2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
43 * External virtual filesystem routines
47 #include <sys/param.h>
48 #include <sys/systm.h>
51 #include <sys/dirent.h>
52 #include <sys/domain.h>
53 #include <sys/eventhandler.h>
54 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
60 #include <sys/mount.h>
63 #include <sys/reboot.h>
64 #include <sys/socket.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/unistd.h>
69 #include <sys/vmmeter.h>
70 #include <sys/vnode.h>
72 #include <machine/limits.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_kern.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vnode_pager.h>
83 #include <vm/vm_zone.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 #include <sys/mplock2.h>
90 static MALLOC_DEFINE(M_NETADDR
, "Export Host", "Export host address structure");
93 SYSCTL_INT(_debug
, OID_AUTO
, numvnodes
, CTLFLAG_RD
, &numvnodes
, 0,
94 "Number of vnodes allocated");
96 SYSCTL_INT(_debug
, OID_AUTO
, verbose_reclaims
, CTLFLAG_RD
, &verbose_reclaims
, 0,
97 "Output filename of reclaimed vnode(s)");
99 enum vtype iftovt_tab
[16] = {
100 VNON
, VFIFO
, VCHR
, VNON
, VDIR
, VNON
, VBLK
, VNON
,
101 VREG
, VNON
, VLNK
, VNON
, VSOCK
, VNON
, VNON
, VBAD
,
103 int vttoif_tab
[9] = {
104 0, S_IFREG
, S_IFDIR
, S_IFBLK
, S_IFCHR
, S_IFLNK
,
105 S_IFSOCK
, S_IFIFO
, S_IFMT
,
108 static int reassignbufcalls
;
109 SYSCTL_INT(_vfs
, OID_AUTO
, reassignbufcalls
, CTLFLAG_RW
, &reassignbufcalls
,
110 0, "Number of times buffers have been reassigned to the proper list");
112 static int check_buf_overlap
= 2; /* invasive check */
113 SYSCTL_INT(_vfs
, OID_AUTO
, check_buf_overlap
, CTLFLAG_RW
, &check_buf_overlap
,
114 0, "Enable overlapping buffer checks");
116 int nfs_mount_type
= -1;
117 static struct lwkt_token spechash_token
;
118 struct nfs_public nfs_pub
; /* publicly exported FS */
121 SYSCTL_INT(_kern
, KERN_MAXVNODES
, maxvnodes
, CTLFLAG_RW
,
122 &desiredvnodes
, 0, "Maximum number of vnodes");
124 static void vfs_free_addrlist (struct netexport
*nep
);
125 static int vfs_free_netcred (struct radix_node
*rn
, void *w
);
126 static int vfs_hang_addrlist (struct mount
*mp
, struct netexport
*nep
,
127 const struct export_args
*argp
);
130 * Red black tree functions
132 static int rb_buf_compare(struct buf
*b1
, struct buf
*b2
);
133 RB_GENERATE2(buf_rb_tree
, buf
, b_rbnode
, rb_buf_compare
, off_t
, b_loffset
);
134 RB_GENERATE2(buf_rb_hash
, buf
, b_rbhash
, rb_buf_compare
, off_t
, b_loffset
);
137 rb_buf_compare(struct buf
*b1
, struct buf
*b2
)
139 if (b1
->b_loffset
< b2
->b_loffset
)
141 if (b1
->b_loffset
> b2
->b_loffset
)
147 * Returns non-zero if the vnode is a candidate for lazy msyncing.
149 * NOTE: v_object is not stable (this scan can race), however the
150 * mntvnodescan code holds vmobj_token so any VM object we
151 * do find will remain stable storage.
154 vshouldmsync(struct vnode
*vp
)
158 if (vp
->v_auxrefs
!= 0 || vp
->v_sysref
.refcnt
> 0)
159 return (0); /* other holders */
160 object
= vp
->v_object
;
162 if (object
&& (object
->ref_count
|| object
->resident_page_count
))
168 * Initialize the vnode management data structures.
170 * Called from vfsinit()
179 * Desiredvnodes is kern.maxvnodes. We want to scale it
180 * according to available system memory but we may also have
181 * to limit it based on available KVM, which is capped on 32 bit
184 * WARNING! For machines with 64-256M of ram we have to be sure
185 * that the default limit scales down well due to HAMMER
186 * taking up significantly more memory per-vnode vs UFS.
187 * We want around ~5800 on a 128M machine.
189 factor1
= 20 * (sizeof(struct vm_object
) + sizeof(struct vnode
));
190 factor2
= 22 * (sizeof(struct vm_object
) + sizeof(struct vnode
));
192 imin((int64_t)vmstats
.v_page_count
* PAGE_SIZE
/ factor1
,
194 desiredvnodes
= imax(desiredvnodes
, maxproc
* 8);
196 lwkt_token_init(&spechash_token
, "spechash");
200 * Knob to control the precision of file timestamps:
202 * 0 = seconds only; nanoseconds zeroed.
203 * 1 = seconds and nanoseconds, accurate within 1/HZ.
204 * 2 = seconds and nanoseconds, truncated to microseconds.
205 * >=3 = seconds and nanoseconds, maximum precision.
207 enum { TSP_SEC
, TSP_HZ
, TSP_USEC
, TSP_NSEC
};
209 static int timestamp_precision
= TSP_SEC
;
210 SYSCTL_INT(_vfs
, OID_AUTO
, timestamp_precision
, CTLFLAG_RW
,
211 ×tamp_precision
, 0, "Precision of file timestamps");
214 * Get a current timestamp.
219 vfs_timestamp(struct timespec
*tsp
)
223 switch (timestamp_precision
) {
225 tsp
->tv_sec
= time_second
;
233 TIMEVAL_TO_TIMESPEC(&tv
, tsp
);
243 * Set vnode attributes to VNOVAL
246 vattr_null(struct vattr
*vap
)
249 vap
->va_size
= VNOVAL
;
250 vap
->va_bytes
= VNOVAL
;
251 vap
->va_mode
= VNOVAL
;
252 vap
->va_nlink
= VNOVAL
;
253 vap
->va_uid
= VNOVAL
;
254 vap
->va_gid
= VNOVAL
;
255 vap
->va_fsid
= VNOVAL
;
256 vap
->va_fileid
= VNOVAL
;
257 vap
->va_blocksize
= VNOVAL
;
258 vap
->va_rmajor
= VNOVAL
;
259 vap
->va_rminor
= VNOVAL
;
260 vap
->va_atime
.tv_sec
= VNOVAL
;
261 vap
->va_atime
.tv_nsec
= VNOVAL
;
262 vap
->va_mtime
.tv_sec
= VNOVAL
;
263 vap
->va_mtime
.tv_nsec
= VNOVAL
;
264 vap
->va_ctime
.tv_sec
= VNOVAL
;
265 vap
->va_ctime
.tv_nsec
= VNOVAL
;
266 vap
->va_flags
= VNOVAL
;
267 vap
->va_gen
= VNOVAL
;
269 /* va_*_uuid fields are only valid if related flags are set */
273 * Flush out and invalidate all buffers associated with a vnode.
277 static int vinvalbuf_bp(struct buf
*bp
, void *data
);
279 struct vinvalbuf_bp_info
{
288 vinvalbuf(struct vnode
*vp
, int flags
, int slpflag
, int slptimeo
)
290 struct vinvalbuf_bp_info info
;
294 lwkt_gettoken(&vp
->v_token
);
297 * If we are being asked to save, call fsync to ensure that the inode
300 if (flags
& V_SAVE
) {
301 error
= bio_track_wait(&vp
->v_track_write
, slpflag
, slptimeo
);
304 if (!RB_EMPTY(&vp
->v_rbdirty_tree
)) {
305 if ((error
= VOP_FSYNC(vp
, MNT_WAIT
, 0)) != 0)
309 * Dirty bufs may be left or generated via races
310 * in circumstances where vinvalbuf() is called on
311 * a vnode not undergoing reclamation. Only
312 * panic if we are trying to reclaim the vnode.
