
329 * and may not block in any way. Meaning, among other things, we can't
330 * acquire any tokens.
332 void
333 initclocks_pcpu(void)
335 struct globaldata *gd = mycpu;
337 crit_enter();
338 if (gd->gd_cpuid == 0) {
339 gd->gd_time_seconds = 1;
340 gd->gd_cpuclock_base = sys_cputimer->count();
341 hardtime[0].time_second = gd->gd_time_seconds;
342 hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
343 } else {
344 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
345 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
348 systimer_intr_enable();
350 crit_exit();
354 * Called on a 10-second interval after the system is operational.
355 * Return the collection data for USERPCT and install the data for
356 * SYSTPCT and IDLEPCT.
358 static
359 uint64_t
360 collect_cputime_callback(int n)
362 static long cpu_base[CPUSTATES];
363 long cpu_states[CPUSTATES];
364 long total;
365 long acc;
366 long lsb;
368 bzero(cpu_states, sizeof(cpu_states));
369 for (n = 0; n < ncpus; ++n) {
370 cpu_states[CP_USER] += cputime_percpu[n].cp_user;
371 cpu_states[CP_NICE] += cputime_percpu[n].cp_nice;
372 cpu_states[CP_SYS] += cputime_percpu[n].cp_sys;
373 cpu_states[CP_INTR] += cputime_percpu[n].cp_intr;
374 cpu_states[CP_IDLE] += cputime_percpu[n].cp_idle;
377 acc = 0;
378 for (n = 0; n < CPUSTATES; ++n) {
379 total = cpu_states[n] - cpu_base[n];
380 cpu_base[n] = cpu_states[n];
381 cpu_states[n] = total;
382 acc += total;
384 if (acc == 0) /* prevent degenerate divide by 0 */
385 acc = 1;
386 lsb = acc / (10000 * 2);
387 kcollect_setvalue(KCOLLECT_SYSTPCT,
388 (cpu_states[CP_SYS] + lsb) * 10000 / acc);
389 kcollect_setvalue(KCOLLECT_IDLEPCT,
390 (cpu_states[CP_IDLE] + lsb) * 10000 / acc);
391 kcollect_setvalue(KCOLLECT_INTRPCT,
392 (cpu_states[CP_INTR] + lsb) * 10000 / acc);
393 return((cpu_states[CP_USER] + cpu_states[CP_NICE] + lsb) * 10000 / acc);
397 * This routine is called on just the BSP, just after SMP initialization
398 * completes to * finish initializing any clocks that might contend/block
399 * (e.g. like on a token). We can't do this in initclocks_pcpu() because
400 * that function is called from the idle thread bootstrap for each cpu and
401 * not allowed to block at all.
403 static
404 void
405 initclocks_other(void *dummy)
407 struct globaldata *ogd = mycpu;
408 struct globaldata *gd;
409 int n;
411 for (n = 0; n < ncpus; ++n) {
412 lwkt_setcpu_self(globaldata_find(n));
413 gd = mycpu;
416 * Use a non-queued periodic systimer to prevent multiple
417 * ticks from building up if the sysclock jumps forward
418 * (8254 gets reset). The sysclock will never jump backwards.
419 * Our time sync is based on the actual sysclock, not the
420 * ticks count.
422 * Install statclock before hardclock to prevent statclock
423 * from misinterpreting gd_flags for tick assignment when
424 * they overlap.
426 systimer_init_periodic_flags(&gd->gd_statclock, statclock,
427 NULL, stathz,
428 SYSTF_MSSYNC | SYSTF_FIRST);
429 systimer_init_periodic_flags(&gd->gd_hardclock, hardclock,
430 NULL, hz, SYSTF_MSSYNC);
432 lwkt_setcpu_self(ogd);
435 * Regular data collection
437 kcollect_register(KCOLLECT_USERPCT, "user", collect_cputime_callback,
438 KCOLLECT_SCALE(KCOLLECT_USERPCT_FORMAT, 0));
439 kcollect_register(KCOLLECT_SYSTPCT, "syst", NULL,
440 KCOLLECT_SCALE(KCOLLECT_SYSTPCT_FORMAT, 0));
441 kcollect_register(KCOLLECT_IDLEPCT, "idle", NULL,
442 KCOLLECT_SCALE(KCOLLECT_IDLEPCT_FORMAT, 0));
444 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
447 * This method is called on just the BSP, after all the usched implementations
448 * are initialized. This avoids races between usched initialization functions
449 * and usched_schedulerclock().
451 static
452 void
453 initclocks_usched(void *dummy)
455 struct globaldata *ogd = mycpu;
456 struct globaldata *gd;
457 int n;
459 for (n = 0; n < ncpus; ++n) {
460 lwkt_setcpu_self(globaldata_find(n));
461 gd = mycpu;
463 /* XXX correct the frequency for scheduler / estcpu tests */
464 systimer_init_periodic_flags(&gd->gd_schedclock, schedclock,
465 NULL, ESTCPUFREQ, SYSTF_MSSYNC);
467 lwkt_setcpu_self(ogd);
469 SYSINIT(clocks3, SI_BOOT2_USCHED, SI_ORDER_ANY, initclocks_usched, NULL);
472 * This sets the current real time of day. Timespecs are in seconds and
473 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
474 * instead we adjust basetime so basetime + gd_* results in the current
475 * time of day. This way the gd_* fields are guaranteed to represent
476 * a monotonically increasing 'uptime' value.
