drm: Define struct page and use it everywhere
[dragonfly.git] / sys / dev / drm / ttm / ttm_page_alloc.c
blob1ea4913858dc62fb7b576cbe3ea3de7ea6d31947
1 /*
2 * Copyright (c) Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors: Dave Airlie <airlied@redhat.com>
24 * Jerome Glisse <jglisse@redhat.com>
25 * Pauli Nieminen <suokkos@gmail.com>
28 * Copyright (c) 2013 The FreeBSD Foundation
29 * All rights reserved.
31 * Portions of this software were developed by Konstantin Belousov
32 * <kib@FreeBSD.org> under sponsorship from the FreeBSD Foundation.
34 * $FreeBSD: head/sys/dev/drm2/ttm/ttm_page_alloc.c 247849 2013-03-05 16:15:34Z kib $
37 /* simple list based uncached page pool
38 * - Pool collects resently freed pages for reuse
39 * - Use page->lru to keep a free list
40 * - doesn't track currently in use pages
43 #define pr_fmt(fmt) "[TTM] " fmt
45 #include <sys/eventhandler.h>
47 #include <drm/drmP.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
51 #ifdef TTM_HAS_AGP
52 #include <asm/agp.h>
53 #endif
55 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION 16
57 #define FREE_ALL_PAGES (~0U)
58 /* times are in msecs */
59 #define PAGE_FREE_INTERVAL 1000
61 /**
62 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
64 * @lock: Protects the shared pool from concurrnet access. Must be used with
65 * irqsave/irqrestore variants because pool allocator maybe called from
66 * delayed work.
67 * @fill_lock: Prevent concurrent calls to fill.
68 * @list: Pool of free uc/wc pages for fast reuse.
69 * @gfp_flags: Flags to pass for alloc_page.
70 * @npages: Number of pages in pool.
72 struct ttm_page_pool {
73 struct lock lock;
74 bool fill_lock;
75 bool dma32;
76 struct pglist list;
77 int ttm_page_alloc_flags;
78 unsigned npages;
79 char *name;
80 unsigned long nfrees;
81 unsigned long nrefills;
84 /**
85 * Limits for the pool. They are handled without locks because only place where
86 * they may change is in sysfs store. They won't have immediate effect anyway
87 * so forcing serialization to access them is pointless.
90 struct ttm_pool_opts {
91 unsigned alloc_size;
92 unsigned max_size;
93 unsigned small;
96 #define NUM_POOLS 4
98 /**
99 * struct ttm_pool_manager - Holds memory pools for fst allocation
101 * Manager is read only object for pool code so it doesn't need locking.
103 * @free_interval: minimum number of jiffies between freeing pages from pool.
104 * @page_alloc_inited: reference counting for pool allocation.
105 * @work: Work that is used to shrink the pool. Work is only run when there is
106 * some pages to free.
107 * @small_allocation: Limit in number of pages what is small allocation.
109 * @pools: All pool objects in use.
111 struct ttm_pool_manager {
112 unsigned int kobj_ref;
113 eventhandler_tag lowmem_handler;
114 struct ttm_pool_opts options;
116 union {
117 struct ttm_page_pool u_pools[NUM_POOLS];
118 struct _utag {
119 struct ttm_page_pool u_wc_pool;
120 struct ttm_page_pool u_uc_pool;
121 struct ttm_page_pool u_wc_pool_dma32;
122 struct ttm_page_pool u_uc_pool_dma32;
123 } _ut;
124 } _u;
127 #define pools _u.u_pools
128 #define wc_pool _u._ut.u_wc_pool
129 #define uc_pool _u._ut.u_uc_pool
130 #define wc_pool_dma32 _u._ut.u_wc_pool_dma32
131 #define uc_pool_dma32 _u._ut.u_uc_pool_dma32
133 static void
134 ttm_vm_page_free(struct page *p)
136 struct vm_page *m = (struct vm_page *)p;
138 KASSERT(m->object == NULL, ("ttm page %p is owned", m));
139 KASSERT(m->wire_count == 1, ("ttm lost wire %p", m));
140 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("ttm lost fictitious %p", m));
141 #if 0
142 KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("ttm got unmanaged %p", m));
143 m->oflags |= VPO_UNMANAGED;
144 #endif
145 m->flags &= ~PG_FICTITIOUS;
146 vm_page_busy_wait(m, FALSE, "ttmvpf");
147 vm_page_wakeup(m);
