kernel: Add a few forgotten crit_exit()s and fix a wrong crit_enter().
[dragonfly.git] / sys / vm / vm_swapcache.c
blobc88d8e82f674e5921608c049569c4773ed8db92c
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2010 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
38 * Implement the swapcache daemon. When enabled swap is assumed to be
39 * configured on a fast storage device such as a SSD. Swap is assigned
40 * to clean vnode-backed pages in the inactive queue, clustered by object
41 * if possible, and written out. The swap assignment sticks around even
42 * after the underlying pages have been recycled.
44 * The daemon manages write bandwidth based on sysctl settings to control
45 * wear on the SSD.
47 * The vnode strategy code will check for the swap assignments and divert
48 * reads to the swap device when the data is present in the swapcache.
50 * This operates on both regular files and the block device vnodes used by
51 * filesystems to manage meta-data.
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker);
88 static void vm_swapcache_movemarker(vm_object_t marker, vm_object_t object);
89 struct thread *swapcached_thread;
91 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
93 int vm_swapcache_read_enable;
94 int vm_swapcache_inactive_heuristic;
95 static int vm_swapcache_sleep;
96 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
97 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
98 static int vm_swapcache_data_enable = 0;
99 static int vm_swapcache_meta_enable = 0;
100 static int vm_swapcache_maxswappct = 75;
101 static int vm_swapcache_hysteresis;
102 static int vm_swapcache_min_hysteresis;
103 int vm_swapcache_use_chflags = 1; /* require chflags cache */
104 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
105 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
106 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
107 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
108 static int64_t vm_swapcache_write_count;
109 static int64_t vm_swapcache_maxfilesize;
110 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
112 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
113 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
115 CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
117 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
118 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
119 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
120 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
121 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
122 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
123 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
124 CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
125 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
126 CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
127 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
128 CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
129 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
130 CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
132 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
133 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
134 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
135 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
136 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
137 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
138 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
139 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
140 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
141 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
142 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
143 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
144 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
145 CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
147 #define SWAPMAX(adj) \
148 ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
151 * When shutting down the machine we want to stop swapcache operation
152 * immediately so swap is not accessed after devices have been shuttered.
154 static void
155 shutdown_swapcache(void *arg __unused)
157 vm_swapcache_read_enable = 0;
158 vm_swapcache_data_enable = 0;
159 vm_swapcache_meta_enable = 0;
160 wakeup(&vm_swapcache_sleep); /* shortcut 5-second wait */
164 * vm_swapcached is the high level pageout daemon.
166 * No requirements.
168 static void
169 vm_swapcached_thread(void)
171 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
172 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
173 static struct vm_page page_marker[PQ_L2_SIZE];
174 static struct vm_object object_marker;
175 int q;
178 * Thread setup
180 curthread->td_flags |= TDF_SYSTHREAD;
181 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
182 swapcached_thread, SHUTDOWN_PRI_FIRST);
183 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
184 NULL, SHUTDOWN_PRI_SECOND);
187 * Initialize our marker for the inactive scan (SWAPC_WRITING)
189 bzero(&page_marker, sizeof(page_marker));
190 for (q = 0; q < PQ_L2_SIZE; ++q) {
191 page_marker[q].flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
192 page_marker[q].queue = PQ_INACTIVE + q;
193 page_marker[q].pc = q;
194 page_marker[q].wire_count = 1;
195 vm_page_queues_spin_lock(PQ_INACTIVE + q);
196 TAILQ_INSERT_HEAD(
197 &vm_page_queues[PQ_INACTIVE + q].pl,
198 &page_marker[q], pageq);
199 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
202 vm_swapcache_min_hysteresis = 1024;
203 vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
204 vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
207 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
209 bzero(&object_marker, sizeof(object_marker));
210 object_marker.type = OBJT_MARKER;
211 lwkt_gettoken(&vmobj_token);
212 TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
213 lwkt_reltoken(&vmobj_token);
215 for (;;) {
216 int reached_end;
217 int scount;
218 int count;
221 * Handle shutdown
223 kproc_suspend_loop();
226 * Check every 5 seconds when not enabled or if no swap
227 * is present.