478 * When set_timeofday() is called from userland, the system call forces it
479 * onto cpu #0 since only cpu #0 can update basetime_index.
481 void
482 set_timeofday(struct timespec *ts)
484 struct timespec *nbt;
485 int ni;
488 * XXX SMP / non-atomic basetime updates
490 crit_enter();
491 ni = (basetime_index + 1) & BASETIME_ARYMASK;
492 cpu_lfence();
493 nbt = &basetime[ni];
494 nanouptime(nbt);
495 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
496 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
497 if (nbt->tv_nsec < 0) {
498 nbt->tv_nsec += 1000000000;
499 --nbt->tv_sec;
503 * Note that basetime diverges from boottime as the clock drift is
504 * compensated for, so we cannot do away with boottime. When setting
505 * the absolute time of day the drift is 0 (for an instant) and we
506 * can simply assign boottime to basetime.
508 * Note that nanouptime() is based on gd_time_seconds which is drift
509 * compensated up to a point (it is guaranteed to remain monotonically
510 * increasing). gd_time_seconds is thus our best uptime guess and
511 * suitable for use in the boottime calculation. It is already taken
512 * into account in the basetime calculation above.
514 spin_lock(&ntp_spin);
515 boottime.tv_sec = nbt->tv_sec;
516 ntp_delta = 0;
519 * We now have a new basetime, make sure all other cpus have it,
520 * then update the index.
522 cpu_sfence();
523 basetime_index = ni;
524 spin_unlock(&ntp_spin);
526 crit_exit();
530 * Each cpu has its own hardclock, but we only increments ticks and softticks
531 * on cpu #0.
533 * NOTE! systimer! the MP lock might not be held here. We can only safely
534 * manipulate objects owned by the current cpu.
536 static void
537 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
539 sysclock_t cputicks;
540 struct proc *p;
541 struct globaldata *gd = mycpu;
543 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
544 /* Defer to doreti on passive IPIQ processing */
545 need_ipiq();
549 * We update the compensation base to calculate fine-grained time
550 * from the sys_cputimer on a per-cpu basis in order to avoid
551 * having to mess around with locks. sys_cputimer is assumed to
552 * be consistent across all cpus. CPU N copies the base state from
553 * CPU 0 using the same FIFO trick that we use for basetime (so we
554 * don't catch a CPU 0 update in the middle).
556 * Note that we never allow info->time (aka gd->gd_hardclock.time)
557 * to reverse index gd_cpuclock_base, but that it is possible for
558 * it to temporarily get behind in the seconds if something in the
559 * system locks interrupts for a long period of time. Since periodic
560 * timers count events, though everything should resynch again
561 * immediately.
563 if (gd->gd_cpuid == 0) {
564 int ni;
566 cputicks = info->time - gd->gd_cpuclock_base;
567 if (cputicks >= sys_cputimer->freq) {
568 cputicks /= sys_cputimer->freq;
569 if (cputicks != 0 && cputicks != 1)
570 kprintf("Warning: hardclock missed > 1 sec\n");
571 gd->gd_time_seconds += cputicks;
572 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
573 /* uncorrected monotonic 1-sec gran */
574 time_uptime += cputicks;
576 ni = (basetime_index + 1) & BASETIME_ARYMASK;
577 hardtime[ni].time_second = gd->gd_time_seconds;
578 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
579 } else {
580 int ni;
582 ni = basetime_index;
583 cpu_lfence();
584 gd->gd_time_seconds = hardtime[ni].time_second;
585 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
589 * The system-wide ticks counter and NTP related timedelta/tickdelta
590 * adjustments only occur on cpu #0. NTP adjustments are accomplished
591 * by updating basetime.
593 if (gd->gd_cpuid == 0) {
594 struct timespec *nbt;
595 struct timespec nts;
596 int leap;
597 int ni;
599 ++ticks;
601 #if 0
602 if (tco->tc_poll_pps)
603 tco->tc_poll_pps(tco);
604 #endif
607 * Calculate the new basetime index. We are in a critical section
608 * on cpu #0 and can safely play with basetime_index. Start
609 * with the current basetime and then make adjustments.
611 ni = (basetime_index + 1) & BASETIME_ARYMASK;
612 nbt = &basetime[ni];
613 *nbt = basetime[basetime_index];
616 * ntp adjustments only occur on cpu 0 and are protected by
617 * ntp_spin. This spinlock virtually never conflicts.
619 spin_lock(&ntp_spin);
622 * Apply adjtime corrections. (adjtime() API)
624 * adjtime() only runs on cpu #0 so our critical section is
625 * sufficient to access these variables.
