Ansify the rest of the K&R-style function declarations in sys/i386.
[dragonfly.git] / sys / platform / pc32 / i386 / machdep.c
blobbcdbc88ad6793bb1fd4c1b346dc480df59e5f377
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
38 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
39 * $DragonFly: src/sys/platform/pc32/i386/machdep.c,v 1.97 2006/09/13 18:45:12 swildner Exp $
42 #include "use_apm.h"
43 #include "use_ether.h"
44 #include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_maxmem.h"
54 #include "opt_msgbuf.h"
55 #include "opt_perfmon.h"
56 #include "opt_swap.h"
57 #include "opt_userconfig.h"
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/sysproto.h>
62 #include <sys/signalvar.h>
63 #include <sys/kernel.h>
64 #include <sys/linker.h>
65 #include <sys/malloc.h>
66 #include <sys/proc.h>
67 #include <sys/buf.h>
68 #include <sys/reboot.h>
69 #include <sys/mbuf.h>
70 #include <sys/msgbuf.h>
71 #include <sys/sysent.h>
72 #include <sys/sysctl.h>
73 #include <sys/vmmeter.h>
74 #include <sys/bus.h>
75 #include <sys/upcall.h>
76 #include <sys/usched.h>
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
88 #include <sys/thread2.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
94 #include <ddb/ddb.h>
96 #include <machine/cpu.h>
97 #include <machine/reg.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #include <machine/bootinfo.h>
101 #include <machine/ipl.h>
102 #include <machine/md_var.h>
103 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
104 #include <machine/globaldata.h> /* CPU_prvspace */
105 #include <machine/smp.h>
106 #ifdef PERFMON
107 #include <machine/perfmon.h>
108 #endif
109 #include <machine/cputypes.h>
111 #ifdef OLD_BUS_ARCH
112 #include <bus/isa/i386/isa_device.h>
113 #endif
114 #include <i386/isa/intr_machdep.h>
115 #include <bus/isa/rtc.h>
116 #include <machine/vm86.h>
117 #include <sys/random.h>
118 #include <sys/ptrace.h>
119 #include <machine/sigframe.h>
121 #define PHYSMAP_ENTRIES 10
123 extern void init386 (int first);
124 extern void dblfault_handler (void);
126 extern void printcpuinfo(void); /* XXX header file */
127 extern void finishidentcpu(void);
128 extern void panicifcpuunsupported(void);
129 extern void initializecpu(void);
131 static void cpu_startup (void *);
132 #ifndef CPU_DISABLE_SSE
133 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
134 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
135 #endif /* CPU_DISABLE_SSE */
136 #ifdef DIRECTIO
137 extern void ffs_rawread_setup(void);
138 #endif /* DIRECTIO */
139 static void init_locks(void);
141 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
143 int _udatasel, _ucodesel;
144 u_int atdevbase;
145 #ifdef SMP
146 int64_t tsc_offsets[MAXCPU];
147 #else
148 int64_t tsc_offsets[1];
149 #endif
151 #if defined(SWTCH_OPTIM_STATS)
152 extern int swtch_optim_stats;
153 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
154 CTLFLAG_RD, &swtch_optim_stats, 0, "");
155 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
156 CTLFLAG_RD, &tlb_flush_count, 0, "");
157 #endif
159 int physmem = 0;
160 int cold = 1;
162 static int
163 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
165 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
166 return (error);
169 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
170 0, 0, sysctl_hw_physmem, "IU", "");
172 static int
173 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
175 int error = sysctl_handle_int(oidp, 0,
176 ctob(physmem - vmstats.v_wire_count), req);
177 return (error);
180 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
181 0, 0, sysctl_hw_usermem, "IU", "");
183 static int
184 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
186 int error = sysctl_handle_int(oidp, 0,
187 i386_btop(avail_end - avail_start), req);
188 return (error);
191 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
192 0, 0, sysctl_hw_availpages, "I", "");
194 static int
195 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
197 int error;
199 /* Unwind the buffer, so that it's linear (possibly starting with
200 * some initial nulls).
202 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
203 msgbufp->msg_size-msgbufp->msg_bufr,req);
204 if(error) return(error);
205 if(msgbufp->msg_bufr>0) {
206 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
207 msgbufp->msg_bufr,req);
209 return(error);
212 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
213 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
215 static int msgbuf_clear;
217 static int
218 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
220 int error;
221 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
222 req);
223 if (!error && req->newptr) {
224 /* Clear the buffer and reset write pointer */
225 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
226 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
227 msgbuf_clear=0;
229 return (error);
232 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
233 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
234 "Clear kernel message buffer");
236 int bootverbose = 0;
237 vm_paddr_t Maxmem = 0;
238 long dumplo;
240 vm_paddr_t phys_avail[PHYSMAP_ENTRIES*2+2];
242 static vm_offset_t buffer_sva, buffer_eva;
243 vm_offset_t clean_sva, clean_eva;
244 static vm_offset_t pager_sva, pager_eva;
245 static struct trapframe proc0_tf;
247 static void
248 cpu_startup(void *dummy)
250 caddr_t v;
251 vm_offset_t minaddr;
252 vm_offset_t maxaddr;
253 vm_size_t size = 0;
254 int firstaddr;
256 if (boothowto & RB_VERBOSE)
257 bootverbose++;
260 * Good {morning,afternoon,evening,night}.
262 printf("%s", version);
263 startrtclock();
264 printcpuinfo();
265 panicifcpuunsupported();
266 #ifdef PERFMON
267 perfmon_init();
268 #endif
269 printf("real memory = %llu (%lluK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
271 * Display any holes after the first chunk of extended memory.
273 if (bootverbose) {
274 int indx;
276 printf("Physical memory chunk(s):\n");
277 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
278 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
280 printf("0x%08llx - 0x%08llx, %llu bytes (%llu pages)\n",
281 phys_avail[indx], phys_avail[indx + 1] - 1, size1,
282 size1 / PAGE_SIZE);
287 * Allocate space for system data structures.
288 * The first available kernel virtual address is in "v".
289 * As pages of kernel virtual memory are allocated, "v" is incremented.
290 * As pages of memory are allocated and cleared,
291 * "firstaddr" is incremented.
292 * An index into the kernel page table corresponding to the
293 * virtual memory address maintained in "v" is kept in "mapaddr".
297 * Make two passes. The first pass calculates how much memory is
298 * needed and allocates it. The second pass assigns virtual
299 * addresses to the various data structures.
301 firstaddr = 0;
302 again:
303 v = (caddr_t)firstaddr;
305 #define valloc(name, type, num) \
306 (name) = (type *)v; v = (caddr_t)((name)+(num))
307 #define valloclim(name, type, num, lim) \
308 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
311 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
312 * For the first 64MB of ram nominally allocate sufficient buffers to
313 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
314 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
315 * the buffer cache we limit the eventual kva reservation to
316 * maxbcache bytes.
318 * factor represents the 1/4 x ram conversion.
320 if (nbuf == 0) {
321 int factor = 4 * BKVASIZE / 1024;
322 int kbytes = physmem * (PAGE_SIZE / 1024);
324 nbuf = 50;
325 if (kbytes > 4096)
326 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
327 if (kbytes > 65536)
328 nbuf += (kbytes - 65536) * 2 / (factor * 5);
329 if (maxbcache && nbuf > maxbcache / BKVASIZE)
330 nbuf = maxbcache / BKVASIZE;
334 * Do not allow the buffer_map to be more then 1/2 the size of the
335 * kernel_map.
337 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
338 (BKVASIZE * 2)) {
339 nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
340 (BKVASIZE * 2);
341 printf("Warning: nbufs capped at %d\n", nbuf);
344 nswbuf = max(min(nbuf/4, 256), 16);
345 #ifdef NSWBUF_MIN
346 if (nswbuf < NSWBUF_MIN)
347 nswbuf = NSWBUF_MIN;
348 #endif
349 #ifdef DIRECTIO
350 ffs_rawread_setup();
351 #endif
353 valloc(swbuf, struct buf, nswbuf);
354 valloc(buf, struct buf, nbuf);
357 * End of first pass, size has been calculated so allocate memory
359 if (firstaddr == 0) {
360 size = (vm_size_t)(v - firstaddr);
361 firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
362 if (firstaddr == 0)
363 panic("startup: no room for tables");
364 goto again;
368 * End of second pass, addresses have been assigned
370 if ((vm_size_t)(v - firstaddr) != size)
371 panic("startup: table size inconsistency");
373 clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
374 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
375 buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
376 (nbuf*BKVASIZE));
377 buffer_map->system_map = 1;
378 pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
379 (nswbuf*MAXPHYS) + pager_map_size);
380 pager_map->system_map = 1;
381 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
382 (16*(ARG_MAX+(PAGE_SIZE*3))));
384 #if defined(USERCONFIG)
385 userconfig();
386 cninit(); /* the preferred console may have changed */
387 #endif
389 printf("avail memory = %u (%uK bytes)\n", ptoa(vmstats.v_free_count),
390 ptoa(vmstats.v_free_count) / 1024);
393 * Set up buffers, so they can be used to read disk labels.
395 bufinit();
396 vm_pager_bufferinit();
398 #ifdef SMP
400 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
402 mp_start(); /* fire up the APs and APICs */
403 mp_announce();
404 #endif /* SMP */
405 cpu_setregs();
409 * Send an interrupt to process.
411 * Stack is set up to allow sigcode stored
412 * at top to call routine, followed by kcall
413 * to sigreturn routine below. After sigreturn
414 * resets the signal mask, the stack, and the
415 * frame pointer, it returns to the user
416 * specified pc, psl.
