if_iwm - Recognize IWM_FW_PAGING_BLOCK_CMD wide cmd response correctly.
[dragonfly.git] / crypto / openssl / crypto / modes / asm / ghash-x86_64.pl
blobf889f2018789fb6e233dd1d07ef0c78cfa8649f4
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # March, June 2010
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that
14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
15 # function features so called "528B" variant utilizing additional
16 # 256+16 bytes of per-key storage [+512 bytes shared table].
17 # Performance results are for this streamed GHASH subroutine and are
18 # expressed in cycles per processed byte, less is better:
20 # gcc 3.4.x(*) assembler
22 # P4 28.6 14.0 +100%
23 # Opteron 19.3 7.7 +150%
24 # Core2 17.8 8.1(**) +120%
25 # Atom 31.6 16.8 +88%
26 # VIA Nano 21.8 10.1 +115%
28 # (*) comparison is not completely fair, because C results are
29 # for vanilla "256B" implementation, while assembler results
30 # are for "528B";-)
31 # (**) it's mystery [to me] why Core2 result is not same as for
32 # Opteron;
34 # May 2010
36 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
37 # See ghash-x86.pl for background information and details about coding
38 # techniques.
40 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
41 # providing access to a Westmere-based system on behalf of Intel
42 # Open Source Technology Centre.
44 # December 2012
46 # Overhaul: aggregate Karatsuba post-processing, improve ILP in
47 # reduction_alg9, increase reduction aggregate factor to 4x. As for
48 # the latter. ghash-x86.pl discusses that it makes lesser sense to
49 # increase aggregate factor. Then why increase here? Critical path
50 # consists of 3 independent pclmulqdq instructions, Karatsuba post-
51 # processing and reduction. "On top" of this we lay down aggregated
52 # multiplication operations, triplets of independent pclmulqdq's. As
53 # issue rate for pclmulqdq is limited, it makes lesser sense to
54 # aggregate more multiplications than it takes to perform remaining
55 # non-multiplication operations. 2x is near-optimal coefficient for
56 # contemporary Intel CPUs (therefore modest improvement coefficient),
57 # but not for Bulldozer. Latter is because logical SIMD operations
58 # are twice as slow in comparison to Intel, so that critical path is
59 # longer. A CPU with higher pclmulqdq issue rate would also benefit
60 # from higher aggregate factor...
62 # Westmere 1.78(+13%)
63 # Sandy Bridge 1.80(+8%)
64 # Ivy Bridge 1.80(+7%)
65 # Haswell 0.55(+93%) (if system doesn't support AVX)
66 # Broadwell 0.45(+110%)(if system doesn't support AVX)
67 # Bulldozer 1.49(+27%)
68 # Silvermont 2.88(+13%)
70 # March 2013
72 # ... 8x aggregate factor AVX code path is using reduction algorithm
73 # suggested by Shay Gueron[1]. Even though contemporary AVX-capable
74 # CPUs such as Sandy and Ivy Bridge can execute it, the code performs
75 # sub-optimally in comparison to above mentioned version. But thanks
76 # to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
77 # it performs in 0.41 cycles per byte on Haswell processor, and in
78 # 0.29 on Broadwell.
80 # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
82 $flavour = shift;
83 $output = shift;
84 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
86 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
88 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
89 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
90 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
91 die "can't locate x86_64-xlate.pl";
93 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
94 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
95 $avx = ($1>=2.20) + ($1>=2.22);
98 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
99 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
100 $avx = ($1>=2.09) + ($1>=2.10);
103 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
104 `ml64 2>&1` =~ /Version ([0-9]+)\./) {
105 $avx = ($1>=10) + ($1>=11);
108 if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9]\.[0-9]+)/) {
109 $avx = ($2>=3.0) + ($2>3.0);
112 open OUT,"| \"$^X\" $xlate $flavour $output";
113 *STDOUT=*OUT;
115 $do4xaggr=1;
117 # common register layout
118 $nlo="%rax";
119 $nhi="%rbx";
120 $Zlo="%r8";
121 $Zhi="%r9";
122 $tmp="%r10";
123 $rem_4bit = "%r11";
125 $Xi="%rdi";
126 $Htbl="%rsi";
128 # per-function register layout
129 $cnt="%rcx";
130 $rem="%rdx";
132 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
133 $r =~ s/%[er]([sd]i)/%\1l/ or
134 $r =~ s/%[er](bp)/%\1l/ or
135 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
137 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
138 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
139 my $arg = pop;
140 $arg = "\$$arg" if ($arg*1 eq $arg);
141 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
144 { my $N;
145 sub loop() {
146 my $inp = shift;
148 $N++;
149 $code.=<<___;
150 xor $nlo,$nlo
151 xor $nhi,$nhi
152 mov `&LB("$Zlo")`,`&LB("$nlo")`
153 mov `&LB("$Zlo")`,`&LB("$nhi")`
154 shl \$4,`&LB("$nlo")`
155 mov \$14,$cnt
156 mov 8($Htbl,$nlo),$Zlo
157 mov ($Htbl,$nlo),$Zhi
158 and \$0xf0,`&LB("$nhi")`
159 mov $Zlo,$rem
160 jmp .Loop$N
162 .align 16
163 .Loop$N:
164 shr \$4,$Zlo
165 and \$0xf,$rem
166 mov $Zhi,$tmp
167 mov ($inp,$cnt),`&LB("$nlo")`
168 shr \$4,$Zhi
169 xor 8($Htbl,$nhi),$Zlo
170 shl \$60,$tmp
171 xor ($Htbl,$nhi),$Zhi
172 mov `&LB("$nlo")`,`&LB("$nhi")`
173 xor ($rem_4bit,$rem,8),$Zhi
174 mov $Zlo,$rem
175 shl \$4,`&LB("$nlo")`
176 xor $tmp,$Zlo
177 dec $cnt
178 js .Lbreak$N
180 shr \$4,$Zlo
181 and \$0xf,$rem
182 mov $Zhi,$tmp
183 shr \$4,$Zhi
184 xor 8($Htbl,$nlo),$Zlo
185 shl \$60,$tmp
186 xor ($Htbl,$nlo),$Zhi
187 and \$0xf0,`&LB("$nhi")`
188 xor ($rem_4bit,$rem,8),$Zhi
189 mov $Zlo,$rem
190 xor $tmp,$Zlo
191 jmp .Loop$N
193 .align 16
194 .Lbreak$N:
195 shr \$4,$Zlo
196 and \$0xf,$rem
197 mov $Zhi,$tmp
198 shr \$4,$Zhi
199 xor 8($Htbl,$nlo),$Zlo
200 shl \$60,$tmp
201 xor ($Htbl,$nlo),$Zhi
202 and \$0xf0,`&LB("$nhi")`
203 xor ($rem_4bit,$rem,8),$Zhi
204 mov $Zlo,$rem
205 xor $tmp,$Zlo
207 shr \$4,$Zlo
208 and \$0xf,$rem
209 mov $Zhi,$tmp
210 shr \$4,$Zhi
211 xor 8($Htbl,$nhi),$Zlo
212 shl \$60,$tmp
213 xor ($Htbl,$nhi),$Zhi
214 xor $tmp,$Zlo
215 xor ($rem_4bit,$rem,8),$Zhi
217 bswap $Zlo
218 bswap $Zhi
222 $code=<<___;
223 .text
224 .extern OPENSSL_ia32cap_P
226 .globl gcm_gmult_4bit
227 .type gcm_gmult_4bit,\@function,2
228 .align 16
229 gcm_gmult_4bit:
230 push %rbx
231 push %rbp # %rbp and %r12 are pushed exclusively in
232 push %r12 # order to reuse Win64 exception handler...
