if_iwm - Recognize IWM_FW_PAGING_BLOCK_CMD wide cmd response correctly.
[dragonfly.git] / crypto / openssl / crypto / pem / pvkfmt.c
blob61864468f6d4905dd55ae99a7978f4ff2e299c88
1 /*
2 * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
3 * 2005.
4 */
5 /* ====================================================================
6 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
60 * Support for PVK format keys and related structures (such a PUBLICKEYBLOB
61 * and PRIVATEKEYBLOB).
64 #include "cryptlib.h"
65 #include <openssl/pem.h>
66 #include <openssl/rand.h>
67 #include <openssl/bn.h>
68 #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
69 # include <openssl/dsa.h>
70 # include <openssl/rsa.h>
73 * Utility function: read a DWORD (4 byte unsigned integer) in little endian
74 * format
77 static unsigned int read_ledword(const unsigned char **in)
79 const unsigned char *p = *in;
80 unsigned int ret;
81 ret = *p++;
82 ret |= (*p++ << 8);
83 ret |= (*p++ << 16);
84 ret |= (*p++ << 24);
85 *in = p;
86 return ret;
90 * Read a BIGNUM in little endian format. The docs say that this should take
91 * up bitlen/8 bytes.
94 static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
96 const unsigned char *p;
97 unsigned char *tmpbuf, *q;
98 unsigned int i;
99 p = *in + nbyte - 1;
100 tmpbuf = OPENSSL_malloc(nbyte);
101 if (!tmpbuf)
102 return 0;
103 q = tmpbuf;
104 for (i = 0; i < nbyte; i++)
105 *q++ = *p--;
106 *r = BN_bin2bn(tmpbuf, nbyte, NULL);
107 OPENSSL_free(tmpbuf);
108 if (*r) {
109 *in += nbyte;
110 return 1;
111 } else
112 return 0;
115 /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
117 # define MS_PUBLICKEYBLOB 0x6
118 # define MS_PRIVATEKEYBLOB 0x7
119 # define MS_RSA1MAGIC 0x31415352L
120 # define MS_RSA2MAGIC 0x32415352L
121 # define MS_DSS1MAGIC 0x31535344L
122 # define MS_DSS2MAGIC 0x32535344L
124 # define MS_KEYALG_RSA_KEYX 0xa400
125 # define MS_KEYALG_DSS_SIGN 0x2200
127 # define MS_KEYTYPE_KEYX 0x1
128 # define MS_KEYTYPE_SIGN 0x2
130 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
131 # define MS_PVKMAGIC 0xb0b5f11eL
132 /* Salt length for PVK files */
133 # define PVK_SALTLEN 0x10
134 /* Maximum length in PVK header */
135 # define PVK_MAX_KEYLEN 102400
136 /* Maximum salt length */
137 # define PVK_MAX_SALTLEN 10240
139 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
140 unsigned int bitlen, int ispub);
141 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
142 unsigned int bitlen, int ispub);
144 static int do_blob_header(const unsigned char **in, unsigned int length,
145 unsigned int *pmagic, unsigned int *pbitlen,
146 int *pisdss, int *pispub)
148 const unsigned char *p = *in;
149 if (length < 16)
150 return 0;
151 /* bType */
152 if (*p == MS_PUBLICKEYBLOB) {
153 if (*pispub == 0) {
154 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
155 return 0;
157 *pispub = 1;
158 } else if (*p == MS_PRIVATEKEYBLOB) {
159 if (*pispub == 1) {
160 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
161 return 0;
163 *pispub = 0;
164 } else
165 return 0;
166 p++;
167 /* Version */
168 if (*p++ != 0x2) {
169 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
170 return 0;
172 /* Ignore reserved, aiKeyAlg */
173 p += 6;
174 *pmagic = read_ledword(&p);
175 *pbitlen = read_ledword(&p);
176 *pisdss = 0;
177 switch (*pmagic) {
179 case MS_DSS1MAGIC:
180 *pisdss = 1;
181 case MS_RSA1MAGIC:
182 if (*pispub == 0) {
183 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
184 return 0;
186 break;
188 case MS_DSS2MAGIC:
189 *pisdss = 1;
190 case MS_RSA2MAGIC:
191 if (*pispub == 1) {
192 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
193 return 0;
195 break;
197 default:
198 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
199 return -1;
201 *in = p;
202 return 1;
205 static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
207 unsigned int nbyte, hnbyte;
208 nbyte = (bitlen + 7) >> 3;
209 hnbyte = (bitlen + 15) >> 4;
210 if (isdss) {
213 * Expected length: 20 for q + 3 components bitlen each + 24 for seed
214 * structure.
