2 * Copyright (c) 1994,1997 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info.
30 #include <sys/param.h>
31 #include <sys/systm.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
74 BQUEUE_NONE
, /* not on any queue */
75 BQUEUE_LOCKED
, /* locked buffers */
76 BQUEUE_CLEAN
, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY
, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW
, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTYKVA
, /* empty buffer headers with KVA assignment */
80 BQUEUE_EMPTY
, /* empty buffer headers */
82 BUFFER_QUEUES
/* number of buffer queues */
85 typedef enum bufq_type bufq_type_t
;
87 #define BD_WAKE_SIZE 16384
88 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
90 TAILQ_HEAD(bqueues
, buf
) bufqueues
[BUFFER_QUEUES
];
91 static struct spinlock bufqspin
= SPINLOCK_INITIALIZER(&bufqspin
);
92 static struct spinlock bufcspin
= SPINLOCK_INITIALIZER(&bufcspin
);
94 static MALLOC_DEFINE(M_BIOBUF
, "BIO buffer", "BIO buffer");
96 struct buf
*buf
; /* buffer header pool */
98 static void vfs_clean_pages(struct buf
*bp
);
99 static void vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
101 static void vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
103 static void vfs_vmio_release(struct buf
*bp
);
104 static int flushbufqueues(bufq_type_t q
);
105 static vm_page_t
bio_page_alloc(vm_object_t obj
, vm_pindex_t pg
, int deficit
);
107 static void bd_signal(int totalspace
);
108 static void buf_daemon(void);
109 static void buf_daemon_hw(void);
112 * bogus page -- for I/O to/from partially complete buffers
113 * this is a temporary solution to the problem, but it is not
114 * really that bad. it would be better to split the buffer
115 * for input in the case of buffers partially already in memory,
116 * but the code is intricate enough already.
118 vm_page_t bogus_page
;
121 * These are all static, but make the ones we export globals so we do
122 * not need to use compiler magic.
124 long bufspace
; /* locked by buffer_map */
126 static long bufmallocspace
; /* atomic ops */
127 long maxbufmallocspace
, lobufspace
, hibufspace
;
128 static int bufreusecnt
, bufdefragcnt
, buffreekvacnt
;
129 static long lorunningspace
;
130 static long hirunningspace
;
131 static int runningbufreq
; /* locked by bufcspin */
132 static long dirtybufspace
; /* locked by bufcspin */
133 static int dirtybufcount
; /* locked by bufcspin */
134 static long dirtybufspacehw
; /* locked by bufcspin */
135 static int dirtybufcounthw
; /* locked by bufcspin */
136 static long runningbufspace
; /* locked by bufcspin */
137 static int runningbufcount
; /* locked by bufcspin */
138 long lodirtybufspace
;
139 long hidirtybufspace
;
140 static int getnewbufcalls
;
141 static int getnewbufrestarts
;
142 static int recoverbufcalls
;
143 static int needsbuffer
; /* locked by bufcspin */
144 static int bd_request
; /* locked by bufcspin */
145 static int bd_request_hw
; /* locked by bufcspin */
146 static u_int bd_wake_ary
[BD_WAKE_SIZE
];
147 static u_int bd_wake_index
;
148 static u_int vm_cycle_point
= 40; /* 23-36 will migrate more act->inact */
149 static int debug_commit
;
151 static struct thread
*bufdaemon_td
;
152 static struct thread
*bufdaemonhw_td
;
153 static u_int lowmempgallocs
;
154 static u_int lowmempgfails
;
157 * Sysctls for operational control of the buffer cache.
159 SYSCTL_LONG(_vfs
, OID_AUTO
, lodirtybufspace
, CTLFLAG_RW
, &lodirtybufspace
, 0,
160 "Number of dirty buffers to flush before bufdaemon becomes inactive");
161 SYSCTL_LONG(_vfs
, OID_AUTO
, hidirtybufspace
, CTLFLAG_RW
, &hidirtybufspace
, 0,
162 "High watermark used to trigger explicit flushing of dirty buffers");
163 SYSCTL_LONG(_vfs
, OID_AUTO
, lorunningspace
, CTLFLAG_RW
, &lorunningspace
, 0,
164 "Minimum amount of buffer space required for active I/O");
165 SYSCTL_LONG(_vfs
, OID_AUTO
, hirunningspace
, CTLFLAG_RW
, &hirunningspace
, 0,
166 "Maximum amount of buffer space to usable for active I/O");
167 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgallocs
, CTLFLAG_RW
, &lowmempgallocs
, 0,
168 "Page allocations done during periods of very low free memory");
169 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgfails
, CTLFLAG_RW
, &lowmempgfails
, 0,
170 "Page allocations which failed during periods of very low free memory");
171 SYSCTL_UINT(_vfs
, OID_AUTO
, vm_cycle_point
, CTLFLAG_RW
, &vm_cycle_point
, 0,
172 "Recycle pages to active or inactive queue transition pt 0-64");
174 * Sysctls determining current state of the buffer cache.
176 SYSCTL_INT(_vfs
, OID_AUTO
, nbuf
, CTLFLAG_RD
, &nbuf
, 0,
177 "Total number of buffers in buffer cache");
178 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspace
, CTLFLAG_RD
, &dirtybufspace
, 0,
179 "Pending bytes of dirty buffers (all)");
180 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspacehw
, CTLFLAG_RD
, &dirtybufspacehw
, 0,
181 "Pending bytes of dirty buffers (heavy weight)");
182 SYSCTL_INT(_vfs
, OID_AUTO
, dirtybufcount
, CTLFLAG_RD
, &dirtybufcount
, 0,
183 "Pending number of dirty buffers");
184 SYSCTL_INT(_vfs
, OID_AUTO
, dirtybufcounthw
, CTLFLAG_RD
, &dirtybufcounthw
, 0,
185 "Pending number of dirty buffers (heavy weight)");
186 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufspace
, CTLFLAG_RD
, &runningbufspace
, 0,
187 "I/O bytes currently in progress due to asynchronous writes");
188 SYSCTL_INT(_vfs
, OID_AUTO
, runningbufcount
, CTLFLAG_RD
, &runningbufcount
, 0,
189 "I/O buffers currently in progress due to asynchronous writes");
190 SYSCTL_LONG(_vfs
, OID_AUTO
, maxbufspace
, CTLFLAG_RD
, &maxbufspace
, 0,
191 "Hard limit on maximum amount of memory usable for buffer space");
192 SYSCTL_LONG(_vfs
, OID_AUTO
, hibufspace
, CTLFLAG_RD
, &hibufspace
, 0,
193 "Soft limit on maximum amount of memory usable for buffer space");
194 SYSCTL_LONG(_vfs
, OID_AUTO
, lobufspace
, CTLFLAG_RD
, &lobufspace
, 0,
195 "Minimum amount of memory to reserve for system buffer space");
196 SYSCTL_LONG(_vfs
, OID_AUTO
, bufspace
, CTLFLAG_RD
, &bufspace
, 0,
197 "Amount of memory available for buffers");
198 SYSCTL_LONG(_vfs
, OID_AUTO
, maxmallocbufspace
, CTLFLAG_RD
, &maxbufmallocspace
,
199 0, "Maximum amount of memory reserved for buffers using malloc");
200 SYSCTL_LONG(_vfs
, OID_AUTO
, bufmallocspace
, CTLFLAG_RD
, &bufmallocspace
, 0,
201 "Amount of memory left for buffers using malloc-scheme");
202 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufcalls
, CTLFLAG_RD
, &getnewbufcalls
, 0,
203 "New buffer header acquisition requests");
204 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufrestarts
, CTLFLAG_RD
, &getnewbufrestarts
,
205 0, "New buffer header acquisition restarts");
206 SYSCTL_INT(_vfs
, OID_AUTO
, recoverbufcalls
, CTLFLAG_RD
, &recoverbufcalls
, 0,
207 "Recover VM space in an emergency");
208 SYSCTL_INT(_vfs
, OID_AUTO
, bufdefragcnt
, CTLFLAG_RD
, &bufdefragcnt
, 0,
209 "Buffer acquisition restarts due to fragmented buffer map");
210 SYSCTL_INT(_vfs
, OID_AUTO
, buffreekvacnt
, CTLFLAG_RD
, &buffreekvacnt
, 0,
211 "Amount of time KVA space was deallocated in an arbitrary buffer");
212 SYSCTL_INT(_vfs
, OID_AUTO
, bufreusecnt
, CTLFLAG_RD
, &bufreusecnt
, 0,
213 "Amount of time buffer re-use operations were successful");
214 SYSCTL_INT(_vfs
, OID_AUTO
, debug_commit
, CTLFLAG_RW
, &debug_commit
, 0, "");
215 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, buf
, CTLFLAG_RD
, 0, sizeof(struct buf
),
216 "sizeof(struct buf)");
218 char *buf_wmesg
= BUF_WMESG
;
220 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
221 #define VFS_BIO_NEED_UNUSED02 0x02
222 #define VFS_BIO_NEED_UNUSED04 0x04
223 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
228 * Called when buffer space is potentially available for recovery.
229 * getnewbuf() will block on this flag when it is unable to free
230 * sufficient buffer space. Buffer space becomes recoverable when
231 * bp's get placed back in the queues.
237 * If someone is waiting for BUF space, wake them up. Even
238 * though we haven't freed the kva space yet, the waiting
239 * process will be able to now.
241 spin_lock(&bufcspin
);
242 if (needsbuffer
& VFS_BIO_NEED_BUFSPACE
) {
243 needsbuffer
&= ~VFS_BIO_NEED_BUFSPACE
;
244 spin_unlock(&bufcspin
);
245 wakeup(&needsbuffer
);
247 spin_unlock(&bufcspin
);
254 * Accounting for I/O in progress.
258 runningbufwakeup(struct buf
*bp
)
263 if ((totalspace
= bp
->b_runningbufspace
) != 0) {
264 spin_lock(&bufcspin
);
265 runningbufspace
-= totalspace
;
267 bp
->b_runningbufspace
= 0;
270 * see waitrunningbufspace() for limit test.
272 limit
= hirunningspace
* 3 / 6;
273 if (runningbufreq
&& runningbufspace
<= limit
) {
275 spin_unlock(&bufcspin
);
276 wakeup(&runningbufreq
);
278 spin_unlock(&bufcspin
);
280 bd_signal(totalspace
);
287 * Called when a buffer has been added to one of the free queues to
288 * account for the buffer and to wakeup anyone waiting for free buffers.
289 * This typically occurs when large amounts of metadata are being handled
290 * by the buffer cache ( else buffer space runs out first, usually ).
297 spin_lock(&bufcspin
);
299 needsbuffer
&= ~VFS_BIO_NEED_ANY
;
300 spin_unlock(&bufcspin
);
301 wakeup(&needsbuffer
);
303 spin_unlock(&bufcspin
);
308 * waitrunningbufspace()
310 * If runningbufspace exceeds 4/6 hirunningspace we block until
311 * runningbufspace drops to 3/6 hirunningspace. We also block if another
312 * thread blocked here in order to be fair, even if runningbufspace
313 * is now lower than the limit.
315 * The caller may be using this function to block in a tight loop, we
316 * must block while runningbufspace is greater than at least
317 * hirunningspace * 3 / 6.
320 waitrunningbufspace(void)
322 long limit
= hirunningspace
* 4 / 6;
324 if (runningbufspace
> limit
|| runningbufreq
) {
325 spin_lock(&bufcspin
);
326 while (runningbufspace
> limit
|| runningbufreq
) {
328 ssleep(&runningbufreq
, &bufcspin
, 0, "wdrn1", 0);
330 spin_unlock(&bufcspin
);
335 * buf_dirty_count_severe:
337 * Return true if we have too many dirty buffers.
340 buf_dirty_count_severe(void)
342 return (runningbufspace
+ dirtybufspace
>= hidirtybufspace
||
343 dirtybufcount
>= nbuf
/ 2);
347 * Return true if the amount of running I/O is severe and BIOQ should
351 buf_runningbufspace_severe(void)
353 return (runningbufspace
>= hirunningspace
* 4 / 6);
357 * vfs_buf_test_cache:
359 * Called when a buffer is extended. This function clears the B_CACHE
360 * bit if the newly extended portion of the buffer does not contain
363 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
364 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
365 * them while a clean buffer was present.
369 vfs_buf_test_cache(struct buf
*bp
,
370 vm_ooffset_t foff
, vm_offset_t off
, vm_offset_t size
,
373 if (bp
->b_flags
& B_CACHE
) {
374 int base
= (foff
+ off
) & PAGE_MASK
;
375 if (vm_page_is_valid(m
, base
, size
) == 0)
376 bp
->b_flags
&= ~B_CACHE
;
383 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
392 if (dirtybufspace
< lodirtybufspace
&& dirtybufcount
< nbuf
/ 2)
395 if (bd_request
== 0 &&
396 (dirtybufspace
- dirtybufspacehw
> lodirtybufspace
/ 2 ||
397 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2)) {
398 spin_lock(&bufcspin
);
400 spin_unlock(&bufcspin
);
403 if (bd_request_hw
== 0 &&
404 (dirtybufspacehw
> lodirtybufspace
/ 2 ||
405 dirtybufcounthw
>= nbuf
/ 2)) {
406 spin_lock(&bufcspin
);
408 spin_unlock(&bufcspin
);
409 wakeup(&bd_request_hw
);
416 * Get the buf_daemon heated up when the number of running and dirty
417 * buffers exceeds the mid-point.
419 * Return the total number of dirty bytes past the second mid point
420 * as a measure of how much excess dirty data there is in the system.
431 mid1
= lodirtybufspace
+ (hidirtybufspace
- lodirtybufspace
) / 2;
433 totalspace
= runningbufspace
+ dirtybufspace
;
434 if (totalspace
>= mid1
|| dirtybufcount
>= nbuf
/ 2) {
436 mid2
= mid1
+ (hidirtybufspace
- mid1
) / 2;
437 if (totalspace
>= mid2
)
438 return(totalspace
- mid2
);
446 * Wait for the buffer cache to flush (totalspace) bytes worth of
447 * buffers, then return.
449 * Regardless this function blocks while the number of dirty buffers
450 * exceeds hidirtybufspace.
455 bd_wait(int totalspace
)
460 if (curthread
== bufdaemonhw_td
|| curthread
== bufdaemon_td
)
463 while (totalspace
> 0) {
465 if (totalspace
> runningbufspace
+ dirtybufspace
)
466 totalspace
= runningbufspace
+ dirtybufspace
;
467 count
= totalspace
/ BKVASIZE
;
468 if (count
>= BD_WAKE_SIZE
)
469 count
= BD_WAKE_SIZE
- 1;
471 spin_lock(&bufcspin
);
472 i
= (bd_wake_index
+ count
) & BD_WAKE_MASK
;
476 * This is not a strict interlock, so we play a bit loose
477 * with locking access to dirtybufspace*
479 tsleep_interlock(&bd_wake_ary
[i
], 0);
480 spin_unlock(&bufcspin
);
481 tsleep(&bd_wake_ary
[i
], PINTERLOCKED
, "flstik", hz
);
483 totalspace
= runningbufspace
+ dirtybufspace
- hidirtybufspace
;
490 * This function is called whenever runningbufspace or dirtybufspace
491 * is reduced. Track threads waiting for run+dirty buffer I/O
497 bd_signal(int totalspace
)
501 if (totalspace
> 0) {
502 if (totalspace
> BKVASIZE
* BD_WAKE_SIZE
)
503 totalspace
= BKVASIZE
* BD_WAKE_SIZE
;
504 spin_lock(&bufcspin
);
505 while (totalspace
> 0) {
508 if (bd_wake_ary
[i
]) {
510 spin_unlock(&bufcspin
);
511 wakeup(&bd_wake_ary
[i
]);
512 spin_lock(&bufcspin
);
514 totalspace
-= BKVASIZE
;
516 spin_unlock(&bufcspin
);
521 * BIO tracking support routines.
523 * Release a ref on a bio_track. Wakeup requests are atomically released
524 * along with the last reference so bk_active will never wind up set to
531 bio_track_rel(struct bio_track
*track
)
539 active
= track
->bk_active
;
540 if (active
== 1 && atomic_cmpset_int(&track
->bk_active
, 1, 0))
544 * Full-on. Note that the wait flag is only atomically released on
545 * the 1->0 count transition.
547 * We check for a negative count transition using bit 30 since bit 31
548 * has a different meaning.
551 desired
= (active
& 0x7FFFFFFF) - 1;
553 desired
|= active
& 0x80000000;
554 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
555 if (desired
& 0x40000000)
556 panic("bio_track_rel: bad count: %p\n", track
);
557 if (active
& 0x80000000)
561 active
= track
->bk_active
;
566 * Wait for the tracking count to reach 0.
568 * Use atomic ops such that the wait flag is only set atomically when
569 * bk_active is non-zero.
574 bio_track_wait(struct bio_track
*track
, int slp_flags
, int slp_timo
)
583 if (track
->bk_active
== 0)
587 * Full-on. Note that the wait flag may only be atomically set if
588 * the active count is non-zero.