418 void
419 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
421 struct lwp *lp = curthread->td_lwp;
422 struct proc *p = lp->lwp_proc;
423 struct trapframe *regs;
424 struct sigacts *psp = p->p_sigacts;
425 struct sigframe sf, *sfp;
426 int oonstack;
428 regs = lp->lwp_md.md_regs;
429 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
431 /* save user context */
432 bzero(&sf, sizeof(struct sigframe));
433 sf.sf_uc.uc_sigmask = *mask;
434 sf.sf_uc.uc_stack = lp->lwp_sigstk;
435 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
436 sf.sf_uc.uc_mcontext.mc_gs = rgs();
437 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe));
439 /* Allocate and validate space for the signal handler context. */
440 /* XXX lwp flags */
441 if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
442 SIGISMEMBER(psp->ps_sigonstack, sig)) {
443 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
444 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
445 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
447 else
448 sfp = (struct sigframe *)regs->tf_esp - 1;
450 /* Translate the signal is appropriate */
451 if (p->p_sysent->sv_sigtbl) {
452 if (sig <= p->p_sysent->sv_sigsize)
453 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
456 /* Build the argument list for the signal handler. */
457 sf.sf_signum = sig;
458 sf.sf_ucontext = (register_t)&sfp->sf_uc;
459 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
460 /* Signal handler installed with SA_SIGINFO. */
461 sf.sf_siginfo = (register_t)&sfp->sf_si;
462 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
464 /* fill siginfo structure */
465 sf.sf_si.si_signo = sig;
466 sf.sf_si.si_code = code;
467 sf.sf_si.si_addr = (void*)regs->tf_err;
469 else {
470 /* Old FreeBSD-style arguments. */
471 sf.sf_siginfo = code;
472 sf.sf_addr = regs->tf_err;
473 sf.sf_ahu.sf_handler = catcher;
477 * If we're a vm86 process, we want to save the segment registers.
478 * We also change eflags to be our emulated eflags, not the actual
479 * eflags.
481 if (regs->tf_eflags & PSL_VM) {
482 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
483 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
485 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
486 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
487 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
488 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
490 if (vm86->vm86_has_vme == 0)
491 sf.sf_uc.uc_mcontext.mc_eflags =
492 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
493 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
496 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
497 * syscalls made by the signal handler. This just avoids
498 * wasting time for our lazy fixup of such faults. PSL_NT
499 * does nothing in vm86 mode, but vm86 programs can set it
500 * almost legitimately in probes for old cpu types.
502 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
506 * Copy the sigframe out to the user's stack.
508 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
510 * Something is wrong with the stack pointer.
511 * ...Kill the process.
513 sigexit(p, SIGILL);
516 regs->tf_esp = (int)sfp;
517 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
518 regs->tf_eflags &= ~PSL_T;
519 regs->tf_cs = _ucodesel;
520 regs->tf_ds = _udatasel;
521 regs->tf_es = _udatasel;
522 regs->tf_fs = _udatasel;
523 regs->tf_ss = _udatasel;
527 * sigreturn(ucontext_t *sigcntxp)
529 * System call to cleanup state after a signal
530 * has been taken. Reset signal mask and
531 * stack state from context left by sendsig (above).
532 * Return to previous pc and psl as specified by
533 * context left by sendsig. Check carefully to
534 * make sure that the user has not modified the
535 * state to gain improper privileges.
537 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
538 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
541 sys_sigreturn(struct sigreturn_args *uap)
543 struct lwp *lp = curthread->td_lwp;
544 struct trapframe *regs;
545 ucontext_t *ucp;
546 int cs, eflags;
548 ucp = uap->sigcntxp;
550 if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
551 return (EFAULT);
553 regs = lp->lwp_md.md_regs;
554 eflags = ucp->uc_mcontext.mc_eflags;
556 if (eflags & PSL_VM) {
557 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
558 struct vm86_kernel *vm86;
561 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
562 * set up the vm86 area, and we can't enter vm86 mode.
564 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
565 return (EINVAL);
566 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
567 if (vm86->vm86_inited == 0)
568 return (EINVAL);
570 /* go back to user mode if both flags are set */
571 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
572 trapsignal(lp->lwp_proc, SIGBUS, 0);
574 if (vm86->vm86_has_vme) {
575 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
576 (eflags & VME_USERCHANGE) | PSL_VM;
577 } else {
578 vm86->vm86_eflags = eflags; /* save VIF, VIP */
579 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
581 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
582 tf->tf_eflags = eflags;
583 tf->tf_vm86_ds = tf->tf_ds;
584 tf->tf_vm86_es = tf->tf_es;
585 tf->tf_vm86_fs = tf->tf_fs;
586 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
587 tf->tf_ds = _udatasel;
588 tf->tf_es = _udatasel;
589 tf->tf_fs = _udatasel;
590 } else {
592 * Don't allow users to change privileged or reserved flags.
595 * XXX do allow users to change the privileged flag PSL_RF.
596 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
597 * should sometimes set it there too. tf_eflags is kept in
598 * the signal context during signal handling and there is no
599 * other place to remember it, so the PSL_RF bit may be
600 * corrupted by the signal handler without us knowing.
601 * Corruption of the PSL_RF bit at worst causes one more or
602 * one less debugger trap, so allowing it is fairly harmless.
604 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
605 printf("sigreturn: eflags = 0x%x\n", eflags);
606 return(EINVAL);
610 * Don't allow users to load a valid privileged %cs. Let the
611 * hardware check for invalid selectors, excess privilege in
612 * other selectors, invalid %eip's and invalid %esp's.
614 cs = ucp->uc_mcontext.mc_cs;
615 if (!CS_SECURE(cs)) {
616 printf("sigreturn: cs = 0x%x\n", cs);
617 trapsignal(lp->lwp_proc, SIGBUS, T_PROTFLT);
618 return(EINVAL);
620 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe));
623 if (ucp->uc_mcontext.mc_onstack & 1)
624 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
625 else
626 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
628 lp->lwp_sigmask = ucp->uc_sigmask;
629 SIG_CANTMASK(lp->lwp_sigmask);
630 return(EJUSTRETURN);
634 * Stack frame on entry to function. %eax will contain the function vector,
635 * %ecx will contain the function data. flags, ecx, and eax will have
636 * already been pushed on the stack.
638 struct upc_frame {
639 register_t eax;
640 register_t ecx;
641 register_t edx;
642 register_t flags;
643 register_t oldip;
646 void
647 sendupcall(struct vmupcall *vu, int morepending)
649 struct lwp *lp = curthread->td_lwp;
650 struct trapframe *regs;
651 struct upcall upcall;
652 struct upc_frame upc_frame;
653 int crit_count = 0;
656 * Get the upcall data structure
658 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
659 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
661 vu->vu_pending = 0;
662 printf("bad upcall address\n");
663 return;
667 * If the data structure is already marked pending or has a critical
668 * section count, mark the data structure as pending and return
669 * without doing an upcall. vu_pending is left set.
671 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
672 if (upcall.upc_pending < vu->vu_pending) {
673 upcall.upc_pending = vu->vu_pending;
674 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
675 sizeof(upcall.upc_pending));
677 return;
681 * We can run this upcall now, clear vu_pending.
683 * Bump our critical section count and set or clear the
684 * user pending flag depending on whether more upcalls are
685 * pending. The user will be responsible for calling
686 * upc_dispatch(-1) to process remaining upcalls.
688 vu->vu_pending = 0;
689 upcall.upc_pending = morepending;
690 crit_count += TDPRI_CRIT;
691 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
692 sizeof(upcall.upc_pending));
693 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
694 sizeof(int));
697 * Construct a stack frame and issue the upcall
699 regs = lp->lwp_md.md_regs;
700 upc_frame.eax = regs->tf_eax;
701 upc_frame.ecx = regs->tf_ecx;
702 upc_frame.edx = regs->tf_edx;
703 upc_frame.flags = regs->tf_eflags;
704 upc_frame.oldip = regs->tf_eip;
705 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
706 sizeof(upc_frame)) != 0) {
707 printf("bad stack on upcall\n");
708 } else {
709 regs->tf_eax = (register_t)vu->vu_func;
710 regs->tf_ecx = (register_t)vu->vu_data;
711 regs->tf_edx = (register_t)lp->lwp_upcall;
712 regs->tf_eip = (register_t)vu->vu_ctx;
713 regs->tf_esp -= sizeof(upc_frame);
718 * fetchupcall occurs in the context of a system call, which means that
719 * we have to return EJUSTRETURN in order to prevent eax and edx from
720 * being overwritten by the syscall return value.
722 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
723 * and the function pointer in %eax.
726 fetchupcall (struct vmupcall *vu, int morepending, void *rsp)
728 struct upc_frame upc_frame;
729 struct lwp *lp = curthread->td_lwp;
730 struct trapframe *regs;
731 int error;
732 struct upcall upcall;
733 int crit_count;
735 regs = lp->lwp_md.md_regs;
737 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
738 if (error == 0) {
739 if (vu) {
741 * This jumps us to the next ready context.
743 vu->vu_pending = 0;
744 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
745 crit_count = 0;
746 if (error == 0)
747 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
748 crit_count += TDPRI_CRIT;
749 if (error == 0)
750 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
751 regs->tf_eax = (register_t)vu->vu_func;
752 regs->tf_ecx = (register_t)vu->vu_data;
753 regs->tf_edx = (register_t)lp->lwp_upcall;
754 regs->tf_eip = (register_t)vu->vu_ctx;
755 regs->tf_esp = (register_t)rsp;
756 } else {
758 * This returns us to the originally interrupted code.