216 if (ispub)
217 return 44 + 3 * nbyte;
219 * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed
220 * structure.
222 else
223 return 64 + 2 * nbyte;
224 } else {
225 /* Expected length: 4 for 'e' + 'n' */
226 if (ispub)
227 return 4 + nbyte;
228 else
230 * Expected length: 4 for 'e' and 7 other components. 2
231 * components are bitlen size, 5 are bitlen/2
233 return 4 + 2 * nbyte + 5 * hnbyte;
238 static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
239 int ispub)
241 const unsigned char *p = *in;
242 unsigned int bitlen, magic;
243 int isdss;
244 if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) {
245 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
246 return NULL;
248 length -= 16;
249 if (length < blob_length(bitlen, isdss, ispub)) {
250 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
251 return NULL;
253 if (isdss)
254 return b2i_dss(&p, length, bitlen, ispub);
255 else
256 return b2i_rsa(&p, length, bitlen, ispub);
259 static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
261 const unsigned char *p;
262 unsigned char hdr_buf[16], *buf = NULL;
263 unsigned int bitlen, magic, length;
264 int isdss;
265 EVP_PKEY *ret = NULL;
266 if (BIO_read(in, hdr_buf, 16) != 16) {
267 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
268 return NULL;
270 p = hdr_buf;
271 if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
272 return NULL;
274 length = blob_length(bitlen, isdss, ispub);
275 buf = OPENSSL_malloc(length);
276 if (!buf) {
277 PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
278 goto err;
280 p = buf;
281 if (BIO_read(in, buf, length) != (int)length) {
282 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
283 goto err;
286 if (isdss)
287 ret = b2i_dss(&p, length, bitlen, ispub);
288 else
289 ret = b2i_rsa(&p, length, bitlen, ispub);
291 err:
292 if (buf)
293 OPENSSL_free(buf);
294 return ret;
297 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
298 unsigned int bitlen, int ispub)
300 const unsigned char *p = *in;
301 EVP_PKEY *ret = NULL;
302 DSA *dsa = NULL;
303 BN_CTX *ctx = NULL;
304 unsigned int nbyte;
305 nbyte = (bitlen + 7) >> 3;
307 dsa = DSA_new();
308 ret = EVP_PKEY_new();
309 if (!dsa || !ret)
310 goto memerr;
311 if (!read_lebn(&p, nbyte, &dsa->p))
312 goto memerr;
313 if (!read_lebn(&p, 20, &dsa->q))
314 goto memerr;
315 if (!read_lebn(&p, nbyte, &dsa->g))
316 goto memerr;
317 if (ispub) {
318 if (!read_lebn(&p, nbyte, &dsa->pub_key))
319 goto memerr;
320 } else {
321 if (!read_lebn(&p, 20, &dsa->priv_key))
322 goto memerr;
323 /* Calculate public key */
324 if (!(dsa->pub_key = BN_new()))
325 goto memerr;
326 if (!(ctx = BN_CTX_new()))
327 goto memerr;
329 if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx))
331 goto memerr;
332 BN_CTX_free(ctx);
335 EVP_PKEY_set1_DSA(ret, dsa);
336 DSA_free(dsa);
337 *in = p;
338 return ret;
340 memerr:
341 PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
342 if (dsa)
343 DSA_free(dsa);
344 if (ret)
345 EVP_PKEY_free(ret);
346 if (ctx)
347 BN_CTX_free(ctx);
348 return NULL;
351 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
352 unsigned int bitlen, int ispub)
354 const unsigned char *p = *in;
355 EVP_PKEY *ret = NULL;
356 RSA *rsa = NULL;
357 unsigned int nbyte, hnbyte;
358 nbyte = (bitlen + 7) >> 3;
359 hnbyte = (bitlen + 15) >> 4;
360 rsa = RSA_new();
361 ret = EVP_PKEY_new();
362 if (!rsa || !ret)
363 goto memerr;
364 rsa->e = BN_new();
365 if (!rsa->e)
366 goto memerr;
367 if (!BN_set_word(rsa->e, read_ledword(&p)))
368 goto memerr;
369 if (!read_lebn(&p, nbyte, &rsa->n))
370 goto memerr;
371 if (!ispub) {
372 if (!read_lebn(&p, hnbyte, &rsa->p))
373 goto memerr;
374 if (!read_lebn(&p, hnbyte, &rsa->q))
375 goto memerr;
376 if (!read_lebn(&p, hnbyte, &rsa->dmp1))
377 goto memerr;
378 if (!read_lebn(&p, hnbyte, &rsa->dmq1))
379 goto memerr;
380 if (!read_lebn(&p, hnbyte, &rsa->iqmp))
381 goto memerr;
382 if (!read_lebn(&p, nbyte, &rsa->d))