229 if ((vm_swapcache_data_enable == 0 &&
230 vm_swapcache_meta_enable == 0) ||
231 vm_swap_max == 0) {
232 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
233 continue;
237 * Polling rate when enabled is approximately 10 hz.
239 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
242 * State hysteresis. Generate write activity up to 75% of
243 * swap, then clean out swap assignments down to 70%, then
244 * repeat.
246 if (state == SWAPC_WRITING) {
247 if (vm_swap_cache_use > SWAPMAX(0))
248 state = SWAPC_CLEANING;
249 } else {
250 if (vm_swap_cache_use < SWAPMAX(-10))
251 state = SWAPC_WRITING;
255 * We are allowed to continue accumulating burst value
256 * in either state. Allow the user to set curburst > maxburst
257 * for the initial load-in.
259 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
260 vm_swapcache_curburst += vm_swapcache_accrate / 10;
261 if (vm_swapcache_curburst > vm_swapcache_maxburst)
262 vm_swapcache_curburst = vm_swapcache_maxburst;
266 * We don't want to nickle-and-dime the scan as that will
267 * create unnecessary fragmentation. The minimum burst
268 * is one-seconds worth of accumulation.
270 if (state != SWAPC_WRITING) {
271 vm_swapcache_cleaning(&object_marker);
272 continue;
274 if (vm_swapcache_curburst < vm_swapcache_accrate)
275 continue;
277 reached_end = 0;
278 count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
279 scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
281 if (burst == SWAPB_BURSTING) {
282 if (vm_swapcache_writing_heuristic()) {
283 for (q = 0; q < PQ_L2_SIZE; ++q) {
284 reached_end +=
285 vm_swapcache_writing(
286 &page_marker[q],
287 count,
288 scount);
291 if (vm_swapcache_curburst <= 0)
292 burst = SWAPB_RECOVERING;
293 } else if (vm_swapcache_curburst > vm_swapcache_minburst) {
294 if (vm_swapcache_writing_heuristic()) {
295 for (q = 0; q < PQ_L2_SIZE; ++q) {
296 reached_end +=
297 vm_swapcache_writing(
298 &page_marker[q],
299 count,
300 scount);
303 burst = SWAPB_BURSTING;
305 if (reached_end == PQ_L2_SIZE) {
306 vm_swapcache_inactive_heuristic =
307 -vm_swapcache_hysteresis;
312 * Cleanup (NOT REACHED)
314 for (q = 0; q < PQ_L2_SIZE; ++q) {
315 vm_page_queues_spin_lock(PQ_INACTIVE + q);
316 TAILQ_REMOVE(
317 &vm_page_queues[PQ_INACTIVE + q].pl,
318 &page_marker[q], pageq);
319 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
322 lwkt_gettoken(&vmobj_token);
323 TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
324 lwkt_reltoken(&vmobj_token);
327 static struct kproc_desc swpc_kp = {
328 "swapcached",
329 vm_swapcached_thread,
330 &swapcached_thread
332 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
335 * Deal with an overflow of the heuristic counter or if the user
336 * manually changes the hysteresis.
338 * Try to avoid small incremental pageouts by waiting for enough
339 * pages to buildup in the inactive queue to hopefully get a good
340 * burst in. This heuristic is bumped by the VM system and reset
341 * when our scan hits the end of the queue.
343 * Return TRUE if we need to take a writing pass.
345 static int
346 vm_swapcache_writing_heuristic(void)
348 int hyst;
350 hyst = vmstats.v_inactive_count / 4;
351 if (hyst < vm_swapcache_min_hysteresis)
352 hyst = vm_swapcache_min_hysteresis;
353 cpu_ccfence();
354 vm_swapcache_hysteresis = hyst;
356 if (vm_swapcache_inactive_heuristic < -hyst)
357 vm_swapcache_inactive_heuristic = -hyst;
359 return (vm_swapcache_inactive_heuristic >= 0);
363 * Take a writing pass on one of the inactive queues, return non-zero if
364 * we hit the end of the queue.
366 static int
367 vm_swapcache_writing(vm_page_t marker, int count, int scount)
369 vm_object_t object;
370 struct vnode *vp;
371 vm_page_t m;
372 int isblkdev;
375 * Scan the inactive queue from our marker to locate
376 * suitable pages to push to the swap cache.