148 vm_page_free_contig(m, PAGE_SIZE);
150 vm_page_unwire(m, 0);
151 vm_page_free(m);
155 static vm_memattr_t
156 ttm_caching_state_to_vm(enum ttm_caching_state cstate)
159 switch (cstate) {
160 case tt_uncached:
161 return (VM_MEMATTR_UNCACHEABLE);
162 case tt_wc:
163 return (VM_MEMATTR_WRITE_COMBINING);
164 case tt_cached:
165 return (VM_MEMATTR_WRITE_BACK);
167 panic("caching state %d\n", cstate);
170 static void ttm_pool_kobj_release(struct ttm_pool_manager *m)
172 kfree(m);
175 #if 0
176 /* XXXKIB sysctl */
177 static ssize_t ttm_pool_store(struct ttm_pool_manager *m,
178 struct attribute *attr, const char *buffer, size_t size)
180 int chars;
181 unsigned val;
182 chars = sscanf(buffer, "%u", &val);
183 if (chars == 0)
184 return size;
186 /* Convert kb to number of pages */
187 val = val / (PAGE_SIZE >> 10);
189 if (attr == &ttm_page_pool_max)
190 m->options.max_size = val;
191 else if (attr == &ttm_page_pool_small)
192 m->options.small = val;
193 else if (attr == &ttm_page_pool_alloc_size) {
194 if (val > NUM_PAGES_TO_ALLOC*8) {
195 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
196 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
197 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
198 return size;
199 } else if (val > NUM_PAGES_TO_ALLOC) {
200 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
201 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
203 m->options.alloc_size = val;
206 return size;
209 static ssize_t ttm_pool_show(struct ttm_pool_manager *m,
210 struct attribute *attr, char *buffer)
212 unsigned val = 0;
214 if (attr == &ttm_page_pool_max)
215 val = m->options.max_size;
216 else if (attr == &ttm_page_pool_small)
217 val = m->options.small;
218 else if (attr == &ttm_page_pool_alloc_size)
219 val = m->options.alloc_size;
221 val = val * (PAGE_SIZE >> 10);
223 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
225 #endif
227 static struct ttm_pool_manager *_manager;
229 static int set_pages_array_wb(struct page **pages, int addrinarray)
231 vm_page_t m;
232 int i;
234 for (i = 0; i < addrinarray; i++) {
235 m = (struct vm_page *)pages[i];
236 #ifdef TTM_HAS_AGP
237 unmap_page_from_agp(pages[i]);
238 #endif
239 pmap_page_set_memattr(m, VM_MEMATTR_WRITE_BACK);
241 return 0;
244 static int set_pages_array_wc(struct page **pages, int addrinarray)
246 vm_page_t m;
247 int i;
249 for (i = 0; i < addrinarray; i++) {
250 m = (struct vm_page *)pages[i];
251 #ifdef TTM_HAS_AGP
252 map_page_into_agp(pages[i]);
253 #endif
254 pmap_page_set_memattr(m, VM_MEMATTR_WRITE_COMBINING);
256 return 0;
259 static int set_pages_array_uc(struct page **pages, int addrinarray)
261 vm_page_t m;
262 int i;
264 for (i = 0; i < addrinarray; i++) {
265 m = (struct vm_page *)pages[i];
266 #ifdef TTM_HAS_AGP
267 map_page_into_agp(pages[i]);
268 #endif
269 pmap_page_set_memattr(m, VM_MEMATTR_UNCACHEABLE);
271 return 0;
275 * Select the right pool or requested caching state and ttm flags. */
276 static struct ttm_page_pool *ttm_get_pool(int flags,
277 enum ttm_caching_state cstate)
279 int pool_index;
281 if (cstate == tt_cached)
282 return NULL;
284 if (cstate == tt_wc)
285 pool_index = 0x0;
286 else
287 pool_index = 0x1;
289 if (flags & TTM_PAGE_FLAG_DMA32)
290 pool_index |= 0x2;
292 return &_manager->pools[pool_index];
295 /* set memory back to wb and free the pages. */
296 static void ttm_pages_put(struct page *pages[], unsigned npages)
298 unsigned i;
300 /* Our VM handles vm memattr automatically on the page free. */
301 if (set_pages_array_wb(pages, npages))
302 pr_err("Failed to set %d pages to wb!\n", npages);
303 for (i = 0; i < npages; ++i)
304 ttm_vm_page_free(pages[i]);
307 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
308 unsigned freed_pages)
310 pool->npages -= freed_pages;
311 pool->nfrees += freed_pages;
315 * Free pages from pool.