233 .Lgmult_prologue:
235 movzb 15($Xi),$Zlo
236 lea .Lrem_4bit(%rip),$rem_4bit
238 &loop ($Xi);
239 $code.=<<___;
240 mov $Zlo,8($Xi)
241 mov $Zhi,($Xi)
243 mov 16(%rsp),%rbx
244 lea 24(%rsp),%rsp
245 .Lgmult_epilogue:
247 .size gcm_gmult_4bit,.-gcm_gmult_4bit
250 # per-function register layout
251 $inp="%rdx";
252 $len="%rcx";
253 $rem_8bit=$rem_4bit;
255 $code.=<<___;
256 .globl gcm_ghash_4bit
257 .type gcm_ghash_4bit,\@function,4
258 .align 16
259 gcm_ghash_4bit:
260 push %rbx
261 push %rbp
262 push %r12
263 push %r13
264 push %r14
265 push %r15
266 sub \$280,%rsp
267 .Lghash_prologue:
268 mov $inp,%r14 # reassign couple of args
269 mov $len,%r15
271 { my $inp="%r14";
272 my $dat="%edx";
273 my $len="%r15";
274 my @nhi=("%ebx","%ecx");
275 my @rem=("%r12","%r13");
276 my $Hshr4="%rbp";
278 &sub ($Htbl,-128); # size optimization
279 &lea ($Hshr4,"16+128(%rsp)");
280 { my @lo =($nlo,$nhi);
281 my @hi =($Zlo,$Zhi);
283 &xor ($dat,$dat);
284 for ($i=0,$j=-2;$i<18;$i++,$j++) {
285 &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
286 &or ($lo[0],$tmp) if ($i>1);
287 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
288 &shr ($lo[1],4) if ($i>0 && $i<17);
289 &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
290 &shr ($hi[1],4) if ($i>0 && $i<17);
291 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
292 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
293 &shl (&LB($dat),4) if ($i>0 && $i<17);
294 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
295 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
296 &shl ($tmp,60) if ($i>0 && $i<17);
298 push (@lo,shift(@lo));
299 push (@hi,shift(@hi));
302 &add ($Htbl,-128);
303 &mov ($Zlo,"8($Xi)");
304 &mov ($Zhi,"0($Xi)");
305 &add ($len,$inp); # pointer to the end of data
306 &lea ($rem_8bit,".Lrem_8bit(%rip)");
307 &jmp (".Louter_loop");
309 $code.=".align 16\n.Louter_loop:\n";
310 &xor ($Zhi,"($inp)");
311 &mov ("%rdx","8($inp)");
312 &lea ($inp,"16($inp)");
313 &xor ("%rdx",$Zlo);
314 &mov ("($Xi)",$Zhi);
315 &mov ("8($Xi)","%rdx");
316 &shr ("%rdx",32);
318 &xor ($nlo,$nlo);
319 &rol ($dat,8);
320 &mov (&LB($nlo),&LB($dat));
321 &movz ($nhi[0],&LB($dat));
322 &shl (&LB($nlo),4);
323 &shr ($nhi[0],4);
325 for ($j=11,$i=0;$i<15;$i++) {
326 &rol ($dat,8);
327 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
328 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
329 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
330 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
332 &mov (&LB($nlo),&LB($dat));
333 &xor ($Zlo,$tmp) if ($i>0);
334 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
336 &movz ($nhi[1],&LB($dat));
337 &shl (&LB($nlo),4);
338 &movzb ($rem[0],"(%rsp,$nhi[0])");
340 &shr ($nhi[1],4) if ($i<14);
341 &and ($nhi[1],0xf0) if ($i==14);
342 &shl ($rem[1],48) if ($i>0);
343 &xor ($rem[0],$Zlo);
345 &mov ($tmp,$Zhi);
346 &xor ($Zhi,$rem[1]) if ($i>0);
347 &shr ($Zlo,8);
349 &movz ($rem[0],&LB($rem[0]));
350 &mov ($dat,"$j($Xi)") if (--$j%4==0);
351 &shr ($Zhi,8);
353 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
354 &shl ($tmp,56);
355 &xor ($Zhi,"($Hshr4,$nhi[0],8)");
357 unshift (@nhi,pop(@nhi)); # "rotate" registers
358 unshift (@rem,pop(@rem));
360 &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
361 &xor ($Zlo,"8($Htbl,$nlo)");
362 &xor ($Zhi,"($Htbl,$nlo)");
364 &shl ($rem[1],48);
365 &xor ($Zlo,$tmp);
367 &xor ($Zhi,$rem[1]);
368 &movz ($rem[0],&LB($Zlo));
369 &shr ($Zlo,4);
371 &mov ($tmp,$Zhi);
372 &shl (&LB($rem[0]),4);
373 &shr ($Zhi,4);
375 &xor ($Zlo,"8($Htbl,$nhi[0])");
376 &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
377 &shl ($tmp,60);
379 &xor ($Zhi,"($Htbl,$nhi[0])");
380 &xor ($Zlo,$tmp);
381 &shl ($rem[0],48);
383 &bswap ($Zlo);
384 &xor ($Zhi,$rem[0]);
386 &bswap ($Zhi);
387 &cmp ($inp,$len);
388 &jb (".Louter_loop");
390 $code.=<<___;
391 mov $Zlo,8($Xi)
392 mov $Zhi,($Xi)
394 lea 280(%rsp),%rsi
395 mov 0(%rsi),%r15
396 mov 8(%rsi),%r14
397 mov 16(%rsi),%r13
398 mov 24(%rsi),%r12
399 mov 32(%rsi),%rbp
400 mov 40(%rsi),%rbx
401 lea 48(%rsi),%rsp
402 .Lghash_epilogue:
404 .size gcm_ghash_4bit,.-gcm_ghash_4bit
407 ######################################################################
408 # PCLMULQDQ version.
410 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
411 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
413 ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
414 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
416 sub clmul64x64_T2 { # minimal register pressure
417 my ($Xhi,$Xi,$Hkey,$HK)=@_;
419 if (!defined($HK)) { $HK = $T2;
420 $code.=<<___;
421 movdqa $Xi,$Xhi #
422 pshufd \$0b01001110,$Xi,$T1
423 pshufd \$0b01001110,$Hkey,$T2
424 pxor $Xi,$T1 #
425 pxor $Hkey,$T2
427 } else {
428 $code.=<<___;
429 movdqa $Xi,$Xhi #
430 pshufd \$0b01001110,$Xi,$T1
431 pxor $Xi,$T1 #
434 $code.=<<___;
435 pclmulqdq \$0x00,$Hkey,$Xi #######
436 pclmulqdq \$0x11,$Hkey,$Xhi #######
437 pclmulqdq \$0x00,$HK,$T1 #######
438 pxor $Xi,$T1 #
439 pxor $Xhi,$T1 #
441 movdqa $T1,$T2 #
442 psrldq \$8,$T1
443 pslldq \$8,$T2 #
444 pxor $T1,$Xhi
445 pxor $T2,$Xi #
449 sub reduction_alg9 { # 17/11 times faster than Intel version
450 my ($Xhi,$Xi) = @_;
452 $code.=<<___;
453 # 1st phase
454 movdqa $Xi,$T2 #
455 movdqa $Xi,$T1
456 psllq \$5,$Xi
457 pxor $Xi,$T1 #
458 psllq \$1,$Xi
459 pxor $T1,$Xi #
460 psllq \$57,$Xi #
461 movdqa $Xi,$T1 #
462 pslldq \$8,$Xi
463 psrldq \$8,$T1 #
464 pxor $T2,$Xi
465 pxor $T1,$Xhi #
467 # 2nd phase
468 movdqa $Xi,$T2
469 psrlq \$1,$Xi
470 pxor $T2,$Xhi #
471 pxor $Xi,$T2
472 psrlq \$5,$Xi
473 pxor $T2,$Xi #
474 psrlq \$1,$Xi #
475 pxor $Xhi,$Xi #
479 { my ($Htbl,$Xip)=@_4args;
480 my $HK="%xmm6";
482 $code.=<<___;
483 .globl gcm_init_clmul
484 .type gcm_init_clmul,\@abi-omnipotent
485 .align 16
486 gcm_init_clmul:
487 .L_init_clmul:
489 $code.=<<___ if ($win64);
490 .LSEH_begin_gcm_init_clmul:
491 # I can't trust assembler to use specific encoding:-(
492 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
493 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
495 $code.=<<___;
496 movdqu ($Xip),$Hkey
497 pshufd \$0b01001110,$Hkey,$Hkey # dword swap
499 # <<1 twist
500 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
501 movdqa $Hkey,$T1
502 psllq \$1,$Hkey
503 pxor $T3,$T3 #
504 psrlq \$63,$T1
505 pcmpgtd $T2,$T3 # broadcast carry bit
506 pslldq \$8,$T1
507 por $T1,$Hkey # H<<=1
509 # magic reduction
510 pand .L0x1c2_polynomial(%rip),$T3
511 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
513 # calculate H^2
514 pshufd \$0b01001110,$Hkey,$HK
515 movdqa $Hkey,$Xi
516 pxor $Hkey,$HK
518 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK);
519 &reduction_alg9 ($Xhi,$Xi);
520 $code.=<<___;
521 pshufd \$0b01001110,$Hkey,$T1
522 pshufd \$0b01001110,$Xi,$T2
523 pxor $Hkey,$T1 # Karatsuba pre-processing
524 movdqu $Hkey,0x00($Htbl) # save H
525 pxor $Xi,$T2 # Karatsuba pre-processing
526 movdqu $Xi,0x10($Htbl) # save H^2
527 palignr \$8,$T1,$T2 # low part is H.lo^H.hi...