314 if ((vp
->v_flag
& VRECLAIMED
) &&
315 (bio_track_active(&vp
->v_track_write
) ||
316 !RB_EMPTY(&vp
->v_rbdirty_tree
))) {
317 panic("vinvalbuf: dirty bufs");
321 info
.slptimeo
= slptimeo
;
322 info
.lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
323 if (slpflag
& PCATCH
)
324 info
.lkflags
|= LK_PCATCH
;
329 * Flush the buffer cache until nothing is left.
331 while (!RB_EMPTY(&vp
->v_rbclean_tree
) ||
332 !RB_EMPTY(&vp
->v_rbdirty_tree
)) {
334 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbclean_tree
, NULL
,
335 vinvalbuf_bp
, &info
);
338 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, NULL
,
339 vinvalbuf_bp
, &info
);
344 * Wait for I/O completion. We may block in the pip code so we have
348 bio_track_wait(&vp
->v_track_write
, 0, 0);
349 if ((object
= vp
->v_object
) != NULL
) {
350 refcount_wait(&object
->paging_in_progress
, "vnvlbx");
352 } while (bio_track_active(&vp
->v_track_write
));
355 * Destroy the copy in the VM cache, too.
357 if ((object
= vp
->v_object
) != NULL
) {
358 vm_object_page_remove(object
, 0, 0,
359 (flags
& V_SAVE
) ? TRUE
: FALSE
);
362 if (!RB_EMPTY(&vp
->v_rbdirty_tree
) || !RB_EMPTY(&vp
->v_rbclean_tree
))
363 panic("vinvalbuf: flush failed");
364 if (!RB_EMPTY(&vp
->v_rbhash_tree
))
365 panic("vinvalbuf: flush failed, buffers still present");
368 lwkt_reltoken(&vp
->v_token
);
373 vinvalbuf_bp(struct buf
*bp
, void *data
)
375 struct vinvalbuf_bp_info
*info
= data
;
378 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
379 atomic_add_int(&bp
->b_refs
, 1);
380 error
= BUF_TIMELOCK(bp
, info
->lkflags
,
381 "vinvalbuf", info
->slptimeo
);
382 atomic_subtract_int(&bp
->b_refs
, 1);
391 KKASSERT(bp
->b_vp
== info
->vp
);
394 * Must check clean/dirty status after successfully locking as
397 if ((info
->clean
&& (bp
->b_flags
& B_DELWRI
)) ||
398 (info
->clean
== 0 && (bp
->b_flags
& B_DELWRI
) == 0)) {
404 * Note that vfs_bio_awrite expects buffers to reside
405 * on a queue, while bwrite() and brelse() do not.
407 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
408 * check. This code will write out the buffer, period.
410 if (((bp
->b_flags
& (B_DELWRI
| B_INVAL
)) == B_DELWRI
) &&
411 (info
->flags
& V_SAVE
)) {
412 if (bp
->b_flags
& B_CLUSTEROK
) {
418 } else if (info
->flags
& V_SAVE
) {
420 * Cannot set B_NOCACHE on a clean buffer as this will
421 * destroy the VM backing store which might actually
422 * be dirty (and unsynchronized).
425 bp
->b_flags
|= (B_INVAL
| B_RELBUF
);
429 bp
->b_flags
|= (B_INVAL
| B_NOCACHE
| B_RELBUF
);
436 * Truncate a file's buffer and pages to a specified length. This
437 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
440 * The vnode must be locked.
442 static int vtruncbuf_bp_trunc_cmp(struct buf
*bp
, void *data
);
443 static int vtruncbuf_bp_trunc(struct buf
*bp
, void *data
);
444 static int vtruncbuf_bp_metasync_cmp(struct buf
*bp
, void *data
);
445 static int vtruncbuf_bp_metasync(struct buf
*bp
, void *data
);
447 struct vtruncbuf_info
{
454 vtruncbuf(struct vnode
*vp
, off_t length
, int blksize
)
456 struct vtruncbuf_info info
;
457 const char *filename
;
461 * Round up to the *next* block, then destroy the buffers in question.
462 * Since we are only removing some of the buffers we must rely on the
463 * scan count to determine whether a loop is necessary.
465 if ((count
= (int)(length
% blksize
)) != 0)
466 info
.truncloffset
= length
+ (blksize
- count
);
468 info
.truncloffset
= length
;
471 lwkt_gettoken(&vp
->v_token
);
474 count
= RB_SCAN(buf_rb_tree
, &vp
->v_rbclean_tree
,
475 vtruncbuf_bp_trunc_cmp
,
476 vtruncbuf_bp_trunc
, &info
);
478 count
+= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
479 vtruncbuf_bp_trunc_cmp
,
480 vtruncbuf_bp_trunc
, &info
);
484 * For safety, fsync any remaining metadata if the file is not being
485 * truncated to 0. Since the metadata does not represent the entire
486 * dirty list we have to rely on the hit count to ensure that we get
491 count
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
492 vtruncbuf_bp_metasync_cmp
,
493 vtruncbuf_bp_metasync
, &info
);
498 * Clean out any left over VM backing store.
500 * It is possible to have in-progress I/O from buffers that were
501 * not part of the truncation. This should not happen if we
502 * are truncating to 0-length.
504 vnode_pager_setsize(vp
, length
);
505 bio_track_wait(&vp
->v_track_write
, 0, 0);
510 spin_lock(&vp
->v_spin
);
511 filename
= TAILQ_FIRST(&vp
->v_namecache
) ?
512 TAILQ_FIRST(&vp
->v_namecache
)->nc_name
: "?";
513 spin_unlock(&vp
->v_spin
);
516 * Make sure no buffers were instantiated while we were trying
517 * to clean out the remaining VM pages. This could occur due
518 * to busy dirty VM pages being flushed out to disk.
522 count
= RB_SCAN(buf_rb_tree
, &vp
->v_rbclean_tree
,
523 vtruncbuf_bp_trunc_cmp
,
524 vtruncbuf_bp_trunc
, &info
);
526 count
+= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
527 vtruncbuf_bp_trunc_cmp
,
528 vtruncbuf_bp_trunc
, &info
);
530 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
531 "left over buffers in %s\n", count
, filename
);
535 lwkt_reltoken(&vp
->v_token
);
541 * The callback buffer is beyond the new file EOF and must be destroyed.
542 * Note that the compare function must conform to the RB_SCAN's requirements.
546 vtruncbuf_bp_trunc_cmp(struct buf
*bp
, void *data
)
548 struct vtruncbuf_info
*info
= data
;
550 if (bp
->b_loffset
>= info
->truncloffset
)
557 vtruncbuf_bp_trunc(struct buf
*bp
, void *data
)
559 struct vtruncbuf_info
*info
= data
;
562 * Do not try to use a buffer we cannot immediately lock, but sleep
563 * anyway to prevent a livelock. The code will loop until all buffers
566 * We must always revalidate the buffer after locking it to deal
569 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
570 atomic_add_int(&bp
->b_refs
, 1);
571 if (BUF_LOCK(bp
, LK_EXCLUSIVE
|LK_SLEEPFAIL
) == 0)
573 atomic_subtract_int(&bp
->b_refs
, 1);
574 } else if ((info
->clean
&& (bp
->b_flags
& B_DELWRI
)) ||
575 (info
->clean
== 0 && (bp
->b_flags
& B_DELWRI
) == 0) ||
576 bp
->b_vp
!= info
->vp
||
577 vtruncbuf_bp_trunc_cmp(bp
, data
)) {
581 bp
->b_flags
|= (B_INVAL
| B_RELBUF
| B_NOCACHE
);
588 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
589 * blocks (with a negative loffset) are scanned.
590 * Note that the compare function must conform to the RB_SCAN's requirements.
