drm: Define struct page and use it everywhere
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.h
blob40d784ad21be7ea6d91161c9901a1b58e1f6e554
1 /*
2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
37 struct drm_i915_file_private;
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42 typedef uint64_t gen8_ppgtt_pdpe_t;
43 typedef uint64_t gen8_ppgtt_pml4e_t;
45 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
47 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
48 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
49 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
51 #define GEN6_PTE_CACHE_LLC (2 << 1)
52 #define GEN6_PTE_UNCACHED (1 << 1)
53 #define GEN6_PTE_VALID (1 << 0)
55 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
56 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
57 #define I915_PDES 512
58 #define I915_PDE_MASK (I915_PDES - 1)
59 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
61 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
62 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
63 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
64 #define GEN6_PDE_SHIFT 22
65 #define GEN6_PDE_VALID (1 << 0)
67 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
69 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
70 #define BYT_PTE_WRITEABLE (1 << 1)
72 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
73 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
75 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
76 (((bits) & 0x8) << (11 - 3)))
77 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
78 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
79 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
80 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
81 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
82 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
83 #define HSW_PTE_UNCACHED (0)
84 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
85 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
87 /* GEN8 legacy style address is defined as a 3 level page table:
88 * 31:30 | 29:21 | 20:12 | 11:0
89 * PDPE | PDE | PTE | offset
90 * The difference as compared to normal x86 3 level page table is the PDPEs are
91 * programmed via register.
93 * GEN8 48b legacy style address is defined as a 4 level page table:
94 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
95 * PML4E | PDPE | PDE | PTE | offset
97 #define GEN8_PML4ES_PER_PML4 512
98 #define GEN8_PML4E_SHIFT 39
99 #define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
100 #define GEN8_PDPE_SHIFT 30
101 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
102 * tables */
103 #define GEN8_PDPE_MASK 0x1ff
104 #define GEN8_PDE_SHIFT 21
105 #define GEN8_PDE_MASK 0x1ff
106 #define GEN8_PTE_SHIFT 12
107 #define GEN8_PTE_MASK 0x1ff
108 #define GEN8_LEGACY_PDPES 4
109 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
111 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
112 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
114 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
115 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
116 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
117 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
119 #define CHV_PPAT_SNOOP (1<<6)
120 #define GEN8_PPAT_AGE(x) (x<<4)
121 #define GEN8_PPAT_LLCeLLC (3<<2)
122 #define GEN8_PPAT_LLCELLC (2<<2)
123 #define GEN8_PPAT_LLC (1<<2)
124 #define GEN8_PPAT_WB (3<<0)
125 #define GEN8_PPAT_WT (2<<0)
126 #define GEN8_PPAT_WC (1<<0)
127 #define GEN8_PPAT_UC (0<<0)
128 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
129 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
131 enum i915_ggtt_view_type {
132 I915_GGTT_VIEW_NORMAL = 0,
133 I915_GGTT_VIEW_ROTATED,
134 I915_GGTT_VIEW_PARTIAL,
137 struct intel_rotation_info {
138 unsigned int uv_offset;
139 uint32_t pixel_format;
140 unsigned int uv_start_page;
141 struct {
142 /* tiles */
143 unsigned int width, height;
144 } plane[2];
147 struct i915_ggtt_view {
148 enum i915_ggtt_view_type type;
150 union {
151 struct {
152 u64 offset;
153 unsigned int size;
154 } partial;
155 struct intel_rotation_info rotated;
156 } params;
158 struct sg_table *pages;
161 extern const struct i915_ggtt_view i915_ggtt_view_normal;
162 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
164 enum i915_cache_level;
167 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
168 * VMA's presence cannot be guaranteed before binding, or after unbinding the
169 * object into/from the address space.
171 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
172 * will always be <= an objects lifetime. So object refcounting should cover us.
174 struct i915_vma {
175 struct drm_mm_node node;
176 struct drm_i915_gem_object *obj;
177 struct i915_address_space *vm;
179 /** Flags and address space this VMA is bound to */
180 #define GLOBAL_BIND (1<<0)
181 #define LOCAL_BIND (1<<1)
182 unsigned int bound : 4;
183 bool is_ggtt : 1;
186 * Support different GGTT views into the same object.
187 * This means there can be multiple VMA mappings per object and per VM.
188 * i915_ggtt_view_type is used to distinguish between those entries.
189 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
190 * assumed in GEM functions which take no ggtt view parameter.
192 struct i915_ggtt_view ggtt_view;
194 /** This object's place on the active/inactive lists */
195 struct list_head vm_link;
197 struct list_head obj_link; /* Link in the object's VMA list */
199 /** This vma's place in the batchbuffer or on the eviction list */
200 struct list_head exec_list;
203 * Used for performing relocations during execbuffer insertion.
205 struct hlist_node exec_node;
206 unsigned long exec_handle;
207 struct drm_i915_gem_exec_object2 *exec_entry;
210 * How many users have pinned this object in GTT space. The following
211 * users can each hold at most one reference: pwrite/pread, execbuffer
212 * (objects are not allowed multiple times for the same batchbuffer),
213 * and the framebuffer code. When switching/pageflipping, the
214 * framebuffer code has at most two buffers pinned per crtc.