317 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
318 * number of pages in one go.
320 * @pool: to free the pages from
321 * @free_all: If set to true will free all pages in pool
323 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free)
325 vm_page_t p, p1;
326 struct page **pages_to_free;
327 unsigned freed_pages = 0,
328 npages_to_free = nr_free;
329 unsigned i;
331 if (NUM_PAGES_TO_ALLOC < nr_free)
332 npages_to_free = NUM_PAGES_TO_ALLOC;
334 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
335 M_TEMP, M_WAITOK | M_ZERO);
337 restart:
338 lockmgr(&pool->lock, LK_EXCLUSIVE);
340 TAILQ_FOREACH_REVERSE_MUTABLE(p, &pool->list, pglist, pageq, p1) {
341 if (freed_pages >= npages_to_free)
342 break;
344 pages_to_free[freed_pages++] = (struct page *)p;
345 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
346 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
347 /* remove range of pages from the pool */
348 for (i = 0; i < freed_pages; i++)
349 TAILQ_REMOVE(&pool->list, (struct vm_page *)pages_to_free[i], pageq);
351 ttm_pool_update_free_locked(pool, freed_pages);
353 * Because changing page caching is costly
354 * we unlock the pool to prevent stalling.
356 lockmgr(&pool->lock, LK_RELEASE);
358 ttm_pages_put(pages_to_free, freed_pages);
359 if (likely(nr_free != FREE_ALL_PAGES))
360 nr_free -= freed_pages;
362 if (NUM_PAGES_TO_ALLOC >= nr_free)
363 npages_to_free = nr_free;
364 else
365 npages_to_free = NUM_PAGES_TO_ALLOC;
367 freed_pages = 0;
369 /* free all so restart the processing */
370 if (nr_free)
371 goto restart;
373 /* Not allowed to fall through or break because
374 * following context is inside spinlock while we are
375 * outside here.
377 goto out;
382 /* remove range of pages from the pool */
383 if (freed_pages) {
384 for (i = 0; i < freed_pages; i++)
385 TAILQ_REMOVE(&pool->list, (struct vm_page *)pages_to_free[i], pageq);
387 ttm_pool_update_free_locked(pool, freed_pages);
388 nr_free -= freed_pages;
391 lockmgr(&pool->lock, LK_RELEASE);
393 if (freed_pages)
394 ttm_pages_put(pages_to_free, freed_pages);
395 out:
396 drm_free(pages_to_free, M_TEMP);
397 return nr_free;
400 /* Get good estimation how many pages are free in pools */
401 static int ttm_pool_get_num_unused_pages(void)
403 unsigned i;
404 int total = 0;
405 for (i = 0; i < NUM_POOLS; ++i)
406 total += _manager->pools[i].npages;
408 return total;
412 * Callback for mm to request pool to reduce number of page held.
414 static int ttm_pool_mm_shrink(void *arg)
416 static unsigned int start_pool = 0;
417 unsigned i;
418 unsigned pool_offset = atomic_fetchadd_int(&start_pool, 1);
419 struct ttm_page_pool *pool;
420 int shrink_pages = 100; /* XXXKIB */
422 pool_offset = pool_offset % NUM_POOLS;
423 /* select start pool in round robin fashion */
424 for (i = 0; i < NUM_POOLS; ++i) {
425 unsigned nr_free = shrink_pages;
426 if (shrink_pages == 0)
427 break;
428 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
429 shrink_pages = ttm_page_pool_free(pool, nr_free);
431 /* return estimated number of unused pages in pool */
432 return ttm_pool_get_num_unused_pages();
435 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
438 manager->lowmem_handler = EVENTHANDLER_REGISTER(vm_lowmem,
439 ttm_pool_mm_shrink, manager, EVENTHANDLER_PRI_ANY);
442 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
445 EVENTHANDLER_DEREGISTER(vm_lowmem, manager->lowmem_handler);
448 static int ttm_set_pages_caching(struct page **pages,
449 enum ttm_caching_state cstate, unsigned cpages)
451 int r = 0;
452 /* Set page caching */
453 switch (cstate) {
454 case tt_uncached:
455 r = set_pages_array_uc(pages, cpages);
456 if (r)
457 pr_err("Failed to set %d pages to uc!\n", cpages);
458 break;
459 case tt_wc:
460 r = set_pages_array_wc(pages, cpages);
461 if (r)
462 pr_err("Failed to set %d pages to wc!\n", cpages);
463 break;
464 default:
465 break;
467 return r;
471 * Free pages the pages that failed to change the caching state. If there is
472 * any pages that have changed their caching state already put them to the
473 * pool.