760 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
761 regs->tf_eax = upc_frame.eax;
762 regs->tf_ecx = upc_frame.ecx;
763 regs->tf_edx = upc_frame.edx;
764 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
765 (upc_frame.flags & PSL_USERCHANGE);
766 regs->tf_eip = upc_frame.oldip;
767 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
770 if (error == 0)
771 error = EJUSTRETURN;
772 return(error);
776 * Machine dependent boot() routine
778 * I haven't seen anything to put here yet
779 * Possibly some stuff might be grafted back here from boot()
781 void
782 cpu_boot(int howto)
787 * Shutdown the CPU as much as possible
789 void
790 cpu_halt(void)
792 for (;;)
793 __asm__ ("hlt");
797 * cpu_idle() represents the idle LWKT. You cannot return from this function
798 * (unless you want to blow things up!). Instead we look for runnable threads
799 * and loop or halt as appropriate. Giant is not held on entry to the thread.
801 * The main loop is entered with a critical section held, we must release
802 * the critical section before doing anything else. lwkt_switch() will
803 * check for pending interrupts due to entering and exiting its own
804 * critical section.
806 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
807 * to wake a HLTed cpu up. However, there are cases where the idlethread
808 * will be entered with the possibility that no IPI will occur and in such
809 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
811 static int cpu_idle_hlt = 1;
812 static int cpu_idle_hltcnt;
813 static int cpu_idle_spincnt;
814 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
815 &cpu_idle_hlt, 0, "Idle loop HLT enable");
816 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
817 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
818 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
819 &cpu_idle_spincnt, 0, "Idle loop entry spins");
821 static void
822 cpu_idle_default_hook(void)
825 * We must guarentee that hlt is exactly the instruction
826 * following the sti.
828 __asm __volatile("sti; hlt");
831 /* Other subsystems (e.g., ACPI) can hook this later. */
832 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
834 void
835 cpu_idle(void)
837 struct thread *td = curthread;
839 crit_exit();
840 KKASSERT(td->td_pri < TDPRI_CRIT);
841 for (;;) {
843 * See if there are any LWKTs ready to go.
845 lwkt_switch();
848 * If we are going to halt call splz unconditionally after
849 * CLIing to catch any interrupt races. Note that we are
850 * at SPL0 and interrupts are enabled.
852 if (cpu_idle_hlt && !lwkt_runnable() &&
853 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
854 __asm __volatile("cli");
855 splz();
856 if (!lwkt_runnable())
857 cpu_idle_hook();
858 #ifdef SMP
859 else
860 __asm __volatile("pause");
861 #endif
862 ++cpu_idle_hltcnt;
863 } else {
864 td->td_flags &= ~TDF_IDLE_NOHLT;
865 splz();
866 #ifdef SMP
867 __asm __volatile("sti; pause");
868 #else
869 __asm __volatile("sti");
870 #endif
871 ++cpu_idle_spincnt;
877 * Clear registers on exec
879 void
880 setregs(struct proc *p, u_long entry, u_long stack, u_long ps_strings)
882 struct trapframe *regs = p->p_md.md_regs;
883 struct pcb *pcb = p->p_thread->td_pcb;
885 /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
886 pcb->pcb_gs = _udatasel;
887 load_gs(_udatasel);
889 /* was i386_user_cleanup() in NetBSD */
890 user_ldt_free(pcb);
892 bzero((char *)regs, sizeof(struct trapframe));
893 regs->tf_eip = entry;
894 regs->tf_esp = stack;
895 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
896 regs->tf_ss = _udatasel;
897 regs->tf_ds = _udatasel;
898 regs->tf_es = _udatasel;
899 regs->tf_fs = _udatasel;
900 regs->tf_cs = _ucodesel;
902 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
903 regs->tf_ebx = ps_strings;
906 * Reset the hardware debug registers if they were in use.
907 * They won't have any meaning for the newly exec'd process.
909 if (pcb->pcb_flags & PCB_DBREGS) {
910 pcb->pcb_dr0 = 0;
911 pcb->pcb_dr1 = 0;
912 pcb->pcb_dr2 = 0;
913 pcb->pcb_dr3 = 0;
914 pcb->pcb_dr6 = 0;
915 pcb->pcb_dr7 = 0;
916 if (pcb == curthread->td_pcb) {
918 * Clear the debug registers on the running
919 * CPU, otherwise they will end up affecting
920 * the next process we switch to.
922 reset_dbregs();
924 pcb->pcb_flags &= ~PCB_DBREGS;
928 * Initialize the math emulator (if any) for the current process.
929 * Actually, just clear the bit that says that the emulator has
930 * been initialized. Initialization is delayed until the process
931 * traps to the emulator (if it is done at all) mainly because
932 * emulators don't provide an entry point for initialization.
934 p->p_thread->td_pcb->pcb_flags &= ~FP_SOFTFP;
937 * note: do not set CR0_TS here. npxinit() must do it after clearing
938 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
939 * in npxdna().
941 crit_enter();
942 load_cr0(rcr0() | CR0_MP);
944 #if NNPX > 0
945 /* Initialize the npx (if any) for the current process. */
946 npxinit(__INITIAL_NPXCW__);
947 #endif
948 crit_exit();
951 * note: linux emulator needs edx to be 0x0 on entry, which is
952 * handled in execve simply by setting the 64 bit syscall
953 * return value to 0.
957 void
958 cpu_setregs(void)
960 unsigned int cr0;
962 cr0 = rcr0();
963 cr0 |= CR0_NE; /* Done by npxinit() */
964 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
965 #ifdef I386_CPU
966 if (cpu_class != CPUCLASS_386)
967 #endif
968 cr0 |= CR0_WP | CR0_AM;
969 load_cr0(cr0);
970 load_gs(_udatasel);
973 static int
974 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
976 int error;
977 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
978 req);
979 if (!error && req->newptr)
980 resettodr();
981 return (error);
984 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
985 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
987 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
988 CTLFLAG_RW, &disable_rtc_set, 0, "");
990 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
991 CTLFLAG_RD, &bootinfo, bootinfo, "");
993 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
994 CTLFLAG_RW, &wall_cmos_clock, 0, "");
996 extern u_long bootdev; /* not a cdev_t - encoding is different */
997 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
998 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1001 * Initialize 386 and configure to run kernel
1005 * Initialize segments & interrupt table
1008 int _default_ldt;
1009 union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1010 static struct gate_descriptor idt0[NIDT];
1011 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1012 union descriptor ldt[NLDT]; /* local descriptor table */
1014 /* table descriptors - used to load tables by cpu */
1015 struct region_descriptor r_gdt, r_idt;
1017 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1018 extern int has_f00f_bug;
1019 #endif
1021 static struct i386tss dblfault_tss;
1022 static char dblfault_stack[PAGE_SIZE];
1024 extern struct user *proc0paddr;
1027 /* software prototypes -- in more palatable form */
1028 struct soft_segment_descriptor gdt_segs[] = {
1029 /* GNULL_SEL 0 Null Descriptor */
1030 { 0x0, /* segment base address */
1031 0x0, /* length */
1032 0, /* segment type */
1033 0, /* segment descriptor priority level */
1034 0, /* segment descriptor present */
1035 0, 0,
1036 0, /* default 32 vs 16 bit size */
1037 0 /* limit granularity (byte/page units)*/ },
1038 /* GCODE_SEL 1 Code Descriptor for kernel */
1039 { 0x0, /* segment base address */
1040 0xfffff, /* length - all address space */
1041 SDT_MEMERA, /* segment type */
1042 0, /* segment descriptor priority level */
1043 1, /* segment descriptor present */
1044 0, 0,
1045 1, /* default 32 vs 16 bit size */
1046 1 /* limit granularity (byte/page units)*/ },
1047 /* GDATA_SEL 2 Data Descriptor for kernel */
1048 { 0x0, /* segment base address */
1049 0xfffff, /* length - all address space */
1050 SDT_MEMRWA, /* segment type */
1051 0, /* segment descriptor priority level */
1052 1, /* segment descriptor present */
1053 0, 0,
1054 1, /* default 32 vs 16 bit size */
1055 1 /* limit granularity (byte/page units)*/ },
1056 /* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
1057 { 0x0, /* segment base address */
1058 0xfffff, /* length - all address space */
1059 SDT_MEMRWA, /* segment type */
1060 0, /* segment descriptor priority level */
1061 1, /* segment descriptor present */
1062 0, 0,
1063 1, /* default 32 vs 16 bit size */
1064 1 /* limit granularity (byte/page units)*/ },
1065 /* GPROC0_SEL 4 Proc 0 Tss Descriptor */
1067 0x0, /* segment base address */
1068 sizeof(struct i386tss)-1,/* length - all address space */
1069 SDT_SYS386TSS, /* segment type */
1070 0, /* segment descriptor priority level */
1071 1, /* segment descriptor present */
1072 0, 0,
1073 0, /* unused - default 32 vs 16 bit size */
1074 0 /* limit granularity (byte/page units)*/ },
1075 /* GLDT_SEL 5 LDT Descriptor */
1076 { (int) ldt, /* segment base address */
1077 sizeof(ldt)-1, /* length - all address space */
1078 SDT_SYSLDT, /* segment type */
1079 SEL_UPL, /* segment descriptor priority level */
1080 1, /* segment descriptor present */
1081 0, 0,
1082 0, /* unused - default 32 vs 16 bit size */
1083 0 /* limit granularity (byte/page units)*/ },
1084 /* GUSERLDT_SEL 6 User LDT Descriptor per process */
1085 { (int) ldt, /* segment base address */
1086 (512 * sizeof(union descriptor)-1), /* length */
1087 SDT_SYSLDT, /* segment type */