528 movdqu $T2,0x20($Htbl) # save Karatsuba "salt"
530 if ($do4xaggr) {
531 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^3
532 &reduction_alg9 ($Xhi,$Xi);
533 $code.=<<___;
534 movdqa $Xi,$T3
536 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^4
537 &reduction_alg9 ($Xhi,$Xi);
538 $code.=<<___;
539 pshufd \$0b01001110,$T3,$T1
540 pshufd \$0b01001110,$Xi,$T2
541 pxor $T3,$T1 # Karatsuba pre-processing
542 movdqu $T3,0x30($Htbl) # save H^3
543 pxor $Xi,$T2 # Karatsuba pre-processing
544 movdqu $Xi,0x40($Htbl) # save H^4
545 palignr \$8,$T1,$T2 # low part is H^3.lo^H^3.hi...
546 movdqu $T2,0x50($Htbl) # save Karatsuba "salt"
549 $code.=<<___ if ($win64);
550 movaps (%rsp),%xmm6
551 lea 0x18(%rsp),%rsp
552 .LSEH_end_gcm_init_clmul:
554 $code.=<<___;
556 .size gcm_init_clmul,.-gcm_init_clmul
560 { my ($Xip,$Htbl)=@_4args;
562 $code.=<<___;
563 .globl gcm_gmult_clmul
564 .type gcm_gmult_clmul,\@abi-omnipotent
565 .align 16
566 gcm_gmult_clmul:
567 .L_gmult_clmul:
568 movdqu ($Xip),$Xi
569 movdqa .Lbswap_mask(%rip),$T3
570 movdqu ($Htbl),$Hkey
571 movdqu 0x20($Htbl),$T2
572 pshufb $T3,$Xi
574 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2);
575 $code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
576 # experimental alternative. special thing about is that there
577 # no dependency between the two multiplications...
578 mov \$`0xE1<<1`,%eax
579 mov \$0xA040608020C0E000,%r10 # ((7..0)·0xE0)&0xff
580 mov \$0x07,%r11d
581 movq %rax,$T1
582 movq %r10,$T2
583 movq %r11,$T3 # borrow $T3
584 pand $Xi,$T3
585 pshufb $T3,$T2 # ($Xi&7)·0xE0
586 movq %rax,$T3
587 pclmulqdq \$0x00,$Xi,$T1 # ·(0xE1<<1)
588 pxor $Xi,$T2
589 pslldq \$15,$T2
590 paddd $T2,$T2 # <<(64+56+1)
591 pxor $T2,$Xi
592 pclmulqdq \$0x01,$T3,$Xi
593 movdqa .Lbswap_mask(%rip),$T3 # reload $T3
594 psrldq \$1,$T1
595 pxor $T1,$Xhi
596 pslldq \$7,$Xi
597 pxor $Xhi,$Xi
599 $code.=<<___;
600 pshufb $T3,$Xi
601 movdqu $Xi,($Xip)
603 .size gcm_gmult_clmul,.-gcm_gmult_clmul
607 { my ($Xip,$Htbl,$inp,$len)=@_4args;
608 my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
609 my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
611 $code.=<<___;
612 .globl gcm_ghash_clmul
613 .type gcm_ghash_clmul,\@abi-omnipotent
614 .align 32
615 gcm_ghash_clmul:
616 .L_ghash_clmul:
618 $code.=<<___ if ($win64);
619 lea -0x88(%rsp),%rax
620 .LSEH_begin_gcm_ghash_clmul:
621 # I can't trust assembler to use specific encoding:-(
622 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
623 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
624 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
625 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
626 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
627 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
628 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
629 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
630 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
631 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
632 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
634 $code.=<<___;
635 movdqa .Lbswap_mask(%rip),$T3
637 movdqu ($Xip),$Xi
638 movdqu ($Htbl),$Hkey
639 movdqu 0x20($Htbl),$HK
640 pshufb $T3,$Xi
642 sub \$0x10,$len
643 jz .Lodd_tail
645 movdqu 0x10($Htbl),$Hkey2
647 if ($do4xaggr) {
648 my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
650 $code.=<<___;
651 mov OPENSSL_ia32cap_P+4(%rip),%eax
652 cmp \$0x30,$len
653 jb .Lskip4x
655 and \$`1<<26|1<<22`,%eax # isolate MOVBE+XSAVE
656 cmp \$`1<<22`,%eax # check for MOVBE without XSAVE
657 je .Lskip4x
659 sub \$0x30,$len
660 mov \$0xA040608020C0E000,%rax # ((7..0)·0xE0)&0xff
661 movdqu 0x30($Htbl),$Hkey3
662 movdqu 0x40($Htbl),$Hkey4
664 #######
665 # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
667 movdqu 0x30($inp),$Xln
668 movdqu 0x20($inp),$Xl
669 pshufb $T3,$Xln
670 pshufb $T3,$Xl
671 movdqa $Xln,$Xhn
672 pshufd \$0b01001110,$Xln,$Xmn
673 pxor $Xln,$Xmn
674 pclmulqdq \$0x00,$Hkey,$Xln
675 pclmulqdq \$0x11,$Hkey,$Xhn
676 pclmulqdq \$0x00,$HK,$Xmn
678 movdqa $Xl,$Xh
679 pshufd \$0b01001110,$Xl,$Xm
680 pxor $Xl,$Xm
