kernel: Add a few forgotten crit_exit()s and fix a wrong crit_enter().
[dragonfly.git] / sys / kern / vfs_bio.c
bloba52fec32eb91686a203f5d6dc1f69c8938d23b02
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info.
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
71 * Buffer queues.
73 enum bufq_type {
74 BQUEUE_NONE, /* not on any queue */
75 BQUEUE_LOCKED, /* locked buffers */
76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
80 BQUEUE_EMPTY, /* empty buffer headers */
82 BUFFER_QUEUES /* number of buffer queues */
85 typedef enum bufq_type bufq_type_t;
87 #define BD_WAKE_SIZE 16384
88 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
96 struct buf *buf; /* buffer header pool */
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 #if 0
101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
102 #endif
103 static void vfs_vmio_release(struct buf *bp);
104 static int flushbufqueues(bufq_type_t q);
105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
107 static void bd_signal(int totalspace);
108 static void buf_daemon(void);
109 static void buf_daemon_hw(void);
112 * bogus page -- for I/O to/from partially complete buffers
113 * this is a temporary solution to the problem, but it is not
114 * really that bad. it would be better to split the buffer
115 * for input in the case of buffers partially already in memory,
116 * but the code is intricate enough already.
118 vm_page_t bogus_page;
121 * These are all static, but make the ones we export globals so we do
122 * not need to use compiler magic.
124 long bufspace; /* locked by buffer_map */
125 long maxbufspace;
126 static long bufmallocspace; /* atomic ops */
127 long maxbufmallocspace, lobufspace, hibufspace;
128 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
129 static long lorunningspace;
130 static long hirunningspace;
131 static int runningbufreq; /* locked by bufcspin */
132 static long dirtybufspace; /* locked by bufcspin */
133 static int dirtybufcount; /* locked by bufcspin */
134 static long dirtybufspacehw; /* locked by bufcspin */
135 static int dirtybufcounthw; /* locked by bufcspin */
136 static long runningbufspace; /* locked by bufcspin */
137 static int runningbufcount; /* locked by bufcspin */
138 long lodirtybufspace;
139 long hidirtybufspace;
140 static int getnewbufcalls;
141 static int getnewbufrestarts;
142 static int recoverbufcalls;
143 static int needsbuffer; /* locked by bufcspin */
144 static int bd_request; /* locked by bufcspin */
145 static int bd_request_hw; /* locked by bufcspin */
146 static u_int bd_wake_ary[BD_WAKE_SIZE];
147 static u_int bd_wake_index;
148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
149 static int debug_commit;
151 static struct thread *bufdaemon_td;
152 static struct thread *bufdaemonhw_td;
153 static u_int lowmempgallocs;
154 static u_int lowmempgfails;
157 * Sysctls for operational control of the buffer cache.
159 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
160 "Number of dirty buffers to flush before bufdaemon becomes inactive");
161 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
162 "High watermark used to trigger explicit flushing of dirty buffers");
163 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
164 "Minimum amount of buffer space required for active I/O");
165 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
166 "Maximum amount of buffer space to usable for active I/O");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
168 "Page allocations done during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
170 "Page allocations which failed during periods of very low free memory");
171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
172 "Recycle pages to active or inactive queue transition pt 0-64");
174 * Sysctls determining current state of the buffer cache.
176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
177 "Total number of buffers in buffer cache");
178 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
179 "Pending bytes of dirty buffers (all)");
180 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
181 "Pending bytes of dirty buffers (heavy weight)");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
183 "Pending number of dirty buffers");
184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
185 "Pending number of dirty buffers (heavy weight)");
186 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
187 "I/O bytes currently in progress due to asynchronous writes");
188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
189 "I/O buffers currently in progress due to asynchronous writes");
190 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
191 "Hard limit on maximum amount of memory usable for buffer space");
192 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
193 "Soft limit on maximum amount of memory usable for buffer space");
194 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
195 "Minimum amount of memory to reserve for system buffer space");
196 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
197 "Amount of memory available for buffers");
198 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
199 0, "Maximum amount of memory reserved for buffers using malloc");
200 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
201 "Amount of memory left for buffers using malloc-scheme");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
203 "New buffer header acquisition requests");
204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
205 0, "New buffer header acquisition restarts");
206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
207 "Recover VM space in an emergency");
208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
209 "Buffer acquisition restarts due to fragmented buffer map");
210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
211 "Amount of time KVA space was deallocated in an arbitrary buffer");
212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
213 "Amount of time buffer re-use operations were successful");
214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
216 "sizeof(struct buf)");
218 char *buf_wmesg = BUF_WMESG;
220 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
221 #define VFS_BIO_NEED_UNUSED02 0x02
222 #define VFS_BIO_NEED_UNUSED04 0x04
223 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
226 * bufspacewakeup:
228 * Called when buffer space is potentially available for recovery.
229 * getnewbuf() will block on this flag when it is unable to free
230 * sufficient buffer space. Buffer space becomes recoverable when
231 * bp's get placed back in the queues.
233 static __inline void
234 bufspacewakeup(void)
237 * If someone is waiting for BUF space, wake them up. Even
238 * though we haven't freed the kva space yet, the waiting
239 * process will be able to now.
241 spin_lock(&bufcspin);
242 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
243 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
244 spin_unlock(&bufcspin);
245 wakeup(&needsbuffer);
246 } else {
247 spin_unlock(&bufcspin);
252 * runningbufwakeup:
254 * Accounting for I/O in progress.
257 static __inline void
258 runningbufwakeup(struct buf *bp)
260 long totalspace;
261 long limit;
263 if ((totalspace = bp->b_runningbufspace) != 0) {
264 spin_lock(&bufcspin);
265 runningbufspace -= totalspace;
266 --runningbufcount;
267 bp->b_runningbufspace = 0;
270 * see waitrunningbufspace() for limit test.
272 limit = hirunningspace * 3 / 6;
273 if (runningbufreq && runningbufspace <= limit) {
274 runningbufreq = 0;
275 spin_unlock(&bufcspin);
276 wakeup(&runningbufreq);
277 } else {
278 spin_unlock(&bufcspin);
280 bd_signal(totalspace);
285 * bufcountwakeup:
287 * Called when a buffer has been added to one of the free queues to
288 * account for the buffer and to wakeup anyone waiting for free buffers.
289 * This typically occurs when large amounts of metadata are being handled
290 * by the buffer cache ( else buffer space runs out first, usually ).
292 * MPSAFE
294 static __inline void
295 bufcountwakeup(void)
297 spin_lock(&bufcspin);
298 if (needsbuffer) {
299 needsbuffer &= ~VFS_BIO_NEED_ANY;
300 spin_unlock(&bufcspin);
301 wakeup(&needsbuffer);
302 } else {
303 spin_unlock(&bufcspin);
308 * waitrunningbufspace()
310 * If runningbufspace exceeds 4/6 hirunningspace we block until
311 * runningbufspace drops to 3/6 hirunningspace. We also block if another
312 * thread blocked here in order to be fair, even if runningbufspace
313 * is now lower than the limit.
315 * The caller may be using this function to block in a tight loop, we
316 * must block while runningbufspace is greater than at least
317 * hirunningspace * 3 / 6.
319 void
320 waitrunningbufspace(void)
322 long limit = hirunningspace * 4 / 6;
324 if (runningbufspace > limit || runningbufreq) {
325 spin_lock(&bufcspin);
326 while (runningbufspace > limit || runningbufreq) {
327 runningbufreq = 1;
328 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
330 spin_unlock(&bufcspin);
335 * buf_dirty_count_severe:
337 * Return true if we have too many dirty buffers.
340 buf_dirty_count_severe(void)
342 return (runningbufspace + dirtybufspace >= hidirtybufspace ||
343 dirtybufcount >= nbuf / 2);
347 * Return true if the amount of running I/O is severe and BIOQ should
348 * start bursting.
351 buf_runningbufspace_severe(void)
353 return (runningbufspace >= hirunningspace * 4 / 6);
357 * vfs_buf_test_cache:
359 * Called when a buffer is extended. This function clears the B_CACHE
360 * bit if the newly extended portion of the buffer does not contain
361 * valid data.
363 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
364 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
365 * them while a clean buffer was present.
367 static __inline__
368 void
369 vfs_buf_test_cache(struct buf *bp,
370 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
371 vm_page_t m)
373 if (bp->b_flags & B_CACHE) {
374 int base = (foff + off) & PAGE_MASK;
375 if (vm_page_is_valid(m, base, size) == 0)
376 bp->b_flags &= ~B_CACHE;
381 * bd_speedup()
383 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
384 * low water mark.
386 * MPSAFE
388 static __inline__
389 void
390 bd_speedup(void)
392 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
393 return;
395 if (bd_request == 0 &&
396 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
397 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
398 spin_lock(&bufcspin);
399 bd_request = 1;
400 spin_unlock(&bufcspin);
401 wakeup(&bd_request);
403 if (bd_request_hw == 0 &&
404 (dirtybufspacehw > lodirtybufspace / 2 ||
405 dirtybufcounthw >= nbuf / 2)) {
406 spin_lock(&bufcspin);
407 bd_request_hw = 1;
408 spin_unlock(&bufcspin);
409 wakeup(&bd_request_hw);
414 * bd_heatup()
416 * Get the buf_daemon heated up when the number of running and dirty
417 * buffers exceeds the mid-point.
419 * Return the total number of dirty bytes past the second mid point
420 * as a measure of how much excess dirty data there is in the system.
422 * MPSAFE
425 bd_heatup(void)
427 long mid1;
428 long mid2;
429 long totalspace;
431 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
433 totalspace = runningbufspace + dirtybufspace;
434 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
435 bd_speedup();
436 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
437 if (totalspace >= mid2)
438 return(totalspace - mid2);
440 return(0);
444 * bd_wait()
446 * Wait for the buffer cache to flush (totalspace) bytes worth of
447 * buffers, then return.
449 * Regardless this function blocks while the number of dirty buffers
450 * exceeds hidirtybufspace.
452 * MPSAFE
454 void
455 bd_wait(int totalspace)
457 u_int i;
458 int count;
460 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
461 return;
463 while (totalspace > 0) {
464 bd_heatup();
465 if (totalspace > runningbufspace + dirtybufspace)
466 totalspace = runningbufspace + dirtybufspace;
467 count = totalspace / BKVASIZE;
468 if (count >= BD_WAKE_SIZE)
469 count = BD_WAKE_SIZE - 1;
471 spin_lock(&bufcspin);
472 i = (bd_wake_index + count) & BD_WAKE_MASK;
473 ++bd_wake_ary[i];
476 * This is not a strict interlock, so we play a bit loose
477 * with locking access to dirtybufspace*
479 tsleep_interlock(&bd_wake_ary[i], 0);
480 spin_unlock(&bufcspin);
481 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
483 totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
488 * bd_signal()
490 * This function is called whenever runningbufspace or dirtybufspace
491 * is reduced. Track threads waiting for run+dirty buffer I/O
492 * complete.
494 * MPSAFE
496 static void
497 bd_signal(int totalspace)
499 u_int i;
501 if (totalspace > 0) {
502 if (totalspace > BKVASIZE * BD_WAKE_SIZE)
503 totalspace = BKVASIZE * BD_WAKE_SIZE;
504 spin_lock(&bufcspin);
505 while (totalspace > 0) {
506 i = bd_wake_index++;
507 i &= BD_WAKE_MASK;
508 if (bd_wake_ary[i]) {
509 bd_wake_ary[i] = 0;
510 spin_unlock(&bufcspin);
511 wakeup(&bd_wake_ary[i]);
512 spin_lock(&bufcspin);
514 totalspace -= BKVASIZE;
516 spin_unlock(&bufcspin);
521 * BIO tracking support routines.
523 * Release a ref on a bio_track. Wakeup requests are atomically released
524 * along with the last reference so bk_active will never wind up set to
525 * only 0x80000000.
527 * MPSAFE
529 static
530 void
531 bio_track_rel(struct bio_track *track)
533 int active;
534 int desired;
537 * Shortcut
539 active = track->bk_active;
540 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
541 return;
544 * Full-on. Note that the wait flag is only atomically released on
545 * the 1->0 count transition.
547 * We check for a negative count transition using bit 30 since bit 31
548 * has a different meaning.
550 for (;;) {
551 desired = (active & 0x7FFFFFFF) - 1;
552 if (desired)
553 desired |= active & 0x80000000;
554 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
555 if (desired & 0x40000000)
556 panic("bio_track_rel: bad count: %p\n", track);
557 if (active & 0x80000000)
558 wakeup(track);
559 break;
561 active = track->bk_active;
566 * Wait for the tracking count to reach 0.
568 * Use atomic ops such that the wait flag is only set atomically when
569 * bk_active is non-zero.
571 * MPSAFE
574 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
576 int active;
577 int desired;
578 int error;
581 * Shortcut
583 if (track->bk_active == 0)
584 return(0);
587 * Full-on. Note that the wait flag may only be atomically set if
588 * the active count is non-zero.
590 * NOTE: We cannot optimize active == desired since a wakeup could
591 * clear active prior to our tsleep_interlock().
593 error = 0;
594 while ((active = track->bk_active) != 0) {
595 cpu_ccfence();
596 desired = active | 0x80000000;
597 tsleep_interlock(track, slp_flags);
598 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
599 error = tsleep(track, slp_flags | PINTERLOCKED,
600 "trwait", slp_timo);
601 if (error)
602 break;
605 return (error);
609 * bufinit:
611 * Load time initialisation of the buffer cache, called from machine
612 * dependant initialization code.
614 void
615 bufinit(void)
617 struct buf *bp;
618 vm_offset_t bogus_offset;
619 int i;
621 /* next, make a null set of free lists */
622 for (i = 0; i < BUFFER_QUEUES; i++)
623 TAILQ_INIT(&bufqueues[i]);
625 /* finally, initialize each buffer header and stick on empty q */
626 for (i = 0; i < nbuf; i++) {
627 bp = &buf[i];
628 bzero(bp, sizeof *bp);
629 bp->b_flags = B_INVAL; /* we're just an empty header */
630 bp->b_cmd = BUF_CMD_DONE;
631 bp->b_qindex = BQUEUE_EMPTY;
632 initbufbio(bp);
633 xio_init(&bp->b_xio);
634 buf_dep_init(bp);
635 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
639 * maxbufspace is the absolute maximum amount of buffer space we are
640 * allowed to reserve in KVM and in real terms. The absolute maximum
641 * is nominally used by buf_daemon. hibufspace is the nominal maximum
642 * used by most other processes. The differential is required to
643 * ensure that buf_daemon is able to run when other processes might
644 * be blocked waiting for buffer space.
646 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
647 * this may result in KVM fragmentation which is not handled optimally
648 * by the system.
650 maxbufspace = (long)nbuf * BKVASIZE;
651 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
652 lobufspace = hibufspace - MAXBSIZE;
654 lorunningspace = 512 * 1024;
655 /* hirunningspace -- see below */
658 * Limit the amount of malloc memory since it is wired permanently
659 * into the kernel space. Even though this is accounted for in
660 * the buffer allocation, we don't want the malloced region to grow
661 * uncontrolled. The malloc scheme improves memory utilization
662 * significantly on average (small) directories.
664 maxbufmallocspace = hibufspace / 20;
667 * Reduce the chance of a deadlock occuring by limiting the number
668 * of delayed-write dirty buffers we allow to stack up.
670 * We don't want too much actually queued to the device at once
671 * (XXX this needs to be per-mount!), because the buffers will
672 * wind up locked for a very long period of time while the I/O
673 * drains.
675 hidirtybufspace = hibufspace / 2; /* dirty + running */
676 hirunningspace = hibufspace / 16; /* locked & queued to device */
677 if (hirunningspace < 1024 * 1024)
678 hirunningspace = 1024 * 1024;
680 dirtybufspace = 0;
681 dirtybufspacehw = 0;
683 lodirtybufspace = hidirtybufspace / 2;
686 * Maximum number of async ops initiated per buf_daemon loop. This is
687 * somewhat of a hack at the moment, we really need to limit ourselves
688 * based on the number of bytes of I/O in-transit that were initiated
689 * from buf_daemon.
692 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
693 vm_object_hold(&kernel_object);
694 bogus_page = vm_page_alloc(&kernel_object,
695 (bogus_offset >> PAGE_SHIFT),
696 VM_ALLOC_NORMAL);
697 vm_object_drop(&kernel_object);
698 vmstats.v_wire_count++;
703 * Initialize the embedded bio structures, typically used by
704 * deprecated code which tries to allocate its own struct bufs.
706 void
707 initbufbio(struct buf *bp)
709 bp->b_bio1.bio_buf = bp;
710 bp->b_bio1.bio_prev = NULL;
711 bp->b_bio1.bio_offset = NOOFFSET;
712 bp->b_bio1.bio_next = &bp->b_bio2;
713 bp->b_bio1.bio_done = NULL;
714 bp->b_bio1.bio_flags = 0;
716 bp->b_bio2.bio_buf = bp;
717 bp->b_bio2.bio_prev = &bp->b_bio1;
718 bp->b_bio2.bio_offset = NOOFFSET;
719 bp->b_bio2.bio_next = NULL;
720 bp->b_bio2.bio_done = NULL;
721 bp->b_bio2.bio_flags = 0;
723 BUF_LOCKINIT(bp);
727 * Reinitialize the embedded bio structures as well as any additional
728 * translation cache layers.