590 * NOTE: We cannot optimize active == desired since a wakeup could
591 * clear active prior to our tsleep_interlock().
594 while ((active
= track
->bk_active
) != 0) {
596 desired
= active
| 0x80000000;
597 tsleep_interlock(track
, slp_flags
);
598 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
599 error
= tsleep(track
, slp_flags
| PINTERLOCKED
,
611 * Load time initialisation of the buffer cache, called from machine
612 * dependant initialization code.
618 vm_offset_t bogus_offset
;
621 /* next, make a null set of free lists */
622 for (i
= 0; i
< BUFFER_QUEUES
; i
++)
623 TAILQ_INIT(&bufqueues
[i
]);
625 /* finally, initialize each buffer header and stick on empty q */
626 for (i
= 0; i
< nbuf
; i
++) {
628 bzero(bp
, sizeof *bp
);
629 bp
->b_flags
= B_INVAL
; /* we're just an empty header */
630 bp
->b_cmd
= BUF_CMD_DONE
;
631 bp
->b_qindex
= BQUEUE_EMPTY
;
633 xio_init(&bp
->b_xio
);
635 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_EMPTY
], bp
, b_freelist
);
639 * maxbufspace is the absolute maximum amount of buffer space we are
640 * allowed to reserve in KVM and in real terms. The absolute maximum
641 * is nominally used by buf_daemon. hibufspace is the nominal maximum
642 * used by most other processes. The differential is required to
643 * ensure that buf_daemon is able to run when other processes might
644 * be blocked waiting for buffer space.
646 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
647 * this may result in KVM fragmentation which is not handled optimally
650 maxbufspace
= (long)nbuf
* BKVASIZE
;
651 hibufspace
= imax(3 * maxbufspace
/ 4, maxbufspace
- MAXBSIZE
* 10);
652 lobufspace
= hibufspace
- MAXBSIZE
;
654 lorunningspace
= 512 * 1024;
655 /* hirunningspace -- see below */
658 * Limit the amount of malloc memory since it is wired permanently
659 * into the kernel space. Even though this is accounted for in
660 * the buffer allocation, we don't want the malloced region to grow
661 * uncontrolled. The malloc scheme improves memory utilization
662 * significantly on average (small) directories.
664 maxbufmallocspace
= hibufspace
/ 20;
667 * Reduce the chance of a deadlock occuring by limiting the number
668 * of delayed-write dirty buffers we allow to stack up.
670 * We don't want too much actually queued to the device at once
671 * (XXX this needs to be per-mount!), because the buffers will
672 * wind up locked for a very long period of time while the I/O
675 hidirtybufspace
= hibufspace
/ 2; /* dirty + running */
676 hirunningspace
= hibufspace
/ 16; /* locked & queued to device */
677 if (hirunningspace
< 1024 * 1024)
678 hirunningspace
= 1024 * 1024;
683 lodirtybufspace
= hidirtybufspace
/ 2;
686 * Maximum number of async ops initiated per buf_daemon loop. This is
687 * somewhat of a hack at the moment, we really need to limit ourselves
688 * based on the number of bytes of I/O in-transit that were initiated
692 bogus_offset
= kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
);
693 vm_object_hold(&kernel_object
);
694 bogus_page
= vm_page_alloc(&kernel_object
,
695 (bogus_offset
>> PAGE_SHIFT
),
697 vm_object_drop(&kernel_object
);
698 vmstats
.v_wire_count
++;
703 * Initialize the embedded bio structures, typically used by
704 * deprecated code which tries to allocate its own struct bufs.
707 initbufbio(struct buf
*bp
)
709 bp
->b_bio1
.bio_buf
= bp
;
710 bp
->b_bio1
.bio_prev
= NULL
;
711 bp
->b_bio1
.bio_offset
= NOOFFSET
;
712 bp
->b_bio1
.bio_next
= &bp
->b_bio2
;
713 bp
->b_bio1
.bio_done
= NULL
;
714 bp
->b_bio1
.bio_flags
= 0;
716 bp
->b_bio2
.bio_buf
= bp
;
717 bp
->b_bio2
.bio_prev
= &bp
->b_bio1
;
718 bp
->b_bio2
.bio_offset
= NOOFFSET
;
719 bp
->b_bio2
.bio_next
= NULL
;
720 bp
->b_bio2
.bio_done
= NULL
;
721 bp
->b_bio2
.bio_flags
= 0;
727 * Reinitialize the embedded bio structures as well as any additional
728 * translation cache layers.
731 reinitbufbio(struct buf
*bp
)
735 for (bio
= &bp
->b_bio1
; bio
; bio
= bio
->bio_next
) {
736 bio
->bio_done
= NULL
;
737 bio
->bio_offset
= NOOFFSET
;
742 * Undo the effects of an initbufbio().
745 uninitbufbio(struct buf
*bp
)
752 * Push another BIO layer onto an existing BIO and return it. The new
753 * BIO layer may already exist, holding cached translation data.
756 push_bio(struct bio
*bio
)
760 if ((nbio
= bio
->bio_next
) == NULL
) {
761 int index
= bio
- &bio
->bio_buf
->b_bio_array
[0];
762 if (index
>= NBUF_BIO
- 1) {
763 panic("push_bio: too many layers bp %p\n",
766 nbio
= &bio
->bio_buf
->b_bio_array
[index
+ 1];
767 bio
->bio_next
= nbio
;
768 nbio
->bio_prev
= bio
;
769 nbio
->bio_buf
= bio
->bio_buf
;
770 nbio
->bio_offset
= NOOFFSET
;
771 nbio
->bio_done
= NULL
;
772 nbio
->bio_next
= NULL
;
774 KKASSERT(nbio
->bio_done
== NULL
);
779 * Pop a BIO translation layer, returning the previous layer. The
780 * must have been previously pushed.
783 pop_bio(struct bio
*bio
)
785 return(bio
->bio_prev
);
789 clearbiocache(struct bio
*bio
)
792 bio
->bio_offset
= NOOFFSET
;
800 * Free the KVA allocation for buffer 'bp'.
802 * Must be called from a critical section as this is the only locking for
805 * Since this call frees up buffer space, we call bufspacewakeup().
810 bfreekva(struct buf
*bp
)
816 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
817 vm_map_lock(&buffer_map
);
818 bufspace
-= bp
->b_kvasize
;
819 vm_map_delete(&buffer_map
,
820 (vm_offset_t
) bp
->b_kvabase
,
821 (vm_offset_t
) bp
->b_kvabase
+ bp
->b_kvasize
,
824 vm_map_unlock(&buffer_map
);
825 vm_map_entry_release(count
);
827 bp
->b_kvabase
= NULL
;
835 * Remove the buffer from the appropriate free list.
838 _bremfree(struct buf
*bp
)
840 if (bp
->b_qindex
!= BQUEUE_NONE
) {
841 KASSERT(BUF_REFCNTNB(bp
) == 1,
842 ("bremfree: bp %p not locked",bp
));
843 TAILQ_REMOVE(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
844 bp
->b_qindex
= BQUEUE_NONE
;
846 if (BUF_REFCNTNB(bp
) <= 1)
847 panic("bremfree: removing a buffer not on a queue");
852 bremfree(struct buf
*bp
)
854 spin_lock(&bufqspin
);
856 spin_unlock(&bufqspin
);
860 bremfree_locked(struct buf
*bp
)
866 * This version of bread issues any required I/O asyncnronously and
867 * makes a callback on completion.
869 * The callback must check whether BIO_DONE is set in the bio and issue
870 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
871 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
874 breadcb(struct vnode
*vp
, off_t loffset
, int size
,
875 void (*func
)(struct bio
*), void *arg
)
879 bp
= getblk(vp
, loffset
, size
, 0, 0);
881 /* if not found in cache, do some I/O */
882 if ((bp
->b_flags
& B_CACHE
) == 0) {
883 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
884 bp
->b_cmd
= BUF_CMD_READ
;
885 bp
->b_bio1
.bio_done
= func
;
886 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
887 vfs_busy_pages(vp
, bp
);
889 vn_strategy(vp
, &bp
->b_bio1
);
892 * Since we are issuing the callback synchronously it cannot
893 * race the BIO_DONE, so no need for atomic ops here.
895 /*bp->b_bio1.bio_done = func;*/
896 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
897 bp
->b_bio1
.bio_flags
|= BIO_DONE
;
905 * breadnx() - Terminal function for bread() and breadn().
907 * This function will start asynchronous I/O on read-ahead blocks as well
908 * as satisfy the primary request.
910 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
911 * set, the buffer is valid and we do not have to do anything.
914 breadnx(struct vnode
*vp
, off_t loffset
, int size
, off_t
*raoffset
,
915 int *rabsize
, int cnt
, struct buf
**bpp
)
917 struct buf
*bp
, *rabp
;
919 int rv
= 0, readwait
= 0;
924 *bpp
= bp
= getblk(vp
, loffset
, size
, 0, 0);
926 /* if not found in cache, do some I/O */
927 if ((bp
->b_flags
& B_CACHE
) == 0) {
928 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
929 bp
->b_cmd
= BUF_CMD_READ
;
930 bp
->b_bio1
.bio_done
= biodone_sync
;
931 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
932 vfs_busy_pages(vp
, bp
);
933 vn_strategy(vp
, &bp
->b_bio1
);
937 for (i
= 0; i
< cnt
; i
++, raoffset
++, rabsize
++) {
938 if (inmem(vp
, *raoffset
))
940 rabp
= getblk(vp
, *raoffset
, *rabsize
, 0, 0);
942 if ((rabp
->b_flags
& B_CACHE
) == 0) {
943 rabp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
944 rabp
->b_cmd
= BUF_CMD_READ
;
945 vfs_busy_pages(vp
, rabp
);
947 vn_strategy(vp
, &rabp
->b_bio1
);
953 rv
= biowait(&bp
->b_bio1
, "biord");
960 * Synchronous write, waits for completion.
962 * Write, release buffer on completion. (Done by iodone
963 * if async). Do not bother writing anything if the buffer
966 * Note that we set B_CACHE here, indicating that buffer is
967 * fully valid and thus cacheable. This is true even of NFS
968 * now so we set it generally. This could be set either here
969 * or in biodone() since the I/O is synchronous. We put it
973 bwrite(struct buf
*bp
)
977 if (bp
->b_flags
& B_INVAL
) {
981 if (BUF_REFCNTNB(bp
) == 0)
982 panic("bwrite: buffer is not busy???");
984 /* Mark the buffer clean */
987 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
988 bp
->b_flags
|= B_CACHE
;
989 bp
->b_cmd
= BUF_CMD_WRITE
;
990 bp
->b_bio1
.bio_done
= biodone_sync
;
991 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
992 vfs_busy_pages(bp
->b_vp
, bp
);
995 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
996 * valid for vnode-backed buffers.
998 bsetrunningbufspace(bp
, bp
->b_bufsize
);
999 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1000 error
= biowait(&bp
->b_bio1
, "biows");
1009 * Asynchronous write. Start output on a buffer, but do not wait for
1010 * it to complete. The buffer is released when the output completes.
1012 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1013 * B_INVAL buffers. Not us.
1016 bawrite(struct buf
*bp
)
1018 if (bp
->b_flags
& B_INVAL
) {
1022 if (BUF_REFCNTNB(bp
) == 0)
1023 panic("bwrite: buffer is not busy???");
1025 /* Mark the buffer clean */
1028 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1029 bp
->b_flags
|= B_CACHE
;
1030 bp
->b_cmd
= BUF_CMD_WRITE
;
1031 KKASSERT(bp
->b_bio1
.bio_done
== NULL
);
1032 vfs_busy_pages(bp
->b_vp
, bp
);
1035 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1036 * valid for vnode-backed buffers.
1038 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1040 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1046 * Ordered write. Start output on a buffer, and flag it so that the
1047 * device will write it in the order it was queued. The buffer is
1048 * released when the output completes. bwrite() ( or the VOP routine
1049 * anyway ) is responsible for handling B_INVAL buffers.
1052 bowrite(struct buf
*bp
)
1054 bp
->b_flags
|= B_ORDERED
;
1062 * Delayed write. (Buffer is marked dirty). Do not bother writing
1063 * anything if the buffer is marked invalid.
1065 * Note that since the buffer must be completely valid, we can safely
1066 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1067 * biodone() in order to prevent getblk from writing the buffer
1068 * out synchronously.
1071 bdwrite(struct buf
*bp
)
1073 if (BUF_REFCNTNB(bp
) == 0)
1074 panic("bdwrite: buffer is not busy");
1076 if (bp
->b_flags
& B_INVAL
) {
1082 if (dsched_is_clear_buf_priv(bp
))
1086 * Set B_CACHE, indicating that the buffer is fully valid. This is
1087 * true even of NFS now.
1089 bp
->b_flags
|= B_CACHE
;
1092 * This bmap keeps the system from needing to do the bmap later,
1093 * perhaps when the system is attempting to do a sync. Since it
1094 * is likely that the indirect block -- or whatever other datastructure
1095 * that the filesystem needs is still in memory now, it is a good
1096 * thing to do this. Note also, that if the pageout daemon is
1097 * requesting a sync -- there might not be enough memory to do
1098 * the bmap then... So, this is important to do.
1100 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
1101 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
, &bp
->b_bio2
.bio_offset
,
1102 NULL
, NULL
, BUF_CMD_WRITE
);
1106 * Because the underlying pages may still be mapped and
1107 * writable trying to set the dirty buffer (b_dirtyoff/end)
1108 * range here will be inaccurate.
1110 * However, we must still clean the pages to satisfy the
1111 * vnode_pager and pageout daemon, so theythink the pages
1112 * have been "cleaned". What has really occured is that
1113 * they've been earmarked for later writing by the buffer
1116 * So we get the b_dirtyoff/end update but will not actually
1117 * depend on it (NFS that is) until the pages are busied for
1120 vfs_clean_pages(bp
);
1124 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1125 * due to the softdep code.
1130 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1131 * This is used by tmpfs.
1133 * It is important for any VFS using this routine to NOT use it for
1134 * IO_SYNC or IO_ASYNC operations which occur when the system really
1135 * wants to flush VM pages to backing store.
1138 buwrite(struct buf
*bp
)
1144 * Only works for VMIO buffers. If the buffer is already
1145 * marked for delayed-write we can't avoid the bdwrite().
1147 if ((bp
->b_flags
& B_VMIO
) == 0 || (bp
->b_flags
& B_DELWRI
)) {
1153 * Mark as needing a commit.
1155 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1156 m
= bp
->b_xio
.xio_pages
[i
];
1157 vm_page_need_commit(m
);
1165 * Turn buffer into delayed write request by marking it B_DELWRI.
1166 * B_RELBUF and B_NOCACHE must be cleared.
1168 * We reassign the buffer to itself to properly update it in the
1169 * dirty/clean lists.
1171 * Must be called from a critical section.
1172 * The buffer must be on BQUEUE_NONE.
1175 bdirty(struct buf
*bp
)
1177 KASSERT(bp
->b_qindex
== BQUEUE_NONE
,
1178 ("bdirty: buffer %p still on queue %d", bp
, bp
->b_qindex
));
1179 if (bp
->b_flags
& B_NOCACHE
) {
1180 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp
);
1181 bp
->b_flags
&= ~B_NOCACHE
;
1183 if (bp
->b_flags
& B_INVAL
) {
1184 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp
);
1186 bp
->b_flags
&= ~B_RELBUF
;
1188 if ((bp
->b_flags
& B_DELWRI
) == 0) {
1189 lwkt_gettoken(&bp
->b_vp
->v_token
);
1190 bp
->b_flags
|= B_DELWRI
;
1192 lwkt_reltoken(&bp
->b_vp
->v_token
);
1194 spin_lock(&bufcspin
);
1196 dirtybufspace
+= bp
->b_bufsize
;
1197 if (bp
->b_flags
& B_HEAVY
) {
1199 dirtybufspacehw
+= bp
->b_bufsize
;
1201 spin_unlock(&bufcspin
);
1208 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1209 * needs to be flushed with a different buf_daemon thread to avoid
1210 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1213 bheavy(struct buf
*bp
)
1215 if ((bp
->b_flags
& B_HEAVY
) == 0) {
1216 bp
->b_flags
|= B_HEAVY
;
1217 if (bp
->b_flags
& B_DELWRI
) {
1218 spin_lock(&bufcspin
);
1220 dirtybufspacehw
+= bp
->b_bufsize
;
1221 spin_unlock(&bufcspin
);
1229 * Clear B_DELWRI for buffer.
1231 * Must be called from a critical section.
1233 * The buffer is typically on BQUEUE_NONE but there is one case in
1234 * brelse() that calls this function after placing the buffer on
1235 * a different queue.