593 vtruncbuf_bp_metasync_cmp(struct buf
*bp
, void *data __unused
)
595 if (bp
->b_loffset
< 0)
601 vtruncbuf_bp_metasync(struct buf
*bp
, void *data
)
603 struct vtruncbuf_info
*info
= data
;
605 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
606 atomic_add_int(&bp
->b_refs
, 1);
607 if (BUF_LOCK(bp
, LK_EXCLUSIVE
|LK_SLEEPFAIL
) == 0)
609 atomic_subtract_int(&bp
->b_refs
, 1);
610 } else if ((bp
->b_flags
& B_DELWRI
) == 0 ||
611 bp
->b_vp
!= info
->vp
||
612 vtruncbuf_bp_metasync_cmp(bp
, data
)) {
616 if (bp
->b_vp
== info
->vp
)
625 * vfsync - implements a multipass fsync on a file which understands
626 * dependancies and meta-data. The passed vnode must be locked. The
627 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
629 * When fsyncing data asynchronously just do one consolidated pass starting
630 * with the most negative block number. This may not get all the data due
633 * When fsyncing data synchronously do a data pass, then a metadata pass,
634 * then do additional data+metadata passes to try to get all the data out.
636 static int vfsync_wait_output(struct vnode
*vp
,
637 int (*waitoutput
)(struct vnode
*, struct thread
*));
638 static int vfsync_dummy_cmp(struct buf
*bp __unused
, void *data __unused
);
639 static int vfsync_data_only_cmp(struct buf
*bp
, void *data
);
640 static int vfsync_meta_only_cmp(struct buf
*bp
, void *data
);
641 static int vfsync_lazy_range_cmp(struct buf
*bp
, void *data
);
642 static int vfsync_bp(struct buf
*bp
, void *data
);
651 int (*checkdef
)(struct buf
*);
652 int (*cmpfunc
)(struct buf
*, void *);
656 vfsync(struct vnode
*vp
, int waitfor
, int passes
,
657 int (*checkdef
)(struct buf
*),
658 int (*waitoutput
)(struct vnode
*, struct thread
*))
660 struct vfsync_info info
;
663 bzero(&info
, sizeof(info
));
665 if ((info
.checkdef
= checkdef
) == NULL
)
668 lwkt_gettoken(&vp
->v_token
);
671 case MNT_LAZY
| MNT_NOWAIT
:
674 * Lazy (filesystem syncer typ) Asynchronous plus limit the
675 * number of data (not meta) pages we try to flush to 1MB.
676 * A non-zero return means that lazy limit was reached.
678 info
.lazylimit
= 1024 * 1024;
680 info
.cmpfunc
= vfsync_lazy_range_cmp
;
681 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
682 vfsync_lazy_range_cmp
, vfsync_bp
, &info
);
683 info
.cmpfunc
= vfsync_meta_only_cmp
;
684 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
685 vfsync_meta_only_cmp
, vfsync_bp
, &info
);
688 else if (!RB_EMPTY(&vp
->v_rbdirty_tree
))
689 vn_syncer_add(vp
, 1);
694 * Asynchronous. Do a data-only pass and a meta-only pass.
697 info
.cmpfunc
= vfsync_data_only_cmp
;
698 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, vfsync_data_only_cmp
,
700 info
.cmpfunc
= vfsync_meta_only_cmp
;
701 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, vfsync_meta_only_cmp
,
707 * Synchronous. Do a data-only pass, then a meta-data+data
708 * pass, then additional integrated passes to try to get
709 * all the dependancies flushed.
711 info
.cmpfunc
= vfsync_data_only_cmp
;
712 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, vfsync_data_only_cmp
,
714 error
= vfsync_wait_output(vp
, waitoutput
);
716 info
.skippedbufs
= 0;
717 info
.cmpfunc
= vfsync_dummy_cmp
;
718 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, NULL
,
720 error
= vfsync_wait_output(vp
, waitoutput
);
721 if (info
.skippedbufs
) {
722 kprintf("Warning: vfsync skipped %d dirty "
723 "bufs in pass2!\n", info
.skippedbufs
);
726 while (error
== 0 && passes
> 0 &&
727 !RB_EMPTY(&vp
->v_rbdirty_tree
)
730 info
.synchronous
= 1;
733 info
.cmpfunc
= vfsync_dummy_cmp
;
734 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, NULL
,
740 error
= vfsync_wait_output(vp
, waitoutput
);
744 lwkt_reltoken(&vp
->v_token
);
749 vfsync_wait_output(struct vnode
*vp
,
750 int (*waitoutput
)(struct vnode
*, struct thread
*))
754 error
= bio_track_wait(&vp
->v_track_write
, 0, 0);
756 error
= waitoutput(vp
, curthread
);
761 vfsync_dummy_cmp(struct buf
*bp __unused
, void *data __unused
)
767 vfsync_data_only_cmp(struct buf
*bp
, void *data
)
769 if (bp
->b_loffset
< 0)
775 vfsync_meta_only_cmp(struct buf
*bp
, void *data
)
777 if (bp
->b_loffset
< 0)
783 vfsync_lazy_range_cmp(struct buf
*bp
, void *data
)
785 struct vfsync_info
*info
= data
;
787 if (bp
->b_loffset
< info
->vp
->v_lazyw
)
793 vfsync_bp(struct buf
*bp
, void *data
)
795 struct vfsync_info
*info
= data
;
796 struct vnode
*vp
= info
->vp
;
800 * Ignore buffers that we cannot immediately lock.
802 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
808 * We must revalidate the buffer after locking.
810 if ((bp
->b_flags
& B_DELWRI
) == 0 ||
811 bp
->b_vp
!= info
->vp
||
812 info
->cmpfunc(bp
, data
)) {
818 * If syncdeps is not set we do not try to write buffers which have
821 if (!info
->synchronous
&& info
->syncdeps
== 0 && info
->checkdef(bp
)) {
827 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
828 * has been written but an additional handshake with the device
829 * is required before we can dispose of the buffer. We have no idea
830 * how to do this so we have to skip these buffers.
832 if (bp
->b_flags
& B_NEEDCOMMIT
) {
838 * Ask bioops if it is ok to sync. If not the VFS may have
839 * set B_LOCKED so we have to cycle the buffer.
841 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& buf_checkwrite(bp
)) {
847 if (info
->synchronous
) {
849 * Synchronous flushing. An error may be returned.
855 * Asynchronous flushing. A negative return value simply
856 * stops the scan and is not considered an error. We use
857 * this to support limited MNT_LAZY flushes.
859 vp
->v_lazyw
= bp
->b_loffset
;
860 if ((vp
->v_flag
& VOBJBUF
) && (bp
->b_flags
& B_CLUSTEROK
)) {
861 info
->lazycount
+= vfs_bio_awrite(bp
);
863 info
->lazycount
+= bp
->b_bufsize
;
867 waitrunningbufspace();
869 if (info
->lazylimit
&& info
->lazycount
>= info
->lazylimit
)
878 * Associate a buffer with a vnode.
883 bgetvp(struct vnode
*vp
, struct buf
*bp
, int testsize
)
885 KASSERT(bp
->b_vp
== NULL
, ("bgetvp: not free"));
886 KKASSERT((bp
->b_flags
& (B_HASHED
|B_DELWRI
|B_VNCLEAN
|B_VNDIRTY
)) == 0);
889 * Insert onto list for new vnode.
891 lwkt_gettoken(&vp
->v_token
);
893 if (buf_rb_hash_RB_INSERT(&vp
->v_rbhash_tree
, bp
)) {
894 lwkt_reltoken(&vp
->v_token
);
899 * Diagnostics (mainly for HAMMER debugging). Check for
900 * overlapping buffers.