681 pclmulqdq \$0x00,$Hkey2,$Xl
682 pclmulqdq \$0x11,$Hkey2,$Xh
683 pclmulqdq \$0x10,$HK,$Xm
684 xorps $Xl,$Xln
685 xorps $Xh,$Xhn
686 movups 0x50($Htbl),$HK
687 xorps $Xm,$Xmn
689 movdqu 0x10($inp),$Xl
690 movdqu 0($inp),$T1
691 pshufb $T3,$Xl
692 pshufb $T3,$T1
693 movdqa $Xl,$Xh
694 pshufd \$0b01001110,$Xl,$Xm
695 pxor $T1,$Xi
696 pxor $Xl,$Xm
697 pclmulqdq \$0x00,$Hkey3,$Xl
698 movdqa $Xi,$Xhi
699 pshufd \$0b01001110,$Xi,$T1
700 pxor $Xi,$T1
701 pclmulqdq \$0x11,$Hkey3,$Xh
702 pclmulqdq \$0x00,$HK,$Xm
703 xorps $Xl,$Xln
704 xorps $Xh,$Xhn
706 lea 0x40($inp),$inp
707 sub \$0x40,$len
708 jc .Ltail4x
710 jmp .Lmod4_loop
711 .align 32
712 .Lmod4_loop:
713 pclmulqdq \$0x00,$Hkey4,$Xi
714 xorps $Xm,$Xmn
715 movdqu 0x30($inp),$Xl
716 pshufb $T3,$Xl
717 pclmulqdq \$0x11,$Hkey4,$Xhi
718 xorps $Xln,$Xi
719 movdqu 0x20($inp),$Xln
720 movdqa $Xl,$Xh
721 pclmulqdq \$0x10,$HK,$T1
722 pshufd \$0b01001110,$Xl,$Xm
723 xorps $Xhn,$Xhi
724 pxor $Xl,$Xm
725 pshufb $T3,$Xln
726 movups 0x20($Htbl),$HK
727 xorps $Xmn,$T1
728 pclmulqdq \$0x00,$Hkey,$Xl
729 pshufd \$0b01001110,$Xln,$Xmn
731 pxor $Xi,$T1 # aggregated Karatsuba post-processing
732 movdqa $Xln,$Xhn
733 pxor $Xhi,$T1 #
734 pxor $Xln,$Xmn
735 movdqa $T1,$T2 #
736 pclmulqdq \$0x11,$Hkey,$Xh
737 pslldq \$8,$T1
738 psrldq \$8,$T2 #
739 pxor $T1,$Xi
740 movdqa .L7_mask(%rip),$T1
741 pxor $T2,$Xhi #
742 movq %rax,$T2
744 pand $Xi,$T1 # 1st phase
745 pshufb $T1,$T2 #
746 pxor $Xi,$T2 #
747 pclmulqdq \$0x00,$HK,$Xm
748 psllq \$57,$T2 #
749 movdqa $T2,$T1 #
750 pslldq \$8,$T2
751 pclmulqdq \$0x00,$Hkey2,$Xln
752 psrldq \$8,$T1 #
753 pxor $T2,$Xi
754 pxor $T1,$Xhi #
755 movdqu 0($inp),$T1
757 movdqa $Xi,$T2 # 2nd phase
758 psrlq \$1,$Xi
759 pclmulqdq \$0x11,$Hkey2,$Xhn
760 xorps $Xl,$Xln
761 movdqu 0x10($inp),$Xl
762 pshufb $T3,$Xl
763 pclmulqdq \$0x10,$HK,$Xmn
764 xorps $Xh,$Xhn
765 movups 0x50($Htbl),$HK
766 pshufb $T3,$T1
767 pxor $T2,$Xhi #
768 pxor $Xi,$T2
769 psrlq \$5,$Xi
771 movdqa $Xl,$Xh
772 pxor $Xm,$Xmn
773 pshufd \$0b01001110,$Xl,$Xm
774 pxor $T2,$Xi #
775 pxor $T1,$Xhi
776 pxor $Xl,$Xm
777 pclmulqdq \$0x00,$Hkey3,$Xl
778 psrlq \$1,$Xi #
779 pxor $Xhi,$Xi #
780 movdqa $Xi,$Xhi
781 pclmulqdq \$0x11,$Hkey3,$Xh
782 xorps $Xl,$Xln
783 pshufd \$0b01001110,$Xi,$T1
784 pxor $Xi,$T1
786 pclmulqdq \$0x00,$HK,$Xm
787 xorps $Xh,$Xhn
789 lea 0x40($inp),$inp
790 sub \$0x40,$len
791 jnc .Lmod4_loop
793 .Ltail4x:
794 pclmulqdq \$0x00,$Hkey4,$Xi
795 pclmulqdq \$0x11,$Hkey4,$Xhi
796 pclmulqdq \$0x10,$HK,$T1
797 xorps $Xm,$Xmn
798 xorps $Xln,$Xi
799 xorps $Xhn,$Xhi
800 pxor $Xi,$Xhi # aggregated Karatsuba post-processing
801 pxor $Xmn,$T1
803 pxor $Xhi,$T1 #
804 pxor $Xi,$Xhi
806 movdqa $T1,$T2 #
807 psrldq \$8,$T1
808 pslldq \$8,$T2 #
809 pxor $T1,$Xhi
810 pxor $T2,$Xi #
812 &reduction_alg9($Xhi,$Xi);
813 $code.=<<___;
814 add \$0x40,$len
815 jz .Ldone
816 movdqu 0x20($Htbl),$HK
817 sub \$0x10,$len
818 jz .Lodd_tail
819 .Lskip4x:
822 $code.=<<___;
823 #######
824 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
825 # [(H*Ii+1) + (H*Xi+1)] mod P =
826 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
828 movdqu ($inp),$T1 # Ii
829 movdqu 16($inp),$Xln # Ii+1
830 pshufb $T3,$T1
831 pshufb $T3,$Xln
832 pxor $T1,$Xi # Ii+Xi
834 movdqa $Xln,$Xhn
835 pshufd \$0b01001110,$Xln,$Xmn
836 pxor $Xln,$Xmn
837 pclmulqdq \$0x00,$Hkey,$Xln
838 pclmulqdq \$0x11,$Hkey,$Xhn
839 pclmulqdq \$0x00,$HK,$Xmn
841 lea 32($inp),$inp # i+=2
843 sub \$0x20,$len
844 jbe .Leven_tail
846 jmp .Lmod_loop
848 .align 32
849 .Lmod_loop:
850 movdqa $Xi,$Xhi
851 movdqa $Xmn,$T1
852 pshufd \$0b01001110,$Xi,$Xmn #
853 pxor $Xi,$Xmn #
855 pclmulqdq \$0x00,$Hkey2,$Xi
856 pclmulqdq \$0x11,$Hkey2,$Xhi
857 pclmulqdq \$0x10,$HK,$Xmn
859 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
860 pxor $Xhn,$Xhi
861 movdqu ($inp),$T2 # Ii
862 pxor $Xi,$T1 # aggregated Karatsuba post-processing
863 pshufb $T3,$T2
864 movdqu 16($inp),$Xln # Ii+1
866 pxor $Xhi,$T1
867 pxor $T2,$Xhi # "Ii+Xi", consume early
868 pxor $T1,$Xmn
869 pshufb $T3,$Xln
870 movdqa $Xmn,$T1 #
871 psrldq \$8,$T1
872 pslldq \$8,$Xmn #
873 pxor $T1,$Xhi
874 pxor $Xmn,$Xi #
876 movdqa $Xln,$Xhn #