730 void
731 reinitbufbio(struct buf *bp)
733 struct bio *bio;
735 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
736 bio->bio_done = NULL;
737 bio->bio_offset = NOOFFSET;
742 * Undo the effects of an initbufbio().
744 void
745 uninitbufbio(struct buf *bp)
747 dsched_exit_buf(bp);
748 BUF_LOCKFREE(bp);
752 * Push another BIO layer onto an existing BIO and return it. The new
753 * BIO layer may already exist, holding cached translation data.
755 struct bio *
756 push_bio(struct bio *bio)
758 struct bio *nbio;
760 if ((nbio = bio->bio_next) == NULL) {
761 int index = bio - &bio->bio_buf->b_bio_array[0];
762 if (index >= NBUF_BIO - 1) {
763 panic("push_bio: too many layers bp %p\n",
764 bio->bio_buf);
766 nbio = &bio->bio_buf->b_bio_array[index + 1];
767 bio->bio_next = nbio;
768 nbio->bio_prev = bio;
769 nbio->bio_buf = bio->bio_buf;
770 nbio->bio_offset = NOOFFSET;
771 nbio->bio_done = NULL;
772 nbio->bio_next = NULL;
774 KKASSERT(nbio->bio_done == NULL);
775 return(nbio);
779 * Pop a BIO translation layer, returning the previous layer. The
780 * must have been previously pushed.
782 struct bio *
783 pop_bio(struct bio *bio)
785 return(bio->bio_prev);
788 void
789 clearbiocache(struct bio *bio)
791 while (bio) {
792 bio->bio_offset = NOOFFSET;
793 bio = bio->bio_next;
798 * bfreekva:
800 * Free the KVA allocation for buffer 'bp'.
802 * Must be called from a critical section as this is the only locking for
803 * buffer_map.
805 * Since this call frees up buffer space, we call bufspacewakeup().
807 * MPALMOSTSAFE
809 static void
810 bfreekva(struct buf *bp)
812 int count;
814 if (bp->b_kvasize) {
815 ++buffreekvacnt;
816 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
817 vm_map_lock(&buffer_map);
818 bufspace -= bp->b_kvasize;
819 vm_map_delete(&buffer_map,
820 (vm_offset_t) bp->b_kvabase,
821 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
822 &count
824 vm_map_unlock(&buffer_map);
825 vm_map_entry_release(count);
826 bp->b_kvasize = 0;
827 bp->b_kvabase = NULL;
828 bufspacewakeup();
833 * bremfree:
835 * Remove the buffer from the appropriate free list.
837 static __inline void
838 _bremfree(struct buf *bp)
840 if (bp->b_qindex != BQUEUE_NONE) {
841 KASSERT(BUF_REFCNTNB(bp) == 1,
842 ("bremfree: bp %p not locked",bp));
843 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
844 bp->b_qindex = BQUEUE_NONE;
845 } else {
846 if (BUF_REFCNTNB(bp) <= 1)
847 panic("bremfree: removing a buffer not on a queue");
851 void
852 bremfree(struct buf *bp)
854 spin_lock(&bufqspin);
855 _bremfree(bp);
856 spin_unlock(&bufqspin);
859 static void
860 bremfree_locked(struct buf *bp)
862 _bremfree(bp);
866 * This version of bread issues any required I/O asyncnronously and
867 * makes a callback on completion.
869 * The callback must check whether BIO_DONE is set in the bio and issue
870 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
871 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
873 void
874 breadcb(struct vnode *vp, off_t loffset, int size,
875 void (*func)(struct bio *), void *arg)
877 struct buf *bp;
879 bp = getblk(vp, loffset, size, 0, 0);
881 /* if not found in cache, do some I/O */
882 if ((bp->b_flags & B_CACHE) == 0) {
883 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
884 bp->b_cmd = BUF_CMD_READ;
885 bp->b_bio1.bio_done = func;
886 bp->b_bio1.bio_caller_info1.ptr = arg;
887 vfs_busy_pages(vp, bp);
888 BUF_KERNPROC(bp);
889 vn_strategy(vp, &bp->b_bio1);
890 } else if (func) {
892 * Since we are issuing the callback synchronously it cannot
893 * race the BIO_DONE, so no need for atomic ops here.
895 /*bp->b_bio1.bio_done = func;*/
896 bp->b_bio1.bio_caller_info1.ptr = arg;
897 bp->b_bio1.bio_flags |= BIO_DONE;
898 func(&bp->b_bio1);
899 } else {
900 bqrelse(bp);
905 * breadnx() - Terminal function for bread() and breadn().
907 * This function will start asynchronous I/O on read-ahead blocks as well
908 * as satisfy the primary request.
910 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
911 * set, the buffer is valid and we do not have to do anything.
914 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
915 int *rabsize, int cnt, struct buf **bpp)
917 struct buf *bp, *rabp;
918 int i;
919 int rv = 0, readwait = 0;
921 if (*bpp)
922 bp = *bpp;
923 else
924 *bpp = bp = getblk(vp, loffset, size, 0, 0);
926 /* if not found in cache, do some I/O */
927 if ((bp->b_flags & B_CACHE) == 0) {
928 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
929 bp->b_cmd = BUF_CMD_READ;
930 bp->b_bio1.bio_done = biodone_sync;
931 bp->b_bio1.bio_flags |= BIO_SYNC;
932 vfs_busy_pages(vp, bp);
933 vn_strategy(vp, &bp->b_bio1);
934 ++readwait;
937 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
938 if (inmem(vp, *raoffset))
939 continue;
940 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
942 if ((rabp->b_flags & B_CACHE) == 0) {
943 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
944 rabp->b_cmd = BUF_CMD_READ;
945 vfs_busy_pages(vp, rabp);
946 BUF_KERNPROC(rabp);
947 vn_strategy(vp, &rabp->b_bio1);
948 } else {
949 brelse(rabp);
952 if (readwait)
953 rv = biowait(&bp->b_bio1, "biord");
954 return (rv);
958 * bwrite:
960 * Synchronous write, waits for completion.
962 * Write, release buffer on completion. (Done by iodone
963 * if async). Do not bother writing anything if the buffer
964 * is invalid.
966 * Note that we set B_CACHE here, indicating that buffer is
967 * fully valid and thus cacheable. This is true even of NFS
968 * now so we set it generally. This could be set either here
969 * or in biodone() since the I/O is synchronous. We put it
970 * here.
973 bwrite(struct buf *bp)
975 int error;
977 if (bp->b_flags & B_INVAL) {
978 brelse(bp);
979 return (0);
981 if (BUF_REFCNTNB(bp) == 0)
982 panic("bwrite: buffer is not busy???");
984 /* Mark the buffer clean */
985 bundirty(bp);
987 bp->b_flags &= ~(B_ERROR | B_EINTR);
988 bp->b_flags |= B_CACHE;
989 bp->b_cmd = BUF_CMD_WRITE;
990 bp->b_bio1.bio_done = biodone_sync;
991 bp->b_bio1.bio_flags |= BIO_SYNC;
992 vfs_busy_pages(bp->b_vp, bp);
995 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
996 * valid for vnode-backed buffers.
998 bsetrunningbufspace(bp, bp->b_bufsize);
999 vn_strategy(bp->b_vp, &bp->b_bio1);
1000 error = biowait(&bp->b_bio1, "biows");
1001 brelse(bp);
1003 return (error);
1007 * bawrite:
1009 * Asynchronous write. Start output on a buffer, but do not wait for
1010 * it to complete. The buffer is released when the output completes.
1012 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1013 * B_INVAL buffers. Not us.
1015 void
1016 bawrite(struct buf *bp)
1018 if (bp->b_flags & B_INVAL) {
1019 brelse(bp);
1020 return;
1022 if (BUF_REFCNTNB(bp) == 0)
1023 panic("bwrite: buffer is not busy???");
1025 /* Mark the buffer clean */
1026 bundirty(bp);
1028 bp->b_flags &= ~(B_ERROR | B_EINTR);
1029 bp->b_flags |= B_CACHE;
1030 bp->b_cmd = BUF_CMD_WRITE;
1031 KKASSERT(bp->b_bio1.bio_done == NULL);
1032 vfs_busy_pages(bp->b_vp, bp);
1035 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1036 * valid for vnode-backed buffers.
1038 bsetrunningbufspace(bp, bp->b_bufsize);
1039 BUF_KERNPROC(bp);
1040 vn_strategy(bp->b_vp, &bp->b_bio1);
1044 * bowrite:
1046 * Ordered write. Start output on a buffer, and flag it so that the
1047 * device will write it in the order it was queued. The buffer is
1048 * released when the output completes. bwrite() ( or the VOP routine
1049 * anyway ) is responsible for handling B_INVAL buffers.
1052 bowrite(struct buf *bp)
1054 bp->b_flags |= B_ORDERED;
1055 bawrite(bp);
1056 return (0);
1060 * bdwrite:
1062 * Delayed write. (Buffer is marked dirty). Do not bother writing
1063 * anything if the buffer is marked invalid.
1065 * Note that since the buffer must be completely valid, we can safely
1066 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1067 * biodone() in order to prevent getblk from writing the buffer
1068 * out synchronously.
1070 void
1071 bdwrite(struct buf *bp)
1073 if (BUF_REFCNTNB(bp) == 0)
1074 panic("bdwrite: buffer is not busy");
1076 if (bp->b_flags & B_INVAL) {
1077 brelse(bp);
1078 return;
1080 bdirty(bp);
1082 if (dsched_is_clear_buf_priv(bp))
1083 dsched_new_buf(bp);
1086 * Set B_CACHE, indicating that the buffer is fully valid. This is
1087 * true even of NFS now.
1089 bp->b_flags |= B_CACHE;
1092 * This bmap keeps the system from needing to do the bmap later,
1093 * perhaps when the system is attempting to do a sync. Since it
1094 * is likely that the indirect block -- or whatever other datastructure
1095 * that the filesystem needs is still in memory now, it is a good
1096 * thing to do this. Note also, that if the pageout daemon is
1097 * requesting a sync -- there might not be enough memory to do
1098 * the bmap then... So, this is important to do.
1100 if (bp->b_bio2.bio_offset == NOOFFSET) {
1101 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1102 NULL, NULL, BUF_CMD_WRITE);
1106 * Because the underlying pages may still be mapped and
1107 * writable trying to set the dirty buffer (b_dirtyoff/end)
1108 * range here will be inaccurate.
1110 * However, we must still clean the pages to satisfy the
1111 * vnode_pager and pageout daemon, so theythink the pages
1112 * have been "cleaned". What has really occured is that
1113 * they've been earmarked for later writing by the buffer
1114 * cache.
1116 * So we get the b_dirtyoff/end update but will not actually
1117 * depend on it (NFS that is) until the pages are busied for
1118 * writing later on.
1120 vfs_clean_pages(bp);
1121 bqrelse(bp);
1124 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1125 * due to the softdep code.
1130 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1131 * This is used by tmpfs.
1133 * It is important for any VFS using this routine to NOT use it for
1134 * IO_SYNC or IO_ASYNC operations which occur when the system really
1135 * wants to flush VM pages to backing store.
1137 void
1138 buwrite(struct buf *bp)
1140 vm_page_t m;
1141 int i;
1144 * Only works for VMIO buffers. If the buffer is already
1145 * marked for delayed-write we can't avoid the bdwrite().
1147 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1148 bdwrite(bp);
1149 return;
1153 * Mark as needing a commit.
1155 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1156 m = bp->b_xio.xio_pages[i];
1157 vm_page_need_commit(m);
1159 bqrelse(bp);
1163 * bdirty:
1165 * Turn buffer into delayed write request by marking it B_DELWRI.
1166 * B_RELBUF and B_NOCACHE must be cleared.
1168 * We reassign the buffer to itself to properly update it in the
1169 * dirty/clean lists.
1171 * Must be called from a critical section.
1172 * The buffer must be on BQUEUE_NONE.
1174 void
1175 bdirty(struct buf *bp)
1177 KASSERT(bp->b_qindex == BQUEUE_NONE,
1178 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1179 if (bp->b_flags & B_NOCACHE) {
1180 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1181 bp->b_flags &= ~B_NOCACHE;
1183 if (bp->b_flags & B_INVAL) {
1184 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1186 bp->b_flags &= ~B_RELBUF;
1188 if ((bp->b_flags & B_DELWRI) == 0) {
1189 lwkt_gettoken(&bp->b_vp->v_token);
1190 bp->b_flags |= B_DELWRI;
1191 reassignbuf(bp);
1192 lwkt_reltoken(&bp->b_vp->v_token);
1194 spin_lock(&bufcspin);
1195 ++dirtybufcount;
1196 dirtybufspace += bp->b_bufsize;
1197 if (bp->b_flags & B_HEAVY) {
1198 ++dirtybufcounthw;
1199 dirtybufspacehw += bp->b_bufsize;
1201 spin_unlock(&bufcspin);
1203 bd_heatup();
1208 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1209 * needs to be flushed with a different buf_daemon thread to avoid
1210 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1212 void
1213 bheavy(struct buf *bp)
1215 if ((bp->b_flags & B_HEAVY) == 0) {
1216 bp->b_flags |= B_HEAVY;
1217 if (bp->b_flags & B_DELWRI) {
1218 spin_lock(&bufcspin);
1219 ++dirtybufcounthw;
1220 dirtybufspacehw += bp->b_bufsize;
1221 spin_unlock(&bufcspin);
1227 * bundirty:
1229 * Clear B_DELWRI for buffer.
1231 * Must be called from a critical section.
1233 * The buffer is typically on BQUEUE_NONE but there is one case in
1234 * brelse() that calls this function after placing the buffer on
1235 * a different queue.
1237 * MPSAFE
1239 void
1240 bundirty(struct buf *bp)
1242 if (bp->b_flags & B_DELWRI) {
1243 lwkt_gettoken(&bp->b_vp->v_token);
1244 bp->b_flags &= ~B_DELWRI;
1245 reassignbuf(bp);
1246 lwkt_reltoken(&bp->b_vp->v_token);
1248 spin_lock(&bufcspin);
1249 --dirtybufcount;
1250 dirtybufspace -= bp->b_bufsize;
1251 if (bp->b_flags & B_HEAVY) {
1252 --dirtybufcounthw;
1253 dirtybufspacehw -= bp->b_bufsize;
1255 spin_unlock(&bufcspin);
1257 bd_signal(bp->b_bufsize);
1260 * Since it is now being written, we can clear its deferred write flag.
1262 bp->b_flags &= ~B_DEFERRED;
1266 * Set the b_runningbufspace field, used to track how much I/O is
1267 * in progress at any given moment.
1269 void
1270 bsetrunningbufspace(struct buf *bp, int bytes)
1272 bp->b_runningbufspace = bytes;
1273 if (bytes) {
1274 spin_lock(&bufcspin);
1275 runningbufspace += bytes;
1276 ++runningbufcount;
1277 spin_unlock(&bufcspin);
1282 * brelse:
1284 * Release a busy buffer and, if requested, free its resources. The
1285 * buffer will be stashed in the appropriate bufqueue[] allowing it
1286 * to be accessed later as a cache entity or reused for other purposes.
1288 * MPALMOSTSAFE
1290 void
1291 brelse(struct buf *bp)
1293 #ifdef INVARIANTS
1294 int saved_flags = bp->b_flags;
1295 #endif
1297 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1300 * If B_NOCACHE is set we are being asked to destroy the buffer and
1301 * its backing store. Clear B_DELWRI.
1303 * B_NOCACHE is set in two cases: (1) when the caller really wants
1304 * to destroy the buffer and backing store and (2) when the caller
1305 * wants to destroy the buffer and backing store after a write
1306 * completes.
1308 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1309 bundirty(bp);
1312 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1314 * A re-dirtied buffer is only subject to destruction
1315 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1317 /* leave buffer intact */
1318 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1319 (bp->b_bufsize <= 0)) {
1321 * Either a failed read or we were asked to free or not
1322 * cache the buffer. This path is reached with B_DELWRI
1323 * set only if B_INVAL is already set. B_NOCACHE governs
1324 * backing store destruction.
1326 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1327 * buffer cannot be immediately freed.
1329 bp->b_flags |= B_INVAL;
1330 if (LIST_FIRST(&bp->b_dep) != NULL)
1331 buf_deallocate(bp);
1332 if (bp->b_flags & B_DELWRI) {
1333 spin_lock(&bufcspin);
1334 --dirtybufcount;
1335 dirtybufspace -= bp->b_bufsize;
1336 if (bp->b_flags & B_HEAVY) {
1337 --dirtybufcounthw;
1338 dirtybufspacehw -= bp->b_bufsize;
1340 spin_unlock(&bufcspin);
1342 bd_signal(bp->b_bufsize);
1344 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1348 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1349 * or if b_refs is non-zero.