475 static void ttm_handle_caching_state_failure(struct pglist *pages,
476 int ttm_flags, enum ttm_caching_state cstate,
477 struct page **failed_pages, unsigned cpages)
479 unsigned i;
480 /* Failed pages have to be freed */
481 for (i = 0; i < cpages; ++i) {
482 TAILQ_REMOVE(pages, (struct vm_page *)failed_pages[i], pageq);
483 ttm_vm_page_free(failed_pages[i]);
488 * Allocate new pages with correct caching.
490 * This function is reentrant if caller updates count depending on number of
491 * pages returned in pages array.
493 static int ttm_alloc_new_pages(struct pglist *pages, int ttm_alloc_flags,
494 int ttm_flags, enum ttm_caching_state cstate, unsigned count)
496 struct page **caching_array;
497 struct vm_page *p;
498 int r = 0;
499 unsigned i, cpages, aflags;
500 unsigned max_cpages = min(count,
501 (unsigned)(PAGE_SIZE/sizeof(vm_page_t)));
503 aflags = VM_ALLOC_NORMAL |
504 ((ttm_alloc_flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ?
505 VM_ALLOC_ZERO : 0);
507 /* allocate array for page caching change */
508 caching_array = kmalloc(max_cpages * sizeof(vm_page_t), M_TEMP,
509 M_WAITOK | M_ZERO);
511 for (i = 0, cpages = 0; i < count; ++i) {
512 p = vm_page_alloc_contig(0,
513 (ttm_alloc_flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff :
514 VM_MAX_ADDRESS, PAGE_SIZE, 0,
515 1*PAGE_SIZE, ttm_caching_state_to_vm(cstate));
516 if (!p) {
517 pr_err("Unable to get page %u\n", i);
519 /* store already allocated pages in the pool after
520 * setting the caching state */
521 if (cpages) {
522 r = ttm_set_pages_caching(caching_array,
523 cstate, cpages);
524 if (r)
525 ttm_handle_caching_state_failure(pages,
526 ttm_flags, cstate,
527 caching_array, cpages);
529 r = -ENOMEM;
530 goto out;
532 #if 0
533 p->oflags &= ~VPO_UNMANAGED;
534 #endif
535 p->flags |= PG_FICTITIOUS;
537 #ifdef CONFIG_HIGHMEM /* KIB: nop */
538 /* gfp flags of highmem page should never be dma32 so we
539 * we should be fine in such case
541 if (!PageHighMem(p))
542 #endif
544 caching_array[cpages++] = (struct page *)p;
545 if (cpages == max_cpages) {
547 r = ttm_set_pages_caching(caching_array,
548 cstate, cpages);
549 if (r) {
550 ttm_handle_caching_state_failure(pages,
551 ttm_flags, cstate,
552 caching_array, cpages);
553 goto out;
555 cpages = 0;
559 TAILQ_INSERT_HEAD(pages, p, pageq);
562 if (cpages) {
563 r = ttm_set_pages_caching(caching_array, cstate, cpages);
564 if (r)
565 ttm_handle_caching_state_failure(pages,
566 ttm_flags, cstate,
567 caching_array, cpages);
569 out:
570 drm_free(caching_array, M_TEMP);
572 return r;
576 * Fill the given pool if there aren't enough pages and the requested number of
577 * pages is small.
579 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
580 int ttm_flags, enum ttm_caching_state cstate, unsigned count)
582 vm_page_t p;
583 int r;
584 unsigned cpages = 0;
586 * Only allow one pool fill operation at a time.
587 * If pool doesn't have enough pages for the allocation new pages are
588 * allocated from outside of pool.
590 if (pool->fill_lock)
591 return;
593 pool->fill_lock = true;
595 /* If allocation request is small and there are not enough
596 * pages in a pool we fill the pool up first. */
597 if (count < _manager->options.small
598 && count > pool->npages) {
599 struct pglist new_pages;
600 unsigned alloc_size = _manager->options.alloc_size;
603 * Can't change page caching if in irqsave context. We have to
604 * drop the pool->lock.