878 movdqa $Xi,$T2 # 1st phase
879 movdqa $Xi,$T1
880 psllq \$5,$Xi
881 pxor $Xi,$T1 #
882 pclmulqdq \$0x00,$Hkey,$Xln #######
883 psllq \$1,$Xi
884 pxor $T1,$Xi #
885 psllq \$57,$Xi #
886 movdqa $Xi,$T1 #
887 pslldq \$8,$Xi
888 psrldq \$8,$T1 #
889 pxor $T2,$Xi
890 pshufd \$0b01001110,$Xhn,$Xmn
891 pxor $T1,$Xhi #
892 pxor $Xhn,$Xmn #
894 movdqa $Xi,$T2 # 2nd phase
895 psrlq \$1,$Xi
896 pclmulqdq \$0x11,$Hkey,$Xhn #######
897 pxor $T2,$Xhi #
898 pxor $Xi,$T2
899 psrlq \$5,$Xi
900 pxor $T2,$Xi #
901 lea 32($inp),$inp
902 psrlq \$1,$Xi #
903 pclmulqdq \$0x00,$HK,$Xmn #######
904 pxor $Xhi,$Xi #
906 sub \$0x20,$len
907 ja .Lmod_loop
909 .Leven_tail:
910 movdqa $Xi,$Xhi
911 movdqa $Xmn,$T1
912 pshufd \$0b01001110,$Xi,$Xmn #
913 pxor $Xi,$Xmn #
915 pclmulqdq \$0x00,$Hkey2,$Xi
916 pclmulqdq \$0x11,$Hkey2,$Xhi
917 pclmulqdq \$0x10,$HK,$Xmn
919 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
920 pxor $Xhn,$Xhi
921 pxor $Xi,$T1
922 pxor $Xhi,$T1
923 pxor $T1,$Xmn
924 movdqa $Xmn,$T1 #
925 psrldq \$8,$T1
926 pslldq \$8,$Xmn #
927 pxor $T1,$Xhi
928 pxor $Xmn,$Xi #
930 &reduction_alg9 ($Xhi,$Xi);
931 $code.=<<___;
932 test $len,$len
933 jnz .Ldone
935 .Lodd_tail:
936 movdqu ($inp),$T1 # Ii
937 pshufb $T3,$T1
938 pxor $T1,$Xi # Ii+Xi
940 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H*(Ii+Xi)
941 &reduction_alg9 ($Xhi,$Xi);
942 $code.=<<___;
943 .Ldone:
944 pshufb $T3,$Xi
945 movdqu $Xi,($Xip)
947 $code.=<<___ if ($win64);
948 movaps (%rsp),%xmm6
949 movaps 0x10(%rsp),%xmm7
950 movaps 0x20(%rsp),%xmm8
951 movaps 0x30(%rsp),%xmm9
952 movaps 0x40(%rsp),%xmm10
953 movaps 0x50(%rsp),%xmm11
954 movaps 0x60(%rsp),%xmm12
955 movaps 0x70(%rsp),%xmm13
956 movaps 0x80(%rsp),%xmm14
957 movaps 0x90(%rsp),%xmm15
958 lea 0xa8(%rsp),%rsp
959 .LSEH_end_gcm_ghash_clmul:
961 $code.=<<___;
963 .size gcm_ghash_clmul,.-gcm_ghash_clmul
967 $code.=<<___;
968 .globl gcm_init_avx
969 .type gcm_init_avx,\@abi-omnipotent
970 .align 32
971 gcm_init_avx:
973 if ($avx) {
974 my ($Htbl,$Xip)=@_4args;
975 my $HK="%xmm6";
977 $code.=<<___ if ($win64);
978 .LSEH_begin_gcm_init_avx:
979 # I can't trust assembler to use specific encoding:-(
980 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
981 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
983 $code.=<<___;
984 vzeroupper
986 vmovdqu ($Xip),$Hkey
987 vpshufd \$0b01001110,$Hkey,$Hkey # dword swap
989 # <<1 twist
990 vpshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
991 vpsrlq \$63,$Hkey,$T1
992 vpsllq \$1,$Hkey,$Hkey
993 vpxor $T3,$T3,$T3 #
994 vpcmpgtd $T2,$T3,$T3 # broadcast carry bit
995 vpslldq \$8,$T1,$T1
996 vpor $T1,$Hkey,$Hkey # H<<=1
998 # magic reduction
999 vpand .L0x1c2_polynomial(%rip),$T3,$T3
1000 vpxor $T3,$Hkey,$Hkey # if(carry) H^=0x1c2_polynomial
1002 vpunpckhqdq $Hkey,$Hkey,$HK
1003 vmovdqa $Hkey,$Xi
1004 vpxor $Hkey,$HK,$HK
1005 mov \$4,%r10 # up to H^8
1006 jmp .Linit_start_avx
1009 sub clmul64x64_avx {
1010 my ($Xhi,$Xi,$Hkey,$HK)=@_;
1012 if (!defined($HK)) { $HK = $T2;
1013 $code.=<<___;
1014 vpunpckhqdq $Xi,$Xi,$T1
1015 vpunpckhqdq $Hkey,$Hkey,$T2
1016 vpxor $Xi,$T1,$T1 #
1017 vpxor $Hkey,$T2,$T2
1019 } else {
1020 $code.=<<___;
1021 vpunpckhqdq $Xi,$Xi,$T1
1022 vpxor $Xi,$T1,$T1 #
1025 $code.=<<___;
1026 vpclmulqdq \$0x11,$Hkey,$Xi,$Xhi #######
1027 vpclmulqdq \$0x00,$Hkey,$Xi,$Xi #######
1028 vpclmulqdq \$0x00,$HK,$T1,$T1 #######
1029 vpxor $Xi,$Xhi,$T2 #
1030 vpxor $T2,$T1,$T1 #
1032 vpslldq \$8,$T1,$T2 #
1033 vpsrldq \$8,$T1,$T1
1034 vpxor $T2,$Xi,$Xi #
1035 vpxor $T1,$Xhi,$Xhi
1039 sub reduction_avx {
1040 my ($Xhi,$Xi) = @_;
1042 $code.=<<___;
1043 vpsllq \$57,$Xi,$T1 # 1st phase
1044 vpsllq \$62,$Xi,$T2
1045 vpxor $T1,$T2,$T2 #
1046 vpsllq \$63,$Xi,$T1
1047 vpxor $T1,$T2,$T2 #
1048 vpslldq \$8,$T2,$T1 #
1049 vpsrldq \$8,$T2,$T2
1050 vpxor $T1,$Xi,$Xi #
1051 vpxor $T2,$Xhi,$Xhi
1053 vpsrlq \$1,$Xi,$T2 # 2nd phase
1054 vpxor $Xi,$Xhi,$Xhi
1055 vpxor $T2,$Xi,$Xi #
1056 vpsrlq \$5,$T2,$T2
1057 vpxor $T2,$Xi,$Xi #
1058 vpsrlq \$1,$Xi,$Xi #
1059 vpxor $Xhi,$Xi,$Xi #
1063 $code.=<<___;
1064 .align 32
1065 .Linit_loop_avx:
1066 vpalignr \$8,$T1,$T2,$T3 # low part is H.lo^H.hi...