1351 * If vfs_vmio_release() is called with either bit set, the
1352 * underlying pages may wind up getting freed causing a previous
1353 * write (bdwrite()) to get 'lost' because pages associated with
1354 * a B_DELWRI bp are marked clean. Pages associated with a
1355 * B_LOCKED buffer may be mapped by the filesystem.
1357 * If we want to release the buffer ourselves (rather then the
1358 * originator asking us to release it), give the originator a
1359 * chance to countermand the release by setting B_LOCKED.
1361 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1362 * if B_DELWRI is set.
1364 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1365 * on pages to return pages to the VM page queues.
1367 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1368 bp->b_flags &= ~B_RELBUF;
1369 } else if (vm_page_count_min(0)) {
1370 if (LIST_FIRST(&bp->b_dep) != NULL)
1371 buf_deallocate(bp); /* can set B_LOCKED */
1372 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1373 bp->b_flags &= ~B_RELBUF;
1374 else
1375 bp->b_flags |= B_RELBUF;
1379 * Make sure b_cmd is clear. It may have already been cleared by
1380 * biodone().
1382 * At this point destroying the buffer is governed by the B_INVAL
1383 * or B_RELBUF flags.
1385 bp->b_cmd = BUF_CMD_DONE;
1386 dsched_exit_buf(bp);
1389 * VMIO buffer rundown. Make sure the VM page array is restored
1390 * after an I/O may have replaces some of the pages with bogus pages
1391 * in order to not destroy dirty pages in a fill-in read.
1393 * Note that due to the code above, if a buffer is marked B_DELWRI
1394 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1395 * B_INVAL may still be set, however.
1397 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1398 * but not the backing store. B_NOCACHE will destroy the backing
1399 * store.
1401 * Note that dirty NFS buffers contain byte-granular write ranges
1402 * and should not be destroyed w/ B_INVAL even if the backing store
1403 * is left intact.
1405 if (bp->b_flags & B_VMIO) {
1407 * Rundown for VMIO buffers which are not dirty NFS buffers.
1409 int i, j, resid;
1410 vm_page_t m;
1411 off_t foff;
1412 vm_pindex_t poff;
1413 vm_object_t obj;
1414 struct vnode *vp;
1416 vp = bp->b_vp;
1419 * Get the base offset and length of the buffer. Note that
1420 * in the VMIO case if the buffer block size is not
1421 * page-aligned then b_data pointer may not be page-aligned.
1422 * But our b_xio.xio_pages array *IS* page aligned.
1424 * block sizes less then DEV_BSIZE (usually 512) are not
1425 * supported due to the page granularity bits (m->valid,
1426 * m->dirty, etc...).
1428 * See man buf(9) for more information
1431 resid = bp->b_bufsize;
1432 foff = bp->b_loffset;
1434 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1435 m = bp->b_xio.xio_pages[i];
1436 vm_page_flag_clear(m, PG_ZERO);
1438 * If we hit a bogus page, fixup *all* of them
1439 * now. Note that we left these pages wired
1440 * when we removed them so they had better exist,
1441 * and they cannot be ripped out from under us so
1442 * no critical section protection is necessary.
1444 if (m == bogus_page) {
1445 obj = vp->v_object;
1446 poff = OFF_TO_IDX(bp->b_loffset);
1448 vm_object_hold(obj);
1449 for (j = i; j < bp->b_xio.xio_npages; j++) {
1450 vm_page_t mtmp;
1452 mtmp = bp->b_xio.xio_pages[j];
1453 if (mtmp == bogus_page) {
1454 mtmp = vm_page_lookup(obj, poff + j);
1455 if (!mtmp) {
1456 panic("brelse: page missing");
1458 bp->b_xio.xio_pages[j] = mtmp;
1461 bp->b_flags &= ~B_HASBOGUS;
1462 vm_object_drop(obj);
1464 if ((bp->b_flags & B_INVAL) == 0) {
1465 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1466 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1468 m = bp->b_xio.xio_pages[i];
1472 * Invalidate the backing store if B_NOCACHE is set
1473 * (e.g. used with vinvalbuf()). If this is NFS
1474 * we impose a requirement that the block size be
1475 * a multiple of PAGE_SIZE and create a temporary
1476 * hack to basically invalidate the whole page. The
1477 * problem is that NFS uses really odd buffer sizes
1478 * especially when tracking piecemeal writes and
1479 * it also vinvalbuf()'s a lot, which would result
1480 * in only partial page validation and invalidation
1481 * here. If the file page is mmap()'d, however,
1482 * all the valid bits get set so after we invalidate
1483 * here we would end up with weird m->valid values
1484 * like 0xfc. nfs_getpages() can't handle this so
1485 * we clear all the valid bits for the NFS case
1486 * instead of just some of them.
1488 * The real bug is the VM system having to set m->valid
1489 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1490 * itself is an artifact of the whole 512-byte
1491 * granular mess that exists to support odd block
1492 * sizes and UFS meta-data block sizes (e.g. 6144).
1493 * A complete rewrite is required.
1495 * XXX
1497 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1498 int poffset = foff & PAGE_MASK;
1499 int presid;
1501 presid = PAGE_SIZE - poffset;
1502 if (bp->b_vp->v_tag == VT_NFS &&
1503 bp->b_vp->v_type == VREG) {
1504 ; /* entire page */
1505 } else if (presid > resid) {
1506 presid = resid;
1508 KASSERT(presid >= 0, ("brelse: extra page"));
1509 vm_page_set_invalid(m, poffset, presid);
1512 * Also make sure any swap cache is removed
1513 * as it is now stale (HAMMER in particular
1514 * uses B_NOCACHE to deal with buffer
1515 * aliasing).
1517 swap_pager_unswapped(m);
1519 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1520 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1522 if (bp->b_flags & (B_INVAL | B_RELBUF))
1523 vfs_vmio_release(bp);
1524 } else {
1526 * Rundown for non-VMIO buffers.
1528 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1529 if (bp->b_bufsize)
1530 allocbuf(bp, 0);
1531 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1532 if (bp->b_vp)
1533 brelvp(bp);
1537 if (bp->b_qindex != BQUEUE_NONE)
1538 panic("brelse: free buffer onto another queue???");
1539 if (BUF_REFCNTNB(bp) > 1) {
1540 /* Temporary panic to verify exclusive locking */
1541 /* This panic goes away when we allow shared refs */
1542 panic("brelse: multiple refs");
1543 /* NOT REACHED */
1544 return;
1548 * Figure out the correct queue to place the cleaned up buffer on.
1549 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1550 * disassociated from their vnode.
1552 spin_lock(&bufqspin);
1553 if (bp->b_flags & B_LOCKED) {
1555 * Buffers that are locked are placed in the locked queue
1556 * immediately, regardless of their state.
1558 bp->b_qindex = BQUEUE_LOCKED;
1559 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1560 } else if (bp->b_bufsize == 0) {
1562 * Buffers with no memory. Due to conditionals near the top
1563 * of brelse() such buffers should probably already be
1564 * marked B_INVAL and disassociated from their vnode.
1566 bp->b_flags |= B_INVAL;
1567 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1568 KKASSERT((bp->b_flags & B_HASHED) == 0);
1569 if (bp->b_kvasize) {
1570 bp->b_qindex = BQUEUE_EMPTYKVA;
1571 } else {
1572 bp->b_qindex = BQUEUE_EMPTY;
1574 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1575 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1577 * Buffers with junk contents. Again these buffers had better
1578 * already be disassociated from their vnode.
1580 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1581 KKASSERT((bp->b_flags & B_HASHED) == 0);
1582 bp->b_flags |= B_INVAL;
1583 bp->b_qindex = BQUEUE_CLEAN;
1584 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1585 } else {
1587 * Remaining buffers. These buffers are still associated with
1588 * their vnode.
1590 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1591 case B_DELWRI:
1592 bp->b_qindex = BQUEUE_DIRTY;
1593 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1594 break;
1595 case B_DELWRI | B_HEAVY:
1596 bp->b_qindex = BQUEUE_DIRTY_HW;
1597 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1598 b_freelist);
1599 break;
1600 default:
1602 * NOTE: Buffers are always placed at the end of the
1603 * queue. If B_AGE is not set the buffer will cycle
1604 * through the queue twice.
1606 bp->b_qindex = BQUEUE_CLEAN;
1607 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1608 break;
1611 spin_unlock(&bufqspin);
1614 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1615 * on the correct queue.
1617 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1618 bundirty(bp);
1621 * The bp is on an appropriate queue unless locked. If it is not
1622 * locked or dirty we can wakeup threads waiting for buffer space.
1624 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1625 * if B_INVAL is set ).
1627 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1628 bufcountwakeup();
1631 * Something we can maybe free or reuse
1633 if (bp->b_bufsize || bp->b_kvasize)
1634 bufspacewakeup();
1637 * Clean up temporary flags and unlock the buffer.
1639 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1640 BUF_UNLOCK(bp);
1644 * bqrelse:
1646 * Release a buffer back to the appropriate queue but do not try to free
1647 * it. The buffer is expected to be used again soon.
1649 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1650 * biodone() to requeue an async I/O on completion. It is also used when
1651 * known good buffers need to be requeued but we think we may need the data
1652 * again soon.
1654 * XXX we should be able to leave the B_RELBUF hint set on completion.
1656 * MPSAFE
1658 void
1659 bqrelse(struct buf *bp)
1661 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1663 if (bp->b_qindex != BQUEUE_NONE)
1664 panic("bqrelse: free buffer onto another queue???");
1665 if (BUF_REFCNTNB(bp) > 1) {
1666 /* do not release to free list */
1667 panic("bqrelse: multiple refs");
1668 return;
1671 buf_act_advance(bp);
1673 spin_lock(&bufqspin);
1674 if (bp->b_flags & B_LOCKED) {
1676 * Locked buffers are released to the locked queue. However,
1677 * if the buffer is dirty it will first go into the dirty
1678 * queue and later on after the I/O completes successfully it
1679 * will be released to the locked queue.
1681 bp->b_qindex = BQUEUE_LOCKED;
1682 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1683 } else if (bp->b_flags & B_DELWRI) {
1684 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1685 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1686 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1687 } else if (vm_page_count_min(0)) {
1689 * We are too low on memory, we have to try to free the
1690 * buffer (most importantly: the wired pages making up its
1691 * backing store) *now*.
1693 spin_unlock(&bufqspin);
1694 brelse(bp);
1695 return;
1696 } else {
1697 bp->b_qindex = BQUEUE_CLEAN;
1698 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1700 spin_unlock(&bufqspin);
1702 if ((bp->b_flags & B_LOCKED) == 0 &&
1703 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1704 bufcountwakeup();
1708 * Something we can maybe free or reuse.
1710 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1711 bufspacewakeup();
1714 * Final cleanup and unlock. Clear bits that are only used while a
1715 * buffer is actively locked.
1717 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1718 dsched_exit_buf(bp);
1719 BUF_UNLOCK(bp);
1723 * Hold a buffer, preventing it from being reused. This will prevent
1724 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1725 * operations. If a B_INVAL operation occurs the buffer will remain held
1726 * but the underlying pages may get ripped out.
1728 * These functions are typically used in VOP_READ/VOP_WRITE functions
1729 * to hold a buffer during a copyin or copyout, preventing deadlocks
1730 * or recursive lock panics when read()/write() is used over mmap()'d
1731 * space.
1733 * NOTE: bqhold() requires that the buffer be locked at the time of the
1734 * hold. bqdrop() has no requirements other than the buffer having
1735 * previously been held.
1737 void
1738 bqhold(struct buf *bp)
1740 atomic_add_int(&bp->b_refs, 1);
1743 void
1744 bqdrop(struct buf *bp)
1746 KKASSERT(bp->b_refs > 0);
1747 atomic_add_int(&bp->b_refs, -1);
1751 * Return backing pages held by the buffer 'bp' back to the VM system.
1752 * This routine is called when the bp is invalidated, released, or
1753 * reused.
1755 * The KVA mapping (b_data) for the underlying pages is removed by
1756 * this function.
1758 * WARNING! This routine is integral to the low memory critical path
1759 * when a buffer is B_RELBUF'd. If the system has a severe page
1760 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1761 * queues so they can be reused in the current pageout daemon
1762 * pass.
1764 static void
1765 vfs_vmio_release(struct buf *bp)
1767 int i;
1768 vm_page_t m;
1770 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1771 m = bp->b_xio.xio_pages[i];
1772 bp->b_xio.xio_pages[i] = NULL;
1775 * We need to own the page in order to safely unwire it.
1777 vm_page_busy_wait(m, FALSE, "vmiopg");
1780 * The VFS is telling us this is not a meta-data buffer
1781 * even if it is backed by a block device.
1783 if (bp->b_flags & B_NOTMETA)
1784 vm_page_flag_set(m, PG_NOTMETA);
1787 * This is a very important bit of code. We try to track
1788 * VM page use whether the pages are wired into the buffer
1789 * cache or not. While wired into the buffer cache the
1790 * bp tracks the act_count.
1792 * We can choose to place unwired pages on the inactive
1793 * queue (0) or active queue (1). If we place too many
1794 * on the active queue the queue will cycle the act_count
1795 * on pages we'd like to keep, just from single-use pages
1796 * (such as when doing a tar-up or file scan).
1798 if (bp->b_act_count < vm_cycle_point)
1799 vm_page_unwire(m, 0);
1800 else
1801 vm_page_unwire(m, 1);
1804 * If the wire_count has dropped to 0 we may need to take
1805 * further action before unbusying the page.
1807 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1809 if (m->wire_count == 0) {
1810 vm_page_flag_clear(m, PG_ZERO);
1812 if (bp->b_flags & B_DIRECT) {
1814 * Attempt to free the page if B_DIRECT is
1815 * set, the caller does not desire the page
1816 * to be cached.
1818 vm_page_wakeup(m);
1819 vm_page_try_to_free(m);
1820 } else if ((bp->b_flags & B_NOTMETA) ||
1821 vm_page_count_min(0)) {
1823 * Attempt to move the page to PQ_CACHE
1824 * if B_NOTMETA is set. This flag is set
1825 * by HAMMER to remove one of the two pages
1826 * present when double buffering is enabled.
1828 * Attempt to move the page to PQ_CACHE
1829 * If we have a severe page deficit. This
1830 * will cause buffer cache operations related
1831 * to pageouts to recycle the related pages
1832 * in order to avoid a low memory deadlock.
1834 m->act_count = bp->b_act_count;
1835 vm_page_wakeup(m);
1836 vm_page_try_to_cache(m);
1837 } else {
1839 * Nominal case, leave the page on the
1840 * queue the original unwiring placed it on
1841 * (active or inactive).
1843 m->act_count = bp->b_act_count;
1844 vm_page_wakeup(m);
1846 } else {
1847 vm_page_wakeup(m);
1851 pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1852 bp->b_xio.xio_npages);
1853 if (bp->b_bufsize) {
1854 bufspacewakeup();
1855 bp->b_bufsize = 0;
1857 bp->b_xio.xio_npages = 0;
1858 bp->b_flags &= ~B_VMIO;
1859 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1860 if (bp->b_vp)
1861 brelvp(bp);
1865 * vfs_bio_awrite:
1867 * Implement clustered async writes for clearing out B_DELWRI buffers.
1868 * This is much better then the old way of writing only one buffer at
1869 * a time. Note that we may not be presented with the buffers in the
1870 * correct order, so we search for the cluster in both directions.
1872 * The buffer is locked on call.
1875 vfs_bio_awrite(struct buf *bp)
1877 int i;
1878 int j;
1879 off_t loffset = bp->b_loffset;
1880 struct vnode *vp = bp->b_vp;
1881 int nbytes;
1882 struct buf *bpa;
1883 int nwritten;
1884 int size;
1887 * right now we support clustered writing only to regular files. If
1888 * we find a clusterable block we could be in the middle of a cluster
1889 * rather then at the beginning.
1891 * NOTE: b_bio1 contains the logical loffset and is aliased
1892 * to b_loffset. b_bio2 contains the translated block number.
1894 if ((vp->v_type == VREG) &&
1895 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1896 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1898 size = vp->v_mount->mnt_stat.f_iosize;
1900 for (i = size; i < MAXPHYS; i += size) {
1901 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1902 BUF_REFCNT(bpa) == 0 &&
1903 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1904 (B_DELWRI | B_CLUSTEROK)) &&
1905 (bpa->b_bufsize == size)) {
1906 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1907 (bpa->b_bio2.bio_offset !=
1908 bp->b_bio2.bio_offset + i))
1909 break;
1910 } else {
1911 break;
1914 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1915 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1916 BUF_REFCNT(bpa) == 0 &&
1917 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1918 (B_DELWRI | B_CLUSTEROK)) &&
1919 (bpa->b_bufsize == size)) {
1920 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1921 (bpa->b_bio2.bio_offset !=
1922 bp->b_bio2.bio_offset - j))
1923 break;
1924 } else {
1925 break;
1928 j -= size;
1929 nbytes = (i + j);
1932 * this is a possible cluster write
1934 if (nbytes != size) {
1935 BUF_UNLOCK(bp);
1936 nwritten = cluster_wbuild(vp, size,
1937 loffset - j, nbytes);
1938 return nwritten;
1943 * default (old) behavior, writing out only one block
1945 * XXX returns b_bufsize instead of b_bcount for nwritten?