378 * We are looking for clean vnode-backed pages.
380 vm_page_queues_spin_lock(marker->queue);
381 while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
382 count > 0 && scount-- > 0) {
383 KKASSERT(m->queue == marker->queue);
385 if (vm_swapcache_curburst < 0)
386 break;
387 TAILQ_REMOVE(
388 &vm_page_queues[marker->queue].pl, marker, pageq);
389 TAILQ_INSERT_AFTER(
390 &vm_page_queues[marker->queue].pl, m, marker, pageq);
393 * Ignore markers and ignore pages that already have a swap
394 * assignment.
396 if (m->flags & (PG_MARKER | PG_SWAPPED))
397 continue;
398 if (vm_page_busy_try(m, TRUE))
399 continue;
400 vm_page_queues_spin_unlock(marker->queue);
402 if ((object = m->object) == NULL) {
403 vm_page_wakeup(m);
404 vm_page_queues_spin_lock(marker->queue);
405 continue;
407 vm_object_hold(object);
408 if (m->object != object) {
409 vm_object_drop(object);
410 vm_page_wakeup(m);
411 vm_page_queues_spin_lock(marker->queue);
412 continue;
414 if (vm_swapcache_test(m)) {
415 vm_object_drop(object);
416 vm_page_wakeup(m);
417 vm_page_queues_spin_lock(marker->queue);
418 continue;
421 vp = object->handle;
422 if (vp == NULL) {
423 vm_object_drop(object);
424 vm_page_wakeup(m);
425 vm_page_queues_spin_lock(marker->queue);
426 continue;
429 switch(vp->v_type) {
430 case VREG:
432 * PG_NOTMETA generically means 'don't swapcache this',
433 * and HAMMER will set this for regular data buffers
434 * (and leave it unset for meta-data buffers) as
435 * appropriate when double buffering is enabled.
437 if (m->flags & PG_NOTMETA) {
438 vm_object_drop(object);
439 vm_page_wakeup(m);
440 vm_page_queues_spin_lock(marker->queue);
441 continue;
445 * If data_enable is 0 do not try to swapcache data.
446 * If use_chflags is set then only swapcache data for
447 * VSWAPCACHE marked vnodes, otherwise any vnode.
449 if (vm_swapcache_data_enable == 0 ||
450 ((vp->v_flag & VSWAPCACHE) == 0 &&
451 vm_swapcache_use_chflags)) {
452 vm_object_drop(object);
453 vm_page_wakeup(m);
454 vm_page_queues_spin_lock(marker->queue);
455 continue;
457 if (vm_swapcache_maxfilesize &&
458 object->size >
459 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
460 vm_object_drop(object);
461 vm_page_wakeup(m);
462 vm_page_queues_spin_lock(marker->queue);
463 continue;
465 isblkdev = 0;
466 break;
467 case VCHR:
469 * PG_NOTMETA generically means 'don't swapcache this',
470 * and HAMMER will set this for regular data buffers
471 * (and leave it unset for meta-data buffers) as
472 * appropriate when double buffering is enabled.
474 if (m->flags & PG_NOTMETA) {
475 vm_object_drop(object);
476 vm_page_wakeup(m);
477 vm_page_queues_spin_lock(marker->queue);
478 continue;
480 if (vm_swapcache_meta_enable == 0) {
481 vm_object_drop(object);
482 vm_page_wakeup(m);
483 vm_page_queues_spin_lock(marker->queue);
484 continue;
486 isblkdev = 1;
487 break;
488 default:
489 vm_object_drop(object);
490 vm_page_wakeup(m);
491 vm_page_queues_spin_lock(marker->queue);
492 continue;
497 * Assign swap and initiate I/O.
499 * (adjust for the --count which also occurs in the loop)
501 count -= vm_swapcached_flush(m, isblkdev);
504 * Setup for next loop using marker.
506 vm_object_drop(object);
507 vm_page_queues_spin_lock(marker->queue);
511 * The marker could wind up at the end, which is ok. If we hit the
512 * end of the list adjust the heuristic.