1240 bundirty(struct buf
*bp
)
1242 if (bp
->b_flags
& B_DELWRI
) {
1243 lwkt_gettoken(&bp
->b_vp
->v_token
);
1244 bp
->b_flags
&= ~B_DELWRI
;
1246 lwkt_reltoken(&bp
->b_vp
->v_token
);
1248 spin_lock(&bufcspin
);
1250 dirtybufspace
-= bp
->b_bufsize
;
1251 if (bp
->b_flags
& B_HEAVY
) {
1253 dirtybufspacehw
-= bp
->b_bufsize
;
1255 spin_unlock(&bufcspin
);
1257 bd_signal(bp
->b_bufsize
);
1260 * Since it is now being written, we can clear its deferred write flag.
1262 bp
->b_flags
&= ~B_DEFERRED
;
1266 * Set the b_runningbufspace field, used to track how much I/O is
1267 * in progress at any given moment.
1270 bsetrunningbufspace(struct buf
*bp
, int bytes
)
1272 bp
->b_runningbufspace
= bytes
;
1274 spin_lock(&bufcspin
);
1275 runningbufspace
+= bytes
;
1277 spin_unlock(&bufcspin
);
1284 * Release a busy buffer and, if requested, free its resources. The
1285 * buffer will be stashed in the appropriate bufqueue[] allowing it
1286 * to be accessed later as a cache entity or reused for other purposes.
1291 brelse(struct buf
*bp
)
1294 int saved_flags
= bp
->b_flags
;
1297 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1300 * If B_NOCACHE is set we are being asked to destroy the buffer and
1301 * its backing store. Clear B_DELWRI.
1303 * B_NOCACHE is set in two cases: (1) when the caller really wants
1304 * to destroy the buffer and backing store and (2) when the caller
1305 * wants to destroy the buffer and backing store after a write
1308 if ((bp
->b_flags
& (B_NOCACHE
|B_DELWRI
)) == (B_NOCACHE
|B_DELWRI
)) {
1312 if ((bp
->b_flags
& (B_INVAL
| B_DELWRI
)) == B_DELWRI
) {
1314 * A re-dirtied buffer is only subject to destruction
1315 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1317 /* leave buffer intact */
1318 } else if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
)) ||
1319 (bp
->b_bufsize
<= 0)) {
1321 * Either a failed read or we were asked to free or not
1322 * cache the buffer. This path is reached with B_DELWRI
1323 * set only if B_INVAL is already set. B_NOCACHE governs
1324 * backing store destruction.
1326 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1327 * buffer cannot be immediately freed.
1329 bp
->b_flags
|= B_INVAL
;
1330 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1332 if (bp
->b_flags
& B_DELWRI
) {
1333 spin_lock(&bufcspin
);
1335 dirtybufspace
-= bp
->b_bufsize
;
1336 if (bp
->b_flags
& B_HEAVY
) {
1338 dirtybufspacehw
-= bp
->b_bufsize
;
1340 spin_unlock(&bufcspin
);
1342 bd_signal(bp
->b_bufsize
);
1344 bp
->b_flags
&= ~(B_DELWRI
| B_CACHE
);
1348 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1349 * or if b_refs is non-zero.
1351 * If vfs_vmio_release() is called with either bit set, the
1352 * underlying pages may wind up getting freed causing a previous
1353 * write (bdwrite()) to get 'lost' because pages associated with
1354 * a B_DELWRI bp are marked clean. Pages associated with a
1355 * B_LOCKED buffer may be mapped by the filesystem.
1357 * If we want to release the buffer ourselves (rather then the
1358 * originator asking us to release it), give the originator a
1359 * chance to countermand the release by setting B_LOCKED.
1361 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1362 * if B_DELWRI is set.
1364 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1365 * on pages to return pages to the VM page queues.
1367 if ((bp
->b_flags
& (B_DELWRI
| B_LOCKED
)) || bp
->b_refs
) {
1368 bp
->b_flags
&= ~B_RELBUF
;
1369 } else if (vm_page_count_min(0)) {
1370 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1371 buf_deallocate(bp
); /* can set B_LOCKED */
1372 if (bp
->b_flags
& (B_DELWRI
| B_LOCKED
))
1373 bp
->b_flags
&= ~B_RELBUF
;
1375 bp
->b_flags
|= B_RELBUF
;
1379 * Make sure b_cmd is clear. It may have already been cleared by
1382 * At this point destroying the buffer is governed by the B_INVAL
1383 * or B_RELBUF flags.
1385 bp
->b_cmd
= BUF_CMD_DONE
;
1386 dsched_exit_buf(bp
);
1389 * VMIO buffer rundown. Make sure the VM page array is restored
1390 * after an I/O may have replaces some of the pages with bogus pages
1391 * in order to not destroy dirty pages in a fill-in read.
1393 * Note that due to the code above, if a buffer is marked B_DELWRI
1394 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1395 * B_INVAL may still be set, however.
1397 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1398 * but not the backing store. B_NOCACHE will destroy the backing
1401 * Note that dirty NFS buffers contain byte-granular write ranges
1402 * and should not be destroyed w/ B_INVAL even if the backing store
1405 if (bp
->b_flags
& B_VMIO
) {
1407 * Rundown for VMIO buffers which are not dirty NFS buffers.
1419 * Get the base offset and length of the buffer. Note that
1420 * in the VMIO case if the buffer block size is not
1421 * page-aligned then b_data pointer may not be page-aligned.
1422 * But our b_xio.xio_pages array *IS* page aligned.
1424 * block sizes less then DEV_BSIZE (usually 512) are not
1425 * supported due to the page granularity bits (m->valid,
1426 * m->dirty, etc...).
1428 * See man buf(9) for more information
1431 resid
= bp
->b_bufsize
;
1432 foff
= bp
->b_loffset
;
1434 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1435 m
= bp
->b_xio
.xio_pages
[i
];
1436 vm_page_flag_clear(m
, PG_ZERO
);
1438 * If we hit a bogus page, fixup *all* of them
1439 * now. Note that we left these pages wired
1440 * when we removed them so they had better exist,
1441 * and they cannot be ripped out from under us so
1442 * no critical section protection is necessary.
1444 if (m
== bogus_page
) {
1446 poff
= OFF_TO_IDX(bp
->b_loffset
);
1448 vm_object_hold(obj
);
1449 for (j
= i
; j
< bp
->b_xio
.xio_npages
; j
++) {
1452 mtmp
= bp
->b_xio
.xio_pages
[j
];
1453 if (mtmp
== bogus_page
) {
1454 mtmp
= vm_page_lookup(obj
, poff
+ j
);
1456 panic("brelse: page missing");
1458 bp
->b_xio
.xio_pages
[j
] = mtmp
;
1461 bp
->b_flags
&= ~B_HASBOGUS
;
1462 vm_object_drop(obj
);
1464 if ((bp
->b_flags
& B_INVAL
) == 0) {
1465 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
1466 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
1468 m
= bp
->b_xio
.xio_pages
[i
];
1472 * Invalidate the backing store if B_NOCACHE is set
1473 * (e.g. used with vinvalbuf()). If this is NFS
1474 * we impose a requirement that the block size be
1475 * a multiple of PAGE_SIZE and create a temporary
1476 * hack to basically invalidate the whole page. The
1477 * problem is that NFS uses really odd buffer sizes
1478 * especially when tracking piecemeal writes and
1479 * it also vinvalbuf()'s a lot, which would result
1480 * in only partial page validation and invalidation
1481 * here. If the file page is mmap()'d, however,
1482 * all the valid bits get set so after we invalidate
1483 * here we would end up with weird m->valid values
1484 * like 0xfc. nfs_getpages() can't handle this so
1485 * we clear all the valid bits for the NFS case
1486 * instead of just some of them.
1488 * The real bug is the VM system having to set m->valid
1489 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1490 * itself is an artifact of the whole 512-byte
1491 * granular mess that exists to support odd block
1492 * sizes and UFS meta-data block sizes (e.g. 6144).
1493 * A complete rewrite is required.
1497 if (bp
->b_flags
& (B_NOCACHE
|B_ERROR
)) {
1498 int poffset
= foff
& PAGE_MASK
;
1501 presid
= PAGE_SIZE
- poffset
;
1502 if (bp
->b_vp
->v_tag
== VT_NFS
&&
1503 bp
->b_vp
->v_type
== VREG
) {
1505 } else if (presid
> resid
) {
1508 KASSERT(presid
>= 0, ("brelse: extra page"));
1509 vm_page_set_invalid(m
, poffset
, presid
);
1512 * Also make sure any swap cache is removed
1513 * as it is now stale (HAMMER in particular
1514 * uses B_NOCACHE to deal with buffer
1517 swap_pager_unswapped(m
);
1519 resid
-= PAGE_SIZE
- (foff
& PAGE_MASK
);
1520 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
1522 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1523 vfs_vmio_release(bp
);
1526 * Rundown for non-VMIO buffers.
1528 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
)) {
1531 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1537 if (bp
->b_qindex
!= BQUEUE_NONE
)
1538 panic("brelse: free buffer onto another queue???");
1539 if (BUF_REFCNTNB(bp
) > 1) {
1540 /* Temporary panic to verify exclusive locking */
1541 /* This panic goes away when we allow shared refs */
1542 panic("brelse: multiple refs");
1548 * Figure out the correct queue to place the cleaned up buffer on.
1549 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1550 * disassociated from their vnode.
1552 spin_lock(&bufqspin
);
1553 if (bp
->b_flags
& B_LOCKED
) {
1555 * Buffers that are locked are placed in the locked queue
1556 * immediately, regardless of their state.
1558 bp
->b_qindex
= BQUEUE_LOCKED
;
1559 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_LOCKED
], bp
, b_freelist
);
1560 } else if (bp
->b_bufsize
== 0) {
1562 * Buffers with no memory. Due to conditionals near the top
1563 * of brelse() such buffers should probably already be
1564 * marked B_INVAL and disassociated from their vnode.
1566 bp
->b_flags
|= B_INVAL
;
1567 KASSERT(bp
->b_vp
== NULL
, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1568 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1569 if (bp
->b_kvasize
) {
1570 bp
->b_qindex
= BQUEUE_EMPTYKVA
;
1572 bp
->b_qindex
= BQUEUE_EMPTY
;
1574 TAILQ_INSERT_HEAD(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
1575 } else if (bp
->b_flags
& (B_INVAL
| B_NOCACHE
| B_RELBUF
)) {
1577 * Buffers with junk contents. Again these buffers had better
1578 * already be disassociated from their vnode.
1580 KASSERT(bp
->b_vp
== NULL
, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1581 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1582 bp
->b_flags
|= B_INVAL
;
1583 bp
->b_qindex
= BQUEUE_CLEAN
;
1584 TAILQ_INSERT_HEAD(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1587 * Remaining buffers. These buffers are still associated with
1590 switch(bp
->b_flags
& (B_DELWRI
|B_HEAVY
)) {
1592 bp
->b_qindex
= BQUEUE_DIRTY
;
1593 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_DIRTY
], bp
, b_freelist
);
1595 case B_DELWRI
| B_HEAVY
:
1596 bp
->b_qindex
= BQUEUE_DIRTY_HW
;
1597 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_DIRTY_HW
], bp
,
1602 * NOTE: Buffers are always placed at the end of the
1603 * queue. If B_AGE is not set the buffer will cycle
1604 * through the queue twice.
1606 bp
->b_qindex
= BQUEUE_CLEAN
;
1607 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1611 spin_unlock(&bufqspin
);
1614 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1615 * on the correct queue.
1617 if ((bp
->b_flags
& (B_INVAL
|B_DELWRI
)) == (B_INVAL
|B_DELWRI
))
1621 * The bp is on an appropriate queue unless locked. If it is not
1622 * locked or dirty we can wakeup threads waiting for buffer space.
1624 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1625 * if B_INVAL is set ).
1627 if ((bp
->b_flags
& (B_LOCKED
|B_DELWRI
)) == 0)
1631 * Something we can maybe free or reuse
1633 if (bp
->b_bufsize
|| bp
->b_kvasize
)
1637 * Clean up temporary flags and unlock the buffer.
1639 bp
->b_flags
&= ~(B_ORDERED
| B_NOCACHE
| B_RELBUF
| B_DIRECT
);
1646 * Release a buffer back to the appropriate queue but do not try to free
1647 * it. The buffer is expected to be used again soon.
1649 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1650 * biodone() to requeue an async I/O on completion. It is also used when
1651 * known good buffers need to be requeued but we think we may need the data
1654 * XXX we should be able to leave the B_RELBUF hint set on completion.
1659 bqrelse(struct buf
*bp
)
1661 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1663 if (bp
->b_qindex
!= BQUEUE_NONE
)
1664 panic("bqrelse: free buffer onto another queue???");
1665 if (BUF_REFCNTNB(bp
) > 1) {
1666 /* do not release to free list */
1667 panic("bqrelse: multiple refs");
1671 buf_act_advance(bp
);
1673 spin_lock(&bufqspin
);
1674 if (bp
->b_flags
& B_LOCKED
) {
1676 * Locked buffers are released to the locked queue. However,
1677 * if the buffer is dirty it will first go into the dirty
1678 * queue and later on after the I/O completes successfully it
1679 * will be released to the locked queue.
1681 bp
->b_qindex
= BQUEUE_LOCKED
;
1682 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_LOCKED
], bp
, b_freelist
);
1683 } else if (bp
->b_flags
& B_DELWRI
) {
1684 bp
->b_qindex
= (bp
->b_flags
& B_HEAVY
) ?
1685 BQUEUE_DIRTY_HW
: BQUEUE_DIRTY
;
1686 TAILQ_INSERT_TAIL(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
1687 } else if (vm_page_count_min(0)) {
1689 * We are too low on memory, we have to try to free the
1690 * buffer (most importantly: the wired pages making up its
1691 * backing store) *now*.
1693 spin_unlock(&bufqspin
);
1697 bp
->b_qindex
= BQUEUE_CLEAN
;
1698 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1700 spin_unlock(&bufqspin
);
1702 if ((bp
->b_flags
& B_LOCKED
) == 0 &&
1703 ((bp
->b_flags
& B_INVAL
) || (bp
->b_flags
& B_DELWRI
) == 0)) {
1708 * Something we can maybe free or reuse.
1710 if (bp
->b_bufsize
&& !(bp
->b_flags
& B_DELWRI
))
1714 * Final cleanup and unlock. Clear bits that are only used while a
1715 * buffer is actively locked.
1717 bp
->b_flags
&= ~(B_ORDERED
| B_NOCACHE
| B_RELBUF
);
1718 dsched_exit_buf(bp
);
1723 * Hold a buffer, preventing it from being reused. This will prevent
1724 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1725 * operations. If a B_INVAL operation occurs the buffer will remain held
1726 * but the underlying pages may get ripped out.
1728 * These functions are typically used in VOP_READ/VOP_WRITE functions
1729 * to hold a buffer during a copyin or copyout, preventing deadlocks
1730 * or recursive lock panics when read()/write() is used over mmap()'d
1733 * NOTE: bqhold() requires that the buffer be locked at the time of the
1734 * hold. bqdrop() has no requirements other than the buffer having
1735 * previously been held.
1738 bqhold(struct buf
*bp
)
1740 atomic_add_int(&bp
->b_refs
, 1);
1744 bqdrop(struct buf
*bp
)
1746 KKASSERT(bp
->b_refs
> 0);
1747 atomic_add_int(&bp
->b_refs
, -1);
1751 * Return backing pages held by the buffer 'bp' back to the VM system.
1752 * This routine is called when the bp is invalidated, released, or
1755 * The KVA mapping (b_data) for the underlying pages is removed by
1758 * WARNING! This routine is integral to the low memory critical path
1759 * when a buffer is B_RELBUF'd. If the system has a severe page
1760 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1761 * queues so they can be reused in the current pageout daemon
1765 vfs_vmio_release(struct buf
*bp
)
1770 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1771 m
= bp
->b_xio
.xio_pages
[i
];
1772 bp
->b_xio
.xio_pages
[i
] = NULL
;
1775 * We need to own the page in order to safely unwire it.
1777 vm_page_busy_wait(m
, FALSE
, "vmiopg");
1780 * The VFS is telling us this is not a meta-data buffer
1781 * even if it is backed by a block device.
1783 if (bp
->b_flags
& B_NOTMETA
)
1784 vm_page_flag_set(m
, PG_NOTMETA
);
1787 * This is a very important bit of code. We try to track
1788 * VM page use whether the pages are wired into the buffer
1789 * cache or not. While wired into the buffer cache the
1790 * bp tracks the act_count.
1792 * We can choose to place unwired pages on the inactive
1793 * queue (0) or active queue (1). If we place too many
1794 * on the active queue the queue will cycle the act_count
1795 * on pages we'd like to keep, just from single-use pages
1796 * (such as when doing a tar-up or file scan).
1798 if (bp
->b_act_count
< vm_cycle_point
)
1799 vm_page_unwire(m
, 0);
1801 vm_page_unwire(m
, 1);
1804 * If the wire_count has dropped to 0 we may need to take
1805 * further action before unbusying the page.