216 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
217 * bits with absolutely no headroom. So use 4 bits. */
218 unsigned int pin_count:4;
219 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
222 struct i915_page_dma {
223 struct page *page;
224 union {
225 dma_addr_t daddr;
227 /* For gen6/gen7 only. This is the offset in the GGTT
228 * where the page directory entries for PPGTT begin
230 uint32_t ggtt_offset;
234 #define px_base(px) (&(px)->base)
235 #define px_page(px) (px_base(px)->page)
236 #define px_dma(px) (px_base(px)->daddr)
238 struct i915_page_scratch {
239 struct i915_page_dma base;
242 struct i915_page_table {
243 struct i915_page_dma base;
245 unsigned long *used_ptes;
248 struct i915_page_directory {
249 struct i915_page_dma base;
251 unsigned long *used_pdes;
252 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
255 struct i915_page_directory_pointer {
256 struct i915_page_dma base;
258 unsigned long *used_pdpes;
259 struct i915_page_directory **page_directory;
262 struct i915_pml4 {
263 struct i915_page_dma base;
265 DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
266 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
269 struct i915_address_space {
270 struct drm_mm mm;
271 struct drm_device *dev;
272 struct list_head global_link;
273 u64 start; /* Start offset always 0 for dri2 */
274 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
276 bool is_ggtt;
278 struct i915_page_scratch *scratch_page;
279 struct i915_page_table *scratch_pt;
280 struct i915_page_directory *scratch_pd;
281 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
284 * List of objects currently involved in rendering.
286 * Includes buffers having the contents of their GPU caches
287 * flushed, not necessarily primitives. last_read_req
288 * represents when the rendering involved will be completed.
290 * A reference is held on the buffer while on this list.
292 struct list_head active_list;
295 * LRU list of objects which are not in the ringbuffer and
296 * are ready to unbind, but are still in the GTT.
298 * last_read_req is NULL while an object is in this list.
300 * A reference is not held on the buffer while on this list,
301 * as merely being GTT-bound shouldn't prevent its being
302 * freed, and we'll pull it off the list in the free path.
304 struct list_head inactive_list;
306 /* FIXME: Need a more generic return type */
307 gen6_pte_t (*pte_encode)(dma_addr_t addr,
308 enum i915_cache_level level,
309 bool valid, u32 flags); /* Create a valid PTE */
310 /* flags for pte_encode */
311 #define PTE_READ_ONLY (1<<0)
312 int (*allocate_va_range)(struct i915_address_space *vm,
313 uint64_t start,
314 uint64_t length);
315 void (*clear_range)(struct i915_address_space *vm,
316 uint64_t start,
317 uint64_t length,
318 bool use_scratch);
319 void (*insert_entries)(struct i915_address_space *vm,
320 struct sg_table *st,
321 uint64_t start,
322 enum i915_cache_level cache_level, u32 flags);
323 void (*cleanup)(struct i915_address_space *vm);
324 /** Unmap an object from an address space. This usually consists of
325 * setting the valid PTE entries to a reserved scratch page. */
326 void (*unbind_vma)(struct i915_vma *vma);
327 /* Map an object into an address space with the given cache flags. */
328 int (*bind_vma)(struct i915_vma *vma,
329 enum i915_cache_level cache_level,
330 u32 flags);
333 #define i915_is_ggtt(V) ((V)->is_ggtt)
335 /* The Graphics Translation Table is the way in which GEN hardware translates a
336 * Graphics Virtual Address into a Physical Address. In addition to the normal
337 * collateral associated with any va->pa translations GEN hardware also has a
338 * portion of the GTT which can be mapped by the CPU and remain both coherent
339 * and correct (in cases like swizzling). That region is referred to as GMADR in
340 * the spec.
342 struct i915_ggtt {
343 struct i915_address_space base;
345 size_t stolen_size; /* Total size of stolen memory */
346 size_t stolen_usable_size; /* Total size minus BIOS reserved */
347 size_t stolen_reserved_base;
348 size_t stolen_reserved_size;
349 size_t size; /* Total size of Global GTT */
350 u64 mappable_end; /* End offset that we can CPU map */
351 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
352 phys_addr_t mappable_base; /* PA of our GMADR */
354 /** "Graphics Stolen Memory" holds the global PTEs */
355 void __iomem *gsm;
357 bool do_idle_maps;
359 int mtrr;
361 int (*probe)(struct i915_ggtt *ggtt);
364 struct i915_hw_ppgtt {
365 struct i915_address_space base;
366 struct kref ref;
367 struct drm_mm_node node;
368 unsigned long pd_dirty_rings;
369 union {
370 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
371 struct i915_page_directory_pointer pdp; /* GEN8+ */
372 struct i915_page_directory pd; /* GEN6-7 */
375 struct drm_i915_file_private *file_priv;
377 gen6_pte_t __iomem *pd_addr;
379 int (*enable)(struct i915_hw_ppgtt *ppgtt);
380 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
381 struct drm_i915_gem_request *req);
382 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
385 /* For each pde iterates over every pde between from start until start + length.