606 lockmgr(&pool->lock, LK_RELEASE);
608 TAILQ_INIT(&new_pages);
609 r = ttm_alloc_new_pages(&new_pages, pool->ttm_page_alloc_flags,
610 ttm_flags, cstate, alloc_size);
611 lockmgr(&pool->lock, LK_EXCLUSIVE);
613 if (!r) {
614 TAILQ_CONCAT(&pool->list, &new_pages, pageq);
615 ++pool->nrefills;
616 pool->npages += alloc_size;
617 } else {
618 pr_err("Failed to fill pool (%p)\n", pool);
619 /* If we have any pages left put them to the pool. */
620 TAILQ_FOREACH(p, &pool->list, pageq) {
621 ++cpages;
623 TAILQ_CONCAT(&pool->list, &new_pages, pageq);
624 pool->npages += cpages;
628 pool->fill_lock = false;
632 * Cut 'count' number of pages from the pool and put them on the return list.
634 * @return count of pages still required to fulfill the request.
636 static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
637 struct pglist *pages,
638 int ttm_flags,
639 enum ttm_caching_state cstate,
640 unsigned count)
642 vm_page_t p;
643 unsigned i;
645 lockmgr(&pool->lock, LK_EXCLUSIVE);
646 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count);
648 if (count >= pool->npages) {
649 /* take all pages from the pool */
650 TAILQ_CONCAT(pages, &pool->list, pageq);
651 count -= pool->npages;
652 pool->npages = 0;
653 goto out;
655 for (i = 0; i < count; i++) {
656 p = TAILQ_FIRST(&pool->list);
657 TAILQ_REMOVE(&pool->list, p, pageq);
658 TAILQ_INSERT_TAIL(pages, p, pageq);
660 pool->npages -= count;
661 count = 0;
662 out:
663 lockmgr(&pool->lock, LK_RELEASE);
664 return count;
667 /* Put all pages in pages list to correct pool to wait for reuse */
668 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
669 enum ttm_caching_state cstate)
671 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
672 unsigned i;
673 struct vm_page *page;
675 if (pool == NULL) {
676 /* No pool for this memory type so free the pages */
677 for (i = 0; i < npages; i++) {
678 if (pages[i]) {
679 ttm_vm_page_free(pages[i]);
680 pages[i] = NULL;
683 return;
686 lockmgr(&pool->lock, LK_EXCLUSIVE);
687 for (i = 0; i < npages; i++) {
688 if (pages[i]) {
689 page = (struct vm_page *)pages[i];
690 TAILQ_INSERT_TAIL(&pool->list, page, pageq);
691 pages[i] = NULL;
692 pool->npages++;
695 /* Check that we don't go over the pool limit */
696 npages = 0;
697 if (pool->npages > _manager->options.max_size) {
698 npages = pool->npages - _manager->options.max_size;
699 /* free at least NUM_PAGES_TO_ALLOC number of pages
700 * to reduce calls to set_memory_wb */
701 if (npages < NUM_PAGES_TO_ALLOC)
702 npages = NUM_PAGES_TO_ALLOC;
704 lockmgr(&pool->lock, LK_RELEASE);
705 if (npages)
706 ttm_page_pool_free(pool, npages);
710 * On success pages list will hold count number of correctly
711 * cached pages.
713 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
714 enum ttm_caching_state cstate)
716 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
717 struct pglist plist;
718 struct vm_page *p = NULL;
719 int gfp_flags, aflags;
720 unsigned count;
721 int r;
723 aflags = VM_ALLOC_NORMAL |
724 ((flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ? VM_ALLOC_ZERO : 0);
726 /* No pool for cached pages */
727 if (pool == NULL) {
728 for (r = 0; r < npages; ++r) {
729 p = vm_page_alloc_contig(0,
730 (flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff :
731 VM_MAX_ADDRESS, PAGE_SIZE,
732 0, 1*PAGE_SIZE, ttm_caching_state_to_vm(cstate));
733 if (!p) {
734 pr_err("Unable to allocate page\n");
735 return -ENOMEM;
737 #if 0
738 p->oflags &= ~VPO_UNMANAGED;
739 #endif
740 p->flags |= PG_FICTITIOUS;
741 pages[r] = (struct page *)p;
743 return 0;
746 /* combine zero flag to pool flags */
747 gfp_flags = flags | pool->ttm_page_alloc_flags;
749 /* First we take pages from the pool */
750 TAILQ_INIT(&plist);
751 npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
752 count = 0;
753 TAILQ_FOREACH(p, &plist, pageq) {
754 pages[count++] = (struct page *)p;
757 /* clear the pages coming from the pool if requested */
758 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
759 TAILQ_FOREACH(p, &plist, pageq) {
760 pmap_zero_page(VM_PAGE_TO_PHYS(p));
764 /* If pool didn't have enough pages allocate new one. */
765 if (npages > 0) {
766 /* ttm_alloc_new_pages doesn't reference pool so we can run
767 * multiple requests in parallel.