1807 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1809 if (m
->wire_count
== 0) {
1810 vm_page_flag_clear(m
, PG_ZERO
);
1812 if (bp
->b_flags
& B_DIRECT
) {
1814 * Attempt to free the page if B_DIRECT is
1815 * set, the caller does not desire the page
1819 vm_page_try_to_free(m
);
1820 } else if ((bp
->b_flags
& B_NOTMETA
) ||
1821 vm_page_count_min(0)) {
1823 * Attempt to move the page to PQ_CACHE
1824 * if B_NOTMETA is set. This flag is set
1825 * by HAMMER to remove one of the two pages
1826 * present when double buffering is enabled.
1828 * Attempt to move the page to PQ_CACHE
1829 * If we have a severe page deficit. This
1830 * will cause buffer cache operations related
1831 * to pageouts to recycle the related pages
1832 * in order to avoid a low memory deadlock.
1834 m
->act_count
= bp
->b_act_count
;
1836 vm_page_try_to_cache(m
);
1839 * Nominal case, leave the page on the
1840 * queue the original unwiring placed it on
1841 * (active or inactive).
1843 m
->act_count
= bp
->b_act_count
;
1851 pmap_qremove(trunc_page((vm_offset_t
) bp
->b_data
),
1852 bp
->b_xio
.xio_npages
);
1853 if (bp
->b_bufsize
) {
1857 bp
->b_xio
.xio_npages
= 0;
1858 bp
->b_flags
&= ~B_VMIO
;
1859 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1867 * Implement clustered async writes for clearing out B_DELWRI buffers.
1868 * This is much better then the old way of writing only one buffer at
1869 * a time. Note that we may not be presented with the buffers in the
1870 * correct order, so we search for the cluster in both directions.
1872 * The buffer is locked on call.
1875 vfs_bio_awrite(struct buf
*bp
)
1879 off_t loffset
= bp
->b_loffset
;
1880 struct vnode
*vp
= bp
->b_vp
;
1887 * right now we support clustered writing only to regular files. If
1888 * we find a clusterable block we could be in the middle of a cluster
1889 * rather then at the beginning.
1891 * NOTE: b_bio1 contains the logical loffset and is aliased
1892 * to b_loffset. b_bio2 contains the translated block number.
1894 if ((vp
->v_type
== VREG
) &&
1895 (vp
->v_mount
!= 0) && /* Only on nodes that have the size info */
1896 (bp
->b_flags
& (B_CLUSTEROK
| B_INVAL
)) == B_CLUSTEROK
) {
1898 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
1900 for (i
= size
; i
< MAXPHYS
; i
+= size
) {
1901 if ((bpa
= findblk(vp
, loffset
+ i
, FINDBLK_TEST
)) &&
1902 BUF_REFCNT(bpa
) == 0 &&
1903 ((bpa
->b_flags
& (B_DELWRI
| B_CLUSTEROK
| B_INVAL
)) ==
1904 (B_DELWRI
| B_CLUSTEROK
)) &&
1905 (bpa
->b_bufsize
== size
)) {
1906 if ((bpa
->b_bio2
.bio_offset
== NOOFFSET
) ||
1907 (bpa
->b_bio2
.bio_offset
!=
1908 bp
->b_bio2
.bio_offset
+ i
))
1914 for (j
= size
; i
+ j
<= MAXPHYS
&& j
<= loffset
; j
+= size
) {
1915 if ((bpa
= findblk(vp
, loffset
- j
, FINDBLK_TEST
)) &&
1916 BUF_REFCNT(bpa
) == 0 &&
1917 ((bpa
->b_flags
& (B_DELWRI
| B_CLUSTEROK
| B_INVAL
)) ==
1918 (B_DELWRI
| B_CLUSTEROK
)) &&
1919 (bpa
->b_bufsize
== size
)) {
1920 if ((bpa
->b_bio2
.bio_offset
== NOOFFSET
) ||
1921 (bpa
->b_bio2
.bio_offset
!=
1922 bp
->b_bio2
.bio_offset
- j
))
1932 * this is a possible cluster write
1934 if (nbytes
!= size
) {
1936 nwritten
= cluster_wbuild(vp
, size
,
1937 loffset
- j
, nbytes
);
1943 * default (old) behavior, writing out only one block
1945 * XXX returns b_bufsize instead of b_bcount for nwritten?
1947 nwritten
= bp
->b_bufsize
;
1957 * Find and initialize a new buffer header, freeing up existing buffers
1958 * in the bufqueues as necessary. The new buffer is returned locked.
1960 * Important: B_INVAL is not set. If the caller wishes to throw the
1961 * buffer away, the caller must set B_INVAL prior to calling brelse().
1964 * We have insufficient buffer headers
1965 * We have insufficient buffer space
1966 * buffer_map is too fragmented ( space reservation fails )
1967 * If we have to flush dirty buffers ( but we try to avoid this )
1969 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1970 * Instead we ask the buf daemon to do it for us. We attempt to
1971 * avoid piecemeal wakeups of the pageout daemon.
1976 getnewbuf(int blkflags
, int slptimeo
, int size
, int maxsize
)
1982 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
1983 static int flushingbufs
;
1986 * We can't afford to block since we might be holding a vnode lock,
1987 * which may prevent system daemons from running. We deal with
1988 * low-memory situations by proactively returning memory and running
1989 * async I/O rather then sync I/O.
1993 --getnewbufrestarts
;
1995 ++getnewbufrestarts
;
1998 * Setup for scan. If we do not have enough free buffers,
1999 * we setup a degenerate case that immediately fails. Note
2000 * that if we are specially marked process, we are allowed to
2001 * dip into our reserves.
2003 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2005 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
2006 * However, there are a number of cases (defragging, reusing, ...)
2007 * where we cannot backup.
2009 nqindex
= BQUEUE_EMPTYKVA
;
2010 spin_lock(&bufqspin
);
2011 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTYKVA
]);
2015 * If no EMPTYKVA buffers and we are either
2016 * defragging or reusing, locate a CLEAN buffer
2017 * to free or reuse. If bufspace useage is low
2018 * skip this step so we can allocate a new buffer.
2020 if (defrag
|| bufspace
>= lobufspace
) {
2021 nqindex
= BQUEUE_CLEAN
;
2022 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
]);
2026 * If we could not find or were not allowed to reuse a
2027 * CLEAN buffer, check to see if it is ok to use an EMPTY
2028 * buffer. We can only use an EMPTY buffer if allocating
2029 * its KVA would not otherwise run us out of buffer space.
2031 if (nbp
== NULL
&& defrag
== 0 &&
2032 bufspace
+ maxsize
< hibufspace
) {
2033 nqindex
= BQUEUE_EMPTY
;
2034 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTY
]);
2039 * Run scan, possibly freeing data and/or kva mappings on the fly
2042 * WARNING! bufqspin is held!
2044 while ((bp
= nbp
) != NULL
) {
2045 int qindex
= nqindex
;
2047 nbp
= TAILQ_NEXT(bp
, b_freelist
);
2050 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2051 * cycles through the queue twice before being selected.
2053 if (qindex
== BQUEUE_CLEAN
&&
2054 (bp
->b_flags
& B_AGE
) == 0 && nbp
) {
2055 bp
->b_flags
|= B_AGE
;
2056 TAILQ_REMOVE(&bufqueues
[qindex
], bp
, b_freelist
);
2057 TAILQ_INSERT_TAIL(&bufqueues
[qindex
], bp
, b_freelist
);
2062 * Calculate next bp ( we can only use it if we do not block
2063 * or do other fancy things ).
2068 nqindex
= BQUEUE_EMPTYKVA
;
2069 if ((nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTYKVA
])))
2072 case BQUEUE_EMPTYKVA
:
2073 nqindex
= BQUEUE_CLEAN
;
2074 if ((nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
])))
2088 KASSERT(bp
->b_qindex
== qindex
,
2089 ("getnewbuf: inconsistent queue %d bp %p", qindex
, bp
));
2092 * Note: we no longer distinguish between VMIO and non-VMIO
2095 KASSERT((bp
->b_flags
& B_DELWRI
) == 0,
2096 ("delwri buffer %p found in queue %d", bp
, qindex
));
2099 * Do not try to reuse a buffer with a non-zero b_refs.
2100 * This is an unsynchronized test. A synchronized test
2101 * is also performed after we lock the buffer.
2107 * If we are defragging then we need a buffer with
2108 * b_kvasize != 0. XXX this situation should no longer
2109 * occur, if defrag is non-zero the buffer's b_kvasize
2110 * should also be non-zero at this point. XXX
2112 if (defrag
&& bp
->b_kvasize
== 0) {
2113 kprintf("Warning: defrag empty buffer %p\n", bp
);
2118 * Start freeing the bp. This is somewhat involved. nbp
2119 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
2120 * on the clean list must be disassociated from their
2121 * current vnode. Buffers on the empty[kva] lists have
2122 * already been disassociated.
2124 * b_refs is checked after locking along with queue changes.
2125 * We must check here to deal with zero->nonzero transitions
2126 * made by the owner of the buffer lock, which is used by
2127 * VFS's to hold the buffer while issuing an unlocked
2128 * uiomove()s. We cannot invalidate the buffer's pages
2129 * for this case. Once we successfully lock a buffer the
2130 * only 0->1 transitions of b_refs will occur via findblk().
2132 * We must also check for queue changes after successful
2133 * locking as the current lock holder may dispose of the
2134 * buffer and change its queue.
2136 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
2137 spin_unlock(&bufqspin
);
2138 tsleep(&bd_request
, 0, "gnbxxx", (hz
+ 99) / 100);
2141 if (bp
->b_qindex
!= qindex
|| bp
->b_refs
) {
2142 spin_unlock(&bufqspin
);
2146 bremfree_locked(bp
);
2147 spin_unlock(&bufqspin
);
2150 * Dependancies must be handled before we disassociate the
2153 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2154 * be immediately disassociated. HAMMER then becomes
2155 * responsible for releasing the buffer.
2157 * NOTE: bufqspin is UNLOCKED now.
2159 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
2161 if (bp
->b_flags
& B_LOCKED
) {
2165 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2168 if (qindex
== BQUEUE_CLEAN
) {
2169 if (bp
->b_flags
& B_VMIO
)
2170 vfs_vmio_release(bp
);
2176 * NOTE: nbp is now entirely invalid. We can only restart
2177 * the scan from this point on.
2179 * Get the rest of the buffer freed up. b_kva* is still
2180 * valid after this operation.
2182 KASSERT(bp
->b_vp
== NULL
,
2183 ("bp3 %p flags %08x vnode %p qindex %d "
2184 "unexpectededly still associated!",
2185 bp
, bp
->b_flags
, bp
->b_vp
, qindex
));
2186 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
2189 * critical section protection is not required when
2190 * scrapping a buffer's contents because it is already
2196 bp
->b_flags
= B_BNOCLIP
;
2197 bp
->b_cmd
= BUF_CMD_DONE
;
2202 bp
->b_xio
.xio_npages
= 0;
2203 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
2204 bp
->b_act_count
= ACT_INIT
;
2206 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2208 if (blkflags
& GETBLK_BHEAVY
)
2209 bp
->b_flags
|= B_HEAVY
;
2212 * If we are defragging then free the buffer.
2215 bp
->b_flags
|= B_INVAL
;
2223 * If we are overcomitted then recover the buffer and its
2224 * KVM space. This occurs in rare situations when multiple
2225 * processes are blocked in getnewbuf() or allocbuf().
2227 if (bufspace
>= hibufspace
)
2229 if (flushingbufs
&& bp
->b_kvasize
!= 0) {
2230 bp
->b_flags
|= B_INVAL
;
2235 if (bufspace
< lobufspace
)
2239 * b_refs can transition to a non-zero value while we hold
2240 * the buffer locked due to a findblk(). Our brelvp() above
2241 * interlocked any future possible transitions due to
2244 * If we find b_refs to be non-zero we can destroy the
2245 * buffer's contents but we cannot yet reuse the buffer.
2248 bp
->b_flags
|= B_INVAL
;
2254 /* NOT REACHED, bufqspin not held */
2258 * If we exhausted our list, sleep as appropriate. We may have to
2259 * wakeup various daemons and write out some dirty buffers.
2261 * Generally we are sleeping due to insufficient buffer space.
2263 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2269 spin_unlock(&bufqspin
);
2271 flags
= VFS_BIO_NEED_BUFSPACE
;
2273 } else if (bufspace
>= hibufspace
) {
2275 flags
= VFS_BIO_NEED_BUFSPACE
;
2278 flags
= VFS_BIO_NEED_ANY
;
2281 bd_speedup(); /* heeeelp */
2282 spin_lock(&bufcspin
);
2283 needsbuffer
|= flags
;
2284 while (needsbuffer
& flags
) {
2285 if (ssleep(&needsbuffer
, &bufcspin
,
2286 slpflags
, waitmsg
, slptimeo
)) {
2287 spin_unlock(&bufcspin
);
2291 spin_unlock(&bufcspin
);
2294 * We finally have a valid bp. We aren't quite out of the
2295 * woods, we still have to reserve kva space. In order
2296 * to keep fragmentation sane we only allocate kva in
2299 * (bufqspin is not held)
2301 maxsize
= (maxsize
+ BKVAMASK
) & ~BKVAMASK
;
2303 if (maxsize
!= bp
->b_kvasize
) {
2304 vm_offset_t addr
= 0;
2309 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2310 vm_map_lock(&buffer_map
);
2312 if (vm_map_findspace(&buffer_map
,
2313 vm_map_min(&buffer_map
), maxsize
,
2314 maxsize
, 0, &addr
)) {
2316 * Uh oh. Buffer map is too fragmented. We
2317 * must defragment the map.
2319 vm_map_unlock(&buffer_map
);
2320 vm_map_entry_release(count
);
2323 bp
->b_flags
|= B_INVAL
;
2328 vm_map_insert(&buffer_map
, &count
,
2330 addr
, addr
+ maxsize
,
2332 VM_PROT_ALL
, VM_PROT_ALL
,
2335 bp
->b_kvabase
= (caddr_t
) addr
;
2336 bp
->b_kvasize
= maxsize
;
2337 bufspace
+= bp
->b_kvasize
;
2340 vm_map_unlock(&buffer_map
);
2341 vm_map_entry_release(count
);
2343 bp
->b_data
= bp
->b_kvabase
;
2350 * This routine is called in an emergency to recover VM pages from the
2351 * buffer cache by cashing in clean buffers. The idea is to recover
2352 * enough pages to be able to satisfy a stuck bio_page_alloc().
2354 * XXX Currently not implemented. This function can wind up deadlocking
2355 * against another thread holding one or more of the backing pages busy.
2358 recoverbufpages(void)
2365 spin_lock(&bufqspin
);
2366 while (bytes
< MAXBSIZE
) {
2367 bp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
]);
2372 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2373 * cycles through the queue twice before being selected.
2375 if ((bp
->b_flags
& B_AGE
) == 0 && TAILQ_NEXT(bp
, b_freelist
)) {
2376 bp
->b_flags
|= B_AGE
;
2377 TAILQ_REMOVE(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
2378 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
],
2386 KKASSERT(bp
->b_qindex
== BQUEUE_CLEAN
);
2387 KKASSERT((bp
->b_flags
& B_DELWRI
) == 0);
2390 * Start freeing the bp. This is somewhat involved.
2392 * Buffers on the clean list must be disassociated from
2393 * their current vnode
2396 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
2397 kprintf("recoverbufpages: warning, locked buf %p, "
2400 ssleep(&bd_request
, &bufqspin
, 0, "gnbxxx", hz
/ 100);
2403 if (bp
->b_qindex
!= BQUEUE_CLEAN
) {
2404 kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2405 "unexpectedly on buf %p index %d, race "
2411 bremfree_locked(bp
);
2412 spin_unlock(&bufqspin
);
2415 * Dependancies must be handled before we disassociate the
2418 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2419 * be immediately disassociated. HAMMER then becomes
2420 * responsible for releasing the buffer.
2422 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
2424 if (bp
->b_flags
& B_LOCKED
) {
2426 spin_lock(&bufqspin
);
2429 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2432 bytes
+= bp
->b_bufsize
;
2434 if (bp
->b_flags
& B_VMIO
) {
2435 bp
->b_flags
|= B_DIRECT
; /* try to free pages */
2436 vfs_vmio_release(bp
);
2441 KKASSERT(bp
->b_vp
== NULL
);
2442 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
2445 * critical section protection is not required when
2446 * scrapping a buffer's contents because it is already
2452 bp
->b_flags
= B_BNOCLIP
;
2453 bp
->b_cmd
= BUF_CMD_DONE
;
2458 bp
->b_xio
.xio_npages
= 0;
2459 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
2461 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2463 bp
->b_flags
|= B_INVAL
;
2466 spin_lock(&bufqspin
);
2468 spin_unlock(&bufqspin
);
2476 * Buffer flushing daemon. Buffers are normally flushed by the
2477 * update daemon but if it cannot keep up this process starts to
2478 * take the load in an attempt to prevent getnewbuf() from blocking.
2480 * Once a flush is initiated it does not stop until the number
2481 * of buffers falls below lodirtybuffers, but we will wake up anyone
2482 * waiting at the mid-point.