1067 vmovdqu $T3,-0x10($Htbl) # save Karatsuba "salt"
1069 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^3,5,7
1070 &reduction_avx ($Xhi,$Xi);
1071 $code.=<<___;
1072 .Linit_start_avx:
1073 vmovdqa $Xi,$T3
1075 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^2,4,6,8
1076 &reduction_avx ($Xhi,$Xi);
1077 $code.=<<___;
1078 vpshufd \$0b01001110,$T3,$T1
1079 vpshufd \$0b01001110,$Xi,$T2
1080 vpxor $T3,$T1,$T1 # Karatsuba pre-processing
1081 vmovdqu $T3,0x00($Htbl) # save H^1,3,5,7
1082 vpxor $Xi,$T2,$T2 # Karatsuba pre-processing
1083 vmovdqu $Xi,0x10($Htbl) # save H^2,4,6,8
1084 lea 0x30($Htbl),$Htbl
1085 sub \$1,%r10
1086 jnz .Linit_loop_avx
1088 vpalignr \$8,$T2,$T1,$T3 # last "salt" is flipped
1089 vmovdqu $T3,-0x10($Htbl)
1091 vzeroupper
1093 $code.=<<___ if ($win64);
1094 movaps (%rsp),%xmm6
1095 lea 0x18(%rsp),%rsp
1096 .LSEH_end_gcm_init_avx:
1098 $code.=<<___;
1100 .size gcm_init_avx,.-gcm_init_avx
1102 } else {
1103 $code.=<<___;
1104 jmp .L_init_clmul
1105 .size gcm_init_avx,.-gcm_init_avx
1109 $code.=<<___;
1110 .globl gcm_gmult_avx
1111 .type gcm_gmult_avx,\@abi-omnipotent
1112 .align 32
1113 gcm_gmult_avx:
1114 jmp .L_gmult_clmul
1115 .size gcm_gmult_avx,.-gcm_gmult_avx
1118 $code.=<<___;
1119 .globl gcm_ghash_avx
1120 .type gcm_ghash_avx,\@abi-omnipotent
1121 .align 32
1122 gcm_ghash_avx:
1124 if ($avx) {
1125 my ($Xip,$Htbl,$inp,$len)=@_4args;
1126 my ($Xlo,$Xhi,$Xmi,
1127 $Zlo,$Zhi,$Zmi,
1128 $Hkey,$HK,$T1,$T2,
1129 $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
1131 $code.=<<___ if ($win64);
1132 lea -0x88(%rsp),%rax
1133 .LSEH_begin_gcm_ghash_avx:
1134 # I can't trust assembler to use specific encoding:-(
1135 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
1136 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
1137 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
1138 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
1139 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
1140 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
1141 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
1142 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
1143 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
1144 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
1145 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
1147 $code.=<<___;
1148 vzeroupper
1150 vmovdqu ($Xip),$Xi # load $Xi
1151 lea .L0x1c2_polynomial(%rip),%r10
1152 lea 0x40($Htbl),$Htbl # size optimization
1153 vmovdqu .Lbswap_mask(%rip),$bswap
1154 vpshufb $bswap,$Xi,$Xi
1155 cmp \$0x80,$len
1156 jb .Lshort_avx
1157 sub \$0x80,$len
1159 vmovdqu 0x70($inp),$Ii # I[7]
1160 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1161 vpshufb $bswap,$Ii,$Ii
1162 vmovdqu 0x20-0x40($Htbl),$HK
1164 vpunpckhqdq $Ii,$Ii,$T2
1165 vmovdqu 0x60($inp),$Ij # I[6]
1166 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1167 vpxor $Ii,$T2,$T2
1168 vpshufb $bswap,$Ij,$Ij
1169 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1170 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1171 vpunpckhqdq $Ij,$Ij,$T1
1172 vmovdqu 0x50($inp),$Ii # I[5]
1173 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1174 vpxor $Ij,$T1,$T1
1176 vpshufb $bswap,$Ii,$Ii
1177 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1178 vpunpckhqdq $Ii,$Ii,$T2
1179 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1180 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1181 vpxor $Ii,$T2,$T2
1182 vmovdqu 0x40($inp),$Ij # I[4]
1183 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1184 vmovdqu 0x50-0x40($Htbl),$HK
1186 vpshufb $bswap,$Ij,$Ij
1187 vpxor $Xlo,$Zlo,$Zlo
1188 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1189 vpxor $Xhi,$Zhi,$Zhi
1190 vpunpckhqdq $Ij,$Ij,$T1
1191 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1192 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1193 vpxor $Xmi,$Zmi,$Zmi
1194 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1195 vpxor $Ij,$T1,$T1
1197 vmovdqu 0x30($inp),$Ii # I[3]
1198 vpxor $Zlo,$Xlo,$Xlo
1199 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1200 vpxor $Zhi,$Xhi,$Xhi
1201 vpshufb $bswap,$Ii,$Ii
1202 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1203 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1204 vpxor $Zmi,$Xmi,$Xmi
1205 vpunpckhqdq $Ii,$Ii,$T2
1206 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1207 vmovdqu 0x80-0x40($Htbl),$HK
1208 vpxor $Ii,$T2,$T2
1210 vmovdqu 0x20($inp),$Ij # I[2]
1211 vpxor $Xlo,$Zlo,$Zlo
1212 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1213 vpxor $Xhi,$Zhi,$Zhi
1214 vpshufb $bswap,$Ij,$Ij
1215 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1216 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1217 vpxor $Xmi,$Zmi,$Zmi
1218 vpunpckhqdq $Ij,$Ij,$T1
1219 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1220 vpxor $Ij,$T1,$T1
1222 vmovdqu 0x10($inp),$Ii # I[1]
1223 vpxor $Zlo,$Xlo,$Xlo
1224 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1225 vpxor $Zhi,$Xhi,$Xhi
1226 vpshufb $bswap,$Ii,$Ii
1227 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1228 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1229 vpxor $Zmi,$Xmi,$Xmi
1230 vpunpckhqdq $Ii,$Ii,$T2
1231 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1232 vmovdqu 0xb0-0x40($Htbl),$HK
1233 vpxor $Ii,$T2,$T2
1235 vmovdqu ($inp),$Ij # I[0]
1236 vpxor $Xlo,$Zlo,$Zlo
1237 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1238 vpxor $Xhi,$Zhi,$Zhi
1239 vpshufb $bswap,$Ij,$Ij
1240 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1241 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
1242 vpxor $Xmi,$Zmi,$Zmi
1243 vpclmulqdq \$0x10,$HK,$T2,$Xmi
1245 lea 0x80($inp),$inp
1246 cmp \$0x80,$len
1247 jb .Ltail_avx
1249 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1250 sub \$0x80,$len
1251 jmp .Loop8x_avx
1253 .align 32
1254 .Loop8x_avx:
1255 vpunpckhqdq $Ij,$Ij,$T1
1256 vmovdqu 0x70($inp),$Ii # I[7]
1257 vpxor $Xlo,$Zlo,$Zlo
1258 vpxor $Ij,$T1,$T1
1259 vpclmulqdq \$0x00,$Hkey,$Ij,$Xi
1260 vpshufb $bswap,$Ii,$Ii
1261 vpxor $Xhi,$Zhi,$Zhi
1262 vpclmulqdq \$0x11,$Hkey,$Ij,$Xo
1263 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1264 vpunpckhqdq $Ii,$Ii,$T2
1265 vpxor $Xmi,$Zmi,$Zmi
1266 vpclmulqdq \$0x00,$HK,$T1,$Tred
1267 vmovdqu 0x20-0x40($Htbl),$HK
1268 vpxor $Ii,$T2,$T2
1270 vmovdqu 0x60($inp),$Ij # I[6]
1271 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1272 vpxor $Zlo,$Xi,$Xi # collect result
1273 vpshufb $bswap,$Ij,$Ij
1274 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1275 vxorps $Zhi,$Xo,$Xo
1276 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1277 vpunpckhqdq $Ij,$Ij,$T1
1278 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1279 vpxor $Zmi,$Tred,$Tred
1280 vxorps $Ij,$T1,$T1
1282 vmovdqu 0x50($inp),$Ii # I[5]
1283 vpxor $Xi,$Tred,$Tred # aggregated Karatsuba post-processing
1284 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1285 vpxor $Xo,$Tred,$Tred
1286 vpslldq \$8,$Tred,$T2
1287 vpxor $Xlo,$Zlo,$Zlo
1288 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1289 vpsrldq \$8,$Tred,$Tred
1290 vpxor $T2, $Xi, $Xi
1291 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1292 vpshufb $bswap,$Ii,$Ii
1293 vxorps $Tred,$Xo, $Xo
1294 vpxor $Xhi,$Zhi,$Zhi
1295 vpunpckhqdq $Ii,$Ii,$T2