383 goto memerr;
386 EVP_PKEY_set1_RSA(ret, rsa);
387 RSA_free(rsa);
388 *in = p;
389 return ret;
390 memerr:
391 PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
392 if (rsa)
393 RSA_free(rsa);
394 if (ret)
395 EVP_PKEY_free(ret);
396 return NULL;
399 EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
401 return do_b2i(in, length, 0);
404 EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
406 return do_b2i(in, length, 1);
409 EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
411 return do_b2i_bio(in, 0);
414 EVP_PKEY *b2i_PublicKey_bio(BIO *in)
416 return do_b2i_bio(in, 1);
419 static void write_ledword(unsigned char **out, unsigned int dw)
421 unsigned char *p = *out;
422 *p++ = dw & 0xff;
423 *p++ = (dw >> 8) & 0xff;
424 *p++ = (dw >> 16) & 0xff;
425 *p++ = (dw >> 24) & 0xff;
426 *out = p;
429 static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
431 int nb, i;
432 unsigned char *p = *out, *q, c;
433 nb = BN_num_bytes(bn);
434 BN_bn2bin(bn, p);
435 q = p + nb - 1;
436 /* In place byte order reversal */
437 for (i = 0; i < nb / 2; i++) {
438 c = *p;
439 *p++ = *q;
440 *q-- = c;
442 *out += nb;
443 /* Pad with zeroes if we have to */
444 if (len > 0) {
445 len -= nb;
446 if (len > 0) {
447 memset(*out, 0, len);
448 *out += len;
453 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
454 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
456 static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
457 static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
459 static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
461 unsigned char *p;
462 unsigned int bitlen, magic = 0, keyalg;
463 int outlen, noinc = 0;
464 if (pk->type == EVP_PKEY_DSA) {
465 bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
466 keyalg = MS_KEYALG_DSS_SIGN;
467 } else if (pk->type == EVP_PKEY_RSA) {
468 bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
469 keyalg = MS_KEYALG_RSA_KEYX;
470 } else
471 return -1;
472 if (bitlen == 0)
473 return -1;
474 outlen = 16 + blob_length(bitlen,
475 keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
476 if (out == NULL)
477 return outlen;
478 if (*out)
479 p = *out;
480 else {
481 p = OPENSSL_malloc(outlen);
482 if (!p)
483 return -1;
484 *out = p;
485 noinc = 1;
487 if (ispub)
488 *p++ = MS_PUBLICKEYBLOB;
489 else
490 *p++ = MS_PRIVATEKEYBLOB;
491 *p++ = 0x2;
492 *p++ = 0;
493 *p++ = 0;
494 write_ledword(&p, keyalg);
495 write_ledword(&p, magic);
496 write_ledword(&p, bitlen);
497 if (keyalg == MS_KEYALG_DSS_SIGN)
498 write_dsa(&p, pk->pkey.dsa, ispub);
499 else
500 write_rsa(&p, pk->pkey.rsa, ispub);
501 if (!noinc)
502 *out += outlen;
503 return outlen;
506 static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
508 unsigned char *tmp = NULL;
509 int outlen, wrlen;
510 outlen = do_i2b(&tmp, pk, ispub);
511 if (outlen < 0)
512 return -1;
513 wrlen = BIO_write(out, tmp, outlen);
514 OPENSSL_free(tmp);
515 if (wrlen == outlen)
516 return outlen;
517 return -1;
520 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
522 int bitlen;
523 bitlen = BN_num_bits(dsa->p);
524 if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
525 || (BN_num_bits(dsa->g) > bitlen))
526 goto badkey;
527 if (ispub) {
528 if (BN_num_bits(dsa->pub_key) > bitlen)
529 goto badkey;
530 *pmagic = MS_DSS1MAGIC;
531 } else {
532 if (BN_num_bits(dsa->priv_key) > 160)
533 goto badkey;
534 *pmagic = MS_DSS2MAGIC;
537 return bitlen;
538 badkey:
539 PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
540 return 0;
543 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
545 int nbyte, hnbyte, bitlen;
546 if (BN_num_bits(rsa->e) > 32)
547 goto badkey;
548 bitlen = BN_num_bits(rsa->n);
549 nbyte = BN_num_bytes(rsa->n);
550 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
551 if (ispub) {
552 *pmagic = MS_RSA1MAGIC;
553 return bitlen;
554 } else {
555 *pmagic = MS_RSA2MAGIC;
557 * For private key each component must fit within nbyte or hnbyte.