1088 0, /* segment descriptor priority level */
1089 1, /* segment descriptor present */
1090 0, 0,
1091 0, /* unused - default 32 vs 16 bit size */
1092 0 /* limit granularity (byte/page units)*/ },
1093 /* GTGATE_SEL 7 Null Descriptor - Placeholder */
1094 { 0x0, /* segment base address */
1095 0x0, /* length - all address space */
1096 0, /* segment type */
1097 0, /* segment descriptor priority level */
1098 0, /* segment descriptor present */
1099 0, 0,
1100 0, /* default 32 vs 16 bit size */
1101 0 /* limit granularity (byte/page units)*/ },
1102 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1103 { 0x400, /* segment base address */
1104 0xfffff, /* length */
1105 SDT_MEMRWA, /* segment type */
1106 0, /* segment descriptor priority level */
1107 1, /* segment descriptor present */
1108 0, 0,
1109 1, /* default 32 vs 16 bit size */
1110 1 /* limit granularity (byte/page units)*/ },
1111 /* GPANIC_SEL 9 Panic Tss Descriptor */
1112 { (int) &dblfault_tss, /* segment base address */
1113 sizeof(struct i386tss)-1,/* length - all address space */
1114 SDT_SYS386TSS, /* segment type */
1115 0, /* segment descriptor priority level */
1116 1, /* segment descriptor present */
1117 0, 0,
1118 0, /* unused - default 32 vs 16 bit size */
1119 0 /* limit granularity (byte/page units)*/ },
1120 /* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1121 { 0, /* segment base address (overwritten) */
1122 0xfffff, /* length */
1123 SDT_MEMERA, /* segment type */
1124 0, /* segment descriptor priority level */
1125 1, /* segment descriptor present */
1126 0, 0,
1127 0, /* default 32 vs 16 bit size */
1128 1 /* limit granularity (byte/page units)*/ },
1129 /* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1130 { 0, /* segment base address (overwritten) */
1131 0xfffff, /* length */
1132 SDT_MEMERA, /* segment type */
1133 0, /* segment descriptor priority level */
1134 1, /* segment descriptor present */
1135 0, 0,
1136 0, /* default 32 vs 16 bit size */
1137 1 /* limit granularity (byte/page units)*/ },
1138 /* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1139 { 0, /* segment base address (overwritten) */
1140 0xfffff, /* length */
1141 SDT_MEMRWA, /* segment type */
1142 0, /* segment descriptor priority level */
1143 1, /* segment descriptor present */
1144 0, 0,
1145 1, /* default 32 vs 16 bit size */
1146 1 /* limit granularity (byte/page units)*/ },
1147 /* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1148 { 0, /* segment base address (overwritten) */
1149 0xfffff, /* length */
1150 SDT_MEMRWA, /* segment type */
1151 0, /* segment descriptor priority level */
1152 1, /* segment descriptor present */
1153 0, 0,
1154 0, /* default 32 vs 16 bit size */
1155 1 /* limit granularity (byte/page units)*/ },
1156 /* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1157 { 0, /* segment base address (overwritten) */
1158 0xfffff, /* length */
1159 SDT_MEMRWA, /* segment type */
1160 0, /* segment descriptor priority level */
1161 1, /* segment descriptor present */
1162 0, 0,
1163 0, /* default 32 vs 16 bit size */
1164 1 /* limit granularity (byte/page units)*/ },
1165 /* GTLS_START 15 TLS */
1166 { 0x0, /* segment base address */
1167 0x0, /* length */
1168 0, /* segment type */
1169 0, /* segment descriptor priority level */
1170 0, /* segment descriptor present */
1171 0, 0,
1172 0, /* default 32 vs 16 bit size */
1173 0 /* limit granularity (byte/page units)*/ },
1174 /* GTLS_START+1 16 TLS */
1175 { 0x0, /* segment base address */
1176 0x0, /* length */
1177 0, /* segment type */
1178 0, /* segment descriptor priority level */
1179 0, /* segment descriptor present */
1180 0, 0,
1181 0, /* default 32 vs 16 bit size */
1182 0 /* limit granularity (byte/page units)*/ },
1183 /* GTLS_END 17 TLS */
1184 { 0x0, /* segment base address */
1185 0x0, /* length */
1186 0, /* segment type */
1187 0, /* segment descriptor priority level */
1188 0, /* segment descriptor present */
1189 0, 0,
1190 0, /* default 32 vs 16 bit size */
1191 0 /* limit granularity (byte/page units)*/ },
1194 static struct soft_segment_descriptor ldt_segs[] = {
1195 /* Null Descriptor - overwritten by call gate */
1196 { 0x0, /* segment base address */
1197 0x0, /* length - all address space */
1198 0, /* segment type */
1199 0, /* segment descriptor priority level */
1200 0, /* segment descriptor present */
1201 0, 0,
1202 0, /* default 32 vs 16 bit size */
1203 0 /* limit granularity (byte/page units)*/ },
1204 /* Null Descriptor - overwritten by call gate */
1205 { 0x0, /* segment base address */
1206 0x0, /* length - all address space */
1207 0, /* segment type */
1208 0, /* segment descriptor priority level */
1209 0, /* segment descriptor present */
1210 0, 0,
1211 0, /* default 32 vs 16 bit size */
1212 0 /* limit granularity (byte/page units)*/ },
1213 /* Null Descriptor - overwritten by call gate */
1214 { 0x0, /* segment base address */
1215 0x0, /* length - all address space */
1216 0, /* segment type */
1217 0, /* segment descriptor priority level */
1218 0, /* segment descriptor present */
1219 0, 0,
1220 0, /* default 32 vs 16 bit size */
1221 0 /* limit granularity (byte/page units)*/ },
1222 /* Code Descriptor for user */
1223 { 0x0, /* segment base address */
1224 0xfffff, /* length - all address space */
1225 SDT_MEMERA, /* segment type */
1226 SEL_UPL, /* segment descriptor priority level */
1227 1, /* segment descriptor present */
1228 0, 0,
1229 1, /* default 32 vs 16 bit size */
1230 1 /* limit granularity (byte/page units)*/ },
1231 /* Null Descriptor - overwritten by call gate */
1232 { 0x0, /* segment base address */
1233 0x0, /* length - all address space */
1234 0, /* segment type */
1235 0, /* segment descriptor priority level */
1236 0, /* segment descriptor present */
1237 0, 0,
1238 0, /* default 32 vs 16 bit size */
1239 0 /* limit granularity (byte/page units)*/ },
1240 /* Data Descriptor for user */
1241 { 0x0, /* segment base address */
1242 0xfffff, /* length - all address space */
1243 SDT_MEMRWA, /* segment type */
1244 SEL_UPL, /* segment descriptor priority level */
1245 1, /* segment descriptor present */
1246 0, 0,
1247 1, /* default 32 vs 16 bit size */
1248 1 /* limit granularity (byte/page units)*/ },
1251 void
1252 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
1254 struct gate_descriptor *ip;
1256 ip = idt + idx;
1257 ip->gd_looffset = (int)func;
1258 ip->gd_selector = selec;
1259 ip->gd_stkcpy = 0;
1260 ip->gd_xx = 0;
1261 ip->gd_type = typ;
1262 ip->gd_dpl = dpl;
1263 ip->gd_p = 1;
1264 ip->gd_hioffset = ((int)func)>>16 ;
1267 #define IDTVEC(name) __CONCAT(X,name)
1269 extern inthand_t
1270 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1271 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1272 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1273 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
1274 IDTVEC(xmm), IDTVEC(syscall),
1275 IDTVEC(rsvd0);
1276 extern inthand_t
1277 IDTVEC(int0x80_syscall);
1279 #ifdef DEBUG_INTERRUPTS
1280 extern inthand_t *Xrsvdary[256];
1281 #endif
1283 void
1284 sdtossd(struct segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1286 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1287 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1288 ssd->ssd_type = sd->sd_type;
1289 ssd->ssd_dpl = sd->sd_dpl;
1290 ssd->ssd_p = sd->sd_p;
1291 ssd->ssd_def32 = sd->sd_def32;
1292 ssd->ssd_gran = sd->sd_gran;
1296 * Populate the (physmap) array with base/bound pairs describing the
1297 * available physical memory in the system, then test this memory and
1298 * build the phys_avail array describing the actually-available memory.
1300 * If we cannot accurately determine the physical memory map, then use
1301 * value from the 0xE801 call, and failing that, the RTC.
1303 * Total memory size may be set by the kernel environment variable
1304 * hw.physmem or the compile-time define MAXMEM.
1306 static void
1307 getmemsize(int first)
1309 int i, physmap_idx, pa_indx;
1310 int hasbrokenint12;
1311 u_int basemem, extmem;
1312 struct vm86frame vmf;
1313 struct vm86context vmc;
1314 vm_offset_t pa;
1315 vm_offset_t physmap[PHYSMAP_ENTRIES*2];
1316 pt_entry_t *pte;
1317 const char *cp;
1318 struct {
1319 u_int64_t base;
1320 u_int64_t length;
1321 u_int32_t type;
1322 } *smap;
1323 quad_t dcons_addr, dcons_size;
1325 hasbrokenint12 = 0;
1326 TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1327 bzero(&vmf, sizeof(struct vm86frame));
1328 bzero(physmap, sizeof(physmap));
1329 basemem = 0;
1332 * Some newer BIOSes has broken INT 12H implementation which cause
1333 * kernel panic immediately. In this case, we need to scan SMAP
1334 * with INT 15:E820 first, then determine base memory size.
1336 if (hasbrokenint12) {
1337 goto int15e820;
1341 * Perform "base memory" related probes & setup. If we get a crazy
1342 * value give the bios some scribble space just in case.
1344 vm86_intcall(0x12, &vmf);
1345 basemem = vmf.vmf_ax;
1346 if (basemem > 640) {
1347 printf("Preposterous BIOS basemem of %uK, "
1348 "truncating to < 640K\n", basemem);
1349 basemem = 636;
1353 * XXX if biosbasemem is now < 640, there is a `hole'
1354 * between the end of base memory and the start of
1355 * ISA memory. The hole may be empty or it may
1356 * contain BIOS code or data. Map it read/write so
1357 * that the BIOS can write to it. (Memory from 0 to
1358 * the physical end of the kernel is mapped read-only
1359 * to begin with and then parts of it are remapped.