1296 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1297 vmovdqu 0x50-0x40($Htbl),$HK
1298 vpxor $Ii,$T2,$T2
1299 vpxor $Xmi,$Zmi,$Zmi
1301 vmovdqu 0x40($inp),$Ij # I[4]
1302 vpalignr \$8,$Xi,$Xi,$Tred # 1st phase
1303 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1304 vpshufb $bswap,$Ij,$Ij
1305 vpxor $Zlo,$Xlo,$Xlo
1306 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1307 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1308 vpunpckhqdq $Ij,$Ij,$T1
1309 vpxor $Zhi,$Xhi,$Xhi
1310 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1311 vxorps $Ij,$T1,$T1
1312 vpxor $Zmi,$Xmi,$Xmi
1314 vmovdqu 0x30($inp),$Ii # I[3]
1315 vpclmulqdq \$0x10,(%r10),$Xi,$Xi
1316 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1317 vpshufb $bswap,$Ii,$Ii
1318 vpxor $Xlo,$Zlo,$Zlo
1319 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1320 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1321 vpunpckhqdq $Ii,$Ii,$T2
1322 vpxor $Xhi,$Zhi,$Zhi
1323 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1324 vmovdqu 0x80-0x40($Htbl),$HK
1325 vpxor $Ii,$T2,$T2
1326 vpxor $Xmi,$Zmi,$Zmi
1328 vmovdqu 0x20($inp),$Ij # I[2]
1329 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1330 vpshufb $bswap,$Ij,$Ij
1331 vpxor $Zlo,$Xlo,$Xlo
1332 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1333 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1334 vpunpckhqdq $Ij,$Ij,$T1
1335 vpxor $Zhi,$Xhi,$Xhi
1336 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1337 vpxor $Ij,$T1,$T1
1338 vpxor $Zmi,$Xmi,$Xmi
1339 vxorps $Tred,$Xi,$Xi
1341 vmovdqu 0x10($inp),$Ii # I[1]
1342 vpalignr \$8,$Xi,$Xi,$Tred # 2nd phase
1343 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1344 vpshufb $bswap,$Ii,$Ii
1345 vpxor $Xlo,$Zlo,$Zlo
1346 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1347 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1348 vpclmulqdq \$0x10,(%r10),$Xi,$Xi
1349 vxorps $Xo,$Tred,$Tred
1350 vpunpckhqdq $Ii,$Ii,$T2
1351 vpxor $Xhi,$Zhi,$Zhi
1352 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1353 vmovdqu 0xb0-0x40($Htbl),$HK
1354 vpxor $Ii,$T2,$T2
1355 vpxor $Xmi,$Zmi,$Zmi
1357 vmovdqu ($inp),$Ij # I[0]
1358 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1359 vpshufb $bswap,$Ij,$Ij
1360 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1361 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
1362 vpxor $Tred,$Ij,$Ij
1363 vpclmulqdq \$0x10,$HK, $T2,$Xmi
1364 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1366 lea 0x80($inp),$inp
1367 sub \$0x80,$len
1368 jnc .Loop8x_avx
1370 add \$0x80,$len
1371 jmp .Ltail_no_xor_avx
1373 .align 32
1374 .Lshort_avx:
1375 vmovdqu -0x10($inp,$len),$Ii # very last word
1376 lea ($inp,$len),$inp
1377 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1378 vmovdqu 0x20-0x40($Htbl),$HK
1379 vpshufb $bswap,$Ii,$Ij
1381 vmovdqa $Xlo,$Zlo # subtle way to zero $Zlo,
1382 vmovdqa $Xhi,$Zhi # $Zhi and
1383 vmovdqa $Xmi,$Zmi # $Zmi
1384 sub \$0x10,$len
1385 jz .Ltail_avx
1387 vpunpckhqdq $Ij,$Ij,$T1
1388 vpxor $Xlo,$Zlo,$Zlo
1389 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1390 vpxor $Ij,$T1,$T1
1391 vmovdqu -0x20($inp),$Ii
1392 vpxor $Xhi,$Zhi,$Zhi
1393 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1394 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1395 vpshufb $bswap,$Ii,$Ij
1396 vpxor $Xmi,$Zmi,$Zmi
1397 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1398 vpsrldq \$8,$HK,$HK
1399 sub \$0x10,$len
1400 jz .Ltail_avx
1402 vpunpckhqdq $Ij,$Ij,$T1
1403 vpxor $Xlo,$Zlo,$Zlo
1404 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1405 vpxor $Ij,$T1,$T1
1406 vmovdqu -0x30($inp),$Ii
1407 vpxor $Xhi,$Zhi,$Zhi
1408 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1409 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1410 vpshufb $bswap,$Ii,$Ij
1411 vpxor $Xmi,$Zmi,$Zmi
1412 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1413 vmovdqu 0x50-0x40($Htbl),$HK
1414 sub \$0x10,$len
1415 jz .Ltail_avx
1417 vpunpckhqdq $Ij,$Ij,$T1
1418 vpxor $Xlo,$Zlo,$Zlo
1419 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1420 vpxor $Ij,$T1,$T1
1421 vmovdqu -0x40($inp),$Ii
1422 vpxor $Xhi,$Zhi,$Zhi
1423 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1424 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1425 vpshufb $bswap,$Ii,$Ij
1426 vpxor $Xmi,$Zmi,$Zmi
1427 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1428 vpsrldq \$8,$HK,$HK
1429 sub \$0x10,$len
1430 jz .Ltail_avx
1432 vpunpckhqdq $Ij,$Ij,$T1
1433 vpxor $Xlo,$Zlo,$Zlo
1434 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1435 vpxor $Ij,$T1,$T1
1436 vmovdqu -0x50($inp),$Ii
1437 vpxor $Xhi,$Zhi,$Zhi
1438 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1439 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1440 vpshufb $bswap,$Ii,$Ij
1441 vpxor $Xmi,$Zmi,$Zmi
1442 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1443 vmovdqu 0x80-0x40($Htbl),$HK
1444 sub \$0x10,$len
1445 jz .Ltail_avx
1447 vpunpckhqdq $Ij,$Ij,$T1
1448 vpxor $Xlo,$Zlo,$Zlo
1449 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1450 vpxor $Ij,$T1,$T1
1451 vmovdqu -0x60($inp),$Ii
1452 vpxor $Xhi,$Zhi,$Zhi
1453 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1454 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1455 vpshufb $bswap,$Ii,$Ij
1456 vpxor $Xmi,$Zmi,$Zmi
1457 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1458 vpsrldq \$8,$HK,$HK
1459 sub \$0x10,$len
1460 jz .Ltail_avx
1462 vpunpckhqdq $Ij,$Ij,$T1
1463 vpxor $Xlo,$Zlo,$Zlo
1464 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1465 vpxor $Ij,$T1,$T1
1466 vmovdqu -0x70($inp),$Ii
1467 vpxor $Xhi,$Zhi,$Zhi
1468 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1469 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1470 vpshufb $bswap,$Ii,$Ij
1471 vpxor $Xmi,$Zmi,$Zmi
1472 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1473 vmovq 0xb8-0x40($Htbl),$HK
1474 sub \$0x10,$len
1475 jmp .Ltail_avx
1477 .align 32
1478 .Ltail_avx:
1479 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1480 .Ltail_no_xor_avx:
1481 vpunpckhqdq $Ij,$Ij,$T1
1482 vpxor $Xlo,$Zlo,$Zlo
1483 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1484 vpxor $Ij,$T1,$T1
1485 vpxor $Xhi,$Zhi,$Zhi
1486 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1487 vpxor $Xmi,$Zmi,$Zmi
1488 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1490 vmovdqu (%r10),$Tred
1492 vpxor $Xlo,$Zlo,$Xi
1493 vpxor $Xhi,$Zhi,$Xo
1494 vpxor $Xmi,$Zmi,$Zmi
1496 vpxor $Xi, $Zmi,$Zmi # aggregated Karatsuba post-processing
1497 vpxor $Xo, $Zmi,$Zmi
1498 vpslldq \$8, $Zmi,$T2
1499 vpsrldq \$8, $Zmi,$Zmi
1500 vpxor $T2, $Xi, $Xi
1501 vpxor $Zmi,$Xo, $Xo
1503 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 1st phase
1504 vpalignr \$8,$Xi,$Xi,$Xi
1505 vpxor $T2,$Xi,$Xi
1507 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 2nd phase
1508 vpalignr \$8,$Xi,$Xi,$Xi
1509 vpxor $Xo,$Xi,$Xi
1510 vpxor $T2,$Xi,$Xi
1512 cmp \$0,$len
1513 jne .Lshort_avx
1515 vpshufb $bswap,$Xi,$Xi
1516 vmovdqu $Xi,($Xip)
1517 vzeroupper
1519 $code.=<<___ if ($win64);
1520 movaps (%rsp),%xmm6
1521 movaps 0x10(%rsp),%xmm7
1522 movaps 0x20(%rsp),%xmm8
1523 movaps 0x30(%rsp),%xmm9
1524 movaps 0x40(%rsp),%xmm10
1525 movaps 0x50(%rsp),%xmm11
1526 movaps 0x60(%rsp),%xmm12
1527 movaps 0x70(%rsp),%xmm13
1528 movaps 0x80(%rsp),%xmm14
1529 movaps 0x90(%rsp),%xmm15