627 if (ntp_delta != 0) {
628 nbt->tv_nsec += ntp_tick_delta;
629 ntp_delta -= ntp_tick_delta;
630 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
631 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
632 ntp_tick_delta = ntp_delta;
637 * Apply permanent frequency corrections. (sysctl API)
639 if (ntp_tick_permanent != 0) {
640 ntp_tick_acc += ntp_tick_permanent;
641 if (ntp_tick_acc >= (1LL << 32)) {
642 nbt->tv_nsec += ntp_tick_acc >> 32;
643 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
644 } else if (ntp_tick_acc <= -(1LL << 32)) {
645 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
646 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
647 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
651 if (nbt->tv_nsec >= 1000000000) {
652 nbt->tv_sec++;
653 nbt->tv_nsec -= 1000000000;
654 } else if (nbt->tv_nsec < 0) {
655 nbt->tv_sec--;
656 nbt->tv_nsec += 1000000000;
660 * Another per-tick compensation. (for ntp_adjtime() API)
662 if (nsec_adj != 0) {
663 nsec_acc += nsec_adj;
664 if (nsec_acc >= 0x100000000LL) {
665 nbt->tv_nsec += nsec_acc >> 32;
666 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
667 } else if (nsec_acc <= -0x100000000LL) {
668 nbt->tv_nsec -= -nsec_acc >> 32;
669 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
671 if (nbt->tv_nsec >= 1000000000) {
672 nbt->tv_nsec -= 1000000000;
673 ++nbt->tv_sec;
674 } else if (nbt->tv_nsec < 0) {
675 nbt->tv_nsec += 1000000000;
676 --nbt->tv_sec;
679 spin_unlock(&ntp_spin);
681 /************************************************************
682 * LEAP SECOND CORRECTION *
683 ************************************************************
685 * Taking into account all the corrections made above, figure
686 * out the new real time. If the seconds field has changed
687 * then apply any pending leap-second corrections.
689 getnanotime_nbt(nbt, &nts);
691 if (time_second != nts.tv_sec) {
693 * Apply leap second (sysctl API). Adjust nts for changes
694 * so we do not have to call getnanotime_nbt again.
696 if (ntp_leap_second) {
697 if (ntp_leap_second == nts.tv_sec) {
698 if (ntp_leap_insert) {
699 nbt->tv_sec++;
700 nts.tv_sec++;
701 } else {
702 nbt->tv_sec--;
703 nts.tv_sec--;
705 ntp_leap_second--;
710 * Apply leap second (ntp_adjtime() API), calculate a new
711 * nsec_adj field. ntp_update_second() returns nsec_adj
712 * as a per-second value but we need it as a per-tick value.
714 leap = ntp_update_second(time_second, &nsec_adj);
715 nsec_adj /= hz;
716 nbt->tv_sec += leap;
717 nts.tv_sec += leap;
720 * Update the time_second 'approximate time' global.
722 time_second = nts.tv_sec;
726 * Finally, our new basetime is ready to go live!
728 cpu_sfence();
729 basetime_index = ni;
732 * Update kpmap on each tick. TS updates are integrated with
733 * fences and upticks allowing userland to read the data
734 * deterministically.
736 if (kpmap) {
737 int w;
739 w = (kpmap->upticks + 1) & 1;
740 getnanouptime(&kpmap->ts_uptime[w]);
741 getnanotime(&kpmap->ts_realtime[w]);
742 cpu_sfence();
743 ++kpmap->upticks;
744 cpu_sfence();
749 * lwkt thread scheduler fair queueing
751 lwkt_schedulerclock(curthread);
754 * softticks are handled for all cpus
756 hardclock_softtick(gd);
759 * Rollup accumulated vmstats, copy-back for critical path checks.
761 vmstats_rollup_cpu(gd);
762 vfscache_rollup_cpu(gd);
763 mycpu->gd_vmstats = vmstats;
766 * ITimer handling is per-tick, per-cpu.
768 * We must acquire the per-process token in order for ksignal()
769 * to be non-blocking. For the moment this requires an AST fault,
770 * the ksignal() cannot be safely issued from this hard interrupt.
772 * XXX Even the trytoken here isn't right, and itimer operation in
773 * a multi threaded environment is going to be weird at the
774 * very least.
776 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
777 crit_enter_hard();
778 if (p->p_upmap)
779 ++p->p_upmap->runticks;
781 if (frame && CLKF_USERMODE(frame) &&
782 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
783 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
784 p->p_flags |= P_SIGVTALRM;
785 need_user_resched();
787 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
788 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
789 p->p_flags |= P_SIGPROF;
790 need_user_resched();
792 crit_exit_hard();
793 lwkt_reltoken(&p->p_token);
795 setdelayed();
799 * The statistics clock typically runs at a 125Hz rate, and is intended
800 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
802 * NOTE! systimer! the MP lock might not be held here. We can only safely
803 * manipulate objects owned by the current cpu.
805 * The stats clock is responsible for grabbing a profiling sample.
806 * Most of the statistics are only used by user-level statistics programs.
807 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
808 * p->p_estcpu.
810 * Like the other clocks, the stat clock is called from what is effectively
811 * a fast interrupt, so the context should be the thread/process that got
812 * interrupted.
814 static void
815 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
817 #ifdef GPROF
818 struct gmonparam *g;
819 int i;
820 #endif
821 globaldata_t gd = mycpu;
822 thread_t td;
823 struct proc *p;
824 int bump;
825 sysclock_t cv;
826 sysclock_t scv;
829 * How big was our timeslice relative to the last time? Calculate
830 * in microseconds.
832 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
833 * during early boot. Just use the systimer count to be nice
834 * to e.g. qemu. The systimer has a better chance of being
835 * MPSAFE at early boot.