1360 * The parts that aren't remapped form holes that
1361 * remain read-only and are unused by the kernel.
1362 * The base memory area is below the physical end of
1363 * the kernel and right now forms a read-only hole.
1364 * The part of it from PAGE_SIZE to
1365 * (trunc_page(biosbasemem * 1024) - 1) will be
1366 * remapped and used by the kernel later.)
1368 * This code is similar to the code used in
1369 * pmap_mapdev, but since no memory needs to be
1370 * allocated we simply change the mapping.
1372 for (pa = trunc_page(basemem * 1024);
1373 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1374 pte = vtopte(pa + KERNBASE);
1375 *pte = pa | PG_RW | PG_V;
1379 * if basemem != 640, map pages r/w into vm86 page table so
1380 * that the bios can scribble on it.
1382 pte = vm86paddr;
1383 for (i = basemem / 4; i < 160; i++)
1384 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1386 int15e820:
1388 * map page 1 R/W into the kernel page table so we can use it
1389 * as a buffer. The kernel will unmap this page later.
1391 pte = vtopte(KERNBASE + (1 << PAGE_SHIFT));
1392 *pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1395 * get memory map with INT 15:E820
1397 #define SMAPSIZ sizeof(*smap)
1398 #define SMAP_SIG 0x534D4150 /* 'SMAP' */
1400 vmc.npages = 0;
1401 smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1402 vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1404 physmap_idx = 0;
1405 vmf.vmf_ebx = 0;
1406 do {
1407 vmf.vmf_eax = 0xE820;
1408 vmf.vmf_edx = SMAP_SIG;
1409 vmf.vmf_ecx = SMAPSIZ;
1410 i = vm86_datacall(0x15, &vmf, &vmc);
1411 if (i || vmf.vmf_eax != SMAP_SIG)
1412 break;
1413 if (boothowto & RB_VERBOSE)
1414 printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1415 smap->type,
1416 *(u_int32_t *)((char *)&smap->base + 4),
1417 (u_int32_t)smap->base,
1418 *(u_int32_t *)((char *)&smap->length + 4),
1419 (u_int32_t)smap->length);
1421 if (smap->type != 0x01)
1422 goto next_run;
1424 if (smap->length == 0)
1425 goto next_run;
1427 if (smap->base >= 0xffffffff) {
1428 printf("%uK of memory above 4GB ignored\n",
1429 (u_int)(smap->length / 1024));
1430 goto next_run;
1433 for (i = 0; i <= physmap_idx; i += 2) {
1434 if (smap->base < physmap[i + 1]) {
1435 if (boothowto & RB_VERBOSE)
1436 printf(
1437 "Overlapping or non-montonic memory region, ignoring second region\n");
1438 goto next_run;
1442 if (smap->base == physmap[physmap_idx + 1]) {
1443 physmap[physmap_idx + 1] += smap->length;
1444 goto next_run;
1447 physmap_idx += 2;
1448 if (physmap_idx == PHYSMAP_ENTRIES*2) {
1449 printf(
1450 "Too many segments in the physical address map, giving up\n");
1451 break;
1453 physmap[physmap_idx] = smap->base;
1454 physmap[physmap_idx + 1] = smap->base + smap->length;
1455 next_run:
1456 ; /* fix GCC3.x warning */
1457 } while (vmf.vmf_ebx != 0);
1460 * Perform "base memory" related probes & setup based on SMAP
1462 if (basemem == 0) {
1463 for (i = 0; i <= physmap_idx; i += 2) {
1464 if (physmap[i] == 0x00000000) {
1465 basemem = physmap[i + 1] / 1024;
1466 break;
1470 if (basemem == 0) {
1471 basemem = 640;
1474 if (basemem > 640) {
1475 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1476 basemem);
1477 basemem = 640;
1480 for (pa = trunc_page(basemem * 1024);
1481 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1482 pte = vtopte(pa + KERNBASE);
1483 *pte = pa | PG_RW | PG_V;
1486 pte = vm86paddr;
1487 for (i = basemem / 4; i < 160; i++)
1488 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1491 if (physmap[1] != 0)
1492 goto physmap_done;
1495 * If we failed above, try memory map with INT 15:E801
1497 vmf.vmf_ax = 0xE801;
1498 if (vm86_intcall(0x15, &vmf) == 0) {
1499 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1500 } else {
1501 #if 0
1502 vmf.vmf_ah = 0x88;
1503 vm86_intcall(0x15, &vmf);
1504 extmem = vmf.vmf_ax;
1505 #else
1507 * Prefer the RTC value for extended memory.
1509 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1510 #endif
1514 * Special hack for chipsets that still remap the 384k hole when
1515 * there's 16MB of memory - this really confuses people that
1516 * are trying to use bus mastering ISA controllers with the
1517 * "16MB limit"; they only have 16MB, but the remapping puts
1518 * them beyond the limit.
1520 * If extended memory is between 15-16MB (16-17MB phys address range),
1521 * chop it to 15MB.
1523 if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1524 extmem = 15 * 1024;
1526 physmap[0] = 0;
1527 physmap[1] = basemem * 1024;
1528 physmap_idx = 2;
1529 physmap[physmap_idx] = 0x100000;
1530 physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1532 physmap_done:
1534 * Now, physmap contains a map of physical memory.
1537 #ifdef SMP
1538 /* make hole for AP bootstrap code YYY */
1539 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1541 /* look for the MP hardware - needed for apic addresses */
1542 mp_probe();
1543 #endif
1546 * Maxmem isn't the "maximum memory", it's one larger than the
1547 * highest page of the physical address space. It should be
1548 * called something like "Maxphyspage". We may adjust this
1549 * based on ``hw.physmem'' and the results of the memory test.
1551 Maxmem = atop(physmap[physmap_idx + 1]);
1553 #ifdef MAXMEM
1554 Maxmem = MAXMEM / 4;
1555 #endif
1558 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1559 * for the appropriate modifiers. This overrides MAXMEM.
1561 if ((cp = kgetenv("hw.physmem")) != NULL) {
1562 u_int64_t AllowMem, sanity;
1563 char *ep;
1565 sanity = AllowMem = strtouq(cp, &ep, 0);
1566 if ((ep != cp) && (*ep != 0)) {
1567 switch(*ep) {
1568 case 'g':
1569 case 'G':
1570 AllowMem <<= 10;
1571 case 'm':
1572 case 'M':
1573 AllowMem <<= 10;
1574 case 'k':
1575 case 'K':
1576 AllowMem <<= 10;
1577 break;
1578 default:
1579 AllowMem = sanity = 0;
1581 if (AllowMem < sanity)
1582 AllowMem = 0;
1584 if (AllowMem == 0)
1585 printf("Ignoring invalid memory size of '%s'\n", cp);
1586 else
1587 Maxmem = atop(AllowMem);
1590 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1591 (boothowto & RB_VERBOSE))
1592 printf("Physical memory use set to %lluK\n", Maxmem * 4);
1595 * If Maxmem has been increased beyond what the system has detected,
1596 * extend the last memory segment to the new limit.
1598 if (atop(physmap[physmap_idx + 1]) < Maxmem)
1599 physmap[physmap_idx + 1] = ptoa(Maxmem);
1601 /* call pmap initialization to make new kernel address space */
1602 pmap_bootstrap(first, 0);
1605 * Size up each available chunk of physical memory.
1607 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1608 pa_indx = 0;
1609 phys_avail[pa_indx++] = physmap[0];
1610 phys_avail[pa_indx] = physmap[0];
1611 pte = CMAP1;
1614 * Get dcons buffer address
1616 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1617 kgetenv_quad("dcons.size", &dcons_size) == 0)
1618 dcons_addr = 0;
1621 * physmap is in bytes, so when converting to page boundaries,
1622 * round up the start address and round down the end address.
1624 for (i = 0; i <= physmap_idx; i += 2) {
1625 vm_offset_t end;
1627 end = ptoa(Maxmem);
1628 if (physmap[i + 1] < end)
1629 end = trunc_page(physmap[i + 1]);
1630 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1631 int tmp, page_bad;
1632 #if 0
1633 int *ptr = 0;
1634 #else
1635 int *ptr = (int *)CADDR1;
1636 #endif
1639 * block out kernel memory as not available.
1641 if (pa >= 0x100000 && pa < first)
1642 continue;
1645 * block out dcons buffer
1647 if (dcons_addr > 0
1648 && pa >= trunc_page(dcons_addr)
1649 && pa < dcons_addr + dcons_size)
1650 continue;
1652 page_bad = FALSE;
1655 * map page into kernel: valid, read/write,non-cacheable
1657 *pte = pa | PG_V | PG_RW | PG_N;
1658 cpu_invltlb();
1660 tmp = *(int *)ptr;
1662 * Test for alternating 1's and 0's
1664 *(volatile int *)ptr = 0xaaaaaaaa;
1665 if (*(volatile int *)ptr != 0xaaaaaaaa) {
1666 page_bad = TRUE;
1669 * Test for alternating 0's and 1's
1671 *(volatile int *)ptr = 0x55555555;
1672 if (*(volatile int *)ptr != 0x55555555) {
1673 page_bad = TRUE;
1676 * Test for all 1's
1678 *(volatile int *)ptr = 0xffffffff;
1679 if (*(volatile int *)ptr != 0xffffffff) {
1680 page_bad = TRUE;
1683 * Test for all 0's
1685 *(volatile int *)ptr = 0x0;
1686 if (*(volatile int *)ptr != 0x0) {
1687 page_bad = TRUE;
1690 * Restore original value.
1692 *(int *)ptr = tmp;
1695 * Adjust array of valid/good pages.