514 * Earlier inactive pages that were dirty and become clean
515 * are typically moved to the end of PQ_INACTIVE by virtue
516 * of vfs_vmio_release() when they become unwired from the
517 * buffer cache.
519 vm_page_queues_spin_unlock(marker->queue);
522 * m invalid but can be used to test for NULL
524 return (m == NULL);
528 * Flush the specified page using the swap_pager. The page
529 * must be busied by the caller and its disposition will become
530 * the responsibility of this function.
532 * Try to collect surrounding pages, including pages which may
533 * have already been assigned swap. Try to cluster within a
534 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
535 * to match what swap_pager_putpages() can do.
537 * We also want to try to match against the buffer cache blocksize
538 * but we don't really know what it is here. Since the buffer cache
539 * wires and unwires pages in groups the fact that we skip wired pages
540 * should be sufficient.
542 * Returns a count of pages we might have flushed (minimum 1)
544 static
546 vm_swapcached_flush(vm_page_t m, int isblkdev)
548 vm_object_t object;
549 vm_page_t marray[SWAP_META_PAGES];
550 vm_pindex_t basei;
551 int rtvals[SWAP_META_PAGES];
552 int x;
553 int i;
554 int j;
555 int count;
556 int error;
558 vm_page_io_start(m);
559 vm_page_protect(m, VM_PROT_READ);
560 object = m->object;
561 vm_object_hold(object);
564 * Try to cluster around (m), keeping in mind that the swap pager
565 * can only do SMAP_META_PAGES worth of continguous write.
567 x = (int)m->pindex & SWAP_META_MASK;
568 marray[x] = m;
569 basei = m->pindex;
570 vm_page_wakeup(m);
572 for (i = x - 1; i >= 0; --i) {
573 m = vm_page_lookup_busy_try(object, basei - x + i,
574 TRUE, &error);
575 if (error || m == NULL)
576 break;
577 if (vm_swapcache_test(m)) {
578 vm_page_wakeup(m);
579 break;
581 if (isblkdev && (m->flags & PG_NOTMETA)) {
582 vm_page_wakeup(m);
583 break;
585 vm_page_io_start(m);
586 vm_page_protect(m, VM_PROT_READ);
587 if (m->queue - m->pc == PQ_CACHE) {
588 vm_page_unqueue_nowakeup(m);
589 vm_page_deactivate(m);
591 marray[i] = m;
592 vm_page_wakeup(m);
594 ++i;
596 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
597 m = vm_page_lookup_busy_try(object, basei - x + j,
598 TRUE, &error);
599 if (error || m == NULL)
600 break;
601 if (vm_swapcache_test(m)) {
602 vm_page_wakeup(m);
603 break;
605 if (isblkdev && (m->flags & PG_NOTMETA)) {
606 vm_page_wakeup(m);
607 break;
609 vm_page_io_start(m);
610 vm_page_protect(m, VM_PROT_READ);
611 if (m->queue - m->pc == PQ_CACHE) {
612 vm_page_unqueue_nowakeup(m);
613 vm_page_deactivate(m);
615 marray[j] = m;
616 vm_page_wakeup(m);
619 count = j - i;
620 vm_object_pip_add(object, count);
621 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
622 vm_swapcache_write_count += count * PAGE_SIZE;
623 vm_swapcache_curburst -= count * PAGE_SIZE;
625 while (i < j) {
626 if (rtvals[i] != VM_PAGER_PEND) {
627 vm_page_busy_wait(marray[i], FALSE, "swppgfd");
628 vm_page_io_finish(marray[i]);
629 vm_page_wakeup(marray[i]);
630 vm_object_pip_wakeup(object);
632 ++i;
634 vm_object_drop(object);
635 return(count);
639 * Test whether a VM page is suitable for writing to the swapcache.
640 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
642 * Returns 0 on success, 1 on failure
644 static int
645 vm_swapcache_test(vm_page_t m)
647 vm_object_t object;
649 if (m->flags & PG_UNMANAGED)
650 return(1);
651 if (m->hold_count || m->wire_count)
652 return(1);
653 if (m->valid != VM_PAGE_BITS_ALL)
654 return(1);
655 if (m->dirty & m->valid)
656 return(1);
657 if ((object = m->object) == NULL)
658 return(1);
659 if (object->type != OBJT_VNODE ||
660 (object->flags & OBJ_DEAD)) {
661 return(1);
663 vm_page_test_dirty(m);
664 if (m->dirty & m->valid)
665 return(1);
666 return(0);
670 * Cleaning pass.