837 cv = sys_cputimer->count();
838 scv = gd->statint.gd_statcv;
839 if (scv == 0) {
840 bump = 1;
841 } else {
842 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
843 if (bump < 0)
844 bump = 0;
845 if (bump > 1000000)
846 bump = 1000000;
848 gd->statint.gd_statcv = cv;
850 #if 0
851 stv = &gd->gd_stattv;
852 if (stv->tv_sec == 0) {
853 bump = 1;
854 } else {
855 bump = tv.tv_usec - stv->tv_usec +
856 (tv.tv_sec - stv->tv_sec) * 1000000;
857 if (bump < 0)
858 bump = 0;
859 if (bump > 1000000)
860 bump = 1000000;
862 *stv = tv;
863 #endif
865 td = curthread;
866 p = td->td_proc;
868 if (frame && CLKF_USERMODE(frame)) {
870 * Came from userland, handle user time and deal with
871 * possible process.
873 if (p && (p->p_flags & P_PROFIL))
874 addupc_intr(p, CLKF_PC(frame), 1);
875 td->td_uticks += bump;
878 * Charge the time as appropriate
880 if (p && p->p_nice > NZERO)
881 cpu_time.cp_nice += bump;
882 else
883 cpu_time.cp_user += bump;
884 } else {
885 int intr_nest = gd->gd_intr_nesting_level;
887 if (in_ipi) {
889 * IPI processing code will bump gd_intr_nesting_level
890 * up by one, which breaks following CLKF_INTR testing,
891 * so we subtract it by one here.
893 --intr_nest;
895 #ifdef GPROF
897 * Kernel statistics are just like addupc_intr, only easier.
899 g = &_gmonparam;
900 if (g->state == GMON_PROF_ON && frame) {
901 i = CLKF_PC(frame) - g->lowpc;
902 if (i < g->textsize) {
903 i /= HISTFRACTION * sizeof(*g->kcount);
904 g->kcount[i]++;
907 #endif
909 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
912 * Came from kernel mode, so we were:
913 * - handling an interrupt,
914 * - doing syscall or trap work on behalf of the current
915 * user process, or
916 * - spinning in the idle loop.
917 * Whichever it is, charge the time as appropriate.
918 * Note that we charge interrupts to the current process,
919 * regardless of whether they are ``for'' that process,
920 * so that we know how much of its real time was spent
921 * in ``non-process'' (i.e., interrupt) work.
923 * XXX assume system if frame is NULL. A NULL frame
924 * can occur if ipi processing is done from a crit_exit().
926 if (IS_INTR_RUNNING ||
927 (gd->gd_reqflags & RQF_INTPEND)) {
929 * If we interrupted an interrupt thread, well,
930 * count it as interrupt time.
932 td->td_iticks += bump;
933 #ifdef DEBUG_PCTRACK
934 if (frame)
935 do_pctrack(frame, PCTRACK_INT);
936 #endif
937 cpu_time.cp_intr += bump;
938 } else if (gd->gd_flags & GDF_VIRTUSER) {
940 * The vkernel doesn't do a good job providing trap
941 * frames that we can test. If the GDF_VIRTUSER
942 * flag is set we probably interrupted user mode.
944 * We also use this flag on the host when entering
945 * VMM mode.
947 td->td_uticks += bump;
950 * Charge the time as appropriate
952 if (p && p->p_nice > NZERO)
953 cpu_time.cp_nice += bump;
954 else
955 cpu_time.cp_user += bump;
956 } else {
957 td->td_sticks += bump;
958 if (td == &gd->gd_idlethread) {
960 * We want to count token contention as
961 * system time. When token contention occurs
962 * the cpu may only be outside its critical
963 * section while switching through the idle
964 * thread. In this situation, various flags
965 * will be set in gd_reqflags.
967 if (gd->gd_reqflags & RQF_IDLECHECK_WK_MASK)
968 cpu_time.cp_sys += bump;
969 else
970 cpu_time.cp_idle += bump;
971 } else {
973 * System thread was running.
975 #ifdef DEBUG_PCTRACK
976 if (frame)
977 do_pctrack(frame, PCTRACK_SYS);
978 #endif
979 cpu_time.cp_sys += bump;
983 #undef IS_INTR_RUNNING
987 #ifdef DEBUG_PCTRACK
989 * Sample the PC when in the kernel or in an interrupt. User code can
990 * retrieve the information and generate a histogram or other output.
993 static void
994 do_pctrack(struct intrframe *frame, int which)
996 struct kinfo_pctrack *pctrack;
998 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
999 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
1000 (void *)CLKF_PC(frame);
1001 ++pctrack->pc_index;
1004 static int
1005 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
1007 struct kinfo_pcheader head;
1008 int error;
1009 int cpu;
1010 int ntrack;
1012 head.pc_ntrack = PCTRACK_SIZE;
1013 head.pc_arysize = PCTRACK_ARYSIZE;
1015 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
1016 return (error);
1018 for (cpu = 0; cpu < ncpus; ++cpu) {
1019 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
1020 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
1021 sizeof(struct kinfo_pctrack));
1022 if (error)
1023 break;
1025 if (error)
1026 break;
1028 return (error);
1030 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
1031 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
1033 #endif
1036 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
1037 * the MP lock might not be held. We can safely manipulate parts of curproc
1038 * but that's about it.