1697 if (page_bad == TRUE) {
1698 continue;
1701 * If this good page is a continuation of the
1702 * previous set of good pages, then just increase
1703 * the end pointer. Otherwise start a new chunk.
1704 * Note that "end" points one higher than end,
1705 * making the range >= start and < end.
1706 * If we're also doing a speculative memory
1707 * test and we at or past the end, bump up Maxmem
1708 * so that we keep going. The first bad page
1709 * will terminate the loop.
1711 if (phys_avail[pa_indx] == pa) {
1712 phys_avail[pa_indx] += PAGE_SIZE;
1713 } else {
1714 pa_indx++;
1715 if (pa_indx >= PHYSMAP_ENTRIES*2) {
1716 printf("Too many holes in the physical address space, giving up\n");
1717 pa_indx--;
1718 break;
1720 phys_avail[pa_indx++] = pa; /* start */
1721 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1723 physmem++;
1726 *pte = 0;
1727 cpu_invltlb();
1730 * XXX
1731 * The last chunk must contain at least one page plus the message
1732 * buffer to avoid complicating other code (message buffer address
1733 * calculation, etc.).
1735 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1736 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1737 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1738 phys_avail[pa_indx--] = 0;
1739 phys_avail[pa_indx--] = 0;
1742 Maxmem = atop(phys_avail[pa_indx]);
1744 /* Trim off space for the message buffer. */
1745 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1747 avail_end = phys_avail[pa_indx];
1751 * IDT VECTORS:
1752 * 0 Divide by zero
1753 * 1 Debug
1754 * 2 NMI
1755 * 3 BreakPoint
1756 * 4 OverFlow
1757 * 5 Bound-Range
1758 * 6 Invalid OpCode
1759 * 7 Device Not Available (x87)
1760 * 8 Double-Fault
1761 * 9 Coprocessor Segment overrun (unsupported, reserved)
1762 * 10 Invalid-TSS
1763 * 11 Segment not present
1764 * 12 Stack
1765 * 13 General Protection
1766 * 14 Page Fault
1767 * 15 Reserved
1768 * 16 x87 FP Exception pending
1769 * 17 Alignment Check
1770 * 18 Machine Check
1771 * 19 SIMD floating point
1772 * 20-31 reserved
1773 * 32-255 INTn/external sources
1775 void
1776 init386(int first)
1778 struct gate_descriptor *gdp;
1779 int gsel_tss, metadata_missing, off, x;
1780 struct mdglobaldata *gd;
1783 * Prevent lowering of the ipl if we call tsleep() early.
1785 gd = &CPU_prvspace[0].mdglobaldata;
1786 bzero(gd, sizeof(*gd));
1788 gd->mi.gd_curthread = &thread0;
1790 atdevbase = ISA_HOLE_START + KERNBASE;
1792 metadata_missing = 0;
1793 if (bootinfo.bi_modulep) {
1794 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1795 preload_bootstrap_relocate(KERNBASE);
1796 } else {
1797 metadata_missing = 1;
1799 if (bootinfo.bi_envp)
1800 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1803 * start with one cpu. Note: ncpus2_shift and ncpus2_mask are left
1804 * at 0.
1806 ncpus = 1;
1807 ncpus2 = 1;
1808 /* Init basic tunables, hz etc */
1809 init_param1();
1812 * make gdt memory segments, the code segment goes up to end of the
1813 * page with etext in it, the data segment goes to the end of
1814 * the address space
1817 * XXX text protection is temporarily (?) disabled. The limit was
1818 * i386_btop(round_page(etext)) - 1.
1820 gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1821 gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1823 gdt_segs[GPRIV_SEL].ssd_limit =
1824 atop(sizeof(struct privatespace) - 1);
1825 gdt_segs[GPRIV_SEL].ssd_base = (int) &CPU_prvspace[0];
1826 gdt_segs[GPROC0_SEL].ssd_base =
1827 (int) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1829 gd->mi.gd_prvspace = &CPU_prvspace[0];
1832 * Note: on both UP and SMP curthread must be set non-NULL
1833 * early in the boot sequence because the system assumes
1834 * that 'curthread' is never NULL.
1837 for (x = 0; x < NGDT; x++) {
1838 #ifdef BDE_DEBUGGER
1839 /* avoid overwriting db entries with APM ones */
1840 if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1841 continue;
1842 #endif
1843 ssdtosd(&gdt_segs[x], &gdt[x].sd);
1846 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1847 r_gdt.rd_base = (int) gdt;
1848 lgdt(&r_gdt);
1850 mi_gdinit(&gd->mi, 0);
1851 cpu_gdinit(gd, 0);
1852 lwkt_init_thread(&thread0, proc0paddr, LWKT_THREAD_STACK, 0, &gd->mi);
1853 lwkt_set_comm(&thread0, "thread0");
1854 proc0.p_addr = (void *)thread0.td_kstack;
1855 LIST_INIT(&proc0.p_lwps);
1856 LIST_INSERT_HEAD(&proc0.p_lwps, &proc0.p_lwp, lwp_list);
1857 proc0.p_lwp.lwp_thread = &thread0;
1858 proc0.p_lwp.lwp_proc = &proc0;
1859 proc0.p_usched = usched_init();
1860 proc0.p_lwp.lwp_cpumask = 0xFFFFFFFF;
1861 varsymset_init(&proc0.p_varsymset, NULL);
1862 thread0.td_flags |= TDF_RUNNING;
1863 thread0.td_proc = &proc0;
1864 thread0.td_lwp = &proc0.p_lwp;
1865 thread0.td_switch = cpu_heavy_switch; /* YYY eventually LWKT */
1866 safepri = TDPRI_MAX;
1868 /* make ldt memory segments */
1870 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it
1871 * should be spelled ...MAX_USER...
1873 ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1874 ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1875 for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1876 ssdtosd(&ldt_segs[x], &ldt[x].sd);
1878 _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1879 lldt(_default_ldt);
1880 gd->gd_currentldt = _default_ldt;
1881 /* spinlocks and the BGL */
1882 init_locks();
1885 * Setup the hardware exception table. Most exceptions use
1886 * SDT_SYS386TGT, known as a 'trap gate'. Trap gates leave
1887 * interrupts enabled. VM page faults use SDT_SYS386IGT, known as
1888 * an 'interrupt trap gate', which disables interrupts on entry,
1889 * in order to be able to poll the appropriate CRn register to
1890 * determine the fault address.
1892 for (x = 0; x < NIDT; x++) {
1893 #ifdef DEBUG_INTERRUPTS
1894 setidt(x, Xrsvdary[x], SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1895 #else
1896 setidt(x, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1897 #endif
1899 setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1900 setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1901 setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1902 setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1903 setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1904 setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1905 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1906 setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1907 setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1908 setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1909 setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1910 setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1911 setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1912 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1913 setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1914 setidt(15, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1915 setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1916 setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1917 setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1918 setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1919 setidt(0x80, &IDTVEC(int0x80_syscall),
1920 SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1922 r_idt.rd_limit = sizeof(idt0) - 1;
1923 r_idt.rd_base = (int) idt;
1924 lidt(&r_idt);
1927 * Initialize the console before we print anything out.
1929 cninit();
1931 if (metadata_missing)
1932 printf("WARNING: loader(8) metadata is missing!\n");
1934 #if NISA >0
1935 isa_defaultirq();
1936 #endif
1937 rand_initialize();
1939 #ifdef DDB
1940 kdb_init();
1941 if (boothowto & RB_KDB)
1942 Debugger("Boot flags requested debugger");
1943 #endif
1945 finishidentcpu(); /* Final stage of CPU initialization */
1946 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1947 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1948 initializecpu(); /* Initialize CPU registers */
1951 * make an initial tss so cpu can get interrupt stack on syscall!
1952 * The 16 bytes is to save room for a VM86 context.
1954 gd->gd_common_tss.tss_esp0 = (int) thread0.td_pcb - 16;
1955 gd->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1956 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1957 gd->gd_tss_gdt = &gdt[GPROC0_SEL].sd;
1958 gd->gd_common_tssd = *gd->gd_tss_gdt;
1959 gd->gd_common_tss.tss_ioopt = (sizeof gd->gd_common_tss) << 16;
1960 ltr(gsel_tss);
1962 dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1963 dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1964 dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1965 dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1966 dblfault_tss.tss_cr3 = (int)IdlePTD;
1967 dblfault_tss.tss_eip = (int) dblfault_handler;
1968 dblfault_tss.tss_eflags = PSL_KERNEL;
1969 dblfault_tss.tss_ds = dblfault_tss.tss_es =
1970 dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1971 dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1972 dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1973 dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1975 vm86_initialize();
1976 getmemsize(first);
1977 init_param2(physmem);
1979 /* now running on new page tables, configured,and u/iom is accessible */
1981 /* Map the message buffer. */
1982 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1983 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1985 msgbufinit(msgbufp, MSGBUF_SIZE);
1987 /* make a call gate to reenter kernel with */
1988 gdp = &ldt[LSYS5CALLS_SEL].gd;
1990 x = (int) &IDTVEC(syscall);
1991 gdp->gd_looffset = x++;
1992 gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1993 gdp->gd_stkcpy = 1;
1994 gdp->gd_type = SDT_SYS386CGT;
1995 gdp->gd_dpl = SEL_UPL;
1996 gdp->gd_p = 1;
1997 gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1999 /* XXX does this work? */
2000 ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2001 ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2003 /* transfer to user mode */
2005 _ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2006 _udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2008 /* setup proc 0's pcb */
2009 thread0.td_pcb->pcb_flags = 0;
2010 thread0.td_pcb->pcb_cr3 = (int)IdlePTD; /* should already be setup */
2011 thread0.td_pcb->pcb_ext = 0;
2012 proc0.p_lwp.lwp_md.md_regs = &proc0_tf;
2016 * Initialize machine-dependant portions of the global data structure.