2484 static struct kproc_desc buf_kp
= {
2489 SYSINIT(bufdaemon
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2490 kproc_start
, &buf_kp
)
2492 static struct kproc_desc bufhw_kp
= {
2497 SYSINIT(bufdaemon_hw
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2498 kproc_start
, &bufhw_kp
)
2504 buf_daemon1(struct thread
*td
, int queue
, int (*buf_limit_fn
)(long),
2510 * This process needs to be suspended prior to shutdown sync.
2512 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
2513 td
, SHUTDOWN_PRI_LAST
);
2514 curthread
->td_flags
|= TDF_SYSTHREAD
;
2517 * This process is allowed to take the buffer cache to the limit
2520 kproc_suspend_loop();
2523 * Do the flush as long as the number of dirty buffers
2524 * (including those running) exceeds lodirtybufspace.
2526 * When flushing limit running I/O to hirunningspace
2527 * Do the flush. Limit the amount of in-transit I/O we
2528 * allow to build up, otherwise we would completely saturate
2529 * the I/O system. Wakeup any waiting processes before we
2530 * normally would so they can run in parallel with our drain.
2532 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2533 * but because we split the operation into two threads we
2534 * have to cut it in half for each thread.
2536 waitrunningbufspace();
2537 limit
= lodirtybufspace
/ 2;
2538 while (buf_limit_fn(limit
)) {
2539 if (flushbufqueues(queue
) == 0)
2541 if (runningbufspace
< hirunningspace
)
2543 waitrunningbufspace();
2547 * We reached our low water mark, reset the
2548 * request and sleep until we are needed again.
2549 * The sleep is just so the suspend code works.
2551 spin_lock(&bufcspin
);
2553 ssleep(bd_req
, &bufcspin
, 0, "psleep", hz
);
2555 spin_unlock(&bufcspin
);
2560 buf_daemon_limit(long limit
)
2562 return (runningbufspace
+ dirtybufspace
> limit
||
2563 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2);
2567 buf_daemon_hw_limit(long limit
)
2569 return (runningbufspace
+ dirtybufspacehw
> limit
||
2570 dirtybufcounthw
>= nbuf
/ 2);
2576 buf_daemon1(bufdaemon_td
, BQUEUE_DIRTY
, buf_daemon_limit
,
2583 buf_daemon1(bufdaemonhw_td
, BQUEUE_DIRTY_HW
, buf_daemon_hw_limit
,
2590 * Try to flush a buffer in the dirty queue. We must be careful to
2591 * free up B_INVAL buffers instead of write them, which NFS is
2592 * particularly sensitive to.
2594 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2595 * that we really want to try to get the buffer out and reuse it
2596 * due to the write load on the machine.
2598 * We must lock the buffer in order to check its validity before we
2599 * can mess with its contents. bufqspin isn't enough.
2602 flushbufqueues(bufq_type_t q
)
2608 spin_lock(&bufqspin
);
2611 bp
= TAILQ_FIRST(&bufqueues
[q
]);
2613 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2614 kprintf("Unexpected clean buffer %p\n", bp
);
2615 bp
= TAILQ_NEXT(bp
, b_freelist
);
2618 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2619 bp
= TAILQ_NEXT(bp
, b_freelist
);
2622 KKASSERT(bp
->b_qindex
== q
);
2625 * Must recheck B_DELWRI after successfully locking
2628 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2630 bp
= TAILQ_NEXT(bp
, b_freelist
);
2634 if (bp
->b_flags
& B_INVAL
) {
2636 spin_unlock(&bufqspin
);
2643 spin_unlock(&bufqspin
);
2647 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
2648 (bp
->b_flags
& B_DEFERRED
) == 0 &&
2649 buf_countdeps(bp
, 0)) {
2650 spin_lock(&bufqspin
);
2652 TAILQ_REMOVE(&bufqueues
[q
], bp
, b_freelist
);
2653 TAILQ_INSERT_TAIL(&bufqueues
[q
], bp
, b_freelist
);
2654 bp
->b_flags
|= B_DEFERRED
;
2656 bp
= TAILQ_FIRST(&bufqueues
[q
]);
2661 * If the buffer has a dependancy, buf_checkwrite() must
2662 * also return 0 for us to be able to initate the write.
2664 * If the buffer is flagged B_ERROR it may be requeued
2665 * over and over again, we try to avoid a live lock.
2667 * NOTE: buf_checkwrite is MPSAFE.
2669 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& buf_checkwrite(bp
)) {
2672 } else if (bp
->b_flags
& B_ERROR
) {
2673 tsleep(bp
, 0, "bioer", 1);
2674 bp
->b_flags
&= ~B_AGE
;
2677 bp
->b_flags
|= B_AGE
;
2684 spin_unlock(&bufqspin
);
2691 * Returns true if no I/O is needed to access the associated VM object.
2692 * This is like findblk except it also hunts around in the VM system for
2695 * Note that we ignore vm_page_free() races from interrupts against our
2696 * lookup, since if the caller is not protected our return value will not
2697 * be any more valid then otherwise once we exit the critical section.
2700 inmem(struct vnode
*vp
, off_t loffset
)
2703 vm_offset_t toff
, tinc
, size
;
2707 if (findblk(vp
, loffset
, FINDBLK_TEST
))
2709 if (vp
->v_mount
== NULL
)
2711 if ((obj
= vp
->v_object
) == NULL
)
2715 if (size
> vp
->v_mount
->mnt_stat
.f_iosize
)
2716 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
2718 vm_object_hold(obj
);
2719 for (toff
= 0; toff
< vp
->v_mount
->mnt_stat
.f_iosize
; toff
+= tinc
) {
2720 m
= vm_page_lookup(obj
, OFF_TO_IDX(loffset
+ toff
));
2726 if (tinc
> PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
))
2727 tinc
= PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
);
2728 if (vm_page_is_valid(m
,
2729 (vm_offset_t
) ((toff
+ loffset
) & PAGE_MASK
), tinc
) == 0) {
2734 vm_object_drop(obj
);
2741 * Locate and return the specified buffer. Unless flagged otherwise,
2742 * a locked buffer will be returned if it exists or NULL if it does not.
2744 * findblk()'d buffers are still on the bufqueues and if you intend
2745 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2746 * and possibly do other stuff to it.
2748 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2749 * for locking the buffer and ensuring that it remains
2750 * the desired buffer after locking.
2752 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2753 * to acquire the lock we return NULL, even if the
2756 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2757 * reuse by getnewbuf() but does not prevent
2758 * disassociation (B_INVAL). Used to avoid deadlocks
2759 * against random (vp,loffset)s due to reassignment.
2761 * (0) - Lock the buffer blocking.
2766 findblk(struct vnode
*vp
, off_t loffset
, int flags
)
2771 lkflags
= LK_EXCLUSIVE
;
2772 if (flags
& FINDBLK_NBLOCK
)
2773 lkflags
|= LK_NOWAIT
;
2777 * Lookup. Ref the buf while holding v_token to prevent
2778 * reuse (but does not prevent diassociation).
2780 lwkt_gettoken_shared(&vp
->v_token
);
2781 bp
= buf_rb_hash_RB_LOOKUP(&vp
->v_rbhash_tree
, loffset
);
2783 lwkt_reltoken(&vp
->v_token
);
2787 lwkt_reltoken(&vp
->v_token
);
2790 * If testing only break and return bp, do not lock.
2792 if (flags
& FINDBLK_TEST
)
2796 * Lock the buffer, return an error if the lock fails.
2797 * (only FINDBLK_NBLOCK can cause the lock to fail).
2799 if (BUF_LOCK(bp
, lkflags
)) {
2800 atomic_subtract_int(&bp
->b_refs
, 1);
2801 /* bp = NULL; not needed */
2806 * Revalidate the locked buf before allowing it to be
2809 if (bp
->b_vp
== vp
&& bp
->b_loffset
== loffset
)
2811 atomic_subtract_int(&bp
->b_refs
, 1);
2818 if ((flags
& FINDBLK_REF
) == 0)
2819 atomic_subtract_int(&bp
->b_refs
, 1);
2826 * Similar to getblk() except only returns the buffer if it is
2827 * B_CACHE and requires no other manipulation. Otherwise NULL
2830 * If B_RAM is set the buffer might be just fine, but we return
2831 * NULL anyway because we want the code to fall through to the
2832 * cluster read. Otherwise read-ahead breaks.
2834 * If blksize is 0 the buffer cache buffer must already be fully
2837 * If blksize is non-zero getblk() will be used, allowing a buffer
2838 * to be reinstantiated from its VM backing store. The buffer must
2839 * still be fully cached after reinstantiation to be returned.
2842 getcacheblk(struct vnode
*vp
, off_t loffset
, int blksize
)
2847 bp
= getblk(vp
, loffset
, blksize
, 0, 0);
2849 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) ==
2851 bp
->b_flags
&= ~B_AGE
;
2858 bp
= findblk(vp
, loffset
, 0);
2860 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) ==
2862 bp
->b_flags
&= ~B_AGE
;
2876 * Get a block given a specified block and offset into a file/device.
2877 * B_INVAL may or may not be set on return. The caller should clear
2878 * B_INVAL prior to initiating a READ.
2880 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2881 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2882 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2883 * without doing any of those things the system will likely believe
2884 * the buffer to be valid (especially if it is not B_VMIO), and the
2885 * next getblk() will return the buffer with B_CACHE set.
2887 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2888 * an existing buffer.
2890 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2891 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2892 * and then cleared based on the backing VM. If the previous buffer is
2893 * non-0-sized but invalid, B_CACHE will be cleared.
2895 * If getblk() must create a new buffer, the new buffer is returned with
2896 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2897 * case it is returned with B_INVAL clear and B_CACHE set based on the
2900 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2901 * B_CACHE bit is clear.
2903 * What this means, basically, is that the caller should use B_CACHE to
2904 * determine whether the buffer is fully valid or not and should clear
2905 * B_INVAL prior to issuing a read. If the caller intends to validate
2906 * the buffer by loading its data area with something, the caller needs
2907 * to clear B_INVAL. If the caller does this without issuing an I/O,
2908 * the caller should set B_CACHE ( as an optimization ), else the caller
2909 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2910 * a write attempt or if it was a successfull read. If the caller
2911 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2912 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2916 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2917 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2922 getblk(struct vnode
*vp
, off_t loffset
, int size
, int blkflags
, int slptimeo
)
2925 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
2929 if (size
> MAXBSIZE
)
2930 panic("getblk: size(%d) > MAXBSIZE(%d)", size
, MAXBSIZE
);
2931 if (vp
->v_object
== NULL
)
2932 panic("getblk: vnode %p has no object!", vp
);
2935 if ((bp
= findblk(vp
, loffset
, FINDBLK_REF
| FINDBLK_TEST
)) != NULL
) {
2937 * The buffer was found in the cache, but we need to lock it.
2938 * We must acquire a ref on the bp to prevent reuse, but
2939 * this will not prevent disassociation (brelvp()) so we
2940 * must recheck (vp,loffset) after acquiring the lock.
2942 * Without the ref the buffer could potentially be reused
2943 * before we acquire the lock and create a deadlock
2944 * situation between the thread trying to reuse the buffer
2945 * and us due to the fact that we would wind up blocking
2946 * on a random (vp,loffset).
2948 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2949 if (blkflags
& GETBLK_NOWAIT
) {
2953 lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
2954 if (blkflags
& GETBLK_PCATCH
)
2955 lkflags
|= LK_PCATCH
;
2956 error
= BUF_TIMELOCK(bp
, lkflags
, "getblk", slptimeo
);
2959 if (error
== ENOLCK
)
2963 /* buffer may have changed on us */
2968 * Once the buffer has been locked, make sure we didn't race
2969 * a buffer recyclement. Buffers that are no longer hashed
2970 * will have b_vp == NULL, so this takes care of that check
2973 if (bp
->b_vp
!= vp
|| bp
->b_loffset
!= loffset
) {
2974 kprintf("Warning buffer %p (vp %p loffset %lld) "
2976 bp
, vp
, (long long)loffset
);
2982 * If SZMATCH any pre-existing buffer must be of the requested
2983 * size or NULL is returned. The caller absolutely does not
2984 * want getblk() to bwrite() the buffer on a size mismatch.
2986 if ((blkflags
& GETBLK_SZMATCH
) && size
!= bp
->b_bcount
) {
2992 * All vnode-based buffers must be backed by a VM object.
2994 KKASSERT(bp
->b_flags
& B_VMIO
);
2995 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2996 bp
->b_flags
&= ~B_AGE
;
2999 * Make sure that B_INVAL buffers do not have a cached
3000 * block number translation.
3002 if ((bp
->b_flags
& B_INVAL
) && (bp
->b_bio2
.bio_offset
!= NOOFFSET
)) {
3003 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
3004 " did not have cleared bio_offset cache\n",
3005 bp
, vp
, (long long)loffset
);
3006 clearbiocache(&bp
->b_bio2
);
3010 * The buffer is locked. B_CACHE is cleared if the buffer is
3013 if (bp
->b_flags
& B_INVAL
)
3014 bp
->b_flags
&= ~B_CACHE
;
3018 * Any size inconsistancy with a dirty buffer or a buffer
3019 * with a softupdates dependancy must be resolved. Resizing
3020 * the buffer in such circumstances can lead to problems.
3022 * Dirty or dependant buffers are written synchronously.
3023 * Other types of buffers are simply released and
3024 * reconstituted as they may be backed by valid, dirty VM
3025 * pages (but not marked B_DELWRI).
3027 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
3028 * and may be left over from a prior truncation (and thus
3029 * no longer represent the actual EOF point), so we
3030 * definitely do not want to B_NOCACHE the backing store.
3032 if (size
!= bp
->b_bcount
) {
3033 if (bp
->b_flags
& B_DELWRI
) {
3034 bp
->b_flags
|= B_RELBUF
;
3036 } else if (LIST_FIRST(&bp
->b_dep
)) {
3037 bp
->b_flags
|= B_RELBUF
;
3040 bp
->b_flags
|= B_RELBUF
;
3045 KKASSERT(size
<= bp
->b_kvasize
);
3046 KASSERT(bp
->b_loffset
!= NOOFFSET
,
3047 ("getblk: no buffer offset"));
3050 * A buffer with B_DELWRI set and B_CACHE clear must
3051 * be committed before we can return the buffer in
3052 * order to prevent the caller from issuing a read
3053 * ( due to B_CACHE not being set ) and overwriting
3056 * Most callers, including NFS and FFS, need this to
3057 * operate properly either because they assume they
3058 * can issue a read if B_CACHE is not set, or because
3059 * ( for example ) an uncached B_DELWRI might loop due
3060 * to softupdates re-dirtying the buffer. In the latter
3061 * case, B_CACHE is set after the first write completes,
3062 * preventing further loops.
3064 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
3065 * above while extending the buffer, we cannot allow the
3066 * buffer to remain with B_CACHE set after the write
3067 * completes or it will represent a corrupt state. To
3068 * deal with this we set B_NOCACHE to scrap the buffer
3071 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3072 * I'm not even sure this state is still possible
3073 * now that getblk() writes out any dirty buffers
3076 * We might be able to do something fancy, like setting
3077 * B_CACHE in bwrite() except if B_DELWRI is already set,
3078 * so the below call doesn't set B_CACHE, but that gets real
3079 * confusing. This is much easier.
3082 if ((bp
->b_flags
& (B_CACHE
|B_DELWRI
)) == B_DELWRI
) {
3083 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3084 "and CACHE clear, b_flags %08x\n",
3085 bp
, (intmax_t)bp
->b_loffset
, bp
->b_flags
);
3086 bp
->b_flags
|= B_NOCACHE
;
3092 * Buffer is not in-core, create new buffer. The buffer
3093 * returned by getnewbuf() is locked. Note that the returned
3094 * buffer is also considered valid (not marked B_INVAL).
3096 * Calculating the offset for the I/O requires figuring out
3097 * the block size. We use DEV_BSIZE for VBLK or VCHR and
3098 * the mount's f_iosize otherwise. If the vnode does not
3099 * have an associated mount we assume that the passed size is
3102 * Note that vn_isdisk() cannot be used here since it may
3103 * return a failure for numerous reasons. Note that the
3104 * buffer size may be larger then the block size (the caller
3105 * will use block numbers with the proper multiple). Beware
3106 * of using any v_* fields which are part of unions. In
3107 * particular, in DragonFly the mount point overloading
3108 * mechanism uses the namecache only and the underlying
3109 * directory vnode is not a special case.
3113 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
3115 else if (vp
->v_mount
)
3116 bsize
= vp
->v_mount
->mnt_stat
.f_iosize
;
3120 maxsize
= size
+ (loffset
& PAGE_MASK
);
3121 maxsize
= imax(maxsize
, bsize
);
3123 bp
= getnewbuf(blkflags
, slptimeo
, size
, maxsize
);
3125 if (slpflags
|| slptimeo
)
3131 * Atomically insert the buffer into the hash, so that it can
3132 * be found by findblk().
3134 * If bgetvp() returns non-zero a collision occured, and the
3135 * bp will not be associated with the vnode.
3137 * Make sure the translation layer has been cleared.