1040 * Each cpu has its own scheduler clock.
1042 static void
1043 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
1045 struct lwp *lp;
1046 struct rusage *ru;
1047 struct vmspace *vm;
1048 long rss;
1050 if ((lp = lwkt_preempted_proc()) != NULL) {
1052 * Account for cpu time used and hit the scheduler. Note
1053 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
1054 * HERE.
1056 ++lp->lwp_cpticks;
1057 usched_schedulerclock(lp, info->periodic, info->time);
1058 } else {
1059 usched_schedulerclock(NULL, info->periodic, info->time);
1061 if ((lp = curthread->td_lwp) != NULL) {
1063 * Update resource usage integrals and maximums.
1065 if ((ru = &lp->lwp_proc->p_ru) &&
1066 (vm = lp->lwp_proc->p_vmspace) != NULL) {
1067 ru->ru_ixrss += pgtok(vm->vm_tsize);
1068 ru->ru_idrss += pgtok(vm->vm_dsize);
1069 ru->ru_isrss += pgtok(vm->vm_ssize);
1070 if (lwkt_trytoken(&vm->vm_map.token)) {
1071 rss = pgtok(vmspace_resident_count(vm));
1072 if (ru->ru_maxrss < rss)
1073 ru->ru_maxrss = rss;
1074 lwkt_reltoken(&vm->vm_map.token);
1078 /* Increment the global sched_ticks */
1079 if (mycpu->gd_cpuid == 0)
1080 ++sched_ticks;
1084 * Compute number of ticks for the specified amount of time. The
1085 * return value is intended to be used in a clock interrupt timed
1086 * operation and guaranteed to meet or exceed the requested time.
1087 * If the representation overflows, return INT_MAX. The minimum return
1088 * value is 1 ticks and the function will average the calculation up.
1089 * If any value greater then 0 microseconds is supplied, a value
1090 * of at least 2 will be returned to ensure that a near-term clock
1091 * interrupt does not cause the timeout to occur (degenerately) early.
1093 * Note that limit checks must take into account microseconds, which is
1094 * done simply by using the smaller signed long maximum instead of
1095 * the unsigned long maximum.
1097 * If ints have 32 bits, then the maximum value for any timeout in
1098 * 10ms ticks is 248 days.
1101 tvtohz_high(struct timeval *tv)
1103 int ticks;
1104 long sec, usec;
1106 sec = tv->tv_sec;
1107 usec = tv->tv_usec;
1108 if (usec < 0) {
1109 sec--;
1110 usec += 1000000;
1112 if (sec < 0) {
1113 #ifdef DIAGNOSTIC
1114 if (usec > 0) {
1115 sec++;
1116 usec -= 1000000;
1118 kprintf("tvtohz_high: negative time difference "
1119 "%ld sec %ld usec\n",
1120 sec, usec);
1121 #endif
1122 ticks = 1;
1123 } else if (sec <= INT_MAX / hz) {
1124 ticks = (int)(sec * hz +
1125 ((u_long)usec + (ustick - 1)) / ustick) + 1;
1126 } else {
1127 ticks = INT_MAX;
1129 return (ticks);
1133 tstohz_high(struct timespec *ts)
1135 int ticks;
1136 long sec, nsec;
1138 sec = ts->tv_sec;
1139 nsec = ts->tv_nsec;
1140 if (nsec < 0) {
1141 sec--;
1142 nsec += 1000000000;
1144 if (sec < 0) {
1145 #ifdef DIAGNOSTIC
1146 if (nsec > 0) {
1147 sec++;
1148 nsec -= 1000000000;
1150 kprintf("tstohz_high: negative time difference "
1151 "%ld sec %ld nsec\n",
1152 sec, nsec);
1153 #endif
1154 ticks = 1;
1155 } else if (sec <= INT_MAX / hz) {
1156 ticks = (int)(sec * hz +
1157 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
1158 } else {
1159 ticks = INT_MAX;
1161 return (ticks);
1166 * Compute number of ticks for the specified amount of time, erroring on
1167 * the side of it being too low to ensure that sleeping the returned number
1168 * of ticks will not result in a late return.
1170 * The supplied timeval may not be negative and should be normalized. A
1171 * return value of 0 is possible if the timeval converts to less then
1172 * 1 tick.
1174 * If ints have 32 bits, then the maximum value for any timeout in
1175 * 10ms ticks is 248 days.
1178 tvtohz_low(struct timeval *tv)
1180 int ticks;
1181 long sec;
1183 sec = tv->tv_sec;
1184 if (sec <= INT_MAX / hz)
1185 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1186 else
1187 ticks = INT_MAX;
1188 return (ticks);
1192 tstohz_low(struct timespec *ts)
1194 int ticks;
1195 long sec;
1197 sec = ts->tv_sec;
1198 if (sec <= INT_MAX / hz)
1199 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1200 else
1201 ticks = INT_MAX;
1202 return (ticks);
1206 * Start profiling on a process.
1208 * Caller must hold p->p_token();
1210 * Kernel profiling passes proc0 which never exits and hence
1211 * keeps the profile clock running constantly.