1947 nwritten = bp->b_bufsize;
1948 bremfree(bp);
1949 bawrite(bp);
1951 return nwritten;
1955 * getnewbuf:
1957 * Find and initialize a new buffer header, freeing up existing buffers
1958 * in the bufqueues as necessary. The new buffer is returned locked.
1960 * Important: B_INVAL is not set. If the caller wishes to throw the
1961 * buffer away, the caller must set B_INVAL prior to calling brelse().
1963 * We block if:
1964 * We have insufficient buffer headers
1965 * We have insufficient buffer space
1966 * buffer_map is too fragmented ( space reservation fails )
1967 * If we have to flush dirty buffers ( but we try to avoid this )
1969 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1970 * Instead we ask the buf daemon to do it for us. We attempt to
1971 * avoid piecemeal wakeups of the pageout daemon.
1973 * MPALMOSTSAFE
1975 struct buf *
1976 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1978 struct buf *bp;
1979 struct buf *nbp;
1980 int defrag = 0;
1981 int nqindex;
1982 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1983 static int flushingbufs;
1986 * We can't afford to block since we might be holding a vnode lock,
1987 * which may prevent system daemons from running. We deal with
1988 * low-memory situations by proactively returning memory and running
1989 * async I/O rather then sync I/O.
1992 ++getnewbufcalls;
1993 --getnewbufrestarts;
1994 restart:
1995 ++getnewbufrestarts;
1998 * Setup for scan. If we do not have enough free buffers,
1999 * we setup a degenerate case that immediately fails. Note
2000 * that if we are specially marked process, we are allowed to
2001 * dip into our reserves.
2003 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2005 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
2006 * However, there are a number of cases (defragging, reusing, ...)
2007 * where we cannot backup.
2009 nqindex = BQUEUE_EMPTYKVA;
2010 spin_lock(&bufqspin);
2011 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
2013 if (nbp == NULL) {
2015 * If no EMPTYKVA buffers and we are either
2016 * defragging or reusing, locate a CLEAN buffer
2017 * to free or reuse. If bufspace useage is low
2018 * skip this step so we can allocate a new buffer.
2020 if (defrag || bufspace >= lobufspace) {
2021 nqindex = BQUEUE_CLEAN;
2022 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2026 * If we could not find or were not allowed to reuse a
2027 * CLEAN buffer, check to see if it is ok to use an EMPTY
2028 * buffer. We can only use an EMPTY buffer if allocating
2029 * its KVA would not otherwise run us out of buffer space.
2031 if (nbp == NULL && defrag == 0 &&
2032 bufspace + maxsize < hibufspace) {
2033 nqindex = BQUEUE_EMPTY;
2034 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
2039 * Run scan, possibly freeing data and/or kva mappings on the fly
2040 * depending.
2042 * WARNING! bufqspin is held!
2044 while ((bp = nbp) != NULL) {
2045 int qindex = nqindex;
2047 nbp = TAILQ_NEXT(bp, b_freelist);
2050 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2051 * cycles through the queue twice before being selected.
2053 if (qindex == BQUEUE_CLEAN &&
2054 (bp->b_flags & B_AGE) == 0 && nbp) {
2055 bp->b_flags |= B_AGE;
2056 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2057 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2058 continue;
2062 * Calculate next bp ( we can only use it if we do not block
2063 * or do other fancy things ).
2065 if (nbp == NULL) {
2066 switch(qindex) {
2067 case BQUEUE_EMPTY:
2068 nqindex = BQUEUE_EMPTYKVA;
2069 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2070 break;
2071 /* fall through */
2072 case BQUEUE_EMPTYKVA:
2073 nqindex = BQUEUE_CLEAN;
2074 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2075 break;
2076 /* fall through */
2077 case BQUEUE_CLEAN:
2079 * nbp is NULL.
2081 break;
2086 * Sanity Checks
2088 KASSERT(bp->b_qindex == qindex,
2089 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2092 * Note: we no longer distinguish between VMIO and non-VMIO
2093 * buffers.
2095 KASSERT((bp->b_flags & B_DELWRI) == 0,
2096 ("delwri buffer %p found in queue %d", bp, qindex));
2099 * Do not try to reuse a buffer with a non-zero b_refs.
2100 * This is an unsynchronized test. A synchronized test
2101 * is also performed after we lock the buffer.
2103 if (bp->b_refs)
2104 continue;
2107 * If we are defragging then we need a buffer with
2108 * b_kvasize != 0. XXX this situation should no longer
2109 * occur, if defrag is non-zero the buffer's b_kvasize
2110 * should also be non-zero at this point. XXX
2112 if (defrag && bp->b_kvasize == 0) {
2113 kprintf("Warning: defrag empty buffer %p\n", bp);
2114 continue;
2118 * Start freeing the bp. This is somewhat involved. nbp
2119 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
2120 * on the clean list must be disassociated from their
2121 * current vnode. Buffers on the empty[kva] lists have
2122 * already been disassociated.
2124 * b_refs is checked after locking along with queue changes.
2125 * We must check here to deal with zero->nonzero transitions
2126 * made by the owner of the buffer lock, which is used by
2127 * VFS's to hold the buffer while issuing an unlocked
2128 * uiomove()s. We cannot invalidate the buffer's pages
2129 * for this case. Once we successfully lock a buffer the
2130 * only 0->1 transitions of b_refs will occur via findblk().
2132 * We must also check for queue changes after successful
2133 * locking as the current lock holder may dispose of the
2134 * buffer and change its queue.
2136 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2137 spin_unlock(&bufqspin);
2138 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2139 goto restart;
2141 if (bp->b_qindex != qindex || bp->b_refs) {
2142 spin_unlock(&bufqspin);
2143 BUF_UNLOCK(bp);
2144 goto restart;
2146 bremfree_locked(bp);
2147 spin_unlock(&bufqspin);
2150 * Dependancies must be handled before we disassociate the
2151 * vnode.
2153 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2154 * be immediately disassociated. HAMMER then becomes
2155 * responsible for releasing the buffer.
2157 * NOTE: bufqspin is UNLOCKED now.
2159 if (LIST_FIRST(&bp->b_dep) != NULL) {
2160 buf_deallocate(bp);
2161 if (bp->b_flags & B_LOCKED) {
2162 bqrelse(bp);
2163 goto restart;
2165 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2168 if (qindex == BQUEUE_CLEAN) {
2169 if (bp->b_flags & B_VMIO)
2170 vfs_vmio_release(bp);
2171 if (bp->b_vp)
2172 brelvp(bp);
2176 * NOTE: nbp is now entirely invalid. We can only restart
2177 * the scan from this point on.
2179 * Get the rest of the buffer freed up. b_kva* is still
2180 * valid after this operation.
2182 KASSERT(bp->b_vp == NULL,
2183 ("bp3 %p flags %08x vnode %p qindex %d "
2184 "unexpectededly still associated!",
2185 bp, bp->b_flags, bp->b_vp, qindex));
2186 KKASSERT((bp->b_flags & B_HASHED) == 0);
2189 * critical section protection is not required when
2190 * scrapping a buffer's contents because it is already
2191 * wired.
2193 if (bp->b_bufsize)
2194 allocbuf(bp, 0);
2196 bp->b_flags = B_BNOCLIP;
2197 bp->b_cmd = BUF_CMD_DONE;
2198 bp->b_vp = NULL;
2199 bp->b_error = 0;
2200 bp->b_resid = 0;
2201 bp->b_bcount = 0;
2202 bp->b_xio.xio_npages = 0;
2203 bp->b_dirtyoff = bp->b_dirtyend = 0;
2204 bp->b_act_count = ACT_INIT;
2205 reinitbufbio(bp);
2206 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2207 buf_dep_init(bp);
2208 if (blkflags & GETBLK_BHEAVY)
2209 bp->b_flags |= B_HEAVY;
2212 * If we are defragging then free the buffer.
2214 if (defrag) {
2215 bp->b_flags |= B_INVAL;
2216 bfreekva(bp);
2217 brelse(bp);
2218 defrag = 0;
2219 goto restart;
2223 * If we are overcomitted then recover the buffer and its
2224 * KVM space. This occurs in rare situations when multiple
2225 * processes are blocked in getnewbuf() or allocbuf().
2227 if (bufspace >= hibufspace)
2228 flushingbufs = 1;
2229 if (flushingbufs && bp->b_kvasize != 0) {
2230 bp->b_flags |= B_INVAL;
2231 bfreekva(bp);
2232 brelse(bp);
2233 goto restart;
2235 if (bufspace < lobufspace)
2236 flushingbufs = 0;
2239 * b_refs can transition to a non-zero value while we hold
2240 * the buffer locked due to a findblk(). Our brelvp() above
2241 * interlocked any future possible transitions due to
2242 * findblk()s.
2244 * If we find b_refs to be non-zero we can destroy the
2245 * buffer's contents but we cannot yet reuse the buffer.
2247 if (bp->b_refs) {
2248 bp->b_flags |= B_INVAL;
2249 bfreekva(bp);
2250 brelse(bp);
2251 goto restart;
2253 break;
2254 /* NOT REACHED, bufqspin not held */
2258 * If we exhausted our list, sleep as appropriate. We may have to
2259 * wakeup various daemons and write out some dirty buffers.
2261 * Generally we are sleeping due to insufficient buffer space.
2263 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2265 if (bp == NULL) {
2266 int flags;
2267 char *waitmsg;
2269 spin_unlock(&bufqspin);
2270 if (defrag) {
2271 flags = VFS_BIO_NEED_BUFSPACE;
2272 waitmsg = "nbufkv";
2273 } else if (bufspace >= hibufspace) {
2274 waitmsg = "nbufbs";
2275 flags = VFS_BIO_NEED_BUFSPACE;
2276 } else {
2277 waitmsg = "newbuf";
2278 flags = VFS_BIO_NEED_ANY;
2281 bd_speedup(); /* heeeelp */
2282 spin_lock(&bufcspin);
2283 needsbuffer |= flags;
2284 while (needsbuffer & flags) {
2285 if (ssleep(&needsbuffer, &bufcspin,
2286 slpflags, waitmsg, slptimeo)) {
2287 spin_unlock(&bufcspin);
2288 return (NULL);
2291 spin_unlock(&bufcspin);
2292 } else {
2294 * We finally have a valid bp. We aren't quite out of the
2295 * woods, we still have to reserve kva space. In order
2296 * to keep fragmentation sane we only allocate kva in
2297 * BKVASIZE chunks.
2299 * (bufqspin is not held)
2301 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2303 if (maxsize != bp->b_kvasize) {
2304 vm_offset_t addr = 0;
2305 int count;
2307 bfreekva(bp);
2309 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2310 vm_map_lock(&buffer_map);
2312 if (vm_map_findspace(&buffer_map,
2313 vm_map_min(&buffer_map), maxsize,
2314 maxsize, 0, &addr)) {
2316 * Uh oh. Buffer map is too fragmented. We
2317 * must defragment the map.
2319 vm_map_unlock(&buffer_map);
2320 vm_map_entry_release(count);
2321 ++bufdefragcnt;
2322 defrag = 1;
2323 bp->b_flags |= B_INVAL;
2324 brelse(bp);
2325 goto restart;
2327 if (addr) {
2328 vm_map_insert(&buffer_map, &count,
2329 NULL, 0,
2330 addr, addr + maxsize,
2331 VM_MAPTYPE_NORMAL,
2332 VM_PROT_ALL, VM_PROT_ALL,
2333 MAP_NOFAULT);
2335 bp->b_kvabase = (caddr_t) addr;
2336 bp->b_kvasize = maxsize;
2337 bufspace += bp->b_kvasize;
2338 ++bufreusecnt;
2340 vm_map_unlock(&buffer_map);
2341 vm_map_entry_release(count);
2343 bp->b_data = bp->b_kvabase;
2345 return(bp);
2348 #if 0
2350 * This routine is called in an emergency to recover VM pages from the
2351 * buffer cache by cashing in clean buffers. The idea is to recover
2352 * enough pages to be able to satisfy a stuck bio_page_alloc().
2354 * XXX Currently not implemented. This function can wind up deadlocking
2355 * against another thread holding one or more of the backing pages busy.
2357 static int
2358 recoverbufpages(void)
2360 struct buf *bp;
2361 int bytes = 0;
2363 ++recoverbufcalls;
2365 spin_lock(&bufqspin);
2366 while (bytes < MAXBSIZE) {
2367 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2368 if (bp == NULL)
2369 break;
2372 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2373 * cycles through the queue twice before being selected.
2375 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2376 bp->b_flags |= B_AGE;
2377 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2378 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2379 bp, b_freelist);
2380 continue;
2384 * Sanity Checks
2386 KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2387 KKASSERT((bp->b_flags & B_DELWRI) == 0);
2390 * Start freeing the bp. This is somewhat involved.
2392 * Buffers on the clean list must be disassociated from
2393 * their current vnode
2396 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2397 kprintf("recoverbufpages: warning, locked buf %p, "
2398 "race corrected\n",
2399 bp);
2400 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2401 continue;
2403 if (bp->b_qindex != BQUEUE_CLEAN) {
2404 kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2405 "unexpectedly on buf %p index %d, race "
2406 "corrected\n",
2407 bp, bp->b_qindex);
2408 BUF_UNLOCK(bp);
2409 continue;
2411 bremfree_locked(bp);
2412 spin_unlock(&bufqspin);
2415 * Dependancies must be handled before we disassociate the
2416 * vnode.
2418 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2419 * be immediately disassociated. HAMMER then becomes
2420 * responsible for releasing the buffer.
2422 if (LIST_FIRST(&bp->b_dep) != NULL) {
2423 buf_deallocate(bp);
2424 if (bp->b_flags & B_LOCKED) {
2425 bqrelse(bp);
2426 spin_lock(&bufqspin);
2427 continue;
2429 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2432 bytes += bp->b_bufsize;
2434 if (bp->b_flags & B_VMIO) {
2435 bp->b_flags |= B_DIRECT; /* try to free pages */
2436 vfs_vmio_release(bp);
2438 if (bp->b_vp)
2439 brelvp(bp);
2441 KKASSERT(bp->b_vp == NULL);
2442 KKASSERT((bp->b_flags & B_HASHED) == 0);
2445 * critical section protection is not required when
2446 * scrapping a buffer's contents because it is already
2447 * wired.
2449 if (bp->b_bufsize)
2450 allocbuf(bp, 0);
2452 bp->b_flags = B_BNOCLIP;
2453 bp->b_cmd = BUF_CMD_DONE;
2454 bp->b_vp = NULL;
2455 bp->b_error = 0;
2456 bp->b_resid = 0;
2457 bp->b_bcount = 0;
2458 bp->b_xio.xio_npages = 0;
2459 bp->b_dirtyoff = bp->b_dirtyend = 0;
2460 reinitbufbio(bp);
2461 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2462 buf_dep_init(bp);
2463 bp->b_flags |= B_INVAL;
2464 /* bfreekva(bp); */
2465 brelse(bp);
2466 spin_lock(&bufqspin);
2468 spin_unlock(&bufqspin);
2469 return(bytes);
2471 #endif
2474 * buf_daemon:
2476 * Buffer flushing daemon. Buffers are normally flushed by the
2477 * update daemon but if it cannot keep up this process starts to
2478 * take the load in an attempt to prevent getnewbuf() from blocking.
2480 * Once a flush is initiated it does not stop until the number
2481 * of buffers falls below lodirtybuffers, but we will wake up anyone
2482 * waiting at the mid-point.
2484 static struct kproc_desc buf_kp = {
2485 "bufdaemon",
2486 buf_daemon,
2487 &bufdaemon_td
2489 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2490 kproc_start, &buf_kp)
2492 static struct kproc_desc bufhw_kp = {
2493 "bufdaemon_hw",
2494 buf_daemon_hw,
2495 &bufdaemonhw_td
2497 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2498 kproc_start, &bufhw_kp)
2501 * MPSAFE thread
2503 static void
2504 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2505 int *bd_req)
2507 long limit;
2510 * This process needs to be suspended prior to shutdown sync.
2512 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2513 td, SHUTDOWN_PRI_LAST);
2514 curthread->td_flags |= TDF_SYSTHREAD;
2517 * This process is allowed to take the buffer cache to the limit
2519 for (;;) {
2520 kproc_suspend_loop();
2523 * Do the flush as long as the number of dirty buffers
2524 * (including those running) exceeds lodirtybufspace.
2526 * When flushing limit running I/O to hirunningspace
2527 * Do the flush. Limit the amount of in-transit I/O we
2528 * allow to build up, otherwise we would completely saturate
2529 * the I/O system. Wakeup any waiting processes before we
2530 * normally would so they can run in parallel with our drain.
2532 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2533 * but because we split the operation into two threads we
2534 * have to cut it in half for each thread.