2017 * Note that the global data area and cpu0's idlestack in the private
2018 * data space were allocated in locore.
2020 * Note: the idlethread's cpl is 0
2022 * WARNING! Called from early boot, 'mycpu' may not work yet.
2024 void
2025 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2027 if (cpu)
2028 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2030 lwkt_init_thread(&gd->mi.gd_idlethread,
2031 gd->mi.gd_prvspace->idlestack,
2032 sizeof(gd->mi.gd_prvspace->idlestack),
2033 TDF_MPSAFE, &gd->mi);
2034 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2035 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2036 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2037 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2041 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2043 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2044 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2045 return (TRUE);
2047 return (FALSE);
2050 struct globaldata *
2051 globaldata_find(int cpu)
2053 KKASSERT(cpu >= 0 && cpu < ncpus);
2054 return(&CPU_prvspace[cpu].mdglobaldata.mi);
2057 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2058 static void f00f_hack(void *unused);
2059 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2061 static void
2062 f00f_hack(void *unused)
2064 struct gate_descriptor *new_idt;
2065 vm_offset_t tmp;
2067 if (!has_f00f_bug)
2068 return;
2070 printf("Intel Pentium detected, installing workaround for F00F bug\n");
2072 r_idt.rd_limit = sizeof(idt0) - 1;
2074 tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2075 if (tmp == 0)
2076 panic("kmem_alloc returned 0");
2077 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2078 panic("kmem_alloc returned non-page-aligned memory");
2079 /* Put the first seven entries in the lower page */
2080 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2081 bcopy(idt, new_idt, sizeof(idt0));
2082 r_idt.rd_base = (int)new_idt;
2083 lidt(&r_idt);
2084 idt = new_idt;
2085 if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2086 VM_PROT_READ, FALSE) != KERN_SUCCESS)
2087 panic("vm_map_protect failed");
2088 return;
2090 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
2093 ptrace_set_pc(struct proc *p, unsigned long addr)
2095 p->p_md.md_regs->tf_eip = addr;
2096 return (0);
2100 ptrace_single_step(struct lwp *lp)
2102 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
2103 return (0);
2107 ptrace_read_u_check(struct proc *p, vm_offset_t addr, size_t len)
2109 vm_offset_t gap;
2111 if ((vm_offset_t) (addr + len) < addr)
2112 return EPERM;
2113 if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2114 return 0;
2116 gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2118 if ((vm_offset_t) addr < gap)
2119 return EPERM;
2120 if ((vm_offset_t) (addr + len) <=
2121 (vm_offset_t) (gap + sizeof(struct trapframe)))
2122 return 0;
2123 return EPERM;
2127 ptrace_write_u(struct proc *p, vm_offset_t off, long data)
2129 struct trapframe frame_copy;
2130 vm_offset_t min;
2131 struct trapframe *tp;
2134 * Privileged kernel state is scattered all over the user area.
2135 * Only allow write access to parts of regs and to fpregs.
2137 min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2138 if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2139 tp = p->p_md.md_regs;
2140 frame_copy = *tp;
2141 *(int *)((char *)&frame_copy + (off - min)) = data;
2142 if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2143 !CS_SECURE(frame_copy.tf_cs))
2144 return (EINVAL);
2145 *(int*)((char *)p->p_addr + off) = data;
2146 return (0);
2150 * The PCB is at the end of the user area YYY
2152 min = (char *)p->p_thread->td_pcb - (char *)p->p_addr;
2153 min += offsetof(struct pcb, pcb_save);
2154 if (off >= min && off <= min + sizeof(union savefpu) - sizeof(int)) {
2155 *(int*)((char *)p->p_addr + off) = data;
2156 return (0);
2158 return (EFAULT);
2162 fill_regs(struct lwp *lp, struct reg *regs)
2164 struct pcb *pcb;
2165 struct trapframe *tp;
2167 tp = lp->lwp_md.md_regs;
2168 regs->r_fs = tp->tf_fs;
2169 regs->r_es = tp->tf_es;
2170 regs->r_ds = tp->tf_ds;
2171 regs->r_edi = tp->tf_edi;
2172 regs->r_esi = tp->tf_esi;
2173 regs->r_ebp = tp->tf_ebp;
2174 regs->r_ebx = tp->tf_ebx;
2175 regs->r_edx = tp->tf_edx;
2176 regs->r_ecx = tp->tf_ecx;
2177 regs->r_eax = tp->tf_eax;
2178 regs->r_eip = tp->tf_eip;
2179 regs->r_cs = tp->tf_cs;
2180 regs->r_eflags = tp->tf_eflags;
2181 regs->r_esp = tp->tf_esp;
2182 regs->r_ss = tp->tf_ss;
2183 pcb = lp->lwp_thread->td_pcb;
2184 regs->r_gs = pcb->pcb_gs;
2185 return (0);
2189 set_regs(struct lwp *lp, struct reg *regs)
2191 struct pcb *pcb;
2192 struct trapframe *tp;
2194 tp = lp->lwp_md.md_regs;
2195 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2196 !CS_SECURE(regs->r_cs))
2197 return (EINVAL);
2198 tp->tf_fs = regs->r_fs;
2199 tp->tf_es = regs->r_es;
2200 tp->tf_ds = regs->r_ds;
2201 tp->tf_edi = regs->r_edi;
2202 tp->tf_esi = regs->r_esi;
2203 tp->tf_ebp = regs->r_ebp;
2204 tp->tf_ebx = regs->r_ebx;
2205 tp->tf_edx = regs->r_edx;
2206 tp->tf_ecx = regs->r_ecx;
2207 tp->tf_eax = regs->r_eax;
2208 tp->tf_eip = regs->r_eip;
2209 tp->tf_cs = regs->r_cs;
2210 tp->tf_eflags = regs->r_eflags;
2211 tp->tf_esp = regs->r_esp;
2212 tp->tf_ss = regs->r_ss;
2213 pcb = lp->lwp_thread->td_pcb;
2214 pcb->pcb_gs = regs->r_gs;
2215 return (0);
2218 #ifndef CPU_DISABLE_SSE
2219 static void
2220 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2222 struct env87 *penv_87 = &sv_87->sv_env;
2223 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2224 int i;
2226 /* FPU control/status */
2227 penv_87->en_cw = penv_xmm->en_cw;
2228 penv_87->en_sw = penv_xmm->en_sw;
2229 penv_87->en_tw = penv_xmm->en_tw;
2230 penv_87->en_fip = penv_xmm->en_fip;
2231 penv_87->en_fcs = penv_xmm->en_fcs;
2232 penv_87->en_opcode = penv_xmm->en_opcode;
2233 penv_87->en_foo = penv_xmm->en_foo;
2234 penv_87->en_fos = penv_xmm->en_fos;
2236 /* FPU registers */
2237 for (i = 0; i < 8; ++i)
2238 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2240 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2243 static void
2244 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2246 struct env87 *penv_87 = &sv_87->sv_env;
2247 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2248 int i;
2250 /* FPU control/status */
2251 penv_xmm->en_cw = penv_87->en_cw;
2252 penv_xmm->en_sw = penv_87->en_sw;
2253 penv_xmm->en_tw = penv_87->en_tw;
2254 penv_xmm->en_fip = penv_87->en_fip;
2255 penv_xmm->en_fcs = penv_87->en_fcs;
2256 penv_xmm->en_opcode = penv_87->en_opcode;
2257 penv_xmm->en_foo = penv_87->en_foo;
2258 penv_xmm->en_fos = penv_87->en_fos;
2260 /* FPU registers */
2261 for (i = 0; i < 8; ++i)
2262 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2264 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2266 #endif /* CPU_DISABLE_SSE */
2269 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2271 #ifndef CPU_DISABLE_SSE
2272 if (cpu_fxsr) {
2273 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2274 (struct save87 *)fpregs);
2275 return (0);
2277 #endif /* CPU_DISABLE_SSE */
2278 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2279 return (0);
2283 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2285 #ifndef CPU_DISABLE_SSE
2286 if (cpu_fxsr) {
2287 set_fpregs_xmm((struct save87 *)fpregs,
2288 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2289 return (0);
2291 #endif /* CPU_DISABLE_SSE */
2292 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2293 return (0);
2297 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2299 if (lp == NULL) {
2300 dbregs->dr0 = rdr0();
2301 dbregs->dr1 = rdr1();
2302 dbregs->dr2 = rdr2();
2303 dbregs->dr3 = rdr3();
2304 dbregs->dr4 = rdr4();
2305 dbregs->dr5 = rdr5();
2306 dbregs->dr6 = rdr6();
2307 dbregs->dr7 = rdr7();
2308 } else {
2309 struct pcb *pcb;
2311 pcb = lp->lwp_thread->td_pcb;
2312 dbregs->dr0 = pcb->pcb_dr0;
2313 dbregs->dr1 = pcb->pcb_dr1;
2314 dbregs->dr2 = pcb->pcb_dr2;
2315 dbregs->dr3 = pcb->pcb_dr3;
2316 dbregs->dr4 = 0;
2317 dbregs->dr5 = 0;
2318 dbregs->dr6 = pcb->pcb_dr6;
2319 dbregs->dr7 = pcb->pcb_dr7;
2321 return (0);
2325 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2327 if (lp == NULL) {
2328 load_dr0(dbregs->dr0);
2329 load_dr1(dbregs->dr1);
2330 load_dr2(dbregs->dr2);
2331 load_dr3(dbregs->dr3);
2332 load_dr4(dbregs->dr4);
2333 load_dr5(dbregs->dr5);
2334 load_dr6(dbregs->dr6);
2335 load_dr7(dbregs->dr7);
2336 } else {
2337 struct pcb *pcb;
2338 struct ucred *ucred;
2339 int i;
2340 uint32_t mask1, mask2;
2343 * Don't let an illegal value for dr7 get set. Specifically,
2344 * check for undefined settings. Setting these bit patterns
2345 * result in undefined behaviour and can lead to an unexpected
2346 * TRCTRAP.