3139 bp
->b_loffset
= loffset
;
3140 bp
->b_bio2
.bio_offset
= NOOFFSET
;
3141 /* bp->b_bio2.bio_next = NULL; */
3143 if (bgetvp(vp
, bp
, size
)) {
3144 bp
->b_flags
|= B_INVAL
;
3150 * All vnode-based buffers must be backed by a VM object.
3152 KKASSERT(vp
->v_object
!= NULL
);
3153 bp
->b_flags
|= B_VMIO
;
3154 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3158 KKASSERT(dsched_is_clear_buf_priv(bp
));
3165 * Reacquire a buffer that was previously released to the locked queue,
3166 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3167 * set B_LOCKED (which handles the acquisition race).
3169 * To this end, either B_LOCKED must be set or the dependancy list must be
3175 regetblk(struct buf
*bp
)
3177 KKASSERT((bp
->b_flags
& B_LOCKED
) || LIST_FIRST(&bp
->b_dep
) != NULL
);
3178 BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_RETRY
);
3185 * Get an empty, disassociated buffer of given size. The buffer is
3186 * initially set to B_INVAL.
3188 * critical section protection is not required for the allocbuf()
3189 * call because races are impossible here.
3199 maxsize
= (size
+ BKVAMASK
) & ~BKVAMASK
;
3201 while ((bp
= getnewbuf(0, 0, size
, maxsize
)) == NULL
)
3204 bp
->b_flags
|= B_INVAL
; /* b_dep cleared by getnewbuf() */
3205 KKASSERT(dsched_is_clear_buf_priv(bp
));
3213 * This code constitutes the buffer memory from either anonymous system
3214 * memory (in the case of non-VMIO operations) or from an associated
3215 * VM object (in the case of VMIO operations). This code is able to
3216 * resize a buffer up or down.
3218 * Note that this code is tricky, and has many complications to resolve
3219 * deadlock or inconsistant data situations. Tread lightly!!!
3220 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3221 * the caller. Calling this code willy nilly can result in the loss of
3224 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3225 * B_CACHE for the non-VMIO case.
3227 * This routine does not need to be called from a critical section but you
3228 * must own the buffer.
3233 allocbuf(struct buf
*bp
, int size
)
3235 int newbsize
, mbsize
;
3238 if (BUF_REFCNT(bp
) == 0)
3239 panic("allocbuf: buffer not busy");
3241 if (bp
->b_kvasize
< size
)
3242 panic("allocbuf: buffer too small");
3244 if ((bp
->b_flags
& B_VMIO
) == 0) {
3248 * Just get anonymous memory from the kernel. Don't
3249 * mess with B_CACHE.
3251 mbsize
= (size
+ DEV_BSIZE
- 1) & ~(DEV_BSIZE
- 1);
3252 if (bp
->b_flags
& B_MALLOC
)
3255 newbsize
= round_page(size
);
3257 if (newbsize
< bp
->b_bufsize
) {
3259 * Malloced buffers are not shrunk
3261 if (bp
->b_flags
& B_MALLOC
) {
3263 bp
->b_bcount
= size
;
3265 kfree(bp
->b_data
, M_BIOBUF
);
3266 if (bp
->b_bufsize
) {
3267 atomic_subtract_long(&bufmallocspace
, bp
->b_bufsize
);
3271 bp
->b_data
= bp
->b_kvabase
;
3273 bp
->b_flags
&= ~B_MALLOC
;
3279 (vm_offset_t
) bp
->b_data
+ newbsize
,
3280 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
);
3281 } else if (newbsize
> bp
->b_bufsize
) {
3283 * We only use malloced memory on the first allocation.
3284 * and revert to page-allocated memory when the buffer
3287 if ((bufmallocspace
< maxbufmallocspace
) &&
3288 (bp
->b_bufsize
== 0) &&
3289 (mbsize
<= PAGE_SIZE
/2)) {
3291 bp
->b_data
= kmalloc(mbsize
, M_BIOBUF
, M_WAITOK
);
3292 bp
->b_bufsize
= mbsize
;
3293 bp
->b_bcount
= size
;
3294 bp
->b_flags
|= B_MALLOC
;
3295 atomic_add_long(&bufmallocspace
, mbsize
);
3301 * If the buffer is growing on its other-than-first
3302 * allocation, then we revert to the page-allocation
3305 if (bp
->b_flags
& B_MALLOC
) {
3306 origbuf
= bp
->b_data
;
3307 origbufsize
= bp
->b_bufsize
;
3308 bp
->b_data
= bp
->b_kvabase
;
3309 if (bp
->b_bufsize
) {
3310 atomic_subtract_long(&bufmallocspace
,
3315 bp
->b_flags
&= ~B_MALLOC
;
3316 newbsize
= round_page(newbsize
);
3320 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
,
3321 (vm_offset_t
) bp
->b_data
+ newbsize
);
3323 bcopy(origbuf
, bp
->b_data
, origbufsize
);
3324 kfree(origbuf
, M_BIOBUF
);
3331 newbsize
= (size
+ DEV_BSIZE
- 1) & ~(DEV_BSIZE
- 1);
3332 desiredpages
= ((int)(bp
->b_loffset
& PAGE_MASK
) +
3333 newbsize
+ PAGE_MASK
) >> PAGE_SHIFT
;
3334 KKASSERT(desiredpages
<= XIO_INTERNAL_PAGES
);
3336 if (bp
->b_flags
& B_MALLOC
)
3337 panic("allocbuf: VMIO buffer can't be malloced");
3339 * Set B_CACHE initially if buffer is 0 length or will become
3342 if (size
== 0 || bp
->b_bufsize
== 0)
3343 bp
->b_flags
|= B_CACHE
;
3345 if (newbsize
< bp
->b_bufsize
) {
3347 * DEV_BSIZE aligned new buffer size is less then the
3348 * DEV_BSIZE aligned existing buffer size. Figure out
3349 * if we have to remove any pages.
3351 if (desiredpages
< bp
->b_xio
.xio_npages
) {
3352 for (i
= desiredpages
; i
< bp
->b_xio
.xio_npages
; i
++) {
3354 * the page is not freed here -- it
3355 * is the responsibility of
3356 * vnode_pager_setsize
3358 m
= bp
->b_xio
.xio_pages
[i
];
3359 KASSERT(m
!= bogus_page
,
3360 ("allocbuf: bogus page found"));
3361 vm_page_busy_wait(m
, TRUE
, "biodep");
3362 bp
->b_xio
.xio_pages
[i
] = NULL
;
3363 vm_page_unwire(m
, 0);
3366 pmap_qremove((vm_offset_t
) trunc_page((vm_offset_t
)bp
->b_data
) +
3367 (desiredpages
<< PAGE_SHIFT
), (bp
->b_xio
.xio_npages
- desiredpages
));
3368 bp
->b_xio
.xio_npages
= desiredpages
;
3370 } else if (size
> bp
->b_bcount
) {
3372 * We are growing the buffer, possibly in a
3373 * byte-granular fashion.
3381 * Step 1, bring in the VM pages from the object,
3382 * allocating them if necessary. We must clear
3383 * B_CACHE if these pages are not valid for the
3384 * range covered by the buffer.
3386 * critical section protection is required to protect
3387 * against interrupts unbusying and freeing pages
3388 * between our vm_page_lookup() and our
3389 * busycheck/wiring call.
3394 vm_object_hold(obj
);
3395 while (bp
->b_xio
.xio_npages
< desiredpages
) {
3400 pi
= OFF_TO_IDX(bp
->b_loffset
) +
3401 bp
->b_xio
.xio_npages
;
3404 * Blocking on m->busy might lead to a
3407 * vm_fault->getpages->cluster_read->allocbuf
3409 m
= vm_page_lookup_busy_try(obj
, pi
, FALSE
,
3412 vm_page_sleep_busy(m
, FALSE
, "pgtblk");
3417 * note: must allocate system pages
3418 * since blocking here could intefere
3419 * with paging I/O, no matter which
3422 m
= bio_page_alloc(obj
, pi
, desiredpages
- bp
->b_xio
.xio_npages
);
3425 vm_page_flag_clear(m
, PG_ZERO
);
3427 bp
->b_flags
&= ~B_CACHE
;
3428 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3429 ++bp
->b_xio
.xio_npages
;
3435 * We found a page and were able to busy it.
3437 vm_page_flag_clear(m
, PG_ZERO
);
3440 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3441 ++bp
->b_xio
.xio_npages
;
3442 if (bp
->b_act_count
< m
->act_count
)
3443 bp
->b_act_count
= m
->act_count
;
3445 vm_object_drop(obj
);
3448 * Step 2. We've loaded the pages into the buffer,
3449 * we have to figure out if we can still have B_CACHE
3450 * set. Note that B_CACHE is set according to the
3451 * byte-granular range ( bcount and size ), not the
3452 * aligned range ( newbsize ).
3454 * The VM test is against m->valid, which is DEV_BSIZE
3455 * aligned. Needless to say, the validity of the data
3456 * needs to also be DEV_BSIZE aligned. Note that this
3457 * fails with NFS if the server or some other client
3458 * extends the file's EOF. If our buffer is resized,
3459 * B_CACHE may remain set! XXX
3462 toff
= bp
->b_bcount
;
3463 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
3465 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
3468 if (tinc
> (size
- toff
))
3471 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >>
3479 bp
->b_xio
.xio_pages
[pi
]
3486 * Step 3, fixup the KVM pmap. Remember that
3487 * bp->b_data is relative to bp->b_loffset, but
3488 * bp->b_loffset may be offset into the first page.
3491 bp
->b_data
= (caddr_t
)
3492 trunc_page((vm_offset_t
)bp
->b_data
);
3494 (vm_offset_t
)bp
->b_data
,
3495 bp
->b_xio
.xio_pages
,
3496 bp
->b_xio
.xio_npages
3498 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
3499 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
3503 /* adjust space use on already-dirty buffer */
3504 if (bp
->b_flags
& B_DELWRI
) {
3505 spin_lock(&bufcspin
);
3506 dirtybufspace
+= newbsize
- bp
->b_bufsize
;
3507 if (bp
->b_flags
& B_HEAVY
)
3508 dirtybufspacehw
+= newbsize
- bp
->b_bufsize
;
3509 spin_unlock(&bufcspin
);
3511 if (newbsize
< bp
->b_bufsize
)
3513 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
3514 bp
->b_bcount
= size
; /* requested buffer size */
3521 * Wait for buffer I/O completion, returning error status. B_EINTR
3522 * is converted into an EINTR error but not cleared (since a chain
3523 * of biowait() calls may occur).
3525 * On return bpdone() will have been called but the buffer will remain
3526 * locked and will not have been brelse()'d.
3528 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3529 * likely still in progress on return.
3531 * NOTE! This operation is on a BIO, not a BUF.
3533 * NOTE! BIO_DONE is cleared by vn_strategy()
3538 _biowait(struct bio
*bio
, const char *wmesg
, int to
)
3540 struct buf
*bp
= bio
->bio_buf
;
3545 KKASSERT(bio
== &bp
->b_bio1
);
3547 flags
= bio
->bio_flags
;
3548 if (flags
& BIO_DONE
)
3550 nflags
= flags
| BIO_WANT
;
3551 tsleep_interlock(bio
, 0);
3552 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3554 error
= tsleep(bio
, PINTERLOCKED
, wmesg
, to
);
3555 else if (bp
->b_cmd
== BUF_CMD_READ
)
3556 error
= tsleep(bio
, PINTERLOCKED
, "biord", to
);
3558 error
= tsleep(bio
, PINTERLOCKED
, "biowr", to
);
3560 kprintf("tsleep error biowait %d\n", error
);
3569 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3570 bio
->bio_flags
&= ~(BIO_DONE
| BIO_SYNC
);
3571 if (bp
->b_flags
& B_EINTR
)
3573 if (bp
->b_flags
& B_ERROR
)
3574 return (bp
->b_error
? bp
->b_error
: EIO
);
3579 biowait(struct bio
*bio
, const char *wmesg
)
3581 return(_biowait(bio
, wmesg
, 0));
3585 biowait_timeout(struct bio
*bio
, const char *wmesg
, int to
)
3587 return(_biowait(bio
, wmesg
, to
));
3591 * This associates a tracking count with an I/O. vn_strategy() and
3592 * dev_dstrategy() do this automatically but there are a few cases
3593 * where a vnode or device layer is bypassed when a block translation
3594 * is cached. In such cases bio_start_transaction() may be called on
3595 * the bypassed layers so the system gets an I/O in progress indication
3596 * for those higher layers.
3599 bio_start_transaction(struct bio
*bio
, struct bio_track
*track
)
3601 bio
->bio_track
= track
;
3602 if (dsched_is_clear_buf_priv(bio
->bio_buf
))
3603 dsched_new_buf(bio
->bio_buf
);
3604 bio_track_ref(track
);
3608 * Initiate I/O on a vnode.
3610 * SWAPCACHE OPERATION:
3612 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3613 * devfs also uses b_vp for fake buffers so we also have to check
3614 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3615 * underlying block device. The swap assignments are related to the
3616 * buffer cache buffer's b_vp, not the passed vp.
3618 * The passed vp == bp->b_vp only in the case where the strategy call
3619 * is made on the vp itself for its own buffers (a regular file or
3620 * block device vp). The filesystem usually then re-calls vn_strategy()
3621 * after translating the request to an underlying device.
3623 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3624 * underlying buffer cache buffers.
3626 * We can only deal with page-aligned buffers at the moment, because
3627 * we can't tell what the real dirty state for pages straddling a buffer
3630 * In order to call swap_pager_strategy() we must provide the VM object
3631 * and base offset for the underlying buffer cache pages so it can find
3635 vn_strategy(struct vnode
*vp
, struct bio
*bio
)
3637 struct bio_track
*track
;
3638 struct buf
*bp
= bio
->bio_buf
;
3640 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3643 * Set when an I/O is issued on the bp. Cleared by consumers
3644 * (aka HAMMER), allowing the consumer to determine if I/O had
3645 * actually occurred.
3647 bp
->b_flags
|= B_IODEBUG
;
3650 * Handle the swap cache intercept.
3652 if (vn_cache_strategy(vp
, bio
))
3656 * Otherwise do the operation through the filesystem
3658 if (bp
->b_cmd
== BUF_CMD_READ
)
3659 track
= &vp
->v_track_read
;
3661 track
= &vp
->v_track_write
;
3662 KKASSERT((bio
->bio_flags
& BIO_DONE
) == 0);
3663 bio
->bio_track
= track
;
3664 if (dsched_is_clear_buf_priv(bio
->bio_buf
))
3665 dsched_new_buf(bio
->bio_buf
);
3666 bio_track_ref(track
);
3667 vop_strategy(*vp
->v_ops
, vp
, bio
);
3670 static void vn_cache_strategy_callback(struct bio
*bio
);
3673 vn_cache_strategy(struct vnode
*vp
, struct bio
*bio
)
3675 struct buf
*bp
= bio
->bio_buf
;
3682 * Is this buffer cache buffer suitable for reading from
3685 if (vm_swapcache_read_enable
== 0 ||
3686 bp
->b_cmd
!= BUF_CMD_READ
||
3687 ((bp
->b_flags
& B_CLUSTER
) == 0 &&
3688 (bp
->b_vp
== NULL
|| (bp
->b_flags
& B_PAGING
))) ||
3689 ((int)bp
->b_loffset
& PAGE_MASK
) != 0 ||
3690 (bp
->b_bcount
& PAGE_MASK
) != 0) {
3695 * Figure out the original VM object (it will match the underlying
3696 * VM pages). Note that swap cached data uses page indices relative
3697 * to that object, not relative to bio->bio_offset.
3699 if (bp
->b_flags
& B_CLUSTER
)
3700 object
= vp
->v_object
;
3702 object
= bp
->b_vp
->v_object
;
3705 * In order to be able to use the swap cache all underlying VM
3706 * pages must be marked as such, and we can't have any bogus pages.
3708 for (i
= 0; i
< bp
->b_xio
.xio_npages
; ++i
) {
3709 m
= bp
->b_xio
.xio_pages
[i
];
3710 if ((m
->flags
& PG_SWAPPED
) == 0)
3712 if (m
== bogus_page
)
3717 * If we are good then issue the I/O using swap_pager_strategy().
3719 * We can only do this if the buffer actually supports object-backed
3720 * I/O. If it doesn't npages will be 0.
3722 if (i
&& i
== bp
->b_xio
.xio_npages
) {
3723 m
= bp
->b_xio
.xio_pages
[0];
3724 nbio
= push_bio(bio
);
3725 nbio
->bio_done
= vn_cache_strategy_callback
;
3726 nbio
->bio_offset
= ptoa(m
->pindex
);
3727 KKASSERT(m
->object
== object
);
3728 swap_pager_strategy(object
, nbio
);
3735 * This is a bit of a hack but since the vn_cache_strategy() function can
3736 * override a VFS's strategy function we must make sure that the bio, which
3737 * is probably bio2, doesn't leak an unexpected offset value back to the
3738 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3739 * bio went through its own file strategy function and the the bio2 offset
3740 * is a cached disk offset when, in fact, it isn't.