769 TAILQ_INIT(&plist);
770 r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate,
771 npages);
772 TAILQ_FOREACH(p, &plist, pageq) {
773 pages[count++] = (struct page *)p;
775 if (r) {
776 /* If there is any pages in the list put them back to
777 * the pool. */
778 pr_err("Failed to allocate extra pages for large request\n");
779 ttm_put_pages(pages, count, flags, cstate);
780 return r;
784 return 0;
787 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
788 char *name)
790 lockinit(&pool->lock, "ttmpool", 0, LK_CANRECURSE);
791 pool->fill_lock = false;
792 TAILQ_INIT(&pool->list);
793 pool->npages = pool->nfrees = 0;
794 pool->ttm_page_alloc_flags = flags;
795 pool->name = name;
798 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
800 WARN_ON(_manager);
802 pr_info("Initializing pool allocator\n");
804 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
806 ttm_page_pool_init_locked(&_manager->wc_pool, 0, "wc");
807 ttm_page_pool_init_locked(&_manager->uc_pool, 0, "uc");
808 ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
809 TTM_PAGE_FLAG_DMA32, "wc dma");
810 ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
811 TTM_PAGE_FLAG_DMA32, "uc dma");
813 _manager->options.max_size = max_pages;
814 _manager->options.small = SMALL_ALLOCATION;
815 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
817 refcount_init(&_manager->kobj_ref, 1);
818 ttm_pool_mm_shrink_init(_manager);
820 return 0;
823 void ttm_page_alloc_fini(void)
825 int i;
827 pr_info("Finalizing pool allocator\n");
828 ttm_pool_mm_shrink_fini(_manager);
830 for (i = 0; i < NUM_POOLS; ++i)
831 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES);
833 if (refcount_release(&_manager->kobj_ref))
834 ttm_pool_kobj_release(_manager);
835 _manager = NULL;
838 int ttm_pool_populate(struct ttm_tt *ttm)
840 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
841 unsigned i;
842 int ret;
844 if (ttm->state != tt_unpopulated)
845 return 0;
847 for (i = 0; i < ttm->num_pages; ++i) {
848 ret = ttm_get_pages(&ttm->pages[i], 1,
849 ttm->page_flags,
850 ttm->caching_state);
851 if (ret != 0) {
852 ttm_pool_unpopulate(ttm);
853 return -ENOMEM;
856 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
857 false, false);
858 if (unlikely(ret != 0)) {
859 ttm_pool_unpopulate(ttm);
860 return -ENOMEM;
864 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
865 ret = ttm_tt_swapin(ttm);
866 if (unlikely(ret != 0)) {
867 ttm_pool_unpopulate(ttm);
868 return ret;
872 ttm->state = tt_unbound;
873 return 0;
876 void ttm_pool_unpopulate(struct ttm_tt *ttm)
878 unsigned i;
880 for (i = 0; i < ttm->num_pages; ++i) {
881 if (ttm->pages[i]) {
882 ttm_mem_global_free_page(ttm->glob->mem_glob,
883 ttm->pages[i]);
884 ttm_put_pages(&ttm->pages[i], 1,
885 ttm->page_flags,
886 ttm->caching_state);
889 ttm->state = tt_unpopulated;
892 #if 0
893 /* XXXKIB sysctl */
894 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
896 struct ttm_page_pool *p;
897 unsigned i;
898 char *h[] = {"pool", "refills", "pages freed", "size"};
899 if (!_manager) {
900 seq_printf(m, "No pool allocator running.\n");
901 return 0;
903 seq_printf(m, "%6s %12s %13s %8s\n",
904 h[0], h[1], h[2], h[3]);
905 for (i = 0; i < NUM_POOLS; ++i) {
906 p = &_manager->pools[i];
908 seq_printf(m, "%6s %12ld %13ld %8d\n",
909 p->name, p->nrefills,
910 p->nfrees, p->npages);
912 return 0;
914 #endif