902 if (check_buf_overlap
) {
904 bx
= buf_rb_hash_RB_PREV(bp
);
906 if (bx
->b_loffset
+ bx
->b_bufsize
> bp
->b_loffset
) {
907 kprintf("bgetvp: overlapl %016jx/%d %016jx "
909 (intmax_t)bx
->b_loffset
,
911 (intmax_t)bp
->b_loffset
,
913 if (check_buf_overlap
> 1)
914 panic("bgetvp - overlapping buffer");
917 bx
= buf_rb_hash_RB_NEXT(bp
);
919 if (bp
->b_loffset
+ testsize
> bx
->b_loffset
) {
920 kprintf("bgetvp: overlapr %016jx/%d %016jx "
922 (intmax_t)bp
->b_loffset
,
924 (intmax_t)bx
->b_loffset
,
926 if (check_buf_overlap
> 1)
927 panic("bgetvp - overlapping buffer");
932 bp
->b_flags
|= B_HASHED
;
933 bp
->b_flags
|= B_VNCLEAN
;
934 if (buf_rb_tree_RB_INSERT(&vp
->v_rbclean_tree
, bp
))
935 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp
, bp
);
937 lwkt_reltoken(&vp
->v_token
);
942 * Disassociate a buffer from a vnode.
947 brelvp(struct buf
*bp
)
951 KASSERT(bp
->b_vp
!= NULL
, ("brelvp: NULL"));
954 * Delete from old vnode list, if on one.
957 lwkt_gettoken(&vp
->v_token
);
958 if (bp
->b_flags
& (B_VNDIRTY
| B_VNCLEAN
)) {
959 if (bp
->b_flags
& B_VNDIRTY
)
960 buf_rb_tree_RB_REMOVE(&vp
->v_rbdirty_tree
, bp
);
962 buf_rb_tree_RB_REMOVE(&vp
->v_rbclean_tree
, bp
);
963 bp
->b_flags
&= ~(B_VNDIRTY
| B_VNCLEAN
);
965 if (bp
->b_flags
& B_HASHED
) {
966 buf_rb_hash_RB_REMOVE(&vp
->v_rbhash_tree
, bp
);
967 bp
->b_flags
&= ~B_HASHED
;
969 if ((vp
->v_flag
& VONWORKLST
) && RB_EMPTY(&vp
->v_rbdirty_tree
))
970 vn_syncer_remove(vp
);
973 lwkt_reltoken(&vp
->v_token
);
979 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
980 * This routine is called when the state of the B_DELWRI bit is changed.
982 * Must be called with vp->v_token held.
986 reassignbuf(struct buf
*bp
)
988 struct vnode
*vp
= bp
->b_vp
;
991 ASSERT_LWKT_TOKEN_HELD(&vp
->v_token
);
995 * B_PAGING flagged buffers cannot be reassigned because their vp
996 * is not fully linked in.
998 if (bp
->b_flags
& B_PAGING
)
999 panic("cannot reassign paging buffer");
1001 if (bp
->b_flags
& B_DELWRI
) {
1003 * Move to the dirty list, add the vnode to the worklist
1005 if (bp
->b_flags
& B_VNCLEAN
) {
1006 buf_rb_tree_RB_REMOVE(&vp
->v_rbclean_tree
, bp
);
1007 bp
->b_flags
&= ~B_VNCLEAN
;
1009 if ((bp
->b_flags
& B_VNDIRTY
) == 0) {
1010 if (buf_rb_tree_RB_INSERT(&vp
->v_rbdirty_tree
, bp
)) {
1011 panic("reassignbuf: dup lblk vp %p bp %p",
1014 bp
->b_flags
|= B_VNDIRTY
;
1016 if ((vp
->v_flag
& VONWORKLST
) == 0) {
1017 switch (vp
->v_type
) {
1024 vp
->v_rdev
->si_mountpoint
!= NULL
) {
1032 vn_syncer_add(vp
, delay
);
1036 * Move to the clean list, remove the vnode from the worklist
1037 * if no dirty blocks remain.
1039 if (bp
->b_flags
& B_VNDIRTY
) {
1040 buf_rb_tree_RB_REMOVE(&vp
->v_rbdirty_tree
, bp
);
1041 bp
->b_flags
&= ~B_VNDIRTY
;
1043 if ((bp
->b_flags
& B_VNCLEAN
) == 0) {
1044 if (buf_rb_tree_RB_INSERT(&vp
->v_rbclean_tree
, bp
)) {
1045 panic("reassignbuf: dup lblk vp %p bp %p",
1048 bp
->b_flags
|= B_VNCLEAN
;
1050 if ((vp
->v_flag
& VONWORKLST
) &&
1051 RB_EMPTY(&vp
->v_rbdirty_tree
)) {
1052 vn_syncer_remove(vp
);
1058 * Create a vnode for a block device. Used for mounting the root file
1061 * A vref()'d vnode is returned.
1063 extern struct vop_ops
*devfs_vnode_dev_vops_p
;
1065 bdevvp(cdev_t dev
, struct vnode
**vpp
)
1075 error
= getspecialvnode(VT_NON
, NULL
, &devfs_vnode_dev_vops_p
,
1086 v_associate_rdev(vp
, dev
);
1087 vp
->v_umajor
= dev
->si_umajor
;
1088 vp
->v_uminor
= dev
->si_uminor
;
1095 v_associate_rdev(struct vnode
*vp
, cdev_t dev
)
1099 if (dev_is_good(dev
) == 0)
1101 KKASSERT(vp
->v_rdev
== NULL
);
1102 vp
->v_rdev
= reference_dev(dev
);
1103 lwkt_gettoken(&spechash_token
);
1104 SLIST_INSERT_HEAD(&dev
->si_hlist
, vp
, v_cdevnext
);
1105 lwkt_reltoken(&spechash_token
);
1110 v_release_rdev(struct vnode
*vp
)
1114 if ((dev
= vp
->v_rdev
) != NULL
) {
1115 lwkt_gettoken(&spechash_token
);
1116 SLIST_REMOVE(&dev
->si_hlist
, vp
, vnode
, v_cdevnext
);
1119 lwkt_reltoken(&spechash_token
);
1124 * Add a vnode to the alias list hung off the cdev_t. We only associate
1125 * the device number with the vnode. The actual device is not associated
1126 * until the vnode is opened (usually in spec_open()), and will be
1127 * disassociated on last close.
1130 addaliasu(struct vnode
*nvp
, int x
, int y
)
1132 if (nvp
->v_type
!= VBLK
&& nvp
->v_type
!= VCHR
)
1133 panic("addaliasu on non-special vnode");
1139 * Simple call that a filesystem can make to try to get rid of a
1140 * vnode. It will fail if anyone is referencing the vnode (including
1143 * The filesystem can check whether its in-memory inode structure still
1144 * references the vp on return.
1147 vclean_unlocked(struct vnode
*vp
)
1150 if (sysref_isactive(&vp
->v_sysref
) == 0)
1156 * Disassociate a vnode from its underlying filesystem.
1158 * The vnode must be VX locked and referenced. In all normal situations
1159 * there are no active references. If vclean_vxlocked() is called while
1160 * there are active references, the vnode is being ripped out and we have
1161 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1164 vclean_vxlocked(struct vnode
*vp
, int flags
)
1169 struct namecache
*ncp
;
1172 * If the vnode has already been reclaimed we have nothing to do.
1174 if (vp
->v_flag
& VRECLAIMED
)
1176 vsetflags(vp
, VRECLAIMED
);
1178 if (verbose_reclaims
) {
1179 if ((ncp
= TAILQ_FIRST(&vp
->v_namecache
)) != NULL
)
1180 kprintf("Debug: reclaim %p %s\n", vp
, ncp
->nc_name
);
1184 * Scrap the vfs cache
1186 while (cache_inval_vp(vp
, 0) != 0) {
1187 kprintf("Warning: vnode %p clean/cache_resolution "
1188 "race detected\n", vp
);
1189 tsleep(vp
, 0, "vclninv", 2);
1193 * Check to see if the vnode is in use. If so we have to reference it
1194 * before we clean it out so that its count cannot fall to zero and
1195 * generate a race against ourselves to recycle it.
1197 active
= sysref_isactive(&vp
->v_sysref
);
1200 * Clean out any buffers associated with the vnode and destroy its
1201 * object, if it has one.
1203 vinvalbuf(vp
, V_SAVE
, 0, 0);
1206 * If purging an active vnode (typically during a forced unmount
1207 * or reboot), it must be closed and deactivated before being
1208 * reclaimed. This isn't really all that safe, but what can
1211 * Note that neither of these routines unlocks the vnode.