2536 waitrunningbufspace();
2537 limit = lodirtybufspace / 2;
2538 while (buf_limit_fn(limit)) {
2539 if (flushbufqueues(queue) == 0)
2540 break;
2541 if (runningbufspace < hirunningspace)
2542 continue;
2543 waitrunningbufspace();
2547 * We reached our low water mark, reset the
2548 * request and sleep until we are needed again.
2549 * The sleep is just so the suspend code works.
2551 spin_lock(&bufcspin);
2552 if (*bd_req == 0)
2553 ssleep(bd_req, &bufcspin, 0, "psleep", hz);
2554 *bd_req = 0;
2555 spin_unlock(&bufcspin);
2559 static int
2560 buf_daemon_limit(long limit)
2562 return (runningbufspace + dirtybufspace > limit ||
2563 dirtybufcount - dirtybufcounthw >= nbuf / 2);
2566 static int
2567 buf_daemon_hw_limit(long limit)
2569 return (runningbufspace + dirtybufspacehw > limit ||
2570 dirtybufcounthw >= nbuf / 2);
2573 static void
2574 buf_daemon(void)
2576 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2577 &bd_request);
2580 static void
2581 buf_daemon_hw(void)
2583 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2584 &bd_request_hw);
2588 * flushbufqueues:
2590 * Try to flush a buffer in the dirty queue. We must be careful to
2591 * free up B_INVAL buffers instead of write them, which NFS is
2592 * particularly sensitive to.
2594 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2595 * that we really want to try to get the buffer out and reuse it
2596 * due to the write load on the machine.
2598 * We must lock the buffer in order to check its validity before we
2599 * can mess with its contents. bufqspin isn't enough.
2601 static int
2602 flushbufqueues(bufq_type_t q)
2604 struct buf *bp;
2605 int r = 0;
2606 int spun;
2608 spin_lock(&bufqspin);
2609 spun = 1;
2611 bp = TAILQ_FIRST(&bufqueues[q]);
2612 while (bp) {
2613 if ((bp->b_flags & B_DELWRI) == 0) {
2614 kprintf("Unexpected clean buffer %p\n", bp);
2615 bp = TAILQ_NEXT(bp, b_freelist);
2616 continue;
2618 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2619 bp = TAILQ_NEXT(bp, b_freelist);
2620 continue;
2622 KKASSERT(bp->b_qindex == q);
2625 * Must recheck B_DELWRI after successfully locking
2626 * the buffer.
2628 if ((bp->b_flags & B_DELWRI) == 0) {
2629 BUF_UNLOCK(bp);
2630 bp = TAILQ_NEXT(bp, b_freelist);
2631 continue;
2634 if (bp->b_flags & B_INVAL) {
2635 _bremfree(bp);
2636 spin_unlock(&bufqspin);
2637 spun = 0;
2638 brelse(bp);
2639 ++r;
2640 break;
2643 spin_unlock(&bufqspin);
2644 lwkt_yield();
2645 spun = 0;
2647 if (LIST_FIRST(&bp->b_dep) != NULL &&
2648 (bp->b_flags & B_DEFERRED) == 0 &&
2649 buf_countdeps(bp, 0)) {
2650 spin_lock(&bufqspin);
2651 spun = 1;
2652 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2653 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2654 bp->b_flags |= B_DEFERRED;
2655 BUF_UNLOCK(bp);
2656 bp = TAILQ_FIRST(&bufqueues[q]);
2657 continue;
2661 * If the buffer has a dependancy, buf_checkwrite() must
2662 * also return 0 for us to be able to initate the write.
2664 * If the buffer is flagged B_ERROR it may be requeued
2665 * over and over again, we try to avoid a live lock.
2667 * NOTE: buf_checkwrite is MPSAFE.
2669 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2670 bremfree(bp);
2671 brelse(bp);
2672 } else if (bp->b_flags & B_ERROR) {
2673 tsleep(bp, 0, "bioer", 1);
2674 bp->b_flags &= ~B_AGE;
2675 vfs_bio_awrite(bp);
2676 } else {
2677 bp->b_flags |= B_AGE;
2678 vfs_bio_awrite(bp);
2680 ++r;
2681 break;
2683 if (spun)
2684 spin_unlock(&bufqspin);
2685 return (r);
2689 * inmem:
2691 * Returns true if no I/O is needed to access the associated VM object.
2692 * This is like findblk except it also hunts around in the VM system for
2693 * the data.
2695 * Note that we ignore vm_page_free() races from interrupts against our
2696 * lookup, since if the caller is not protected our return value will not
2697 * be any more valid then otherwise once we exit the critical section.
2700 inmem(struct vnode *vp, off_t loffset)
2702 vm_object_t obj;
2703 vm_offset_t toff, tinc, size;
2704 vm_page_t m;
2705 int res = 1;
2707 if (findblk(vp, loffset, FINDBLK_TEST))
2708 return 1;
2709 if (vp->v_mount == NULL)
2710 return 0;
2711 if ((obj = vp->v_object) == NULL)
2712 return 0;
2714 size = PAGE_SIZE;
2715 if (size > vp->v_mount->mnt_stat.f_iosize)
2716 size = vp->v_mount->mnt_stat.f_iosize;
2718 vm_object_hold(obj);
2719 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2720 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2721 if (m == NULL) {
2722 res = 0;
2723 break;
2725 tinc = size;
2726 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2727 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2728 if (vm_page_is_valid(m,
2729 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2730 res = 0;
2731 break;
2734 vm_object_drop(obj);
2735 return (res);
2739 * findblk:
2741 * Locate and return the specified buffer. Unless flagged otherwise,
2742 * a locked buffer will be returned if it exists or NULL if it does not.
2744 * findblk()'d buffers are still on the bufqueues and if you intend
2745 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2746 * and possibly do other stuff to it.
2748 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2749 * for locking the buffer and ensuring that it remains
2750 * the desired buffer after locking.
2752 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2753 * to acquire the lock we return NULL, even if the
2754 * buffer exists.
2756 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2757 * reuse by getnewbuf() but does not prevent
2758 * disassociation (B_INVAL). Used to avoid deadlocks
2759 * against random (vp,loffset)s due to reassignment.
2761 * (0) - Lock the buffer blocking.
2763 * MPSAFE
2765 struct buf *
2766 findblk(struct vnode *vp, off_t loffset, int flags)
2768 struct buf *bp;
2769 int lkflags;
2771 lkflags = LK_EXCLUSIVE;
2772 if (flags & FINDBLK_NBLOCK)
2773 lkflags |= LK_NOWAIT;
2775 for (;;) {
2777 * Lookup. Ref the buf while holding v_token to prevent
2778 * reuse (but does not prevent diassociation).
2780 lwkt_gettoken_shared(&vp->v_token);
2781 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2782 if (bp == NULL) {
2783 lwkt_reltoken(&vp->v_token);
2784 return(NULL);
2786 bqhold(bp);
2787 lwkt_reltoken(&vp->v_token);
2790 * If testing only break and return bp, do not lock.
2792 if (flags & FINDBLK_TEST)
2793 break;
2796 * Lock the buffer, return an error if the lock fails.
2797 * (only FINDBLK_NBLOCK can cause the lock to fail).
2799 if (BUF_LOCK(bp, lkflags)) {
2800 atomic_subtract_int(&bp->b_refs, 1);
2801 /* bp = NULL; not needed */
2802 return(NULL);
2806 * Revalidate the locked buf before allowing it to be
2807 * returned.
2809 if (bp->b_vp == vp && bp->b_loffset == loffset)
2810 break;
2811 atomic_subtract_int(&bp->b_refs, 1);
2812 BUF_UNLOCK(bp);
2816 * Success
2818 if ((flags & FINDBLK_REF) == 0)
2819 atomic_subtract_int(&bp->b_refs, 1);
2820 return(bp);
2824 * getcacheblk:
2826 * Similar to getblk() except only returns the buffer if it is
2827 * B_CACHE and requires no other manipulation. Otherwise NULL
2828 * is returned.
2830 * If B_RAM is set the buffer might be just fine, but we return
2831 * NULL anyway because we want the code to fall through to the
2832 * cluster read. Otherwise read-ahead breaks.
2834 * If blksize is 0 the buffer cache buffer must already be fully
2835 * cached.
2837 * If blksize is non-zero getblk() will be used, allowing a buffer
2838 * to be reinstantiated from its VM backing store. The buffer must
2839 * still be fully cached after reinstantiation to be returned.
2841 struct buf *
2842 getcacheblk(struct vnode *vp, off_t loffset, int blksize)
2844 struct buf *bp;
2846 if (blksize) {
2847 bp = getblk(vp, loffset, blksize, 0, 0);
2848 if (bp) {
2849 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2850 B_CACHE) {
2851 bp->b_flags &= ~B_AGE;
2852 } else {
2853 brelse(bp);
2854 bp = NULL;
2857 } else {
2858 bp = findblk(vp, loffset, 0);
2859 if (bp) {
2860 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2861 B_CACHE) {
2862 bp->b_flags &= ~B_AGE;
2863 bremfree(bp);
2864 } else {
2865 BUF_UNLOCK(bp);
2866 bp = NULL;
2870 return (bp);
2874 * getblk:
2876 * Get a block given a specified block and offset into a file/device.
2877 * B_INVAL may or may not be set on return. The caller should clear
2878 * B_INVAL prior to initiating a READ.
2880 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2881 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2882 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2883 * without doing any of those things the system will likely believe
2884 * the buffer to be valid (especially if it is not B_VMIO), and the
2885 * next getblk() will return the buffer with B_CACHE set.
2887 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2888 * an existing buffer.
2890 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2891 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2892 * and then cleared based on the backing VM. If the previous buffer is
2893 * non-0-sized but invalid, B_CACHE will be cleared.
2895 * If getblk() must create a new buffer, the new buffer is returned with
2896 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2897 * case it is returned with B_INVAL clear and B_CACHE set based on the
2898 * backing VM.
2900 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2901 * B_CACHE bit is clear.
2903 * What this means, basically, is that the caller should use B_CACHE to
2904 * determine whether the buffer is fully valid or not and should clear
2905 * B_INVAL prior to issuing a read. If the caller intends to validate
2906 * the buffer by loading its data area with something, the caller needs
2907 * to clear B_INVAL. If the caller does this without issuing an I/O,
2908 * the caller should set B_CACHE ( as an optimization ), else the caller
2909 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2910 * a write attempt or if it was a successfull read. If the caller
2911 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2912 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2914 * getblk flags:
2916 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2917 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2919 * MPALMOSTSAFE
2921 struct buf *
2922 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2924 struct buf *bp;
2925 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2926 int error;
2927 int lkflags;
2929 if (size > MAXBSIZE)
2930 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2931 if (vp->v_object == NULL)
2932 panic("getblk: vnode %p has no object!", vp);
2934 loop:
2935 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2937 * The buffer was found in the cache, but we need to lock it.
2938 * We must acquire a ref on the bp to prevent reuse, but
2939 * this will not prevent disassociation (brelvp()) so we
2940 * must recheck (vp,loffset) after acquiring the lock.
2942 * Without the ref the buffer could potentially be reused
2943 * before we acquire the lock and create a deadlock
2944 * situation between the thread trying to reuse the buffer
2945 * and us due to the fact that we would wind up blocking
2946 * on a random (vp,loffset).
2948 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2949 if (blkflags & GETBLK_NOWAIT) {
2950 bqdrop(bp);
2951 return(NULL);
2953 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2954 if (blkflags & GETBLK_PCATCH)
2955 lkflags |= LK_PCATCH;
2956 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2957 if (error) {
2958 bqdrop(bp);
2959 if (error == ENOLCK)
2960 goto loop;
2961 return (NULL);
2963 /* buffer may have changed on us */
2965 bqdrop(bp);
2968 * Once the buffer has been locked, make sure we didn't race
2969 * a buffer recyclement. Buffers that are no longer hashed
2970 * will have b_vp == NULL, so this takes care of that check
2971 * as well.
2973 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2974 kprintf("Warning buffer %p (vp %p loffset %lld) "
2975 "was recycled\n",
2976 bp, vp, (long long)loffset);
2977 BUF_UNLOCK(bp);
2978 goto loop;
2982 * If SZMATCH any pre-existing buffer must be of the requested
2983 * size or NULL is returned. The caller absolutely does not
2984 * want getblk() to bwrite() the buffer on a size mismatch.
2986 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2987 BUF_UNLOCK(bp);
2988 return(NULL);
2992 * All vnode-based buffers must be backed by a VM object.
2994 KKASSERT(bp->b_flags & B_VMIO);
2995 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2996 bp->b_flags &= ~B_AGE;
2999 * Make sure that B_INVAL buffers do not have a cached
3000 * block number translation.
3002 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
3003 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
3004 " did not have cleared bio_offset cache\n",
3005 bp, vp, (long long)loffset);
3006 clearbiocache(&bp->b_bio2);
3010 * The buffer is locked. B_CACHE is cleared if the buffer is
3011 * invalid.
3013 if (bp->b_flags & B_INVAL)
3014 bp->b_flags &= ~B_CACHE;
3015 bremfree(bp);
3018 * Any size inconsistancy with a dirty buffer or a buffer
3019 * with a softupdates dependancy must be resolved. Resizing
3020 * the buffer in such circumstances can lead to problems.
3022 * Dirty or dependant buffers are written synchronously.
3023 * Other types of buffers are simply released and
3024 * reconstituted as they may be backed by valid, dirty VM
3025 * pages (but not marked B_DELWRI).
3027 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
3028 * and may be left over from a prior truncation (and thus
3029 * no longer represent the actual EOF point), so we
3030 * definitely do not want to B_NOCACHE the backing store.
3032 if (size != bp->b_bcount) {
3033 if (bp->b_flags & B_DELWRI) {
3034 bp->b_flags |= B_RELBUF;
3035 bwrite(bp);
3036 } else if (LIST_FIRST(&bp->b_dep)) {
3037 bp->b_flags |= B_RELBUF;
3038 bwrite(bp);
3039 } else {
3040 bp->b_flags |= B_RELBUF;
3041 brelse(bp);
3043 goto loop;
3045 KKASSERT(size <= bp->b_kvasize);
3046 KASSERT(bp->b_loffset != NOOFFSET,
3047 ("getblk: no buffer offset"));
3050 * A buffer with B_DELWRI set and B_CACHE clear must
3051 * be committed before we can return the buffer in
3052 * order to prevent the caller from issuing a read
3053 * ( due to B_CACHE not being set ) and overwriting
3054 * it.
3056 * Most callers, including NFS and FFS, need this to
3057 * operate properly either because they assume they
3058 * can issue a read if B_CACHE is not set, or because
3059 * ( for example ) an uncached B_DELWRI might loop due
3060 * to softupdates re-dirtying the buffer. In the latter
3061 * case, B_CACHE is set after the first write completes,
3062 * preventing further loops.
3064 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
3065 * above while extending the buffer, we cannot allow the
3066 * buffer to remain with B_CACHE set after the write
3067 * completes or it will represent a corrupt state. To
3068 * deal with this we set B_NOCACHE to scrap the buffer
3069 * after the write.
3071 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3072 * I'm not even sure this state is still possible
3073 * now that getblk() writes out any dirty buffers
3074 * on size changes.
3076 * We might be able to do something fancy, like setting
3077 * B_CACHE in bwrite() except if B_DELWRI is already set,
3078 * so the below call doesn't set B_CACHE, but that gets real
3079 * confusing. This is much easier.
3082 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3083 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3084 "and CACHE clear, b_flags %08x\n",
3085 bp, (intmax_t)bp->b_loffset, bp->b_flags);
3086 bp->b_flags |= B_NOCACHE;
3087 bwrite(bp);
3088 goto loop;
3090 } else {
3092 * Buffer is not in-core, create new buffer. The buffer
3093 * returned by getnewbuf() is locked. Note that the returned
3094 * buffer is also considered valid (not marked B_INVAL).
3096 * Calculating the offset for the I/O requires figuring out
3097 * the block size. We use DEV_BSIZE for VBLK or VCHR and
3098 * the mount's f_iosize otherwise. If the vnode does not
3099 * have an associated mount we assume that the passed size is
3100 * the block size.
3102 * Note that vn_isdisk() cannot be used here since it may
3103 * return a failure for numerous reasons. Note that the
3104 * buffer size may be larger then the block size (the caller
3105 * will use block numbers with the proper multiple). Beware
3106 * of using any v_* fields which are part of unions. In
3107 * particular, in DragonFly the mount point overloading
3108 * mechanism uses the namecache only and the underlying
3109 * directory vnode is not a special case.
3111 int bsize, maxsize;
3113 if (vp->v_type == VBLK || vp->v_type == VCHR)
3114 bsize = DEV_BSIZE;
3115 else if (vp->v_mount)
3116 bsize = vp->v_mount->mnt_stat.f_iosize;
3117 else
3118 bsize = size;
3120 maxsize = size + (loffset & PAGE_MASK);
3121 maxsize = imax(maxsize, bsize);
3123 bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3124 if (bp == NULL) {
3125 if (slpflags || slptimeo)
3126 return NULL;
3127 goto loop;
3131 * Atomically insert the buffer into the hash, so that it can
3132 * be found by findblk().