2348 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2349 i++, mask1 <<= 2, mask2 <<= 2)
2350 if ((dbregs->dr7 & mask1) == mask2)
2351 return (EINVAL);
2353 pcb = lp->lwp_thread->td_pcb;
2354 ucred = lp->lwp_proc->p_ucred;
2357 * Don't let a process set a breakpoint that is not within the
2358 * process's address space. If a process could do this, it
2359 * could halt the system by setting a breakpoint in the kernel
2360 * (if ddb was enabled). Thus, we need to check to make sure
2361 * that no breakpoints are being enabled for addresses outside
2362 * process's address space, unless, perhaps, we were called by
2363 * uid 0.
2365 * XXX - what about when the watched area of the user's
2366 * address space is written into from within the kernel
2367 * ... wouldn't that still cause a breakpoint to be generated
2368 * from within kernel mode?
2371 if (suser_cred(ucred, 0) != 0) {
2372 if (dbregs->dr7 & 0x3) {
2373 /* dr0 is enabled */
2374 if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2375 return (EINVAL);
2378 if (dbregs->dr7 & (0x3<<2)) {
2379 /* dr1 is enabled */
2380 if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2381 return (EINVAL);
2384 if (dbregs->dr7 & (0x3<<4)) {
2385 /* dr2 is enabled */
2386 if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2387 return (EINVAL);
2390 if (dbregs->dr7 & (0x3<<6)) {
2391 /* dr3 is enabled */
2392 if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2393 return (EINVAL);
2397 pcb->pcb_dr0 = dbregs->dr0;
2398 pcb->pcb_dr1 = dbregs->dr1;
2399 pcb->pcb_dr2 = dbregs->dr2;
2400 pcb->pcb_dr3 = dbregs->dr3;
2401 pcb->pcb_dr6 = dbregs->dr6;
2402 pcb->pcb_dr7 = dbregs->dr7;
2404 pcb->pcb_flags |= PCB_DBREGS;
2407 return (0);
2411 * Return > 0 if a hardware breakpoint has been hit, and the
2412 * breakpoint was in user space. Return 0, otherwise.
2415 user_dbreg_trap(void)
2417 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2418 u_int32_t bp; /* breakpoint bits extracted from dr6 */
2419 int nbp; /* number of breakpoints that triggered */
2420 caddr_t addr[4]; /* breakpoint addresses */
2421 int i;
2423 dr7 = rdr7();
2424 if ((dr7 & 0x000000ff) == 0) {
2426 * all GE and LE bits in the dr7 register are zero,
2427 * thus the trap couldn't have been caused by the
2428 * hardware debug registers
2430 return 0;
2433 nbp = 0;
2434 dr6 = rdr6();
2435 bp = dr6 & 0x0000000f;
2437 if (!bp) {
2439 * None of the breakpoint bits are set meaning this
2440 * trap was not caused by any of the debug registers
2442 return 0;
2446 * at least one of the breakpoints were hit, check to see
2447 * which ones and if any of them are user space addresses
2450 if (bp & 0x01) {
2451 addr[nbp++] = (caddr_t)rdr0();
2453 if (bp & 0x02) {
2454 addr[nbp++] = (caddr_t)rdr1();
2456 if (bp & 0x04) {
2457 addr[nbp++] = (caddr_t)rdr2();
2459 if (bp & 0x08) {
2460 addr[nbp++] = (caddr_t)rdr3();
2463 for (i=0; i<nbp; i++) {
2464 if (addr[i] <
2465 (caddr_t)VM_MAXUSER_ADDRESS) {
2467 * addr[i] is in user space
2469 return nbp;
2474 * None of the breakpoints are in user space.
2476 return 0;
2480 #ifndef DDB
2481 void
2482 Debugger(const char *msg)
2484 printf("Debugger(\"%s\") called.\n", msg);
2486 #endif /* no DDB */
2488 #include <sys/disklabel.h>
2491 * Determine the size of the transfer, and make sure it is
2492 * within the boundaries of the partition. Adjust transfer
2493 * if needed, and signal errors or early completion.
2495 * On success a new bio layer is pushed with the translated
2496 * block number, and returned.
2498 struct bio *
2499 bounds_check_with_label(cdev_t dev, struct bio *bio,
2500 struct disklabel *lp, int wlabel)
2502 struct bio *nbio;
2503 struct buf *bp = bio->bio_buf;
2504 struct partition *p = lp->d_partitions + dkpart(dev);
2505 int labelsect = lp->d_partitions[0].p_offset;
2506 int maxsz = p->p_size,
2507 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2508 daddr_t blkno = (daddr_t)(bio->bio_offset >> DEV_BSHIFT);
2510 /* overwriting disk label ? */
2511 /* XXX should also protect bootstrap in first 8K */
2512 if (blkno + p->p_offset <= LABELSECTOR + labelsect &&
2513 #if LABELSECTOR != 0
2514 blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2515 #endif
2516 bp->b_cmd != BUF_CMD_READ && wlabel == 0) {
2517 bp->b_error = EROFS;
2518 goto error;
2521 #if defined(DOSBBSECTOR) && defined(notyet)
2522 /* overwriting master boot record? */
2523 if (blkno + p->p_offset <= DOSBBSECTOR &&
2524 bp->b_cmd != BUF_CMD_READ && wlabel == 0) {
2525 bp->b_error = EROFS;
2526 goto error;
2528 #endif
2531 * Check for out of bounds, EOF, and EOF clipping.
2533 if (bio->bio_offset < 0)
2534 goto bad;
2535 if (blkno + sz > maxsz) {
2537 * Past EOF or B_BNOCLIP flag was set, the request is bad.
2539 if (blkno > maxsz || (bp->b_flags & B_BNOCLIP))
2540 goto bad;
2543 * If exactly on EOF just complete the I/O with no bytes
2544 * transfered. B_INVAL must be set to throw away the
2545 * contents of the buffer. Otherwise clip b_bcount.
2547 if (blkno == maxsz) {
2548 bp->b_resid = bp->b_bcount;
2549 bp->b_flags |= B_INVAL;
2550 goto done;
2552 bp->b_bcount = (maxsz - blkno) << DEV_BSHIFT;
2554 nbio = push_bio(bio);
2555 nbio->bio_offset = bio->bio_offset + ((off_t)p->p_offset << DEV_BSHIFT);
2556 return (nbio);
2559 * The caller is responsible for calling biodone() on the passed bio
2560 * when we return NULL.
2562 bad:
2563 bp->b_error = EINVAL;
2564 error:
2565 bp->b_resid = bp->b_bcount;
2566 bp->b_flags |= B_ERROR | B_INVAL;
2567 done:
2568 return (NULL);
2571 #ifdef DDB
2574 * Provide inb() and outb() as functions. They are normally only
2575 * available as macros calling inlined functions, thus cannot be
2576 * called inside DDB.
2578 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2581 #undef inb
2582 #undef outb
2584 /* silence compiler warnings */
2585 u_char inb(u_int);
2586 void outb(u_int, u_char);
2588 u_char
2589 inb(u_int port)
2591 u_char data;
2593 * We use %%dx and not %1 here because i/o is done at %dx and not at
2594 * %edx, while gcc generates inferior code (movw instead of movl)
2595 * if we tell it to load (u_short) port.
2597 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2598 return (data);
2601 void
2602 outb(u_int port, u_char data)
2604 u_char al;
2606 * Use an unnecessary assignment to help gcc's register allocator.
2607 * This make a large difference for gcc-1.40 and a tiny difference
2608 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2609 * best results. gcc-2.6.0 can't handle this.
2611 al = data;
2612 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2615 #endif /* DDB */
2619 #include "opt_cpu.h"
2623 * initialize all the SMP locks
2626 /* critical region when masking or unmasking interupts */
2627 struct spinlock_deprecated imen_spinlock;
2629 /* Make FAST_INTR() routines sequential */
2630 struct spinlock_deprecated fast_intr_spinlock;
2632 /* critical region for old style disable_intr/enable_intr */
2633 struct spinlock_deprecated mpintr_spinlock;
2635 /* critical region around INTR() routines */
2636 struct spinlock_deprecated intr_spinlock;
2638 /* lock region used by kernel profiling */
2639 struct spinlock_deprecated mcount_spinlock;
2641 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2642 struct spinlock_deprecated com_spinlock;
2644 /* locks kernel printfs */
2645 struct spinlock_deprecated cons_spinlock;
2647 /* lock regions around the clock hardware */
2648 struct spinlock_deprecated clock_spinlock;
2650 /* lock around the MP rendezvous */
2651 struct spinlock_deprecated smp_rv_spinlock;
2653 static void
2654 init_locks(void)
2657 * mp_lock = 0; BSP already owns the MP lock
2660 * Get the initial mp_lock with a count of 1 for the BSP.
2661 * This uses a LOGICAL cpu ID, ie BSP == 0.
2663 #ifdef SMP
2664 cpu_get_initial_mplock();
2665 #endif
2666 /* DEPRECATED */
2667 spin_lock_init(&mcount_spinlock);
2668 spin_lock_init(&fast_intr_spinlock);
2669 spin_lock_init(&intr_spinlock);
2670 spin_lock_init(&mpintr_spinlock);
2671 spin_lock_init(&imen_spinlock);
2672 spin_lock_init(&smp_rv_spinlock);
2673 spin_lock_init(&com_spinlock);
2674 spin_lock_init(&clock_spinlock);
2675 spin_lock_init(&cons_spinlock);
2677 /* our token pool needs to work early */
2678 lwkt_token_pool_init();