1213 if (active
&& (flags
& DOCLOSE
)) {
1214 while ((n
= vp
->v_opencount
) != 0) {
1215 if (vp
->v_writecount
)
1216 VOP_CLOSE(vp
, FWRITE
|FNONBLOCK
);
1218 VOP_CLOSE(vp
, FNONBLOCK
);
1219 if (vp
->v_opencount
== n
) {
1220 kprintf("Warning: unable to force-close"
1228 * If the vnode has not been deactivated, deactivated it. Deactivation
1229 * can create new buffers and VM pages so we have to call vinvalbuf()
1230 * again to make sure they all get flushed.
1232 * This can occur if a file with a link count of 0 needs to be
1235 * If the vnode is already dead don't try to deactivate it.
1237 if ((vp
->v_flag
& VINACTIVE
) == 0) {
1238 vsetflags(vp
, VINACTIVE
);
1241 vinvalbuf(vp
, V_SAVE
, 0, 0);
1245 * If the vnode has an object, destroy it.
1247 while ((object
= vp
->v_object
) != NULL
) {
1248 vm_object_hold(object
);
1249 if (object
== vp
->v_object
)
1251 vm_object_drop(object
);
1254 if (object
!= NULL
) {
1255 if (object
->ref_count
== 0) {
1256 if ((object
->flags
& OBJ_DEAD
) == 0)
1257 vm_object_terminate(object
);
1258 vm_object_drop(object
);
1259 vclrflags(vp
, VOBJBUF
);
1261 vm_pager_deallocate(object
);
1262 vclrflags(vp
, VOBJBUF
);
1263 vm_object_drop(object
);
1266 KKASSERT((vp
->v_flag
& VOBJBUF
) == 0);
1269 * Reclaim the vnode if not already dead.
1271 if (vp
->v_mount
&& VOP_RECLAIM(vp
))
1272 panic("vclean: cannot reclaim");
1275 * Done with purge, notify sleepers of the grim news.
1277 vp
->v_ops
= &dead_vnode_vops_p
;
1282 * If we are destroying an active vnode, reactivate it now that
1283 * we have reassociated it with deadfs. This prevents the system
1284 * from crashing on the vnode due to it being unexpectedly marked
1285 * as inactive or reclaimed.
1287 if (active
&& (flags
& DOCLOSE
)) {
1288 vclrflags(vp
, VINACTIVE
| VRECLAIMED
);
1293 * Eliminate all activity associated with the requested vnode
1294 * and with all vnodes aliased to the requested vnode.
1296 * The vnode must be referenced but should not be locked.
1299 vrevoke(struct vnode
*vp
, struct ucred
*cred
)
1307 * If the vnode has a device association, scrap all vnodes associated
1308 * with the device. Don't let the device disappear on us while we
1309 * are scrapping the vnodes.
1311 * The passed vp will probably show up in the list, do not VX lock
1314 * Releasing the vnode's rdev here can mess up specfs's call to
1315 * device close, so don't do it. The vnode has been disassociated
1316 * and the device will be closed after the last ref on the related
1317 * fp goes away (if not still open by e.g. the kernel).
1319 if (vp
->v_type
!= VCHR
) {
1320 error
= fdrevoke(vp
, DTYPE_VNODE
, cred
);
1323 if ((dev
= vp
->v_rdev
) == NULL
) {
1327 lwkt_gettoken(&spechash_token
);
1330 vqn
= SLIST_FIRST(&dev
->si_hlist
);
1333 while ((vq
= vqn
) != NULL
) {
1334 if (sysref_isactive(&vq
->v_sysref
)) {
1336 fdrevoke(vq
, DTYPE_VNODE
, cred
);
1337 /*v_release_rdev(vq);*/
1339 if (vq
->v_rdev
!= dev
) {
1344 vqn
= SLIST_NEXT(vq
, v_cdevnext
);
1349 lwkt_reltoken(&spechash_token
);
1356 * This is called when the object underlying a vnode is being destroyed,
1357 * such as in a remove(). Try to recycle the vnode immediately if the
1358 * only active reference is our reference.
1360 * Directory vnodes in the namecache with children cannot be immediately
1361 * recycled because numerous VOP_N*() ops require them to be stable.
1363 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1364 * function is a NOP if VRECLAIMED is already set.
1367 vrecycle(struct vnode
*vp
)
1369 if (vp
->v_sysref
.refcnt
<= 1 && (vp
->v_flag
& VRECLAIMED
) == 0) {
1370 if (cache_inval_vp_nonblock(vp
))
1379 * Return the maximum I/O size allowed for strategy calls on VP.
1381 * If vp is VCHR or VBLK we dive the device, otherwise we use
1382 * the vp's mount info.
1385 vmaxiosize(struct vnode
*vp
)
1387 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
) {
1388 return(vp
->v_rdev
->si_iosize_max
);
1390 return(vp
->v_mount
->mnt_iosize_max
);
1395 * Eliminate all activity associated with a vnode in preparation for reuse.
1397 * The vnode must be VX locked and refd and will remain VX locked and refd
1398 * on return. This routine may be called with the vnode in any state, as
1399 * long as it is VX locked. The vnode will be cleaned out and marked
1400 * VRECLAIMED but will not actually be reused until all existing refs and
1403 * NOTE: This routine may be called on a vnode which has not yet been
1404 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1405 * already been reclaimed.
1407 * This routine is not responsible for placing us back on the freelist.
1408 * Instead, it happens automatically when the caller releases the VX lock
1409 * (assuming there aren't any other references).
1412 vgone_vxlocked(struct vnode
*vp
)
1415 * assert that the VX lock is held. This is an absolute requirement
1416 * now for vgone_vxlocked() to be called.
1418 KKASSERT(vp
->v_lock
.lk_exclusivecount
== 1);
1421 * Clean out the filesystem specific data and set the VRECLAIMED
1422 * bit. Also deactivate the vnode if necessary.
1424 vclean_vxlocked(vp
, DOCLOSE
);
1427 * Delete from old mount point vnode list, if on one.
1429 if (vp
->v_mount
!= NULL
) {
1430 KKASSERT(vp
->v_data
== NULL
);
1431 insmntque(vp
, NULL
);
1435 * If special device, remove it from special device alias list
1436 * if it is on one. This should normally only occur if a vnode is
1437 * being revoked as the device should otherwise have been released
1440 if ((vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
) && vp
->v_rdev
!= NULL
) {
1451 * Lookup a vnode by device number.
1453 * Returns non-zero and *vpp set to a vref'd vnode on success.
1454 * Returns zero on failure.
1457 vfinddev(cdev_t dev
, enum vtype type
, struct vnode
**vpp
)
1461 lwkt_gettoken(&spechash_token
);
1462 SLIST_FOREACH(vp
, &dev
->si_hlist
, v_cdevnext
) {
1463 if (type
== vp
->v_type
) {
1466 lwkt_reltoken(&spechash_token
);
1470 lwkt_reltoken(&spechash_token
);
1475 * Calculate the total number of references to a special device. This
1476 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1477 * an overloaded field. Since udev2dev can now return NULL, we have
1478 * to check for a NULL v_rdev.
1481 count_dev(cdev_t dev
)
1486 if (SLIST_FIRST(&dev
->si_hlist
)) {
1487 lwkt_gettoken(&spechash_token
);
1488 SLIST_FOREACH(vp
, &dev
->si_hlist
, v_cdevnext
) {
1489 count
+= vp
->v_opencount
;
1491 lwkt_reltoken(&spechash_token
);
1497 vcount(struct vnode
*vp
)
1499 if (vp
->v_rdev
== NULL
)
1501 return(count_dev(vp
->v_rdev
));
1505 * Initialize VMIO for a vnode. This routine MUST be called before a
1506 * VFS can issue buffer cache ops on a vnode. It is typically called
1507 * when a vnode is initialized from its inode.