3743 vn_cache_strategy_callback(struct bio
*bio
)
3745 bio
->bio_offset
= NOOFFSET
;
3746 biodone(pop_bio(bio
));
3752 * Finish I/O on a buffer after all BIOs have been processed.
3753 * Called when the bio chain is exhausted or by biowait. If called
3754 * by biowait, elseit is typically 0.
3756 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3757 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3758 * assuming B_INVAL is clear.
3760 * For the VMIO case, we set B_CACHE if the op was a read and no
3761 * read error occured, or if the op was a write. B_CACHE is never
3762 * set if the buffer is invalid or otherwise uncacheable.
3764 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3765 * initiator to leave B_INVAL set to brelse the buffer out of existance
3766 * in the biodone routine.
3769 bpdone(struct buf
*bp
, int elseit
)
3773 KASSERT(BUF_REFCNTNB(bp
) > 0,
3774 ("biodone: bp %p not busy %d", bp
, BUF_REFCNTNB(bp
)));
3775 KASSERT(bp
->b_cmd
!= BUF_CMD_DONE
,
3776 ("biodone: bp %p already done!", bp
));
3779 * No more BIOs are left. All completion functions have been dealt
3780 * with, now we clean up the buffer.
3783 bp
->b_cmd
= BUF_CMD_DONE
;
3786 * Only reads and writes are processed past this point.
3788 if (cmd
!= BUF_CMD_READ
&& cmd
!= BUF_CMD_WRITE
) {
3789 if (cmd
== BUF_CMD_FREEBLKS
)
3790 bp
->b_flags
|= B_NOCACHE
;
3797 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3798 * a lot worse. XXX - move this above the clearing of b_cmd
3800 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
3801 buf_complete(bp
); /* MPSAFE */
3804 * A failed write must re-dirty the buffer unless B_INVAL
3805 * was set. Only applicable to normal buffers (with VPs).
3806 * vinum buffers may not have a vp.
3808 if (cmd
== BUF_CMD_WRITE
&&
3809 (bp
->b_flags
& (B_ERROR
| B_INVAL
)) == B_ERROR
) {
3810 bp
->b_flags
&= ~B_NOCACHE
;
3815 if (bp
->b_flags
& B_VMIO
) {
3821 struct vnode
*vp
= bp
->b_vp
;
3825 #if defined(VFS_BIO_DEBUG)
3826 if (vp
->v_auxrefs
== 0)
3827 panic("biodone: zero vnode hold count");
3828 if ((vp
->v_flag
& VOBJBUF
) == 0)
3829 panic("biodone: vnode is not setup for merged cache");
3832 foff
= bp
->b_loffset
;
3833 KASSERT(foff
!= NOOFFSET
, ("biodone: no buffer offset"));
3834 KASSERT(obj
!= NULL
, ("biodone: missing VM object"));
3836 #if defined(VFS_BIO_DEBUG)
3837 if (obj
->paging_in_progress
< bp
->b_xio
.xio_npages
) {
3838 kprintf("biodone: paging in progress(%d) < "
3839 "bp->b_xio.xio_npages(%d)\n",
3840 obj
->paging_in_progress
,
3841 bp
->b_xio
.xio_npages
);
3846 * Set B_CACHE if the op was a normal read and no error
3847 * occured. B_CACHE is set for writes in the b*write()
3850 iosize
= bp
->b_bcount
- bp
->b_resid
;
3851 if (cmd
== BUF_CMD_READ
&&
3852 (bp
->b_flags
& (B_INVAL
|B_NOCACHE
|B_ERROR
)) == 0) {
3853 bp
->b_flags
|= B_CACHE
;
3856 vm_object_hold(obj
);
3857 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3861 resid
= ((foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
) - foff
;
3866 * cleanup bogus pages, restoring the originals. Since
3867 * the originals should still be wired, we don't have
3868 * to worry about interrupt/freeing races destroying
3869 * the VM object association.
3871 m
= bp
->b_xio
.xio_pages
[i
];
3872 if (m
== bogus_page
) {
3874 m
= vm_page_lookup(obj
, OFF_TO_IDX(foff
));
3876 panic("biodone: page disappeared");
3877 bp
->b_xio
.xio_pages
[i
] = m
;
3878 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3879 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3881 #if defined(VFS_BIO_DEBUG)
3882 if (OFF_TO_IDX(foff
) != m
->pindex
) {
3883 kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3885 (unsigned long)foff
, (long)m
->pindex
);
3890 * In the write case, the valid and clean bits are
3891 * already changed correctly (see bdwrite()), so we
3892 * only need to do this here in the read case.
3894 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
3895 if (cmd
== BUF_CMD_READ
&& !bogusflag
&& resid
> 0) {
3896 vfs_clean_one_page(bp
, i
, m
);
3898 vm_page_flag_clear(m
, PG_ZERO
);
3901 * when debugging new filesystems or buffer I/O
3902 * methods, this is the most common error that pops
3903 * up. if you see this, you have not set the page
3904 * busy flag correctly!!!
3907 kprintf("biodone: page busy < 0, "
3908 "pindex: %d, foff: 0x(%x,%x), "
3909 "resid: %d, index: %d\n",
3910 (int) m
->pindex
, (int)(foff
>> 32),
3911 (int) foff
& 0xffffffff, resid
, i
);
3912 if (!vn_isdisk(vp
, NULL
))
3913 kprintf(" iosize: %ld, loffset: %lld, "
3914 "flags: 0x%08x, npages: %d\n",
3915 bp
->b_vp
->v_mount
->mnt_stat
.f_iosize
,
3916 (long long)bp
->b_loffset
,
3917 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3919 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3920 (long long)bp
->b_loffset
,
3921 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3922 kprintf(" valid: 0x%x, dirty: 0x%x, "
3926 panic("biodone: page busy < 0");
3928 vm_page_io_finish(m
);
3930 vm_object_pip_wakeup(obj
);
3931 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3934 bp
->b_flags
&= ~B_HASBOGUS
;
3935 vm_object_drop(obj
);
3939 * Finish up by releasing the buffer. There are no more synchronous
3940 * or asynchronous completions, those were handled by bio_done
3944 if (bp
->b_flags
& (B_NOCACHE
|B_INVAL
|B_ERROR
|B_RELBUF
))
3955 biodone(struct bio
*bio
)
3957 struct buf
*bp
= bio
->bio_buf
;
3959 runningbufwakeup(bp
);
3962 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3965 biodone_t
*done_func
;
3966 struct bio_track
*track
;
3969 * BIO tracking. Most but not all BIOs are tracked.
3971 if ((track
= bio
->bio_track
) != NULL
) {
3972 bio_track_rel(track
);
3973 bio
->bio_track
= NULL
;
3977 * A bio_done function terminates the loop. The function
3978 * will be responsible for any further chaining and/or
3979 * buffer management.
3981 * WARNING! The done function can deallocate the buffer!
3983 if ((done_func
= bio
->bio_done
) != NULL
) {
3984 bio
->bio_done
= NULL
;
3988 bio
= bio
->bio_prev
;
3992 * If we've run out of bio's do normal [a]synchronous completion.
3998 * Synchronous biodone - this terminates a synchronous BIO.
4000 * bpdone() is called with elseit=FALSE, leaving the buffer completed
4001 * but still locked. The caller must brelse() the buffer after waiting
4005 biodone_sync(struct bio
*bio
)
4007 struct buf
*bp
= bio
->bio_buf
;
4011 KKASSERT(bio
== &bp
->b_bio1
);
4015 flags
= bio
->bio_flags
;
4016 nflags
= (flags
| BIO_DONE
) & ~BIO_WANT
;
4018 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
4019 if (flags
& BIO_WANT
)
4029 * This routine is called in lieu of iodone in the case of
4030 * incomplete I/O. This keeps the busy status for pages
4034 vfs_unbusy_pages(struct buf
*bp
)
4038 runningbufwakeup(bp
);
4040 if (bp
->b_flags
& B_VMIO
) {
4041 struct vnode
*vp
= bp
->b_vp
;
4045 vm_object_hold(obj
);
4047 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4048 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4051 * When restoring bogus changes the original pages
4052 * should still be wired, so we are in no danger of
4053 * losing the object association and do not need
4054 * critical section protection particularly.
4056 if (m
== bogus_page
) {
4057 m
= vm_page_lookup(obj
, OFF_TO_IDX(bp
->b_loffset
) + i
);
4059 panic("vfs_unbusy_pages: page missing");
4061 bp
->b_xio
.xio_pages
[i
] = m
;
4062 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
4063 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
4065 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
4066 vm_page_flag_clear(m
, PG_ZERO
);
4067 vm_page_io_finish(m
);
4069 vm_object_pip_wakeup(obj
);
4071 bp
->b_flags
&= ~B_HASBOGUS
;
4072 vm_object_drop(obj
);
4079 * This routine is called before a device strategy routine.
4080 * It is used to tell the VM system that paging I/O is in
4081 * progress, and treat the pages associated with the buffer
4082 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4083 * flag is handled to make sure that the object doesn't become
4086 * Since I/O has not been initiated yet, certain buffer flags
4087 * such as B_ERROR or B_INVAL may be in an inconsistant state
4088 * and should be ignored.
4093 vfs_busy_pages(struct vnode
*vp
, struct buf
*bp
)
4096 struct lwp
*lp
= curthread
->td_lwp
;
4099 * The buffer's I/O command must already be set. If reading,
4100 * B_CACHE must be 0 (double check against callers only doing
4101 * I/O when B_CACHE is 0).
4103 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
4104 KKASSERT(bp
->b_cmd
== BUF_CMD_WRITE
|| (bp
->b_flags
& B_CACHE
) == 0);
4106 if (bp
->b_flags
& B_VMIO
) {
4110 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4111 ("vfs_busy_pages: no buffer offset"));
4114 * Busy all the pages. We have to busy them all at once
4115 * to avoid deadlocks.
4118 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4119 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4121 if (vm_page_busy_try(m
, FALSE
)) {
4122 vm_page_sleep_busy(m
, FALSE
, "vbpage");
4124 vm_page_wakeup(bp
->b_xio
.xio_pages
[i
]);
4130 * Setup for I/O, soft-busy the page right now because
4131 * the next loop may block.
4133 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4134 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4136 vm_page_flag_clear(m
, PG_ZERO
);
4137 if ((bp
->b_flags
& B_CLUSTER
) == 0) {
4138 vm_object_pip_add(obj
, 1);
4139 vm_page_io_start(m
);
4144 * Adjust protections for I/O and do bogus-page mapping.
4145 * Assume that vm_page_protect() can block (it can block
4146 * if VM_PROT_NONE, don't take any chances regardless).
4148 * In particular note that for writes we must incorporate
4149 * page dirtyness from the VM system into the buffer's
4152 * For reads we theoretically must incorporate page dirtyness
4153 * from the VM system to determine if the page needs bogus
4154 * replacement, but we shortcut the test by simply checking
4155 * that all m->valid bits are set, indicating that the page
4156 * is fully valid and does not need to be re-read. For any
4157 * VM system dirtyness the page will also be fully valid
4158 * since it was mapped at one point.
4161 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4162 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4164 vm_page_flag_clear(m
, PG_ZERO
); /* XXX */
4165 if (bp
->b_cmd
== BUF_CMD_WRITE
) {
4167 * When readying a vnode-backed buffer for
4168 * a write we must zero-fill any invalid
4169 * portions of the backing VM pages, mark
4170 * it valid and clear related dirty bits.
4172 * vfs_clean_one_page() incorporates any
4173 * VM dirtyness and updates the b_dirtyoff
4174 * range (after we've made the page RO).
4176 * It is also expected that the pmap modified
4177 * bit has already been cleared by the
4178 * vm_page_protect(). We may not be able
4179 * to clear all dirty bits for a page if it
4180 * was also memory mapped (NFS).
4182 * Finally be sure to unassign any swap-cache
4183 * backing store as it is now stale.
4185 vm_page_protect(m
, VM_PROT_READ
);
4186 vfs_clean_one_page(bp
, i
, m
);
4187 swap_pager_unswapped(m
);
4188 } else if (m
->valid
== VM_PAGE_BITS_ALL
) {
4190 * When readying a vnode-backed buffer for
4191 * read we must replace any dirty pages with
4192 * a bogus page so dirty data is not destroyed
4193 * when filling gaps.
4195 * To avoid testing whether the page is
4196 * dirty we instead test that the page was
4197 * at some point mapped (m->valid fully
4198 * valid) with the understanding that
4199 * this also covers the dirty case.
4201 bp
->b_xio
.xio_pages
[i
] = bogus_page
;
4202 bp
->b_flags
|= B_HASBOGUS
;
4204 } else if (m
->valid
& m
->dirty
) {
4206 * This case should not occur as partial
4207 * dirtyment can only happen if the buffer
4208 * is B_CACHE, and this code is not entered
4209 * if the buffer is B_CACHE.
4211 kprintf("Warning: vfs_busy_pages - page not "
4212 "fully valid! loff=%jx bpf=%08x "
4213 "idx=%d val=%02x dir=%02x\n",
4214 (intmax_t)bp
->b_loffset
, bp
->b_flags
,
4215 i
, m
->valid
, m
->dirty
);
4216 vm_page_protect(m
, VM_PROT_NONE
);
4219 * The page is not valid and can be made
4222 vm_page_protect(m
, VM_PROT_NONE
);
4227 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
4228 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
4233 * This is the easiest place to put the process accounting for the I/O
4237 if (bp
->b_cmd
== BUF_CMD_READ
)
4238 lp
->lwp_ru
.ru_inblock
++;
4240 lp
->lwp_ru
.ru_oublock
++;
4245 * Tell the VM system that the pages associated with this buffer
4246 * are clean. This is used for delayed writes where the data is
4247 * going to go to disk eventually without additional VM intevention.
4249 * NOTE: While we only really need to clean through to b_bcount, we
4250 * just go ahead and clean through to b_bufsize.
4253 vfs_clean_pages(struct buf
*bp
)
4258 if ((bp
->b_flags
& B_VMIO
) == 0)
4261 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4262 ("vfs_clean_pages: no buffer offset"));
4264 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4265 m
= bp
->b_xio
.xio_pages
[i
];
4266 vfs_clean_one_page(bp
, i
, m
);
4271 * vfs_clean_one_page:
4273 * Set the valid bits and clear the dirty bits in a page within a
4274 * buffer. The range is restricted to the buffer's size and the
4275 * buffer's logical offset might index into the first page.
4277 * The caller has busied or soft-busied the page and it is not mapped,
4278 * test and incorporate the dirty bits into b_dirtyoff/end before
4279 * clearing them. Note that we need to clear the pmap modified bits
4280 * after determining the the page was dirty, vm_page_set_validclean()
4281 * does not do it for us.
4283 * This routine is typically called after a read completes (dirty should
4284 * be zero in that case as we are not called on bogus-replace pages),
4285 * or before a write is initiated.
4288 vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4296 * Calculate offset range within the page but relative to buffer's
4297 * loffset. loffset might be offset into the first page.
4299 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4300 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4306 soff
= (pageno
<< PAGE_SHIFT
);
4307 eoff
= soff
+ PAGE_SIZE
;
4315 * Test dirty bits and adjust b_dirtyoff/end.
4317 * If dirty pages are incorporated into the bp any prior
4318 * B_NEEDCOMMIT state (NFS) must be cleared because the
4319 * caller has not taken into account the new dirty data.
4321 * If the page was memory mapped the dirty bits might go beyond the
4322 * end of the buffer, but we can't really make the assumption that
4323 * a file EOF straddles the buffer (even though this is the case for
4324 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4325 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4326 * This also saves some console spam.
4328 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4329 * NFS can handle huge commits but not huge writes.
4331 vm_page_test_dirty(m
);
4333 if ((bp
->b_flags
& B_NEEDCOMMIT
) &&
4334 (m
->dirty
& vm_page_bits(soff
& PAGE_MASK
, eoff
- soff
))) {
4336 kprintf("Warning: vfs_clean_one_page: bp %p "
4337 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4338 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4340 bp
, (intmax_t)bp
->b_loffset
, bp
->b_bcount
,
4341 bp
->b_flags
, bp
->b_cmd
,
4342 m
->valid
, m
->dirty
, xoff
, soff
, eoff
,
4343 bp
->b_dirtyoff
, bp
->b_dirtyend
);
4344 bp
->b_flags
&= ~(B_NEEDCOMMIT
| B_CLUSTEROK
);
4346 print_backtrace(-1);
4349 * Only clear the pmap modified bits if ALL the dirty bits
4350 * are set, otherwise the system might mis-clear portions
4353 if (m
->dirty
== VM_PAGE_BITS_ALL
&&
4354 (bp
->b_flags
& B_NEEDCOMMIT
) == 0) {
4355 pmap_clear_modify(m
);
4357 if (bp
->b_dirtyoff
> soff
- xoff
)
4358 bp
->b_dirtyoff
= soff
- xoff
;
4359 if (bp
->b_dirtyend
< eoff
- xoff
)
4360 bp
->b_dirtyend
= eoff
- xoff
;
4364 * Set related valid bits, clear related dirty bits.