672 * We clean whole objects up to 16MB
674 static
675 void
676 vm_swapcache_cleaning(vm_object_t marker)
678 vm_object_t object;
679 struct vnode *vp;
680 int count;
681 int scount;
682 int n;
684 count = vm_swapcache_maxlaunder;
685 scount = vm_swapcache_maxscan;
688 * Look for vnode objects
690 lwkt_gettoken(&vmobj_token);
692 while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
694 * We have to skip markers. We cannot hold/drop marker
695 * objects!
697 if (object->type == OBJT_MARKER) {
698 vm_swapcache_movemarker(marker, object);
699 continue;
703 * Safety, or in case there are millions of VM objects
704 * without swapcache backing.
706 if (--scount <= 0)
707 break;
710 * We must hold the object before potentially yielding.
712 vm_object_hold(object);
713 lwkt_yield();
716 * Only operate on live VNODE objects that are either
717 * VREG or VCHR (VCHR for meta-data).
719 if ((object->type != OBJT_VNODE) ||
720 ((object->flags & OBJ_DEAD) ||
721 object->swblock_count == 0) ||
722 ((vp = object->handle) == NULL) ||
723 (vp->v_type != VREG && vp->v_type != VCHR)) {
724 vm_object_drop(object);
725 /* object may be invalid now */
726 vm_swapcache_movemarker(marker, object);
727 continue;
731 * Reset the object pindex stored in the marker if the
732 * working object has changed.
734 if (marker->backing_object != object) {
735 marker->size = 0;
736 marker->backing_object_offset = 0;
737 marker->backing_object = object;
741 * Look for swblocks starting at our iterator.
743 * The swap_pager_condfree() function attempts to free
744 * swap space starting at the specified index. The index
745 * will be updated on return. The function will return
746 * a scan factor (NOT the number of blocks freed).
748 * If it must cut its scan of the object short due to an
749 * excessive number of swblocks, or is able to free the
750 * requested number of blocks, it will return n >= count
751 * and we break and pick it back up on a future attempt.
753 * Scan the object linearly and try to batch large sets of
754 * blocks that are likely to clean out entire swap radix
755 * tree leafs.
757 lwkt_token_swap();
758 lwkt_reltoken(&vmobj_token);
760 n = swap_pager_condfree(object, &marker->size,
761 (count + SWAP_META_MASK) & ~SWAP_META_MASK);
763 vm_object_drop(object); /* object may be invalid now */
764 lwkt_gettoken(&vmobj_token);
767 * If we have exhausted the object or deleted our per-pass
768 * page limit then move us to the next object. Note that
769 * the current object may no longer be on the vm_object_list.
771 if (n <= 0 ||
772 marker->backing_object_offset > vm_swapcache_cleanperobj) {
773 vm_swapcache_movemarker(marker, object);
777 * If we have exhausted our max-launder stop for now.
779 count -= n;
780 marker->backing_object_offset += n * PAGE_SIZE;
781 if (count < 0)
782 break;
786 * If we wound up at the end of the list this will move the
787 * marker back to the beginning.
789 if (object == NULL)
790 vm_swapcache_movemarker(marker, NULL);
792 lwkt_reltoken(&vmobj_token);
796 * Move the marker past the current object. Object can be stale, but we
797 * still need it to determine if the marker has to be moved. If the object
798 * is still the 'current object' (object after the marker), we hop-scotch
799 * the marker past it.
801 static void
802 vm_swapcache_movemarker(vm_object_t marker, vm_object_t object)
804 if (TAILQ_NEXT(marker, object_list) == object) {
805 TAILQ_REMOVE(&vm_object_list, marker, object_list);
806 if (object) {
807 TAILQ_INSERT_AFTER(&vm_object_list, object,
808 marker, object_list);
809 } else {
810 TAILQ_INSERT_HEAD(&vm_object_list,
811 marker, object_list);