1510 vinitvmio(struct vnode
*vp
, off_t filesize
, int blksize
, int boff
)
1516 while ((object
= vp
->v_object
) != NULL
) {
1517 vm_object_hold(object
);
1518 if (object
== vp
->v_object
)
1520 vm_object_drop(object
);
1523 if (object
== NULL
) {
1524 object
= vnode_pager_alloc(vp
, filesize
, 0, 0, blksize
, boff
);
1527 * Dereference the reference we just created. This assumes
1528 * that the object is associated with the vp.
1530 vm_object_hold(object
);
1531 object
->ref_count
--;
1534 if (object
->flags
& OBJ_DEAD
) {
1536 if (vp
->v_object
== object
)
1537 vm_object_dead_sleep(object
, "vodead");
1538 vn_lock(vp
, LK_EXCLUSIVE
| LK_RETRY
);
1539 vm_object_drop(object
);
1543 KASSERT(vp
->v_object
!= NULL
, ("vinitvmio: NULL object"));
1544 vsetflags(vp
, VOBJBUF
);
1545 vm_object_drop(object
);
1552 * Print out a description of a vnode.
1554 static char *typename
[] =
1555 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1558 vprint(char *label
, struct vnode
*vp
)
1563 kprintf("%s: %p: ", label
, (void *)vp
);
1565 kprintf("%p: ", (void *)vp
);
1566 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1567 typename
[vp
->v_type
],
1568 vp
->v_sysref
.refcnt
, vp
->v_writecount
, vp
->v_auxrefs
);
1570 if (vp
->v_flag
& VROOT
)
1571 strcat(buf
, "|VROOT");
1572 if (vp
->v_flag
& VPFSROOT
)
1573 strcat(buf
, "|VPFSROOT");
1574 if (vp
->v_flag
& VTEXT
)
1575 strcat(buf
, "|VTEXT");
1576 if (vp
->v_flag
& VSYSTEM
)
1577 strcat(buf
, "|VSYSTEM");
1578 if (vp
->v_flag
& VFREE
)
1579 strcat(buf
, "|VFREE");
1580 if (vp
->v_flag
& VOBJBUF
)
1581 strcat(buf
, "|VOBJBUF");
1583 kprintf(" flags (%s)", &buf
[1]);
1584 if (vp
->v_data
== NULL
) {
1593 * Do the usual access checking.
1594 * file_mode, uid and gid are from the vnode in question,
1595 * while acc_mode and cred are from the VOP_ACCESS parameter list
1598 vaccess(enum vtype type
, mode_t file_mode
, uid_t uid
, gid_t gid
,
1599 mode_t acc_mode
, struct ucred
*cred
)
1605 * Super-user always gets read/write access, but execute access depends
1606 * on at least one execute bit being set.
1608 if (priv_check_cred(cred
, PRIV_ROOT
, 0) == 0) {
1609 if ((acc_mode
& VEXEC
) && type
!= VDIR
&&
1610 (file_mode
& (S_IXUSR
|S_IXGRP
|S_IXOTH
)) == 0)
1617 /* Otherwise, check the owner. */
1618 if (cred
->cr_uid
== uid
) {
1619 if (acc_mode
& VEXEC
)
1621 if (acc_mode
& VREAD
)
1623 if (acc_mode
& VWRITE
)
1625 return ((file_mode
& mask
) == mask
? 0 : EACCES
);
1628 /* Otherwise, check the groups. */
1629 ismember
= groupmember(gid
, cred
);
1630 if (cred
->cr_svgid
== gid
|| ismember
) {
1631 if (acc_mode
& VEXEC
)
1633 if (acc_mode
& VREAD
)
1635 if (acc_mode
& VWRITE
)
1637 return ((file_mode
& mask
) == mask
? 0 : EACCES
);
1640 /* Otherwise, check everyone else. */
1641 if (acc_mode
& VEXEC
)
1643 if (acc_mode
& VREAD
)
1645 if (acc_mode
& VWRITE
)
1647 return ((file_mode
& mask
) == mask
? 0 : EACCES
);
1651 #include <ddb/ddb.h>
1653 static int db_show_locked_vnodes(struct mount
*mp
, void *data
);
1656 * List all of the locked vnodes in the system.
1657 * Called when debugging the kernel.
1659 DB_SHOW_COMMAND(lockedvnodes
, lockedvnodes
)
1661 kprintf("Locked vnodes\n");
1662 mountlist_scan(db_show_locked_vnodes
, NULL
,
1663 MNTSCAN_FORWARD
|MNTSCAN_NOBUSY
);
1667 db_show_locked_vnodes(struct mount
*mp
, void *data __unused
)
1671 TAILQ_FOREACH(vp
, &mp
->mnt_nvnodelist
, v_nmntvnodes
) {
1672 if (vn_islocked(vp
))
1680 * Top level filesystem related information gathering.
1682 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS
);
1685 vfs_sysctl(SYSCTL_HANDLER_ARGS
)
1687 int *name
= (int *)arg1
- 1; /* XXX */
1688 u_int namelen
= arg2
+ 1; /* XXX */
1689 struct vfsconf
*vfsp
;
1692 #if 1 || defined(COMPAT_PRELITE2)
1693 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1695 return (sysctl_ovfs_conf(oidp
, arg1
, arg2
, req
));
1699 /* all sysctl names at this level are at least name and field */
1701 return (ENOTDIR
); /* overloaded */
1702 if (name
[0] != VFS_GENERIC
) {
1703 vfsp
= vfsconf_find_by_typenum(name
[0]);
1705 return (EOPNOTSUPP
);
1706 return ((*vfsp
->vfc_vfsops
->vfs_sysctl
)(&name
[1], namelen
- 1,
1707 oldp
, oldlenp
, newp
, newlen
, p
));
1711 case VFS_MAXTYPENUM
:
1714 maxtypenum
= vfsconf_get_maxtypenum();
1715 return (SYSCTL_OUT(req
, &maxtypenum
, sizeof(maxtypenum
)));
1718 return (ENOTDIR
); /* overloaded */
1719 vfsp
= vfsconf_find_by_typenum(name
[2]);
1721 return (EOPNOTSUPP
);
1722 return (SYSCTL_OUT(req
, vfsp
, sizeof *vfsp
));
1724 return (EOPNOTSUPP
);
1727 SYSCTL_NODE(_vfs
, VFS_GENERIC
, generic
, CTLFLAG_RD
, vfs_sysctl
,
1728 "Generic filesystem");
1730 #if 1 || defined(COMPAT_PRELITE2)
1733 sysctl_ovfs_conf_iter(struct vfsconf
*vfsp
, void *data
)
1736 struct ovfsconf ovfs
;
1737 struct sysctl_req
*req
= (struct sysctl_req
*) data
;
1739 bzero(&ovfs
, sizeof(ovfs
));
1740 ovfs
.vfc_vfsops
= vfsp
->vfc_vfsops
; /* XXX used as flag */
1741 strcpy(ovfs
.vfc_name
, vfsp
->vfc_name
);
1742 ovfs
.vfc_index
= vfsp
->vfc_typenum
;
1743 ovfs
.vfc_refcount
= vfsp
->vfc_refcount
;
1744 ovfs
.vfc_flags
= vfsp
->vfc_flags
;
1745 error
= SYSCTL_OUT(req
, &ovfs
, sizeof ovfs
);
1747 return error
; /* abort iteration with error code */
1749 return 0; /* continue iterating with next element */
1753 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS
)
1755 return vfsconf_each(sysctl_ovfs_conf_iter
, (void*)req
);
1758 #endif /* 1 || COMPAT_PRELITE2 */
1761 * Check to see if a filesystem is mounted on a block device.
1764 vfs_mountedon(struct vnode
*vp
)
1768 if ((dev
= vp
->v_rdev
) == NULL
) {
1769 /* if (vp->v_type != VBLK)
1770 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1772 if (dev
!= NULL
&& dev
->si_mountpoint
)
1778 * Unmount all filesystems. The list is traversed in reverse order
1779 * of mounting to avoid dependencies.