1530 lea 0xa8(%rsp),%rsp
1531 .LSEH_end_gcm_ghash_avx:
1533 $code.=<<___;
1535 .size gcm_ghash_avx,.-gcm_ghash_avx
1537 } else {
1538 $code.=<<___;
1539 jmp .L_ghash_clmul
1540 .size gcm_ghash_avx,.-gcm_ghash_avx
1544 $code.=<<___;
1545 .align 64
1546 .Lbswap_mask:
1547 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
1548 .L0x1c2_polynomial:
1549 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
1550 .L7_mask:
1551 .long 7,0,7,0
1552 .L7_mask_poly:
1553 .long 7,0,`0xE1<<1`,0
1554 .align 64
1555 .type .Lrem_4bit,\@object
1556 .Lrem_4bit:
1557 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
1558 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
1559 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
1560 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
1561 .type .Lrem_8bit,\@object
1562 .Lrem_8bit:
1563 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
1564 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
1565 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
1566 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
1567 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
1568 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
1569 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
1570 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
1571 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
1572 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
1573 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
1574 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
1575 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
1576 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
1577 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
1578 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
1579 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
1580 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
1581 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
1582 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
1583 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
1584 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
1585 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
1586 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
1587 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
1588 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
1589 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
1590 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
1591 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
1592 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
1593 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
1594 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
1596 .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1597 .align 64
1600 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1601 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
1602 if ($win64) {
1603 $rec="%rcx";
1604 $frame="%rdx";
1605 $context="%r8";
1606 $disp="%r9";
1608 $code.=<<___;
1609 .extern __imp_RtlVirtualUnwind
1610 .type se_handler,\@abi-omnipotent
1611 .align 16
1612 se_handler:
1613 push %rsi
1614 push %rdi
1615 push %rbx
1616 push %rbp
1617 push %r12
1618 push %r13
1619 push %r14
1620 push %r15
1621 pushfq
1622 sub \$64,%rsp
1624 mov 120($context),%rax # pull context->Rax
1625 mov 248($context),%rbx # pull context->Rip
1627 mov 8($disp),%rsi # disp->ImageBase
1628 mov 56($disp),%r11 # disp->HandlerData
1630 mov 0(%r11),%r10d # HandlerData[0]
1631 lea (%rsi,%r10),%r10 # prologue label
1632 cmp %r10,%rbx # context->Rip<prologue label
1633 jb .Lin_prologue
1635 mov 152($context),%rax # pull context->Rsp
1637 mov 4(%r11),%r10d # HandlerData[1]
1638 lea (%rsi,%r10),%r10 # epilogue label
1639 cmp %r10,%rbx # context->Rip>=epilogue label
1640 jae .Lin_prologue
1642 lea 24(%rax),%rax # adjust "rsp"
1644 mov -8(%rax),%rbx
1645 mov -16(%rax),%rbp
1646 mov -24(%rax),%r12
1647 mov %rbx,144($context) # restore context->Rbx
1648 mov %rbp,160($context) # restore context->Rbp
1649 mov %r12,216($context) # restore context->R12
1651 .Lin_prologue:
1652 mov 8(%rax),%rdi
1653 mov 16(%rax),%rsi
1654 mov %rax,152($context) # restore context->Rsp
1655 mov %rsi,168($context) # restore context->Rsi
1656 mov %rdi,176($context) # restore context->Rdi
1658 mov 40($disp),%rdi # disp->ContextRecord
1659 mov $context,%rsi # context
1660 mov \$`1232/8`,%ecx # sizeof(CONTEXT)
1661 .long 0xa548f3fc # cld; rep movsq
1663 mov $disp,%rsi
1664 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1665 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1666 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1667 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1668 mov 40(%rsi),%r10 # disp->ContextRecord
1669 lea 56(%rsi),%r11 # &disp->HandlerData
1670 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1671 mov %r10,32(%rsp) # arg5
1672 mov %r11,40(%rsp) # arg6
1673 mov %r12,48(%rsp) # arg7
1674 mov %rcx,56(%rsp) # arg8, (NULL)
1675 call *__imp_RtlVirtualUnwind(%rip)
1677 mov \$1,%eax # ExceptionContinueSearch
1678 add \$64,%rsp
1679 popfq
1680 pop %r15
1681 pop %r14
1682 pop %r13
1683 pop %r12
1684 pop %rbp
1685 pop %rbx
1686 pop %rdi
1687 pop %rsi
1689 .size se_handler,.-se_handler
1691 .section .pdata
1692 .align 4
1693 .rva .LSEH_begin_gcm_gmult_4bit
1694 .rva .LSEH_end_gcm_gmult_4bit
1695 .rva .LSEH_info_gcm_gmult_4bit
1697 .rva .LSEH_begin_gcm_ghash_4bit
1698 .rva .LSEH_end_gcm_ghash_4bit
1699 .rva .LSEH_info_gcm_ghash_4bit
1701 .rva .LSEH_begin_gcm_init_clmul
1702 .rva .LSEH_end_gcm_init_clmul
1703 .rva .LSEH_info_gcm_init_clmul
1705 .rva .LSEH_begin_gcm_ghash_clmul
1706 .rva .LSEH_end_gcm_ghash_clmul
1707 .rva .LSEH_info_gcm_ghash_clmul
1709 $code.=<<___ if ($avx);
1710 .rva .LSEH_begin_gcm_init_avx
1711 .rva .LSEH_end_gcm_init_avx
1712 .rva .LSEH_info_gcm_init_clmul
1714 .rva .LSEH_begin_gcm_ghash_avx
1715 .rva .LSEH_end_gcm_ghash_avx
1716 .rva .LSEH_info_gcm_ghash_clmul
1718 $code.=<<___;
1719 .section .xdata
1720 .align 8
1721 .LSEH_info_gcm_gmult_4bit:
1722 .byte 9,0,0,0
1723 .rva se_handler
1724 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
1725 .LSEH_info_gcm_ghash_4bit:
1726 .byte 9,0,0,0
1727 .rva se_handler
1728 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
1729 .LSEH_info_gcm_init_clmul:
1730 .byte 0x01,0x08,0x03,0x00
1731 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
1732 .byte 0x04,0x22,0x00,0x00 #sub rsp,0x18
1733 .LSEH_info_gcm_ghash_clmul:
1734 .byte 0x01,0x33,0x16,0x00
1735 .byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15
1736 .byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14
1737 .byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13
1738 .byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12
1739 .byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11
1740 .byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
1741 .byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
1742 .byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
1743 .byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
1744 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
1745 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8
1749 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
1751 print $code;
1753 close STDOUT;