4365 * Does not mess with the pmap modified bit.
4367 * WARNING! We cannot just clear all of m->dirty here as the
4368 * buffer cache buffers may use a DEV_BSIZE'd aligned
4369 * block size, or have an odd size (e.g. NFS at file EOF).
4370 * The putpages code can clear m->dirty to 0.
4372 * If a VOP_WRITE generates a buffer cache buffer which
4373 * covers the same space as mapped writable pages the
4374 * buffer flush might not be able to clear all the dirty
4375 * bits and still require a putpages from the VM system
4378 * WARNING! vm_page_set_validclean() currently assumes vm_token
4379 * is held. The page might not be busied (bdwrite() case).
4380 * XXX remove this comment once we've validated that this
4381 * is no longer an issue.
4383 vm_page_set_validclean(m
, soff
& PAGE_MASK
, eoff
- soff
);
4388 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4389 * The page data is assumed to be valid (there is no zeroing here).
4392 vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4400 * Calculate offset range within the page but relative to buffer's
4401 * loffset. loffset might be offset into the first page.
4403 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4404 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4410 soff
= (pageno
<< PAGE_SHIFT
);
4411 eoff
= soff
+ PAGE_SIZE
;
4417 vm_page_set_validdirty(m
, soff
& PAGE_MASK
, eoff
- soff
);
4424 * Clear a buffer. This routine essentially fakes an I/O, so we need
4425 * to clear B_ERROR and B_INVAL.
4427 * Note that while we only theoretically need to clear through b_bcount,
4428 * we go ahead and clear through b_bufsize.
4432 vfs_bio_clrbuf(struct buf
*bp
)
4436 if ((bp
->b_flags
& (B_VMIO
| B_MALLOC
)) == B_VMIO
) {
4437 bp
->b_flags
&= ~(B_INVAL
| B_EINTR
| B_ERROR
);
4438 if ((bp
->b_xio
.xio_npages
== 1) && (bp
->b_bufsize
< PAGE_SIZE
) &&
4439 (bp
->b_loffset
& PAGE_MASK
) == 0) {
4440 mask
= (1 << (bp
->b_bufsize
/ DEV_BSIZE
)) - 1;
4441 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == mask
) {
4445 if (((bp
->b_xio
.xio_pages
[0]->flags
& PG_ZERO
) == 0) &&
4446 ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == 0)) {
4447 bzero(bp
->b_data
, bp
->b_bufsize
);
4448 bp
->b_xio
.xio_pages
[0]->valid
|= mask
;
4454 for(i
=0;i
<bp
->b_xio
.xio_npages
;i
++,sa
=ea
) {
4455 int j
= ((vm_offset_t
)sa
& PAGE_MASK
) / DEV_BSIZE
;
4456 ea
= (caddr_t
)trunc_page((vm_offset_t
)sa
+ PAGE_SIZE
);
4457 ea
= (caddr_t
)(vm_offset_t
)ulmin(
4458 (u_long
)(vm_offset_t
)ea
,
4459 (u_long
)(vm_offset_t
)bp
->b_data
+ bp
->b_bufsize
);
4460 mask
= ((1 << ((ea
- sa
) / DEV_BSIZE
)) - 1) << j
;
4461 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == mask
)
4463 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == 0) {
4464 if ((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) {
4468 for (; sa
< ea
; sa
+= DEV_BSIZE
, j
++) {
4469 if (((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) &&
4470 (bp
->b_xio
.xio_pages
[i
]->valid
& (1<<j
)) == 0)
4471 bzero(sa
, DEV_BSIZE
);
4474 bp
->b_xio
.xio_pages
[i
]->valid
|= mask
;
4475 vm_page_flag_clear(bp
->b_xio
.xio_pages
[i
], PG_ZERO
);
4484 * vm_hold_load_pages:
4486 * Load pages into the buffer's address space. The pages are
4487 * allocated from the kernel object in order to reduce interference
4488 * with the any VM paging I/O activity. The range of loaded
4489 * pages will be wired.
4491 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4492 * retrieve the full range (to - from) of pages.
4497 vm_hold_load_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
4503 to
= round_page(to
);
4504 from
= round_page(from
);
4505 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
4510 * Note: must allocate system pages since blocking here
4511 * could intefere with paging I/O, no matter which
4514 vm_object_hold(&kernel_object
);
4515 p
= bio_page_alloc(&kernel_object
, pg
>> PAGE_SHIFT
,
4516 (vm_pindex_t
)((to
- pg
) >> PAGE_SHIFT
));
4517 vm_object_drop(&kernel_object
);
4520 p
->valid
= VM_PAGE_BITS_ALL
;
4521 vm_page_flag_clear(p
, PG_ZERO
);
4522 pmap_kenter(pg
, VM_PAGE_TO_PHYS(p
));
4523 bp
->b_xio
.xio_pages
[index
] = p
;
4530 bp
->b_xio
.xio_npages
= index
;
4534 * Allocate a page for a buffer cache buffer.
4536 * If NULL is returned the caller is expected to retry (typically check if
4537 * the page already exists on retry before trying to allocate one).
4539 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4540 * function will use the system reserve with the hope that the page
4541 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4542 * is done with the buffer.
4546 bio_page_alloc(vm_object_t obj
, vm_pindex_t pg
, int deficit
)
4548 int vmflags
= VM_ALLOC_NORMAL
| VM_ALLOC_NULL_OK
;
4551 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj
));
4554 * Try a normal allocation first.
4556 p
= vm_page_alloc(obj
, pg
, vmflags
);
4559 if (vm_page_lookup(obj
, pg
))
4561 vm_pageout_deficit
+= deficit
;
4564 * Try again, digging into the system reserve.
4566 * Trying to recover pages from the buffer cache here can deadlock
4567 * against other threads trying to busy underlying pages so we
4568 * depend on the code in brelse() and bqrelse() to free/cache the
4569 * underlying buffer cache pages when memory is low.
4571 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4572 vmflags
|= VM_ALLOC_SYSTEM
| VM_ALLOC_INTERRUPT
;
4574 vmflags
|= VM_ALLOC_SYSTEM
;
4576 /*recoverbufpages();*/
4577 p
= vm_page_alloc(obj
, pg
, vmflags
);
4580 if (vm_page_lookup(obj
, pg
))
4584 * Wait for memory to free up and try again
4586 if (vm_page_count_severe())
4588 vm_wait(hz
/ 20 + 1);
4590 p
= vm_page_alloc(obj
, pg
, vmflags
);
4593 if (vm_page_lookup(obj
, pg
))
4597 * Ok, now we are really in trouble.
4600 static struct krate biokrate
= { .freq
= 1 };
4601 krateprintf(&biokrate
,
4602 "Warning: bio_page_alloc: memory exhausted "
4603 "during bufcache page allocation from %s\n",
4604 curthread
->td_comm
);
4606 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4607 vm_wait(hz
/ 20 + 1);
4609 vm_wait(hz
/ 2 + 1);
4614 * vm_hold_free_pages:
4616 * Return pages associated with the buffer back to the VM system.
4618 * The range of pages underlying the buffer's address space will
4619 * be unmapped and un-wired.
4624 vm_hold_free_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
4628 int index
, newnpages
;
4630 from
= round_page(from
);
4631 to
= round_page(to
);
4632 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
4635 for (pg
= from
; pg
< to
; pg
+= PAGE_SIZE
, index
++) {
4636 p
= bp
->b_xio
.xio_pages
[index
];
4637 if (p
&& (index
< bp
->b_xio
.xio_npages
)) {
4639 kprintf("vm_hold_free_pages: doffset: %lld, "
4641 (long long)bp
->b_bio2
.bio_offset
,
4642 (long long)bp
->b_loffset
);
4644 bp
->b_xio
.xio_pages
[index
] = NULL
;
4646 vm_page_busy_wait(p
, FALSE
, "vmhldpg");
4647 vm_page_unwire(p
, 0);
4651 bp
->b_xio
.xio_npages
= newnpages
;
4657 * Map a user buffer into KVM via a pbuf. On return the buffer's
4658 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4662 vmapbuf(struct buf
*bp
, caddr_t udata
, int bytes
)
4673 * bp had better have a command and it better be a pbuf.
4675 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
4676 KKASSERT(bp
->b_flags
& B_PAGING
);
4677 KKASSERT(bp
->b_kvabase
);
4683 * Map the user data into KVM. Mappings have to be page-aligned.
4685 addr
= (caddr_t
)trunc_page((vm_offset_t
)udata
);
4688 vmprot
= VM_PROT_READ
;
4689 if (bp
->b_cmd
== BUF_CMD_READ
)
4690 vmprot
|= VM_PROT_WRITE
;
4692 while (addr
< udata
+ bytes
) {
4694 * Do the vm_fault if needed; do the copy-on-write thing
4695 * when reading stuff off device into memory.
4697 * vm_fault_page*() returns a held VM page.
4699 va
= (addr
>= udata
) ? (vm_offset_t
)addr
: (vm_offset_t
)udata
;
4700 va
= trunc_page(va
);
4702 m
= vm_fault_page_quick(va
, vmprot
, &error
);
4704 for (i
= 0; i
< pidx
; ++i
) {
4705 vm_page_unhold(bp
->b_xio
.xio_pages
[i
]);
4706 bp
->b_xio
.xio_pages
[i
] = NULL
;
4710 bp
->b_xio
.xio_pages
[pidx
] = m
;
4716 * Map the page array and set the buffer fields to point to
4717 * the mapped data buffer.
4719 if (pidx
> btoc(MAXPHYS
))
4720 panic("vmapbuf: mapped more than MAXPHYS");
4721 pmap_qenter((vm_offset_t
)bp
->b_kvabase
, bp
->b_xio
.xio_pages
, pidx
);
4723 bp
->b_xio
.xio_npages
= pidx
;
4724 bp
->b_data
= bp
->b_kvabase
+ ((int)(intptr_t)udata
& PAGE_MASK
);
4725 bp
->b_bcount
= bytes
;
4726 bp
->b_bufsize
= bytes
;
4733 * Free the io map PTEs associated with this IO operation.
4734 * We also invalidate the TLB entries and restore the original b_addr.
4737 vunmapbuf(struct buf
*bp
)
4742 KKASSERT(bp
->b_flags
& B_PAGING
);
4744 npages
= bp
->b_xio
.xio_npages
;
4745 pmap_qremove(trunc_page((vm_offset_t
)bp
->b_data
), npages
);
4746 for (pidx
= 0; pidx
< npages
; ++pidx
) {
4747 vm_page_unhold(bp
->b_xio
.xio_pages
[pidx
]);
4748 bp
->b_xio
.xio_pages
[pidx
] = NULL
;
4750 bp
->b_xio
.xio_npages
= 0;
4751 bp
->b_data
= bp
->b_kvabase
;
4755 * Scan all buffers in the system and issue the callback.
4758 scan_all_buffers(int (*callback
)(struct buf
*, void *), void *info
)
4764 for (n
= 0; n
< nbuf
; ++n
) {
4765 if ((error
= callback(&buf
[n
], info
)) < 0) {
4775 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4776 * completion to the master buffer.
4779 nestiobuf_iodone(struct bio
*bio
)
4782 struct buf
*mbp
, *bp
;
4783 struct devstat
*stats
;
4788 mbio
= bio
->bio_caller_info1
.ptr
;
4789 stats
= bio
->bio_caller_info2
.ptr
;
4790 mbp
= mbio
->bio_buf
;
4792 KKASSERT(bp
->b_bcount
<= bp
->b_bufsize
);
4793 KKASSERT(mbp
!= bp
);
4795 error
= bp
->b_error
;
4796 if (bp
->b_error
== 0 &&
4797 (bp
->b_bcount
< bp
->b_bufsize
|| bp
->b_resid
> 0)) {
4799 * Not all got transfered, raise an error. We have no way to
4800 * propagate these conditions to mbp.
4805 donebytes
= bp
->b_bufsize
;
4809 nestiobuf_done(mbio
, donebytes
, error
, stats
);
4813 nestiobuf_done(struct bio
*mbio
, int donebytes
, int error
, struct devstat
*stats
)
4817 mbp
= mbio
->bio_buf
;
4819 KKASSERT((int)(intptr_t)mbio
->bio_driver_info
> 0);
4822 * If an error occured, propagate it to the master buffer.
4824 * Several biodone()s may wind up running concurrently so
4825 * use an atomic op to adjust b_flags.
4828 mbp
->b_error
= error
;
4829 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4833 * Decrement the operations in progress counter and terminate the
4834 * I/O if this was the last bit.
4836 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4839 devstat_end_transaction_buf(stats
, mbp
);
4845 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4846 * the mbio from being biodone()'d while we are still adding sub-bios to
4850 nestiobuf_init(struct bio
*bio
)
4852 bio
->bio_driver_info
= (void *)1;
4856 * The BIOs added to the nestedio have already been started, remove the
4857 * count that placeheld our mbio and biodone() it if the count would
4861 nestiobuf_start(struct bio
*mbio
)
4863 struct buf
*mbp
= mbio
->bio_buf
;
4866 * Decrement the operations in progress counter and terminate the
4867 * I/O if this was the last bit.
4869 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4870 if (mbp
->b_flags
& B_ERROR
)
4871 mbp
->b_resid
= mbp
->b_bcount
;
4879 * Set an intermediate error prior to calling nestiobuf_start()
4882 nestiobuf_error(struct bio
*mbio
, int error
)
4884 struct buf
*mbp
= mbio
->bio_buf
;
4887 mbp
->b_error
= error
;
4888 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4893 * nestiobuf_add: setup a "nested" buffer.
4895 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4896 * => 'bp' should be a buffer allocated by getiobuf.
4897 * => 'offset' is a byte offset in the master buffer.
4898 * => 'size' is a size in bytes of this nested buffer.
4901 nestiobuf_add(struct bio
*mbio
, struct buf
*bp
, int offset
, size_t size
, struct devstat
*stats
)
4903 struct buf
*mbp
= mbio
->bio_buf
;
4904 struct vnode
*vp
= mbp
->b_vp
;
4906 KKASSERT(mbp
->b_bcount
>= offset
+ size
);
4908 atomic_add_int((int *)&mbio
->bio_driver_info
, 1);
4910 /* kernel needs to own the lock for it to be released in biodone */
4913 bp
->b_cmd
= mbp
->b_cmd
;
4914 bp
->b_bio1
.bio_done
= nestiobuf_iodone
;
4915 bp
->b_data
= (char *)mbp
->b_data
+ offset
;
4916 bp
->b_resid
= bp
->b_bcount
= size
;
4917 bp
->b_bufsize
= bp
->b_bcount
;
4919 bp
->b_bio1
.bio_track
= NULL
;
4920 bp
->b_bio1
.bio_caller_info1
.ptr
= mbio
;
4921 bp
->b_bio1
.bio_caller_info2
.ptr
= stats
;
4925 * print out statistics from the current status of the buffer pool
4926 * this can be toggeled by the system control option debug.syncprt
4935 int counts
[(MAXBSIZE
/ PAGE_SIZE
) + 1];
4936 static char *bname
[3] = { "LOCKED", "LRU", "AGE" };
4938 for (dp
= bufqueues
, i
= 0; dp
< &bufqueues
[3]; dp
++, i
++) {
4940 for (j
= 0; j
<= MAXBSIZE
/PAGE_SIZE
; j
++)
4943 spin_lock(&bufqspin
);
4944 TAILQ_FOREACH(bp
, dp
, b_freelist
) {
4945 counts
[bp
->b_bufsize
/PAGE_SIZE
]++;
4948 spin_unlock(&bufqspin
);
4950 kprintf("%s: total-%d", bname
[i
], count
);
4951 for (j
= 0; j
<= MAXBSIZE
/PAGE_SIZE
; j
++)
4953 kprintf(", %d-%d", j
* PAGE_SIZE
, counts
[j
]);
4961 DB_SHOW_COMMAND(buffer
, db_show_buffer
)
4964 struct buf
*bp
= (struct buf
*)addr
;
4967 db_printf("usage: show buffer <addr>\n");
4971 db_printf("b_flags = 0x%b\n", (u_int
)bp
->b_flags
, PRINT_BUF_FLAGS
);
4972 db_printf("b_cmd = %d\n", bp
->b_cmd
);
4973 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4974 "b_resid = %d\n, b_data = %p, "
4975 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4976 bp
->b_error
, bp
->b_bufsize
, bp
->b_bcount
, bp
->b_resid
,
4978 (long long)bp
->b_bio2
.bio_offset
,
4979 (long long)(bp
->b_bio2
.bio_next
?
4980 bp
->b_bio2
.bio_next
->bio_offset
: (off_t
)-1));
4981 if (bp
->b_xio
.xio_npages
) {
4983 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4984 bp
->b_xio
.xio_npages
);
4985 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4987 m
= bp
->b_xio
.xio_pages
[i
];
4988 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m
->object
,
4989 (u_long
)m
->pindex
, (u_long
)VM_PAGE_TO_PHYS(m
));
4990 if ((i
+ 1) < bp
->b_xio
.xio_npages
)