1782 static int vfs_umountall_callback(struct mount
*mp
, void *data
);
1785 vfs_unmountall(void)
1790 count
= mountlist_scan(vfs_umountall_callback
,
1791 NULL
, MNTSCAN_REVERSE
|MNTSCAN_NOBUSY
);
1797 vfs_umountall_callback(struct mount
*mp
, void *data
)
1801 error
= dounmount(mp
, MNT_FORCE
);
1803 mountlist_remove(mp
);
1804 kprintf("unmount of filesystem mounted from %s failed (",
1805 mp
->mnt_stat
.f_mntfromname
);
1809 kprintf("%d)\n", error
);
1815 * Checks the mount flags for parameter mp and put the names comma-separated
1816 * into a string buffer buf with a size limit specified by len.
1818 * It returns the number of bytes written into buf, and (*errorp) will be
1819 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1820 * not large enough). The buffer will be 0-terminated if len was not 0.
1823 vfs_flagstostr(int flags
, const struct mountctl_opt
*optp
,
1824 char *buf
, size_t len
, int *errorp
)
1826 static const struct mountctl_opt optnames
[] = {
1827 { MNT_ASYNC
, "asynchronous" },
1828 { MNT_EXPORTED
, "NFS exported" },
1829 { MNT_LOCAL
, "local" },
1830 { MNT_NOATIME
, "noatime" },
1831 { MNT_NODEV
, "nodev" },
1832 { MNT_NOEXEC
, "noexec" },
1833 { MNT_NOSUID
, "nosuid" },
1834 { MNT_NOSYMFOLLOW
, "nosymfollow" },
1835 { MNT_QUOTA
, "with-quotas" },
1836 { MNT_RDONLY
, "read-only" },
1837 { MNT_SYNCHRONOUS
, "synchronous" },
1838 { MNT_UNION
, "union" },
1839 { MNT_NOCLUSTERR
, "noclusterr" },
1840 { MNT_NOCLUSTERW
, "noclusterw" },
1841 { MNT_SUIDDIR
, "suiddir" },
1842 { MNT_SOFTDEP
, "soft-updates" },
1843 { MNT_IGNORE
, "ignore" },
1853 bleft
= len
- 1; /* leave room for trailing \0 */
1856 * Checks the size of the string. If it contains
1857 * any data, then we will append the new flags to
1860 actsize
= strlen(buf
);
1864 /* Default flags if no flags passed */
1868 if (bleft
< 0) { /* degenerate case, 0-length buffer */
1873 for (; flags
&& optp
->o_opt
; ++optp
) {
1874 if ((flags
& optp
->o_opt
) == 0)
1876 optlen
= strlen(optp
->o_name
);
1877 if (bwritten
|| actsize
> 0) {
1882 buf
[bwritten
++] = ',';
1883 buf
[bwritten
++] = ' ';
1886 if (bleft
< optlen
) {
1890 bcopy(optp
->o_name
, buf
+ bwritten
, optlen
);
1893 flags
&= ~optp
->o_opt
;
1897 * Space already reserved for trailing \0
1904 * Build hash lists of net addresses and hang them off the mount point.
1905 * Called by ufs_mount() to set up the lists of export addresses.
1908 vfs_hang_addrlist(struct mount
*mp
, struct netexport
*nep
,
1909 const struct export_args
*argp
)
1912 struct radix_node_head
*rnh
;
1914 struct radix_node
*rn
;
1915 struct sockaddr
*saddr
, *smask
= NULL
;
1919 if (argp
->ex_addrlen
== 0) {
1920 if (mp
->mnt_flag
& MNT_DEFEXPORTED
)
1922 np
= &nep
->ne_defexported
;
1923 np
->netc_exflags
= argp
->ex_flags
;
1924 np
->netc_anon
= argp
->ex_anon
;
1925 np
->netc_anon
.cr_ref
= 1;
1926 mp
->mnt_flag
|= MNT_DEFEXPORTED
;
1930 if (argp
->ex_addrlen
< 0 || argp
->ex_addrlen
> MLEN
)
1932 if (argp
->ex_masklen
< 0 || argp
->ex_masklen
> MLEN
)
1935 i
= sizeof(struct netcred
) + argp
->ex_addrlen
+ argp
->ex_masklen
;
1936 np
= (struct netcred
*) kmalloc(i
, M_NETADDR
, M_WAITOK
| M_ZERO
);
1937 saddr
= (struct sockaddr
*) (np
+ 1);
1938 if ((error
= copyin(argp
->ex_addr
, (caddr_t
) saddr
, argp
->ex_addrlen
)))
1940 if (saddr
->sa_len
> argp
->ex_addrlen
)
1941 saddr
->sa_len
= argp
->ex_addrlen
;
1942 if (argp
->ex_masklen
) {
1943 smask
= (struct sockaddr
*)((caddr_t
)saddr
+ argp
->ex_addrlen
);
1944 error
= copyin(argp
->ex_mask
, (caddr_t
)smask
, argp
->ex_masklen
);
1947 if (smask
->sa_len
> argp
->ex_masklen
)
1948 smask
->sa_len
= argp
->ex_masklen
;
1950 i
= saddr
->sa_family
;
1951 if ((rnh
= nep
->ne_rtable
[i
]) == NULL
) {
1953 * Seems silly to initialize every AF when most are not used,
1954 * do so on demand here
1956 SLIST_FOREACH(dom
, &domains
, dom_next
)
1957 if (dom
->dom_family
== i
&& dom
->dom_rtattach
) {
1958 dom
->dom_rtattach((void **) &nep
->ne_rtable
[i
],
1962 if ((rnh
= nep
->ne_rtable
[i
]) == NULL
) {
1967 rn
= (*rnh
->rnh_addaddr
) ((char *) saddr
, (char *) smask
, rnh
,
1969 if (rn
== NULL
|| np
!= (struct netcred
*) rn
) { /* already exists */
1973 np
->netc_exflags
= argp
->ex_flags
;
1974 np
->netc_anon
= argp
->ex_anon
;
1975 np
->netc_anon
.cr_ref
= 1;
1978 kfree(np
, M_NETADDR
);
1984 vfs_free_netcred(struct radix_node
*rn
, void *w
)
1986 struct radix_node_head
*rnh
= (struct radix_node_head
*) w
;
1988 (*rnh
->rnh_deladdr
) (rn
->rn_key
, rn
->rn_mask
, rnh
);
1989 kfree((caddr_t
) rn
, M_NETADDR
);
1994 * Free the net address hash lists that are hanging off the mount points.
1997 vfs_free_addrlist(struct netexport
*nep
)
2000 struct radix_node_head
*rnh
;
2002 for (i
= 0; i
<= AF_MAX
; i
++)
2003 if ((rnh
= nep
->ne_rtable
[i
])) {
2004 (*rnh
->rnh_walktree
) (rnh
, vfs_free_netcred
,
2006 kfree((caddr_t
) rnh
, M_RTABLE
);
2007 nep
->ne_rtable
[i
] = 0;
2012 vfs_export(struct mount
*mp
, struct netexport
*nep
,
2013 const struct export_args
*argp
)
2017 if (argp
->ex_flags
& MNT_DELEXPORT
) {
2018 if (mp
->mnt_flag
& MNT_EXPUBLIC
) {
2019 vfs_setpublicfs(NULL
, NULL
, NULL
);
2020 mp
->mnt_flag
&= ~MNT_EXPUBLIC
;
2022 vfs_free_addrlist(nep
);
2023 mp
->mnt_flag
&= ~(MNT_EXPORTED
| MNT_DEFEXPORTED
);
2025 if (argp
->ex_flags
& MNT_EXPORTED
) {
2026 if (argp
->ex_flags
& MNT_EXPUBLIC
) {
2027 if ((error
= vfs_setpublicfs(mp
, nep
, argp
)) != 0)
2029 mp
->mnt_flag
|= MNT_EXPUBLIC
;
2031 if ((error
= vfs_hang_addrlist(mp
, nep
, argp
)))
2033 mp
->mnt_flag
|= MNT_EXPORTED
;
2040 * Set the publicly exported filesystem (WebNFS). Currently, only
2041 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2044 vfs_setpublicfs(struct mount
*mp
, struct netexport
*nep
,
2045 const struct export_args
*argp
)
2052 * mp == NULL -> invalidate the current info, the FS is
2053 * no longer exported. May be called from either vfs_export
2054 * or unmount, so check if it hasn't already been done.