1213 void
1214 startprofclock(struct proc *p)
1216 if ((p->p_flags & P_PROFIL) == 0) {
1217 p->p_flags |= P_PROFIL;
1218 #if 0 /* XXX */
1219 if (++profprocs == 1 && stathz != 0) {
1220 crit_enter();
1221 psdiv = psratio;
1222 setstatclockrate(profhz);
1223 crit_exit();
1225 #endif
1230 * Stop profiling on a process.
1232 * caller must hold p->p_token
1234 void
1235 stopprofclock(struct proc *p)
1237 if (p->p_flags & P_PROFIL) {
1238 p->p_flags &= ~P_PROFIL;
1239 #if 0 /* XXX */
1240 if (--profprocs == 0 && stathz != 0) {
1241 crit_enter();
1242 psdiv = 1;
1243 setstatclockrate(stathz);
1244 crit_exit();
1246 #endif
1251 * Return information about system clocks.
1253 static int
1254 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1256 struct kinfo_clockinfo clkinfo;
1258 * Construct clockinfo structure.
1260 clkinfo.ci_hz = hz;
1261 clkinfo.ci_tick = ustick;
1262 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1263 clkinfo.ci_profhz = profhz;
1264 clkinfo.ci_stathz = stathz ? stathz : hz;
1265 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1268 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1269 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1272 * We have eight functions for looking at the clock, four for
1273 * microseconds and four for nanoseconds. For each there is fast
1274 * but less precise version "get{nano|micro}[up]time" which will
1275 * return a time which is up to 1/HZ previous to the call, whereas
1276 * the raw version "{nano|micro}[up]time" will return a timestamp
1277 * which is as precise as possible. The "up" variants return the
1278 * time relative to system boot, these are well suited for time
1279 * interval measurements.
1281 * Each cpu independently maintains the current time of day, so all
1282 * we need to do to protect ourselves from changes is to do a loop
1283 * check on the seconds field changing out from under us.
1285 * The system timer maintains a 32 bit count and due to various issues
1286 * it is possible for the calculated delta to occasionally exceed
1287 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1288 * multiplication can easily overflow, so we deal with the case. For
1289 * uniformity we deal with the case in the usec case too.
1291 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1293 void
1294 getmicrouptime(struct timeval *tvp)
1296 struct globaldata *gd = mycpu;
1297 sysclock_t delta;
1299 do {
1300 tvp->tv_sec = gd->gd_time_seconds;
1301 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1302 } while (tvp->tv_sec != gd->gd_time_seconds);
1304 if (delta >= sys_cputimer->freq) {
1305 tvp->tv_sec += delta / sys_cputimer->freq;
1306 delta %= sys_cputimer->freq;
1308 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1309 if (tvp->tv_usec >= 1000000) {
1310 tvp->tv_usec -= 1000000;
1311 ++tvp->tv_sec;
1315 void
1316 getnanouptime(struct timespec *tsp)
1318 struct globaldata *gd = mycpu;
1319 sysclock_t delta;
1321 do {
1322 tsp->tv_sec = gd->gd_time_seconds;
1323 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1324 } while (tsp->tv_sec != gd->gd_time_seconds);
1326 if (delta >= sys_cputimer->freq) {
1327 tsp->tv_sec += delta / sys_cputimer->freq;
1328 delta %= sys_cputimer->freq;
1330 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1333 void
1334 microuptime(struct timeval *tvp)
1336 struct globaldata *gd = mycpu;
1337 sysclock_t delta;
1339 do {
1340 tvp->tv_sec = gd->gd_time_seconds;
1341 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1342 } while (tvp->tv_sec != gd->gd_time_seconds);
1344 if (delta >= sys_cputimer->freq) {
1345 tvp->tv_sec += delta / sys_cputimer->freq;
1346 delta %= sys_cputimer->freq;
1348 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1351 void
1352 nanouptime(struct timespec *tsp)
1354 struct globaldata *gd = mycpu;
1355 sysclock_t delta;
1357 do {
1358 tsp->tv_sec = gd->gd_time_seconds;
1359 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1360 } while (tsp->tv_sec != gd->gd_time_seconds);