3134 * If bgetvp() returns non-zero a collision occured, and the
3135 * bp will not be associated with the vnode.
3137 * Make sure the translation layer has been cleared.
3139 bp->b_loffset = loffset;
3140 bp->b_bio2.bio_offset = NOOFFSET;
3141 /* bp->b_bio2.bio_next = NULL; */
3143 if (bgetvp(vp, bp, size)) {
3144 bp->b_flags |= B_INVAL;
3145 brelse(bp);
3146 goto loop;
3150 * All vnode-based buffers must be backed by a VM object.
3152 KKASSERT(vp->v_object != NULL);
3153 bp->b_flags |= B_VMIO;
3154 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3156 allocbuf(bp, size);
3158 KKASSERT(dsched_is_clear_buf_priv(bp));
3159 return (bp);
3163 * regetblk(bp)
3165 * Reacquire a buffer that was previously released to the locked queue,
3166 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3167 * set B_LOCKED (which handles the acquisition race).
3169 * To this end, either B_LOCKED must be set or the dependancy list must be
3170 * non-empty.
3172 * MPSAFE
3174 void
3175 regetblk(struct buf *bp)
3177 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3178 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3179 bremfree(bp);
3183 * geteblk:
3185 * Get an empty, disassociated buffer of given size. The buffer is
3186 * initially set to B_INVAL.
3188 * critical section protection is not required for the allocbuf()
3189 * call because races are impossible here.
3191 * MPALMOSTSAFE
3193 struct buf *
3194 geteblk(int size)
3196 struct buf *bp;
3197 int maxsize;
3199 maxsize = (size + BKVAMASK) & ~BKVAMASK;
3201 while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3203 allocbuf(bp, size);
3204 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3205 KKASSERT(dsched_is_clear_buf_priv(bp));
3206 return (bp);
3211 * allocbuf:
3213 * This code constitutes the buffer memory from either anonymous system
3214 * memory (in the case of non-VMIO operations) or from an associated
3215 * VM object (in the case of VMIO operations). This code is able to
3216 * resize a buffer up or down.
3218 * Note that this code is tricky, and has many complications to resolve
3219 * deadlock or inconsistant data situations. Tread lightly!!!
3220 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3221 * the caller. Calling this code willy nilly can result in the loss of
3222 * data.
3224 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3225 * B_CACHE for the non-VMIO case.
3227 * This routine does not need to be called from a critical section but you
3228 * must own the buffer.
3230 * MPSAFE
3233 allocbuf(struct buf *bp, int size)
3235 int newbsize, mbsize;
3236 int i;
3238 if (BUF_REFCNT(bp) == 0)
3239 panic("allocbuf: buffer not busy");
3241 if (bp->b_kvasize < size)
3242 panic("allocbuf: buffer too small");
3244 if ((bp->b_flags & B_VMIO) == 0) {
3245 caddr_t origbuf;
3246 int origbufsize;
3248 * Just get anonymous memory from the kernel. Don't
3249 * mess with B_CACHE.
3251 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3252 if (bp->b_flags & B_MALLOC)
3253 newbsize = mbsize;
3254 else
3255 newbsize = round_page(size);
3257 if (newbsize < bp->b_bufsize) {
3259 * Malloced buffers are not shrunk
3261 if (bp->b_flags & B_MALLOC) {
3262 if (newbsize) {
3263 bp->b_bcount = size;
3264 } else {
3265 kfree(bp->b_data, M_BIOBUF);
3266 if (bp->b_bufsize) {
3267 atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3268 bufspacewakeup();
3269 bp->b_bufsize = 0;
3271 bp->b_data = bp->b_kvabase;
3272 bp->b_bcount = 0;
3273 bp->b_flags &= ~B_MALLOC;
3275 return 1;
3277 vm_hold_free_pages(
3279 (vm_offset_t) bp->b_data + newbsize,
3280 (vm_offset_t) bp->b_data + bp->b_bufsize);
3281 } else if (newbsize > bp->b_bufsize) {
3283 * We only use malloced memory on the first allocation.
3284 * and revert to page-allocated memory when the buffer
3285 * grows.
3287 if ((bufmallocspace < maxbufmallocspace) &&
3288 (bp->b_bufsize == 0) &&
3289 (mbsize <= PAGE_SIZE/2)) {
3291 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3292 bp->b_bufsize = mbsize;
3293 bp->b_bcount = size;
3294 bp->b_flags |= B_MALLOC;
3295 atomic_add_long(&bufmallocspace, mbsize);
3296 return 1;
3298 origbuf = NULL;
3299 origbufsize = 0;
3301 * If the buffer is growing on its other-than-first
3302 * allocation, then we revert to the page-allocation
3303 * scheme.
3305 if (bp->b_flags & B_MALLOC) {
3306 origbuf = bp->b_data;
3307 origbufsize = bp->b_bufsize;
3308 bp->b_data = bp->b_kvabase;
3309 if (bp->b_bufsize) {
3310 atomic_subtract_long(&bufmallocspace,
3311 bp->b_bufsize);
3312 bufspacewakeup();
3313 bp->b_bufsize = 0;
3315 bp->b_flags &= ~B_MALLOC;
3316 newbsize = round_page(newbsize);
3318 vm_hold_load_pages(
3320 (vm_offset_t) bp->b_data + bp->b_bufsize,
3321 (vm_offset_t) bp->b_data + newbsize);
3322 if (origbuf) {
3323 bcopy(origbuf, bp->b_data, origbufsize);
3324 kfree(origbuf, M_BIOBUF);
3327 } else {
3328 vm_page_t m;
3329 int desiredpages;
3331 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3332 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3333 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3334 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3336 if (bp->b_flags & B_MALLOC)
3337 panic("allocbuf: VMIO buffer can't be malloced");
3339 * Set B_CACHE initially if buffer is 0 length or will become
3340 * 0-length.
3342 if (size == 0 || bp->b_bufsize == 0)
3343 bp->b_flags |= B_CACHE;
3345 if (newbsize < bp->b_bufsize) {
3347 * DEV_BSIZE aligned new buffer size is less then the
3348 * DEV_BSIZE aligned existing buffer size. Figure out
3349 * if we have to remove any pages.
3351 if (desiredpages < bp->b_xio.xio_npages) {
3352 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3354 * the page is not freed here -- it
3355 * is the responsibility of
3356 * vnode_pager_setsize
3358 m = bp->b_xio.xio_pages[i];
3359 KASSERT(m != bogus_page,
3360 ("allocbuf: bogus page found"));
3361 vm_page_busy_wait(m, TRUE, "biodep");
3362 bp->b_xio.xio_pages[i] = NULL;
3363 vm_page_unwire(m, 0);
3364 vm_page_wakeup(m);
3366 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3367 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3368 bp->b_xio.xio_npages = desiredpages;
3370 } else if (size > bp->b_bcount) {
3372 * We are growing the buffer, possibly in a
3373 * byte-granular fashion.
3375 struct vnode *vp;
3376 vm_object_t obj;
3377 vm_offset_t toff;
3378 vm_offset_t tinc;
3381 * Step 1, bring in the VM pages from the object,
3382 * allocating them if necessary. We must clear
3383 * B_CACHE if these pages are not valid for the
3384 * range covered by the buffer.
3386 * critical section protection is required to protect
3387 * against interrupts unbusying and freeing pages
3388 * between our vm_page_lookup() and our
3389 * busycheck/wiring call.
3391 vp = bp->b_vp;
3392 obj = vp->v_object;
3394 vm_object_hold(obj);
3395 while (bp->b_xio.xio_npages < desiredpages) {
3396 vm_page_t m;
3397 vm_pindex_t pi;
3398 int error;
3400 pi = OFF_TO_IDX(bp->b_loffset) +
3401 bp->b_xio.xio_npages;
3404 * Blocking on m->busy might lead to a
3405 * deadlock:
3407 * vm_fault->getpages->cluster_read->allocbuf
3409 m = vm_page_lookup_busy_try(obj, pi, FALSE,
3410 &error);
3411 if (error) {
3412 vm_page_sleep_busy(m, FALSE, "pgtblk");
3413 continue;
3415 if (m == NULL) {
3417 * note: must allocate system pages
3418 * since blocking here could intefere
3419 * with paging I/O, no matter which
3420 * process we are.
3422 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3423 if (m) {
3424 vm_page_wire(m);
3425 vm_page_flag_clear(m, PG_ZERO);
3426 vm_page_wakeup(m);
3427 bp->b_flags &= ~B_CACHE;
3428 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3429 ++bp->b_xio.xio_npages;
3431 continue;
3435 * We found a page and were able to busy it.
3437 vm_page_flag_clear(m, PG_ZERO);
3438 vm_page_wire(m);
3439 vm_page_wakeup(m);
3440 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3441 ++bp->b_xio.xio_npages;
3442 if (bp->b_act_count < m->act_count)
3443 bp->b_act_count = m->act_count;
3445 vm_object_drop(obj);
3448 * Step 2. We've loaded the pages into the buffer,
3449 * we have to figure out if we can still have B_CACHE
3450 * set. Note that B_CACHE is set according to the
3451 * byte-granular range ( bcount and size ), not the
3452 * aligned range ( newbsize ).
3454 * The VM test is against m->valid, which is DEV_BSIZE
3455 * aligned. Needless to say, the validity of the data
3456 * needs to also be DEV_BSIZE aligned. Note that this
3457 * fails with NFS if the server or some other client
3458 * extends the file's EOF. If our buffer is resized,
3459 * B_CACHE may remain set! XXX
3462 toff = bp->b_bcount;
3463 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3465 while ((bp->b_flags & B_CACHE) && toff < size) {
3466 vm_pindex_t pi;
3468 if (tinc > (size - toff))
3469 tinc = size - toff;
3471 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3472 PAGE_SHIFT;
3474 vfs_buf_test_cache(
3475 bp,
3476 bp->b_loffset,
3477 toff,
3478 tinc,
3479 bp->b_xio.xio_pages[pi]
3481 toff += tinc;
3482 tinc = PAGE_SIZE;
3486 * Step 3, fixup the KVM pmap. Remember that
3487 * bp->b_data is relative to bp->b_loffset, but
3488 * bp->b_loffset may be offset into the first page.
3491 bp->b_data = (caddr_t)
3492 trunc_page((vm_offset_t)bp->b_data);
3493 pmap_qenter(
3494 (vm_offset_t)bp->b_data,
3495 bp->b_xio.xio_pages,
3496 bp->b_xio.xio_npages
3498 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3499 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3503 /* adjust space use on already-dirty buffer */
3504 if (bp->b_flags & B_DELWRI) {
3505 spin_lock(&bufcspin);
3506 dirtybufspace += newbsize - bp->b_bufsize;
3507 if (bp->b_flags & B_HEAVY)
3508 dirtybufspacehw += newbsize - bp->b_bufsize;
3509 spin_unlock(&bufcspin);
3511 if (newbsize < bp->b_bufsize)
3512 bufspacewakeup();
3513 bp->b_bufsize = newbsize; /* actual buffer allocation */
3514 bp->b_bcount = size; /* requested buffer size */
3515 return 1;
3519 * biowait:
3521 * Wait for buffer I/O completion, returning error status. B_EINTR
3522 * is converted into an EINTR error but not cleared (since a chain
3523 * of biowait() calls may occur).
3525 * On return bpdone() will have been called but the buffer will remain
3526 * locked and will not have been brelse()'d.
3528 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3529 * likely still in progress on return.
3531 * NOTE! This operation is on a BIO, not a BUF.
3533 * NOTE! BIO_DONE is cleared by vn_strategy()
3535 * MPSAFE
3537 static __inline int
3538 _biowait(struct bio *bio, const char *wmesg, int to)
3540 struct buf *bp = bio->bio_buf;
3541 u_int32_t flags;
3542 u_int32_t nflags;
3543 int error;
3545 KKASSERT(bio == &bp->b_bio1);
3546 for (;;) {
3547 flags = bio->bio_flags;
3548 if (flags & BIO_DONE)
3549 break;
3550 nflags = flags | BIO_WANT;
3551 tsleep_interlock(bio, 0);
3552 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3553 if (wmesg)
3554 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3555 else if (bp->b_cmd == BUF_CMD_READ)
3556 error = tsleep(bio, PINTERLOCKED, "biord", to);
3557 else
3558 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3559 if (error) {
3560 kprintf("tsleep error biowait %d\n", error);
3561 return (error);
3567 * Finish up.
3569 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3570 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3571 if (bp->b_flags & B_EINTR)
3572 return (EINTR);
3573 if (bp->b_flags & B_ERROR)
3574 return (bp->b_error ? bp->b_error : EIO);
3575 return (0);
3579 biowait(struct bio *bio, const char *wmesg)
3581 return(_biowait(bio, wmesg, 0));
3585 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3587 return(_biowait(bio, wmesg, to));
3591 * This associates a tracking count with an I/O. vn_strategy() and
3592 * dev_dstrategy() do this automatically but there are a few cases
3593 * where a vnode or device layer is bypassed when a block translation
3594 * is cached. In such cases bio_start_transaction() may be called on
3595 * the bypassed layers so the system gets an I/O in progress indication
3596 * for those higher layers.
3598 void
3599 bio_start_transaction(struct bio *bio, struct bio_track *track)
3601 bio->bio_track = track;
3602 if (dsched_is_clear_buf_priv(bio->bio_buf))
3603 dsched_new_buf(bio->bio_buf);
3604 bio_track_ref(track);
3608 * Initiate I/O on a vnode.
3610 * SWAPCACHE OPERATION:
3612 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3613 * devfs also uses b_vp for fake buffers so we also have to check
3614 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3615 * underlying block device. The swap assignments are related to the
3616 * buffer cache buffer's b_vp, not the passed vp.
3618 * The passed vp == bp->b_vp only in the case where the strategy call
3619 * is made on the vp itself for its own buffers (a regular file or
3620 * block device vp). The filesystem usually then re-calls vn_strategy()
3621 * after translating the request to an underlying device.
3623 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3624 * underlying buffer cache buffers.
3626 * We can only deal with page-aligned buffers at the moment, because
3627 * we can't tell what the real dirty state for pages straddling a buffer
3628 * are.
3630 * In order to call swap_pager_strategy() we must provide the VM object
3631 * and base offset for the underlying buffer cache pages so it can find
3632 * the swap blocks.
3634 void
3635 vn_strategy(struct vnode *vp, struct bio *bio)
3637 struct bio_track *track;
3638 struct buf *bp = bio->bio_buf;
3640 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3643 * Set when an I/O is issued on the bp. Cleared by consumers
3644 * (aka HAMMER), allowing the consumer to determine if I/O had
3645 * actually occurred.
3647 bp->b_flags |= B_IODEBUG;
3650 * Handle the swap cache intercept.
3652 if (vn_cache_strategy(vp, bio))
3653 return;
3656 * Otherwise do the operation through the filesystem
3658 if (bp->b_cmd == BUF_CMD_READ)
3659 track = &vp->v_track_read;
3660 else
3661 track = &vp->v_track_write;
3662 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3663 bio->bio_track = track;
3664 if (dsched_is_clear_buf_priv(bio->bio_buf))
3665 dsched_new_buf(bio->bio_buf);
3666 bio_track_ref(track);
3667 vop_strategy(*vp->v_ops, vp, bio);
3670 static void vn_cache_strategy_callback(struct bio *bio);
3673 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3675 struct buf *bp = bio->bio_buf;
3676 struct bio *nbio;
3677 vm_object_t object;
3678 vm_page_t m;
3679 int i;
3682 * Is this buffer cache buffer suitable for reading from
3683 * the swap cache?
3685 if (vm_swapcache_read_enable == 0 ||
3686 bp->b_cmd != BUF_CMD_READ ||
3687 ((bp->b_flags & B_CLUSTER) == 0 &&
3688 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3689 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3690 (bp->b_bcount & PAGE_MASK) != 0) {
3691 return(0);
3695 * Figure out the original VM object (it will match the underlying
3696 * VM pages). Note that swap cached data uses page indices relative
3697 * to that object, not relative to bio->bio_offset.
3699 if (bp->b_flags & B_CLUSTER)
3700 object = vp->v_object;
3701 else
3702 object = bp->b_vp->v_object;
3705 * In order to be able to use the swap cache all underlying VM
3706 * pages must be marked as such, and we can't have any bogus pages.
3708 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3709 m = bp->b_xio.xio_pages[i];
3710 if ((m->flags & PG_SWAPPED) == 0)
3711 break;
3712 if (m == bogus_page)
3713 break;
3717 * If we are good then issue the I/O using swap_pager_strategy().
3719 * We can only do this if the buffer actually supports object-backed
3720 * I/O. If it doesn't npages will be 0.
3722 if (i && i == bp->b_xio.xio_npages) {
3723 m = bp->b_xio.xio_pages[0];
3724 nbio = push_bio(bio);
3725 nbio->bio_done = vn_cache_strategy_callback;
3726 nbio->bio_offset = ptoa(m->pindex);
3727 KKASSERT(m->object == object);
3728 swap_pager_strategy(object, nbio);
3729 return(1);
3731 return(0);
3735 * This is a bit of a hack but since the vn_cache_strategy() function can
3736 * override a VFS's strategy function we must make sure that the bio, which
3737 * is probably bio2, doesn't leak an unexpected offset value back to the
3738 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3739 * bio went through its own file strategy function and the the bio2 offset
3740 * is a cached disk offset when, in fact, it isn't.