2057 if (nfs_pub
.np_valid
) {
2058 nfs_pub
.np_valid
= 0;
2059 if (nfs_pub
.np_index
!= NULL
) {
2060 kfree(nfs_pub
.np_index
, M_TEMP
);
2061 nfs_pub
.np_index
= NULL
;
2068 * Only one allowed at a time.
2070 if (nfs_pub
.np_valid
!= 0 && mp
!= nfs_pub
.np_mount
)
2074 * Get real filehandle for root of exported FS.
2076 bzero((caddr_t
)&nfs_pub
.np_handle
, sizeof(nfs_pub
.np_handle
));
2077 nfs_pub
.np_handle
.fh_fsid
= mp
->mnt_stat
.f_fsid
;
2079 if ((error
= VFS_ROOT(mp
, &rvp
)))
2082 if ((error
= VFS_VPTOFH(rvp
, &nfs_pub
.np_handle
.fh_fid
)))
2088 * If an indexfile was specified, pull it in.
2090 if (argp
->ex_indexfile
!= NULL
) {
2093 error
= vn_get_namelen(rvp
, &namelen
);
2096 nfs_pub
.np_index
= kmalloc(namelen
, M_TEMP
, M_WAITOK
);
2097 error
= copyinstr(argp
->ex_indexfile
, nfs_pub
.np_index
,
2101 * Check for illegal filenames.
2103 for (cp
= nfs_pub
.np_index
; *cp
; cp
++) {
2111 kfree(nfs_pub
.np_index
, M_TEMP
);
2116 nfs_pub
.np_mount
= mp
;
2117 nfs_pub
.np_valid
= 1;
2122 vfs_export_lookup(struct mount
*mp
, struct netexport
*nep
,
2123 struct sockaddr
*nam
)
2126 struct radix_node_head
*rnh
;
2127 struct sockaddr
*saddr
;
2130 if (mp
->mnt_flag
& MNT_EXPORTED
) {
2132 * Lookup in the export list first.
2136 rnh
= nep
->ne_rtable
[saddr
->sa_family
];
2138 np
= (struct netcred
*)
2139 (*rnh
->rnh_matchaddr
)((char *)saddr
,
2141 if (np
&& np
->netc_rnodes
->rn_flags
& RNF_ROOT
)
2146 * If no address match, use the default if it exists.
2148 if (np
== NULL
&& mp
->mnt_flag
& MNT_DEFEXPORTED
)
2149 np
= &nep
->ne_defexported
;
2155 * perform msync on all vnodes under a mount point. The mount point must
2156 * be locked. This code is also responsible for lazy-freeing unreferenced
2157 * vnodes whos VM objects no longer contain pages.
2159 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2161 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2162 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2163 * way up in this high level function.
2165 static int vfs_msync_scan1(struct mount
*mp
, struct vnode
*vp
, void *data
);
2166 static int vfs_msync_scan2(struct mount
*mp
, struct vnode
*vp
, void *data
);
2169 vfs_msync(struct mount
*mp
, int flags
)
2174 * tmpfs sets this flag to prevent msync(), sync, and the
2175 * filesystem periodic syncer from trying to flush VM pages
2176 * to swap. Only pure memory pressure flushes tmpfs VM pages
2179 if (mp
->mnt_kern_flag
& MNTK_NOMSYNC
)
2183 * Ok, scan the vnodes for work.
2185 vmsc_flags
= VMSC_GETVP
;
2186 if (flags
!= MNT_WAIT
)
2187 vmsc_flags
|= VMSC_NOWAIT
;
2188 vmntvnodescan(mp
, vmsc_flags
,
2189 vfs_msync_scan1
, vfs_msync_scan2
,
2190 (void *)(intptr_t)flags
);
2194 * scan1 is a fast pre-check. There could be hundreds of thousands of
2195 * vnodes, we cannot afford to do anything heavy weight until we have a
2196 * fairly good indication that there is work to do.
2200 vfs_msync_scan1(struct mount
*mp
, struct vnode
*vp
, void *data
)
2202 int flags
= (int)(intptr_t)data
;
2204 if ((vp
->v_flag
& VRECLAIMED
) == 0) {
2205 if (vshouldmsync(vp
))
2206 return(0); /* call scan2 */
2207 if ((mp
->mnt_flag
& MNT_RDONLY
) == 0 &&
2208 (vp
->v_flag
& VOBJDIRTY
) &&
2209 (flags
== MNT_WAIT
|| vn_islocked(vp
) == 0)) {
2210 return(0); /* call scan2 */
2215 * do not call scan2, continue the loop
2221 * This callback is handed a locked vnode.
2225 vfs_msync_scan2(struct mount
*mp
, struct vnode
*vp
, void *data
)
2228 int flags
= (int)(intptr_t)data
;
2230 if (vp
->v_flag
& VRECLAIMED
)
2233 if ((mp
->mnt_flag
& MNT_RDONLY
) == 0 && (vp
->v_flag
& VOBJDIRTY
)) {
2234 if ((obj
= vp
->v_object
) != NULL
) {
2235 vm_object_page_clean(obj
, 0, 0,
2236 flags
== MNT_WAIT
? OBJPC_SYNC
: OBJPC_NOSYNC
);
2243 * Wake up anyone interested in vp because it is being revoked.
2246 vn_gone(struct vnode
*vp
)
2248 lwkt_gettoken(&vp
->v_token
);
2249 KNOTE(&vp
->v_pollinfo
.vpi_kqinfo
.ki_note
, NOTE_REVOKE
);
2250 lwkt_reltoken(&vp
->v_token
);
2254 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2255 * (or v_rdev might be NULL).
2258 vn_todev(struct vnode
*vp
)
2260 if (vp
->v_type
!= VBLK
&& vp
->v_type
!= VCHR
)
2262 KKASSERT(vp
->v_rdev
!= NULL
);
2263 return (vp
->v_rdev
);
2267 * Check if vnode represents a disk device. The vnode does not need to be
2273 vn_isdisk(struct vnode
*vp
, int *errp
)
2277 if (vp
->v_type
!= VCHR
) {
2290 if (dev_is_good(dev
) == 0) {
2295 if ((dev_dflags(dev
) & D_DISK
) == 0) {
2306 vn_get_namelen(struct vnode
*vp
, int *namelen
)
2309 register_t retval
[2];
2311 error
= VOP_PATHCONF(vp
, _PC_NAME_MAX
, retval
);
2314 *namelen
= (int)retval
[0];
2319 vop_write_dirent(int *error
, struct uio
*uio
, ino_t d_ino
, uint8_t d_type
,
2320 uint16_t d_namlen
, const char *d_name
)
2325 len
= _DIRENT_RECLEN(d_namlen
);
2326 if (len
> uio
->uio_resid
)
2329 dp
= kmalloc(len
, M_TEMP
, M_WAITOK
| M_ZERO
);
2332 dp
->d_namlen
= d_namlen
;
2333 dp
->d_type
= d_type
;
2334 bcopy(d_name
, dp
->d_name
, d_namlen
);
2336 *error
= uiomove((caddr_t
)dp
, len
, uio
);
2344 vn_mark_atime(struct vnode
*vp
, struct thread
*td
)
2346 struct proc
*p
= td
->td_proc
;
2347 struct ucred
*cred
= p
? p
->p_ucred
: proc0
.p_ucred
;
2349 if ((vp
->v_mount
->mnt_flag
& (MNT_NOATIME
| MNT_RDONLY
)) == 0) {
2350 VOP_MARKATIME(vp
, cred
);