559 if (BN_num_bytes(rsa->d) > nbyte)
560 goto badkey;
561 if ((BN_num_bytes(rsa->iqmp) > hnbyte)
562 || (BN_num_bytes(rsa->p) > hnbyte)
563 || (BN_num_bytes(rsa->q) > hnbyte)
564 || (BN_num_bytes(rsa->dmp1) > hnbyte)
565 || (BN_num_bytes(rsa->dmq1) > hnbyte))
566 goto badkey;
568 return bitlen;
569 badkey:
570 PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
571 return 0;
574 static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
576 int nbyte, hnbyte;
577 nbyte = BN_num_bytes(rsa->n);
578 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
579 write_lebn(out, rsa->e, 4);
580 write_lebn(out, rsa->n, -1);
581 if (ispub)
582 return;
583 write_lebn(out, rsa->p, hnbyte);
584 write_lebn(out, rsa->q, hnbyte);
585 write_lebn(out, rsa->dmp1, hnbyte);
586 write_lebn(out, rsa->dmq1, hnbyte);
587 write_lebn(out, rsa->iqmp, hnbyte);
588 write_lebn(out, rsa->d, nbyte);
591 static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
593 int nbyte;
594 nbyte = BN_num_bytes(dsa->p);
595 write_lebn(out, dsa->p, nbyte);
596 write_lebn(out, dsa->q, 20);
597 write_lebn(out, dsa->g, nbyte);
598 if (ispub)
599 write_lebn(out, dsa->pub_key, nbyte);
600 else
601 write_lebn(out, dsa->priv_key, 20);
602 /* Set "invalid" for seed structure values */
603 memset(*out, 0xff, 24);
604 *out += 24;
605 return;
608 int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
610 return do_i2b_bio(out, pk, 0);
613 int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
615 return do_i2b_bio(out, pk, 1);
618 # ifndef OPENSSL_NO_RC4
620 static int do_PVK_header(const unsigned char **in, unsigned int length,
621 int skip_magic,
622 unsigned int *psaltlen, unsigned int *pkeylen)
624 const unsigned char *p = *in;
625 unsigned int pvk_magic, is_encrypted;
626 if (skip_magic) {
627 if (length < 20) {
628 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
629 return 0;
631 } else {
632 if (length < 24) {
633 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
634 return 0;
636 pvk_magic = read_ledword(&p);
637 if (pvk_magic != MS_PVKMAGIC) {
638 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
639 return 0;
642 /* Skip reserved */
643 p += 4;
645 * keytype =
646 */ read_ledword(&p);
647 is_encrypted = read_ledword(&p);
648 *psaltlen = read_ledword(&p);
649 *pkeylen = read_ledword(&p);
651 if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN)
652 return 0;
654 if (is_encrypted && !*psaltlen) {
655 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
656 return 0;
659 *in = p;
660 return 1;
663 static int derive_pvk_key(unsigned char *key,
664 const unsigned char *salt, unsigned int saltlen,
665 const unsigned char *pass, int passlen)
667 EVP_MD_CTX mctx;
668 int rv = 1;
669 EVP_MD_CTX_init(&mctx);
670 if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL)
671 || !EVP_DigestUpdate(&mctx, salt, saltlen)
672 || !EVP_DigestUpdate(&mctx, pass, passlen)
673 || !EVP_DigestFinal_ex(&mctx, key, NULL))
674 rv = 0;
676 EVP_MD_CTX_cleanup(&mctx);
677 return rv;
680 static EVP_PKEY *do_PVK_body(const unsigned char **in,
681 unsigned int saltlen, unsigned int keylen,
682 pem_password_cb *cb, void *u)
684 EVP_PKEY *ret = NULL;
685 const unsigned char *p = *in;
686 unsigned int magic;
687 unsigned char *enctmp = NULL, *q;
688 EVP_CIPHER_CTX cctx;
689 EVP_CIPHER_CTX_init(&cctx);
690 if (saltlen) {
691 char psbuf[PEM_BUFSIZE];
692 unsigned char keybuf[20];
693 int enctmplen, inlen;
694 if (cb)
695 inlen = cb(psbuf, PEM_BUFSIZE, 0, u);
696 else
697 inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
698 if (inlen <= 0) {
699 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ);
700 goto err;
702 enctmp = OPENSSL_malloc(keylen + 8);
703 if (!enctmp) {
704 PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
705 goto err;
707 if (!derive_pvk_key(keybuf, p, saltlen,
708 (unsigned char *)psbuf, inlen))
709 goto err;
710 p += saltlen;
711 /* Copy BLOBHEADER across, decrypt rest */
712 memcpy(enctmp, p, 8);
713 p += 8;
714 if (keylen < 8) {
715 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT);
716 goto err;
718 inlen = keylen - 8;
719 q = enctmp + 8;
720 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
721 goto err;