1362 if (delta >= sys_cputimer->freq) {
1363 tsp->tv_sec += delta / sys_cputimer->freq;
1364 delta %= sys_cputimer->freq;
1366 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1370 * realtime routines
1372 void
1373 getmicrotime(struct timeval *tvp)
1375 struct globaldata *gd = mycpu;
1376 struct timespec *bt;
1377 sysclock_t delta;
1379 do {
1380 tvp->tv_sec = gd->gd_time_seconds;
1381 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1382 } while (tvp->tv_sec != gd->gd_time_seconds);
1384 if (delta >= sys_cputimer->freq) {
1385 tvp->tv_sec += delta / sys_cputimer->freq;
1386 delta %= sys_cputimer->freq;
1388 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1390 bt = &basetime[basetime_index];
1391 cpu_lfence();
1392 tvp->tv_sec += bt->tv_sec;
1393 tvp->tv_usec += bt->tv_nsec / 1000;
1394 while (tvp->tv_usec >= 1000000) {
1395 tvp->tv_usec -= 1000000;
1396 ++tvp->tv_sec;
1400 void
1401 getnanotime(struct timespec *tsp)
1403 struct globaldata *gd = mycpu;
1404 struct timespec *bt;
1405 sysclock_t delta;
1407 do {
1408 tsp->tv_sec = gd->gd_time_seconds;
1409 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1410 } while (tsp->tv_sec != gd->gd_time_seconds);
1412 if (delta >= sys_cputimer->freq) {
1413 tsp->tv_sec += delta / sys_cputimer->freq;
1414 delta %= sys_cputimer->freq;
1416 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1418 bt = &basetime[basetime_index];
1419 cpu_lfence();
1420 tsp->tv_sec += bt->tv_sec;
1421 tsp->tv_nsec += bt->tv_nsec;
1422 while (tsp->tv_nsec >= 1000000000) {
1423 tsp->tv_nsec -= 1000000000;
1424 ++tsp->tv_sec;
1428 static void
1429 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1431 struct globaldata *gd = mycpu;
1432 sysclock_t delta;
1434 do {
1435 tsp->tv_sec = gd->gd_time_seconds;
1436 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1437 } while (tsp->tv_sec != gd->gd_time_seconds);
1439 if (delta >= sys_cputimer->freq) {
1440 tsp->tv_sec += delta / sys_cputimer->freq;
1441 delta %= sys_cputimer->freq;
1443 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1445 tsp->tv_sec += nbt->tv_sec;
1446 tsp->tv_nsec += nbt->tv_nsec;
1447 while (tsp->tv_nsec >= 1000000000) {
1448 tsp->tv_nsec -= 1000000000;
1449 ++tsp->tv_sec;
1454 void
1455 microtime(struct timeval *tvp)
1457 struct globaldata *gd = mycpu;
1458 struct timespec *bt;
1459 sysclock_t delta;
1461 do {
1462 tvp->tv_sec = gd->gd_time_seconds;
1463 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1464 } while (tvp->tv_sec != gd->gd_time_seconds);
1466 if (delta >= sys_cputimer->freq) {
1467 tvp->tv_sec += delta / sys_cputimer->freq;
1468 delta %= sys_cputimer->freq;
1470 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1472 bt = &basetime[basetime_index];
1473 cpu_lfence();
1474 tvp->tv_sec += bt->tv_sec;
1475 tvp->tv_usec += bt->tv_nsec / 1000;
1476 while (tvp->tv_usec >= 1000000) {
1477 tvp->tv_usec -= 1000000;
1478 ++tvp->tv_sec;
1482 void
1483 nanotime(struct timespec *tsp)
1485 struct globaldata *gd = mycpu;
1486 struct timespec *bt;
1487 sysclock_t delta;
1489 do {
1490 tsp->tv_sec = gd->gd_time_seconds;
1491 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1492 } while (tsp->tv_sec != gd->gd_time_seconds);
1494 if (delta >= sys_cputimer->freq) {
1495 tsp->tv_sec += delta / sys_cputimer->freq;
1496 delta %= sys_cputimer->freq;
1498 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1500 bt = &basetime[basetime_index];
1501 cpu_lfence();
1502 tsp->tv_sec += bt->tv_sec;
1503 tsp->tv_nsec += bt->tv_nsec;
1504 while (tsp->tv_nsec >= 1000000000) {
1505 tsp->tv_nsec -= 1000000000;
1506 ++tsp->tv_sec;
1511 * Get an approximate time_t. It does not have to be accurate. This
1512 * function is called only from KTR and can be called with the system in
1513 * any state so do not use a critical section or other complex operation
1514 * here.
1516 * NOTE: This is not exactly synchronized with real time. To do that we
1517 * would have to do what microtime does and check for a nanoseconds
1518 * overflow.