3742 static void
3743 vn_cache_strategy_callback(struct bio *bio)
3745 bio->bio_offset = NOOFFSET;
3746 biodone(pop_bio(bio));
3750 * bpdone:
3752 * Finish I/O on a buffer after all BIOs have been processed.
3753 * Called when the bio chain is exhausted or by biowait. If called
3754 * by biowait, elseit is typically 0.
3756 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3757 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3758 * assuming B_INVAL is clear.
3760 * For the VMIO case, we set B_CACHE if the op was a read and no
3761 * read error occured, or if the op was a write. B_CACHE is never
3762 * set if the buffer is invalid or otherwise uncacheable.
3764 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3765 * initiator to leave B_INVAL set to brelse the buffer out of existance
3766 * in the biodone routine.
3768 void
3769 bpdone(struct buf *bp, int elseit)
3771 buf_cmd_t cmd;
3773 KASSERT(BUF_REFCNTNB(bp) > 0,
3774 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3775 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3776 ("biodone: bp %p already done!", bp));
3779 * No more BIOs are left. All completion functions have been dealt
3780 * with, now we clean up the buffer.
3782 cmd = bp->b_cmd;
3783 bp->b_cmd = BUF_CMD_DONE;
3786 * Only reads and writes are processed past this point.
3788 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3789 if (cmd == BUF_CMD_FREEBLKS)
3790 bp->b_flags |= B_NOCACHE;
3791 if (elseit)
3792 brelse(bp);
3793 return;
3797 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3798 * a lot worse. XXX - move this above the clearing of b_cmd
3800 if (LIST_FIRST(&bp->b_dep) != NULL)
3801 buf_complete(bp); /* MPSAFE */
3804 * A failed write must re-dirty the buffer unless B_INVAL
3805 * was set. Only applicable to normal buffers (with VPs).
3806 * vinum buffers may not have a vp.
3808 if (cmd == BUF_CMD_WRITE &&
3809 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3810 bp->b_flags &= ~B_NOCACHE;
3811 if (bp->b_vp)
3812 bdirty(bp);
3815 if (bp->b_flags & B_VMIO) {
3816 int i;
3817 vm_ooffset_t foff;
3818 vm_page_t m;
3819 vm_object_t obj;
3820 int iosize;
3821 struct vnode *vp = bp->b_vp;
3823 obj = vp->v_object;
3825 #if defined(VFS_BIO_DEBUG)
3826 if (vp->v_auxrefs == 0)
3827 panic("biodone: zero vnode hold count");
3828 if ((vp->v_flag & VOBJBUF) == 0)
3829 panic("biodone: vnode is not setup for merged cache");
3830 #endif
3832 foff = bp->b_loffset;
3833 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3834 KASSERT(obj != NULL, ("biodone: missing VM object"));
3836 #if defined(VFS_BIO_DEBUG)
3837 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3838 kprintf("biodone: paging in progress(%d) < "
3839 "bp->b_xio.xio_npages(%d)\n",
3840 obj->paging_in_progress,
3841 bp->b_xio.xio_npages);
3843 #endif
3846 * Set B_CACHE if the op was a normal read and no error
3847 * occured. B_CACHE is set for writes in the b*write()
3848 * routines.
3850 iosize = bp->b_bcount - bp->b_resid;
3851 if (cmd == BUF_CMD_READ &&
3852 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3853 bp->b_flags |= B_CACHE;
3856 vm_object_hold(obj);
3857 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3858 int bogusflag = 0;
3859 int resid;
3861 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3862 if (resid > iosize)
3863 resid = iosize;
3866 * cleanup bogus pages, restoring the originals. Since
3867 * the originals should still be wired, we don't have
3868 * to worry about interrupt/freeing races destroying
3869 * the VM object association.
3871 m = bp->b_xio.xio_pages[i];
3872 if (m == bogus_page) {
3873 bogusflag = 1;
3874 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3875 if (m == NULL)
3876 panic("biodone: page disappeared");
3877 bp->b_xio.xio_pages[i] = m;
3878 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3879 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3881 #if defined(VFS_BIO_DEBUG)
3882 if (OFF_TO_IDX(foff) != m->pindex) {
3883 kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3884 "mismatch\n",
3885 (unsigned long)foff, (long)m->pindex);
3887 #endif
3890 * In the write case, the valid and clean bits are
3891 * already changed correctly (see bdwrite()), so we
3892 * only need to do this here in the read case.
3894 vm_page_busy_wait(m, FALSE, "bpdpgw");
3895 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3896 vfs_clean_one_page(bp, i, m);
3898 vm_page_flag_clear(m, PG_ZERO);
3901 * when debugging new filesystems or buffer I/O
3902 * methods, this is the most common error that pops
3903 * up. if you see this, you have not set the page
3904 * busy flag correctly!!!
3906 if (m->busy == 0) {
3907 kprintf("biodone: page busy < 0, "
3908 "pindex: %d, foff: 0x(%x,%x), "
3909 "resid: %d, index: %d\n",
3910 (int) m->pindex, (int)(foff >> 32),
3911 (int) foff & 0xffffffff, resid, i);
3912 if (!vn_isdisk(vp, NULL))
3913 kprintf(" iosize: %ld, loffset: %lld, "
3914 "flags: 0x%08x, npages: %d\n",
3915 bp->b_vp->v_mount->mnt_stat.f_iosize,
3916 (long long)bp->b_loffset,
3917 bp->b_flags, bp->b_xio.xio_npages);
3918 else
3919 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3920 (long long)bp->b_loffset,
3921 bp->b_flags, bp->b_xio.xio_npages);
3922 kprintf(" valid: 0x%x, dirty: 0x%x, "
3923 "wired: %d\n",
3924 m->valid, m->dirty,
3925 m->wire_count);
3926 panic("biodone: page busy < 0");
3928 vm_page_io_finish(m);
3929 vm_page_wakeup(m);
3930 vm_object_pip_wakeup(obj);
3931 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3932 iosize -= resid;
3934 bp->b_flags &= ~B_HASBOGUS;
3935 vm_object_drop(obj);
3939 * Finish up by releasing the buffer. There are no more synchronous
3940 * or asynchronous completions, those were handled by bio_done
3941 * callbacks.
3943 if (elseit) {
3944 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3945 brelse(bp);
3946 else
3947 bqrelse(bp);
3952 * Normal biodone.
3954 void
3955 biodone(struct bio *bio)
3957 struct buf *bp = bio->bio_buf;
3959 runningbufwakeup(bp);
3962 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3964 while (bio) {
3965 biodone_t *done_func;
3966 struct bio_track *track;
3969 * BIO tracking. Most but not all BIOs are tracked.
3971 if ((track = bio->bio_track) != NULL) {
3972 bio_track_rel(track);
3973 bio->bio_track = NULL;
3977 * A bio_done function terminates the loop. The function
3978 * will be responsible for any further chaining and/or
3979 * buffer management.
3981 * WARNING! The done function can deallocate the buffer!
3983 if ((done_func = bio->bio_done) != NULL) {
3984 bio->bio_done = NULL;
3985 done_func(bio);
3986 return;
3988 bio = bio->bio_prev;
3992 * If we've run out of bio's do normal [a]synchronous completion.
3994 bpdone(bp, 1);
3998 * Synchronous biodone - this terminates a synchronous BIO.
4000 * bpdone() is called with elseit=FALSE, leaving the buffer completed
4001 * but still locked. The caller must brelse() the buffer after waiting
4002 * for completion.
4004 void
4005 biodone_sync(struct bio *bio)
4007 struct buf *bp = bio->bio_buf;
4008 int flags;
4009 int nflags;
4011 KKASSERT(bio == &bp->b_bio1);
4012 bpdone(bp, 0);
4014 for (;;) {
4015 flags = bio->bio_flags;
4016 nflags = (flags | BIO_DONE) & ~BIO_WANT;
4018 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4019 if (flags & BIO_WANT)
4020 wakeup(bio);
4021 break;
4027 * vfs_unbusy_pages:
4029 * This routine is called in lieu of iodone in the case of
4030 * incomplete I/O. This keeps the busy status for pages
4031 * consistant.
4033 void
4034 vfs_unbusy_pages(struct buf *bp)
4036 int i;
4038 runningbufwakeup(bp);
4040 if (bp->b_flags & B_VMIO) {
4041 struct vnode *vp = bp->b_vp;
4042 vm_object_t obj;
4044 obj = vp->v_object;
4045 vm_object_hold(obj);
4047 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4048 vm_page_t m = bp->b_xio.xio_pages[i];
4051 * When restoring bogus changes the original pages
4052 * should still be wired, so we are in no danger of
4053 * losing the object association and do not need
4054 * critical section protection particularly.
4056 if (m == bogus_page) {
4057 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4058 if (!m) {
4059 panic("vfs_unbusy_pages: page missing");
4061 bp->b_xio.xio_pages[i] = m;
4062 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4063 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4065 vm_page_busy_wait(m, FALSE, "bpdpgw");
4066 vm_page_flag_clear(m, PG_ZERO);
4067 vm_page_io_finish(m);
4068 vm_page_wakeup(m);
4069 vm_object_pip_wakeup(obj);
4071 bp->b_flags &= ~B_HASBOGUS;
4072 vm_object_drop(obj);
4077 * vfs_busy_pages:
4079 * This routine is called before a device strategy routine.
4080 * It is used to tell the VM system that paging I/O is in
4081 * progress, and treat the pages associated with the buffer
4082 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4083 * flag is handled to make sure that the object doesn't become
4084 * inconsistant.
4086 * Since I/O has not been initiated yet, certain buffer flags
4087 * such as B_ERROR or B_INVAL may be in an inconsistant state
4088 * and should be ignored.
4090 * MPSAFE
4092 void
4093 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4095 int i, bogus;
4096 struct lwp *lp = curthread->td_lwp;
4099 * The buffer's I/O command must already be set. If reading,
4100 * B_CACHE must be 0 (double check against callers only doing
4101 * I/O when B_CACHE is 0).
4103 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4104 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4106 if (bp->b_flags & B_VMIO) {
4107 vm_object_t obj;
4109 obj = vp->v_object;
4110 KASSERT(bp->b_loffset != NOOFFSET,
4111 ("vfs_busy_pages: no buffer offset"));
4114 * Busy all the pages. We have to busy them all at once
4115 * to avoid deadlocks.
4117 retry:
4118 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4119 vm_page_t m = bp->b_xio.xio_pages[i];
4121 if (vm_page_busy_try(m, FALSE)) {
4122 vm_page_sleep_busy(m, FALSE, "vbpage");
4123 while (--i >= 0)
4124 vm_page_wakeup(bp->b_xio.xio_pages[i]);
4125 goto retry;
4130 * Setup for I/O, soft-busy the page right now because
4131 * the next loop may block.
4133 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4134 vm_page_t m = bp->b_xio.xio_pages[i];
4136 vm_page_flag_clear(m, PG_ZERO);
4137 if ((bp->b_flags & B_CLUSTER) == 0) {
4138 vm_object_pip_add(obj, 1);
4139 vm_page_io_start(m);
4144 * Adjust protections for I/O and do bogus-page mapping.
4145 * Assume that vm_page_protect() can block (it can block
4146 * if VM_PROT_NONE, don't take any chances regardless).
4148 * In particular note that for writes we must incorporate
4149 * page dirtyness from the VM system into the buffer's
4150 * dirty range.
4152 * For reads we theoretically must incorporate page dirtyness
4153 * from the VM system to determine if the page needs bogus
4154 * replacement, but we shortcut the test by simply checking
4155 * that all m->valid bits are set, indicating that the page
4156 * is fully valid and does not need to be re-read. For any
4157 * VM system dirtyness the page will also be fully valid
4158 * since it was mapped at one point.
4160 bogus = 0;
4161 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4162 vm_page_t m = bp->b_xio.xio_pages[i];
4164 vm_page_flag_clear(m, PG_ZERO); /* XXX */
4165 if (bp->b_cmd == BUF_CMD_WRITE) {
4167 * When readying a vnode-backed buffer for
4168 * a write we must zero-fill any invalid
4169 * portions of the backing VM pages, mark
4170 * it valid and clear related dirty bits.
4172 * vfs_clean_one_page() incorporates any
4173 * VM dirtyness and updates the b_dirtyoff
4174 * range (after we've made the page RO).
4176 * It is also expected that the pmap modified
4177 * bit has already been cleared by the
4178 * vm_page_protect(). We may not be able
4179 * to clear all dirty bits for a page if it
4180 * was also memory mapped (NFS).
4182 * Finally be sure to unassign any swap-cache
4183 * backing store as it is now stale.
4185 vm_page_protect(m, VM_PROT_READ);
4186 vfs_clean_one_page(bp, i, m);
4187 swap_pager_unswapped(m);
4188 } else if (m->valid == VM_PAGE_BITS_ALL) {
4190 * When readying a vnode-backed buffer for
4191 * read we must replace any dirty pages with
4192 * a bogus page so dirty data is not destroyed
4193 * when filling gaps.
4195 * To avoid testing whether the page is
4196 * dirty we instead test that the page was
4197 * at some point mapped (m->valid fully
4198 * valid) with the understanding that
4199 * this also covers the dirty case.
4201 bp->b_xio.xio_pages[i] = bogus_page;
4202 bp->b_flags |= B_HASBOGUS;
4203 bogus++;
4204 } else if (m->valid & m->dirty) {
4206 * This case should not occur as partial
4207 * dirtyment can only happen if the buffer
4208 * is B_CACHE, and this code is not entered
4209 * if the buffer is B_CACHE.
4211 kprintf("Warning: vfs_busy_pages - page not "
4212 "fully valid! loff=%jx bpf=%08x "
4213 "idx=%d val=%02x dir=%02x\n",
4214 (intmax_t)bp->b_loffset, bp->b_flags,
4215 i, m->valid, m->dirty);
4216 vm_page_protect(m, VM_PROT_NONE);
4217 } else {
4219 * The page is not valid and can be made
4220 * part of the read.
4222 vm_page_protect(m, VM_PROT_NONE);
4224 vm_page_wakeup(m);
4226 if (bogus) {
4227 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4228 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4233 * This is the easiest place to put the process accounting for the I/O
4234 * for now.
4236 if (lp != NULL) {
4237 if (bp->b_cmd == BUF_CMD_READ)
4238 lp->lwp_ru.ru_inblock++;
4239 else
4240 lp->lwp_ru.ru_oublock++;
4245 * Tell the VM system that the pages associated with this buffer
4246 * are clean. This is used for delayed writes where the data is
4247 * going to go to disk eventually without additional VM intevention.
4249 * NOTE: While we only really need to clean through to b_bcount, we
4250 * just go ahead and clean through to b_bufsize.
4252 static void
4253 vfs_clean_pages(struct buf *bp)
4255 vm_page_t m;
4256 int i;
4258 if ((bp->b_flags & B_VMIO) == 0)
4259 return;
4261 KASSERT(bp->b_loffset != NOOFFSET,
4262 ("vfs_clean_pages: no buffer offset"));
4264 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4265 m = bp->b_xio.xio_pages[i];
4266 vfs_clean_one_page(bp, i, m);
4271 * vfs_clean_one_page:
4273 * Set the valid bits and clear the dirty bits in a page within a
4274 * buffer. The range is restricted to the buffer's size and the
4275 * buffer's logical offset might index into the first page.
4277 * The caller has busied or soft-busied the page and it is not mapped,
4278 * test and incorporate the dirty bits into b_dirtyoff/end before
4279 * clearing them. Note that we need to clear the pmap modified bits
4280 * after determining the the page was dirty, vm_page_set_validclean()
4281 * does not do it for us.
4283 * This routine is typically called after a read completes (dirty should
4284 * be zero in that case as we are not called on bogus-replace pages),
4285 * or before a write is initiated.
4287 static void
4288 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4290 int bcount;
4291 int xoff;
4292 int soff;
4293 int eoff;
4296 * Calculate offset range within the page but relative to buffer's
4297 * loffset. loffset might be offset into the first page.
4299 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4300 bcount = bp->b_bcount + xoff; /* offset adjusted */
4302 if (pageno == 0) {
4303 soff = xoff;
4304 eoff = PAGE_SIZE;
4305 } else {
4306 soff = (pageno << PAGE_SHIFT);
4307 eoff = soff + PAGE_SIZE;
4309 if (eoff > bcount)
4310 eoff = bcount;
4311 if (soff >= eoff)
4312 return;
4315 * Test dirty bits and adjust b_dirtyoff/end.
4317 * If dirty pages are incorporated into the bp any prior
4318 * B_NEEDCOMMIT state (NFS) must be cleared because the
4319 * caller has not taken into account the new dirty data.