722 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
723 goto err;
724 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
725 goto err;
726 magic = read_ledword((const unsigned char **)&q);
727 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
728 q = enctmp + 8;
729 memset(keybuf + 5, 0, 11);
730 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
731 goto err;
732 OPENSSL_cleanse(keybuf, 20);
733 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
734 goto err;
735 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
736 goto err;
737 magic = read_ledword((const unsigned char **)&q);
738 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
739 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
740 goto err;
742 } else
743 OPENSSL_cleanse(keybuf, 20);
744 p = enctmp;
747 ret = b2i_PrivateKey(&p, keylen);
748 err:
749 EVP_CIPHER_CTX_cleanup(&cctx);
750 if (enctmp && saltlen)
751 OPENSSL_free(enctmp);
752 return ret;
755 EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
757 unsigned char pvk_hdr[24], *buf = NULL;
758 const unsigned char *p;
759 int buflen;
760 EVP_PKEY *ret = NULL;
761 unsigned int saltlen, keylen;
762 if (BIO_read(in, pvk_hdr, 24) != 24) {
763 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
764 return NULL;
766 p = pvk_hdr;
768 if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
769 return 0;
770 buflen = (int)keylen + saltlen;
771 buf = OPENSSL_malloc(buflen);
772 if (!buf) {
773 PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
774 return 0;
776 p = buf;
777 if (BIO_read(in, buf, buflen) != buflen) {
778 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
779 goto err;
781 ret = do_PVK_body(&p, saltlen, keylen, cb, u);
783 err:
784 if (buf) {
785 OPENSSL_cleanse(buf, buflen);
786 OPENSSL_free(buf);
788 return ret;
791 static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel,
792 pem_password_cb *cb, void *u)
794 int outlen = 24, pklen;
795 unsigned char *p, *salt = NULL;
796 EVP_CIPHER_CTX cctx;
797 EVP_CIPHER_CTX_init(&cctx);
798 if (enclevel)
799 outlen += PVK_SALTLEN;
800 pklen = do_i2b(NULL, pk, 0);
801 if (pklen < 0)
802 return -1;
803 outlen += pklen;
804 if (!out)
805 return outlen;
806 if (*out)
807 p = *out;
808 else {
809 p = OPENSSL_malloc(outlen);
810 if (!p) {
811 PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE);
812 return -1;
814 *out = p;
817 write_ledword(&p, MS_PVKMAGIC);
818 write_ledword(&p, 0);
819 if (pk->type == EVP_PKEY_DSA)
820 write_ledword(&p, MS_KEYTYPE_SIGN);
821 else
822 write_ledword(&p, MS_KEYTYPE_KEYX);
823 write_ledword(&p, enclevel ? 1 : 0);
824 write_ledword(&p, enclevel ? PVK_SALTLEN : 0);
825 write_ledword(&p, pklen);
826 if (enclevel) {
827 if (RAND_bytes(p, PVK_SALTLEN) <= 0)
828 goto error;
829 salt = p;
830 p += PVK_SALTLEN;
832 do_i2b(&p, pk, 0);
833 if (enclevel == 0)
834 return outlen;
835 else {
836 char psbuf[PEM_BUFSIZE];
837 unsigned char keybuf[20];
838 int enctmplen, inlen;
839 if (cb)
840 inlen = cb(psbuf, PEM_BUFSIZE, 1, u);
841 else
842 inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u);
843 if (inlen <= 0) {
844 PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ);
845 goto error;
847 if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
848 (unsigned char *)psbuf, inlen))
849 goto error;
850 if (enclevel == 1)
851 memset(keybuf + 5, 0, 11);
852 p = salt + PVK_SALTLEN + 8;
853 if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
854 goto error;
855 OPENSSL_cleanse(keybuf, 20);
856 if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
857 goto error;
858 if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))
859 goto error;
861 EVP_CIPHER_CTX_cleanup(&cctx);
862 return outlen;
864 error:
865 EVP_CIPHER_CTX_cleanup(&cctx);
866 return -1;
869 int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
870 pem_password_cb *cb, void *u)
872 unsigned char *tmp = NULL;
873 int outlen, wrlen;
874 outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
875 if (outlen < 0)
876 return -1;
877 wrlen = BIO_write(out, tmp, outlen);
878 OPENSSL_free(tmp);
879 if (wrlen == outlen) {
880 PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
881 return outlen;
883 return -1;
886 # endif
888 #endif