386 * If start, and start+length are not perfectly divisible, the macro will round
387 * down, and up as needed. The macro modifies pde, start, and length. Dev is
388 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
389 * and length = 2G effectively iterates over every PDE in the system.
391 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
393 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
394 for (iter = gen6_pde_index(start); \
395 length > 0 && iter < I915_PDES ? \
396 (pt = (pd)->page_table[iter]), 1 : 0; \
397 iter++, \
398 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
399 temp = min_t(unsigned, temp, length), \
400 start += temp, length -= temp)
402 #define gen6_for_all_pdes(pt, ppgtt, iter) \
403 for (iter = 0; \
404 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
405 iter++)
407 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
409 const uint32_t mask = NUM_PTE(pde_shift) - 1;
411 return (address >> PAGE_SHIFT) & mask;
414 /* Helper to counts the number of PTEs within the given length. This count
415 * does not cross a page table boundary, so the max value would be
416 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
418 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
419 uint32_t pde_shift)
421 const uint64_t mask = ~((1ULL << pde_shift) - 1);
422 uint64_t end;
424 WARN_ON(length == 0);
425 WARN_ON(offset_in_page(addr|length));
427 end = addr + length;
429 if ((addr & mask) != (end & mask))
430 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
432 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
435 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
437 return (addr >> shift) & I915_PDE_MASK;
440 static inline uint32_t gen6_pte_index(uint32_t addr)
442 return i915_pte_index(addr, GEN6_PDE_SHIFT);
445 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
447 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
450 static inline uint32_t gen6_pde_index(uint32_t addr)
452 return i915_pde_index(addr, GEN6_PDE_SHIFT);
455 /* Equivalent to the gen6 version, For each pde iterates over every pde
456 * between from start until start + length. On gen8+ it simply iterates
457 * over every page directory entry in a page directory.
459 #define gen8_for_each_pde(pt, pd, start, length, iter) \
460 for (iter = gen8_pde_index(start); \
461 length > 0 && iter < I915_PDES && \
462 (pt = (pd)->page_table[iter], true); \
463 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
464 temp = min(temp - start, length); \
465 start += temp, length -= temp; }), ++iter)
467 #define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
468 for (iter = gen8_pdpe_index(start); \
469 length > 0 && iter < I915_PDPES_PER_PDP(dev) && \
470 (pd = (pdp)->page_directory[iter], true); \
471 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
472 temp = min(temp - start, length); \
473 start += temp, length -= temp; }), ++iter)
475 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
476 for (iter = gen8_pml4e_index(start); \
477 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
478 (pdp = (pml4)->pdps[iter], true); \
479 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
480 temp = min(temp - start, length); \
481 start += temp, length -= temp; }), ++iter)
483 static inline uint32_t gen8_pte_index(uint64_t address)
485 return i915_pte_index(address, GEN8_PDE_SHIFT);
488 static inline uint32_t gen8_pde_index(uint64_t address)
490 return i915_pde_index(address, GEN8_PDE_SHIFT);
493 static inline uint32_t gen8_pdpe_index(uint64_t address)
495 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
498 static inline uint32_t gen8_pml4e_index(uint64_t address)
500 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
503 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
505 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
508 static inline dma_addr_t
509 i915_page_dir_dma_addr(struct i915_hw_ppgtt *ppgtt, const unsigned n)
511 return test_bit(n, ppgtt->pdp.used_pdpes) ?
512 px_dma(ppgtt->pdp.page_directory[n]) :
513 px_dma(ppgtt->base.scratch_pd);
516 int i915_ggtt_init_hw(struct drm_device *dev);
517 int i915_ggtt_enable_hw(struct drm_device *dev);
518 void i915_gem_init_ggtt(struct drm_device *dev);
519 void i915_ggtt_cleanup_hw(struct drm_device *dev);
521 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
522 int i915_ppgtt_init_hw(struct drm_device *dev);
523 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
524 void i915_ppgtt_release(struct kref *kref);
525 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
526 struct drm_i915_file_private *fpriv);
527 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
529 if (ppgtt)
530 kref_get(&ppgtt->ref);
532 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
534 if (ppgtt)
535 kref_put(&ppgtt->ref, i915_ppgtt_release);
538 void i915_check_and_clear_faults(struct drm_device *dev);
539 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
540 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
542 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
543 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
545 static inline bool
546 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
547 const struct i915_ggtt_view *b)
549 if (WARN_ON(!a || !b))
550 return false;
552 if (a->type != b->type)
553 return false;
554 if (a->type != I915_GGTT_VIEW_NORMAL)
555 return !memcmp(&a->params, &b->params, sizeof(a->params));
556 return true;
559 size_t
560 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
561 const struct i915_ggtt_view *view);
563 #endif