4321 * If the page was memory mapped the dirty bits might go beyond the
4322 * end of the buffer, but we can't really make the assumption that
4323 * a file EOF straddles the buffer (even though this is the case for
4324 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4325 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4326 * This also saves some console spam.
4328 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4329 * NFS can handle huge commits but not huge writes.
4331 vm_page_test_dirty(m);
4332 if (m->dirty) {
4333 if ((bp->b_flags & B_NEEDCOMMIT) &&
4334 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4335 if (debug_commit)
4336 kprintf("Warning: vfs_clean_one_page: bp %p "
4337 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4338 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4339 "doff/end %d %d\n",
4340 bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4341 bp->b_flags, bp->b_cmd,
4342 m->valid, m->dirty, xoff, soff, eoff,
4343 bp->b_dirtyoff, bp->b_dirtyend);
4344 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4345 if (debug_commit)
4346 print_backtrace(-1);
4349 * Only clear the pmap modified bits if ALL the dirty bits
4350 * are set, otherwise the system might mis-clear portions
4351 * of a page.
4353 if (m->dirty == VM_PAGE_BITS_ALL &&
4354 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4355 pmap_clear_modify(m);
4357 if (bp->b_dirtyoff > soff - xoff)
4358 bp->b_dirtyoff = soff - xoff;
4359 if (bp->b_dirtyend < eoff - xoff)
4360 bp->b_dirtyend = eoff - xoff;
4364 * Set related valid bits, clear related dirty bits.
4365 * Does not mess with the pmap modified bit.
4367 * WARNING! We cannot just clear all of m->dirty here as the
4368 * buffer cache buffers may use a DEV_BSIZE'd aligned
4369 * block size, or have an odd size (e.g. NFS at file EOF).
4370 * The putpages code can clear m->dirty to 0.
4372 * If a VOP_WRITE generates a buffer cache buffer which
4373 * covers the same space as mapped writable pages the
4374 * buffer flush might not be able to clear all the dirty
4375 * bits and still require a putpages from the VM system
4376 * to finish it off.
4378 * WARNING! vm_page_set_validclean() currently assumes vm_token
4379 * is held. The page might not be busied (bdwrite() case).
4380 * XXX remove this comment once we've validated that this
4381 * is no longer an issue.
4383 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4386 #if 0
4388 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4389 * The page data is assumed to be valid (there is no zeroing here).
4391 static void
4392 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4394 int bcount;
4395 int xoff;
4396 int soff;
4397 int eoff;
4400 * Calculate offset range within the page but relative to buffer's
4401 * loffset. loffset might be offset into the first page.
4403 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4404 bcount = bp->b_bcount + xoff; /* offset adjusted */
4406 if (pageno == 0) {
4407 soff = xoff;
4408 eoff = PAGE_SIZE;
4409 } else {
4410 soff = (pageno << PAGE_SHIFT);
4411 eoff = soff + PAGE_SIZE;
4413 if (eoff > bcount)
4414 eoff = bcount;
4415 if (soff >= eoff)
4416 return;
4417 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4419 #endif
4422 * vfs_bio_clrbuf:
4424 * Clear a buffer. This routine essentially fakes an I/O, so we need
4425 * to clear B_ERROR and B_INVAL.
4427 * Note that while we only theoretically need to clear through b_bcount,
4428 * we go ahead and clear through b_bufsize.
4431 void
4432 vfs_bio_clrbuf(struct buf *bp)
4434 int i, mask = 0;
4435 caddr_t sa, ea;
4436 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4437 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4438 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4439 (bp->b_loffset & PAGE_MASK) == 0) {
4440 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4441 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4442 bp->b_resid = 0;
4443 return;
4445 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4446 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4447 bzero(bp->b_data, bp->b_bufsize);
4448 bp->b_xio.xio_pages[0]->valid |= mask;
4449 bp->b_resid = 0;
4450 return;
4453 sa = bp->b_data;
4454 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4455 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4456 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4457 ea = (caddr_t)(vm_offset_t)ulmin(
4458 (u_long)(vm_offset_t)ea,
4459 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4460 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4461 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4462 continue;
4463 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4464 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4465 bzero(sa, ea - sa);
4467 } else {
4468 for (; sa < ea; sa += DEV_BSIZE, j++) {
4469 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4470 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4471 bzero(sa, DEV_BSIZE);
4474 bp->b_xio.xio_pages[i]->valid |= mask;
4475 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4477 bp->b_resid = 0;
4478 } else {
4479 clrbuf(bp);
4484 * vm_hold_load_pages:
4486 * Load pages into the buffer's address space. The pages are
4487 * allocated from the kernel object in order to reduce interference
4488 * with the any VM paging I/O activity. The range of loaded
4489 * pages will be wired.
4491 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4492 * retrieve the full range (to - from) of pages.
4494 * MPSAFE
4496 void
4497 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4499 vm_offset_t pg;
4500 vm_page_t p;
4501 int index;
4503 to = round_page(to);
4504 from = round_page(from);
4505 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4507 pg = from;
4508 while (pg < to) {
4510 * Note: must allocate system pages since blocking here
4511 * could intefere with paging I/O, no matter which
4512 * process we are.
4514 vm_object_hold(&kernel_object);
4515 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4516 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4517 vm_object_drop(&kernel_object);
4518 if (p) {
4519 vm_page_wire(p);
4520 p->valid = VM_PAGE_BITS_ALL;
4521 vm_page_flag_clear(p, PG_ZERO);
4522 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4523 bp->b_xio.xio_pages[index] = p;
4524 vm_page_wakeup(p);
4526 pg += PAGE_SIZE;
4527 ++index;
4530 bp->b_xio.xio_npages = index;
4534 * Allocate a page for a buffer cache buffer.
4536 * If NULL is returned the caller is expected to retry (typically check if
4537 * the page already exists on retry before trying to allocate one).
4539 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4540 * function will use the system reserve with the hope that the page
4541 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4542 * is done with the buffer.
4544 static
4545 vm_page_t
4546 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4548 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4549 vm_page_t p;
4551 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4554 * Try a normal allocation first.
4556 p = vm_page_alloc(obj, pg, vmflags);
4557 if (p)
4558 return(p);
4559 if (vm_page_lookup(obj, pg))
4560 return(NULL);
4561 vm_pageout_deficit += deficit;
4564 * Try again, digging into the system reserve.
4566 * Trying to recover pages from the buffer cache here can deadlock
4567 * against other threads trying to busy underlying pages so we
4568 * depend on the code in brelse() and bqrelse() to free/cache the
4569 * underlying buffer cache pages when memory is low.
4571 if (curthread->td_flags & TDF_SYSTHREAD)
4572 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4573 else
4574 vmflags |= VM_ALLOC_SYSTEM;
4576 /*recoverbufpages();*/
4577 p = vm_page_alloc(obj, pg, vmflags);
4578 if (p)
4579 return(p);
4580 if (vm_page_lookup(obj, pg))
4581 return(NULL);
4584 * Wait for memory to free up and try again
4586 if (vm_page_count_severe())
4587 ++lowmempgallocs;
4588 vm_wait(hz / 20 + 1);
4590 p = vm_page_alloc(obj, pg, vmflags);
4591 if (p)
4592 return(p);
4593 if (vm_page_lookup(obj, pg))
4594 return(NULL);
4597 * Ok, now we are really in trouble.
4600 static struct krate biokrate = { .freq = 1 };
4601 krateprintf(&biokrate,
4602 "Warning: bio_page_alloc: memory exhausted "
4603 "during bufcache page allocation from %s\n",
4604 curthread->td_comm);
4606 if (curthread->td_flags & TDF_SYSTHREAD)
4607 vm_wait(hz / 20 + 1);
4608 else
4609 vm_wait(hz / 2 + 1);
4610 return (NULL);
4614 * vm_hold_free_pages:
4616 * Return pages associated with the buffer back to the VM system.
4618 * The range of pages underlying the buffer's address space will
4619 * be unmapped and un-wired.
4621 * MPSAFE
4623 void
4624 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4626 vm_offset_t pg;
4627 vm_page_t p;
4628 int index, newnpages;
4630 from = round_page(from);
4631 to = round_page(to);
4632 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4633 newnpages = index;
4635 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4636 p = bp->b_xio.xio_pages[index];
4637 if (p && (index < bp->b_xio.xio_npages)) {
4638 if (p->busy) {
4639 kprintf("vm_hold_free_pages: doffset: %lld, "
4640 "loffset: %lld\n",
4641 (long long)bp->b_bio2.bio_offset,
4642 (long long)bp->b_loffset);
4644 bp->b_xio.xio_pages[index] = NULL;
4645 pmap_kremove(pg);
4646 vm_page_busy_wait(p, FALSE, "vmhldpg");
4647 vm_page_unwire(p, 0);
4648 vm_page_free(p);
4651 bp->b_xio.xio_npages = newnpages;
4655 * vmapbuf:
4657 * Map a user buffer into KVM via a pbuf. On return the buffer's
4658 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4659 * initialized.
4662 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4664 caddr_t addr;
4665 vm_offset_t va;
4666 vm_page_t m;
4667 int vmprot;
4668 int error;
4669 int pidx;
4670 int i;
4673 * bp had better have a command and it better be a pbuf.
4675 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4676 KKASSERT(bp->b_flags & B_PAGING);
4677 KKASSERT(bp->b_kvabase);
4679 if (bytes < 0)
4680 return (-1);
4683 * Map the user data into KVM. Mappings have to be page-aligned.
4685 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4686 pidx = 0;
4688 vmprot = VM_PROT_READ;
4689 if (bp->b_cmd == BUF_CMD_READ)
4690 vmprot |= VM_PROT_WRITE;
4692 while (addr < udata + bytes) {
4694 * Do the vm_fault if needed; do the copy-on-write thing
4695 * when reading stuff off device into memory.
4697 * vm_fault_page*() returns a held VM page.
4699 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4700 va = trunc_page(va);
4702 m = vm_fault_page_quick(va, vmprot, &error);
4703 if (m == NULL) {
4704 for (i = 0; i < pidx; ++i) {
4705 vm_page_unhold(bp->b_xio.xio_pages[i]);
4706 bp->b_xio.xio_pages[i] = NULL;
4708 return(-1);
4710 bp->b_xio.xio_pages[pidx] = m;
4711 addr += PAGE_SIZE;
4712 ++pidx;
4716 * Map the page array and set the buffer fields to point to
4717 * the mapped data buffer.
4719 if (pidx > btoc(MAXPHYS))
4720 panic("vmapbuf: mapped more than MAXPHYS");
4721 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4723 bp->b_xio.xio_npages = pidx;
4724 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4725 bp->b_bcount = bytes;
4726 bp->b_bufsize = bytes;
4727 return(0);
4731 * vunmapbuf:
4733 * Free the io map PTEs associated with this IO operation.
4734 * We also invalidate the TLB entries and restore the original b_addr.
4736 void
4737 vunmapbuf(struct buf *bp)
4739 int pidx;
4740 int npages;
4742 KKASSERT(bp->b_flags & B_PAGING);
4744 npages = bp->b_xio.xio_npages;
4745 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4746 for (pidx = 0; pidx < npages; ++pidx) {
4747 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4748 bp->b_xio.xio_pages[pidx] = NULL;
4750 bp->b_xio.xio_npages = 0;
4751 bp->b_data = bp->b_kvabase;
4755 * Scan all buffers in the system and issue the callback.
4758 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4760 int count = 0;
4761 int error;
4762 int n;
4764 for (n = 0; n < nbuf; ++n) {
4765 if ((error = callback(&buf[n], info)) < 0) {
4766 count = error;
4767 break;
4769 count += error;
4771 return (count);
4775 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4776 * completion to the master buffer.
4778 static void
4779 nestiobuf_iodone(struct bio *bio)
4781 struct bio *mbio;
4782 struct buf *mbp, *bp;
4783 struct devstat *stats;
4784 int error;
4785 int donebytes;
4787 bp = bio->bio_buf;
4788 mbio = bio->bio_caller_info1.ptr;
4789 stats = bio->bio_caller_info2.ptr;
4790 mbp = mbio->bio_buf;
4792 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4793 KKASSERT(mbp != bp);
4795 error = bp->b_error;
4796 if (bp->b_error == 0 &&
4797 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4799 * Not all got transfered, raise an error. We have no way to
4800 * propagate these conditions to mbp.
4802 error = EIO;
4805 donebytes = bp->b_bufsize;
4807 relpbuf(bp, NULL);
4809 nestiobuf_done(mbio, donebytes, error, stats);
4812 void
4813 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4815 struct buf *mbp;
4817 mbp = mbio->bio_buf;
4819 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4822 * If an error occured, propagate it to the master buffer.
4824 * Several biodone()s may wind up running concurrently so
4825 * use an atomic op to adjust b_flags.
4827 if (error) {
4828 mbp->b_error = error;
4829 atomic_set_int(&mbp->b_flags, B_ERROR);
4833 * Decrement the operations in progress counter and terminate the
4834 * I/O if this was the last bit.
4836 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4837 mbp->b_resid = 0;
4838 if (stats)
4839 devstat_end_transaction_buf(stats, mbp);
4840 biodone(mbio);
4845 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4846 * the mbio from being biodone()'d while we are still adding sub-bios to
4847 * it.
4849 void
4850 nestiobuf_init(struct bio *bio)
4852 bio->bio_driver_info = (void *)1;
4856 * The BIOs added to the nestedio have already been started, remove the
4857 * count that placeheld our mbio and biodone() it if the count would
4858 * transition to 0.
4860 void
4861 nestiobuf_start(struct bio *mbio)
4863 struct buf *mbp = mbio->bio_buf;
4866 * Decrement the operations in progress counter and terminate the
4867 * I/O if this was the last bit.
4869 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4870 if (mbp->b_flags & B_ERROR)
4871 mbp->b_resid = mbp->b_bcount;
4872 else
4873 mbp->b_resid = 0;
4874 biodone(mbio);
4879 * Set an intermediate error prior to calling nestiobuf_start()
4881 void
4882 nestiobuf_error(struct bio *mbio, int error)
4884 struct buf *mbp = mbio->bio_buf;
4886 if (error) {
4887 mbp->b_error = error;
4888 atomic_set_int(&mbp->b_flags, B_ERROR);
4893 * nestiobuf_add: setup a "nested" buffer.
4895 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4896 * => 'bp' should be a buffer allocated by getiobuf.
4897 * => 'offset' is a byte offset in the master buffer.
4898 * => 'size' is a size in bytes of this nested buffer.
4900 void
4901 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4903 struct buf *mbp = mbio->bio_buf;
4904 struct vnode *vp = mbp->b_vp;
4906 KKASSERT(mbp->b_bcount >= offset + size);
4908 atomic_add_int((int *)&mbio->bio_driver_info, 1);
4910 /* kernel needs to own the lock for it to be released in biodone */
4911 BUF_KERNPROC(bp);
4912 bp->b_vp = vp;
4913 bp->b_cmd = mbp->b_cmd;
4914 bp->b_bio1.bio_done = nestiobuf_iodone;
4915 bp->b_data = (char *)mbp->b_data + offset;
4916 bp->b_resid = bp->b_bcount = size;
4917 bp->b_bufsize = bp->b_bcount;
4919 bp->b_bio1.bio_track = NULL;
4920 bp->b_bio1.bio_caller_info1.ptr = mbio;
4921 bp->b_bio1.bio_caller_info2.ptr = stats;
4925 * print out statistics from the current status of the buffer pool
4926 * this can be toggeled by the system control option debug.syncprt
4928 #ifdef DEBUG
4929 void
4930 vfs_bufstats(void)
4932 int i, j, count;
4933 struct buf *bp;
4934 struct bqueues *dp;
4935 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4936 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4938 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4939 count = 0;
4940 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4941 counts[j] = 0;
4943 spin_lock(&bufqspin);
4944 TAILQ_FOREACH(bp, dp, b_freelist) {
4945 counts[bp->b_bufsize/PAGE_SIZE]++;
4946 count++;
4948 spin_unlock(&bufqspin);
4950 kprintf("%s: total-%d", bname[i], count);
4951 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4952 if (counts[j] != 0)
4953 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4954 kprintf("\n");
4957 #endif
4959 #ifdef DDB
4961 DB_SHOW_COMMAND(buffer, db_show_buffer)
4963 /* get args */
4964 struct buf *bp = (struct buf *)addr;
4966 if (!have_addr) {
4967 db_printf("usage: show buffer <addr>\n");
4968 return;
4971 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4972 db_printf("b_cmd = %d\n", bp->b_cmd);
4973 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4974 "b_resid = %d\n, b_data = %p, "
4975 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4976 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4977 bp->b_data,
4978 (long long)bp->b_bio2.bio_offset,
4979 (long long)(bp->b_bio2.bio_next ?
4980 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4981 if (bp->b_xio.xio_npages) {
4982 int i;
4983 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4984 bp->b_xio.xio_npages);
4985 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4986 vm_page_t m;
4987 m = bp->b_xio.xio_pages[i];
4988 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4989 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4990 if ((i + 1) < bp->b_xio.xio_npages)
4991 db_printf(",");
4993 db_printf("\n");
4996 #endif /* DDB */