1520 time_t
1521 get_approximate_time_t(void)
1523 struct globaldata *gd = mycpu;
1524 struct timespec *bt;
1526 bt = &basetime[basetime_index];
1527 return(gd->gd_time_seconds + bt->tv_sec);
1531 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1533 pps_params_t *app;
1534 struct pps_fetch_args *fapi;
1535 #ifdef PPS_SYNC
1536 struct pps_kcbind_args *kapi;
1537 #endif
1539 switch (cmd) {
1540 case PPS_IOC_CREATE:
1541 return (0);
1542 case PPS_IOC_DESTROY:
1543 return (0);
1544 case PPS_IOC_SETPARAMS:
1545 app = (pps_params_t *)data;
1546 if (app->mode & ~pps->ppscap)
1547 return (EINVAL);
1548 pps->ppsparam = *app;
1549 return (0);
1550 case PPS_IOC_GETPARAMS:
1551 app = (pps_params_t *)data;
1552 *app = pps->ppsparam;
1553 app->api_version = PPS_API_VERS_1;
1554 return (0);
1555 case PPS_IOC_GETCAP:
1556 *(int*)data = pps->ppscap;
1557 return (0);
1558 case PPS_IOC_FETCH:
1559 fapi = (struct pps_fetch_args *)data;
1560 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1561 return (EINVAL);
1562 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1563 return (EOPNOTSUPP);
1564 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1565 fapi->pps_info_buf = pps->ppsinfo;
1566 return (0);
1567 case PPS_IOC_KCBIND:
1568 #ifdef PPS_SYNC
1569 kapi = (struct pps_kcbind_args *)data;
1570 /* XXX Only root should be able to do this */
1571 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1572 return (EINVAL);
1573 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1574 return (EINVAL);
1575 if (kapi->edge & ~pps->ppscap)
1576 return (EINVAL);
1577 pps->kcmode = kapi->edge;
1578 return (0);
1579 #else
1580 return (EOPNOTSUPP);
1581 #endif
1582 default:
1583 return (ENOTTY);
1587 void
1588 pps_init(struct pps_state *pps)
1590 pps->ppscap |= PPS_TSFMT_TSPEC;
1591 if (pps->ppscap & PPS_CAPTUREASSERT)
1592 pps->ppscap |= PPS_OFFSETASSERT;
1593 if (pps->ppscap & PPS_CAPTURECLEAR)
1594 pps->ppscap |= PPS_OFFSETCLEAR;
1597 void
1598 pps_event(struct pps_state *pps, sysclock_t count, int event)
1600 struct globaldata *gd;
1601 struct timespec *tsp;
1602 struct timespec *osp;
1603 struct timespec *bt;
1604 struct timespec ts;
1605 sysclock_t *pcount;
1606 #ifdef PPS_SYNC
1607 sysclock_t tcount;
1608 #endif
1609 sysclock_t delta;
1610 pps_seq_t *pseq;
1611 int foff;
1612 #ifdef PPS_SYNC
1613 int fhard;
1614 #endif
1615 int ni;
1617 gd = mycpu;
1619 /* Things would be easier with arrays... */
1620 if (event == PPS_CAPTUREASSERT) {
1621 tsp = &pps->ppsinfo.assert_timestamp;
1622 osp = &pps->ppsparam.assert_offset;
1623 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1624 #ifdef PPS_SYNC
1625 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1626 #endif
1627 pcount = &pps->ppscount[0];
1628 pseq = &pps->ppsinfo.assert_sequence;
1629 } else {
1630 tsp = &pps->ppsinfo.clear_timestamp;
1631 osp = &pps->ppsparam.clear_offset;
1632 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1633 #ifdef PPS_SYNC
1634 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1635 #endif
1636 pcount = &pps->ppscount[1];
1637 pseq = &pps->ppsinfo.clear_sequence;
1640 /* Nothing really happened */
1641 if (*pcount == count)
1642 return;
1644 *pcount = count;
1646 do {
1647 ts.tv_sec = gd->gd_time_seconds;
1648 delta = count - gd->gd_cpuclock_base;
1649 } while (ts.tv_sec != gd->gd_time_seconds);
1651 if (delta >= sys_cputimer->freq) {
1652 ts.tv_sec += delta / sys_cputimer->freq;
1653 delta %= sys_cputimer->freq;
1655 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1656 ni = basetime_index;
1657 cpu_lfence();
1658 bt = &basetime[ni];
1659 ts.tv_sec += bt->tv_sec;
1660 ts.tv_nsec += bt->tv_nsec;
1661 while (ts.tv_nsec >= 1000000000) {
1662 ts.tv_nsec -= 1000000000;
1663 ++ts.tv_sec;
1666 (*pseq)++;
1667 *tsp = ts;
1669 if (foff) {
1670 timespecadd(tsp, osp);
1671 if (tsp->tv_nsec < 0) {
1672 tsp->tv_nsec += 1000000000;
1673 tsp->tv_sec -= 1;
1676 #ifdef PPS_SYNC
1677 if (fhard) {
1678 /* magic, at its best... */
1679 tcount = count - pps->ppscount[2];
1680 pps->ppscount[2] = count;
1681 if (tcount >= sys_cputimer->freq) {
1682 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1683 sys_cputimer->freq64_nsec *
1684 (tcount % sys_cputimer->freq)) >> 32;
1685 } else {
1686 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1688 hardpps(tsp, delta);
1690 #endif
1694 * Return the tsc target value for a delay of (ns).
1696 * Returns -1 if the TSC is not supported.
1698 tsc_uclock_t
1699 tsc_get_target(int ns)
1701 #if defined(_RDTSC_SUPPORTED_)
1702 if (cpu_feature & CPUID_TSC) {
1703 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1705 #endif
1706 return(-1);
1710 * Compare the tsc against the passed target
1712 * Returns +1 if the target has been reached
1713 * Returns 0 if the target has not yet been reached
1714 * Returns -1 if the TSC is not supported.
1716 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1719 tsc_test_target(int64_t target)
1721 #if defined(_RDTSC_SUPPORTED_)
1722 if (cpu_feature & CPUID_TSC) {
1723 if ((int64_t)(target - rdtsc()) <= 0)
1724 return(1);
1725 return(0);
1727 #endif
1728 return(-1);
1732 * Delay the specified number of nanoseconds using the tsc. This function
1733 * returns immediately if the TSC is not supported. At least one cpu_pause()
1734 * will be issued.
1736 void
1737 tsc_delay(int ns)
1739 int64_t clk;
1741 clk = tsc_get_target(ns);
1742 cpu_pause();
1743 cpu_pause();
1744 while (tsc_test_target(clk) == 0) {
1745 cpu_pause();
1746 cpu_pause();
1747 cpu_pause();
1748 cpu_pause();