Change bwillwrite() to smooth out performance under heavy loads. Blocking
[dragonfly.git] / sys / kern / vfs_bio.c
blob38c45ff4ab8060e98b2fe1b0de9ef7d210fe5e00
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.103 2008/06/10 05:02:09 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
68 * Buffer queues.
70 enum bufq_type {
71 BQUEUE_NONE, /* not on any queue */
72 BQUEUE_LOCKED, /* locked buffers */
73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
74 BQUEUE_DIRTY, /* B_DELWRI buffers */
75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
77 BQUEUE_EMPTY, /* empty buffer headers */
79 BUFFER_QUEUES /* number of buffer queues */
82 typedef enum bufq_type bufq_type_t;
84 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
86 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
88 struct buf *buf; /* buffer header pool */
90 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
91 vm_offset_t to);
92 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
93 vm_offset_t to);
94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
95 int pageno, vm_page_t m);
96 static void vfs_clean_pages(struct buf *bp);
97 static void vfs_setdirty(struct buf *bp);
98 static void vfs_vmio_release(struct buf *bp);
99 static int flushbufqueues(bufq_type_t q);
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
104 * bogus page -- for I/O to/from partially complete buffers
105 * this is a temporary solution to the problem, but it is not
106 * really that bad. it would be better to split the buffer
107 * for input in the case of buffers partially already in memory,
108 * but the code is intricate enough already.
110 vm_page_t bogus_page;
113 * These are all static, but make the ones we export globals so we do
114 * not need to use compiler magic.
116 int bufspace, maxbufspace,
117 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
118 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
119 static int lorunningspace, hirunningspace, runningbufreq;
120 int numdirtybuffers, numdirtybuffershw, lodirtybuffers, hidirtybuffers;
121 int runningbufspace, runningbufcount;
122 static int numfreebuffers, lofreebuffers, hifreebuffers;
123 static int getnewbufcalls;
124 static int getnewbufrestarts;
126 static int needsbuffer; /* locked by needsbuffer_spin */
127 static int bd_request; /* locked by needsbuffer_spin */
128 static int bd_request_hw; /* locked by needsbuffer_spin */
129 static struct spinlock needsbuffer_spin;
132 * Sysctls for operational control of the buffer cache.
134 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
135 "Number of dirty buffers to flush before bufdaemon becomes inactive");
136 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
137 "High watermark used to trigger explicit flushing of dirty buffers");
138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139 "Low watermark for special reserve in low-memory situations");
140 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
141 "High watermark for special reserve in low-memory situations");
142 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
143 "Minimum amount of buffer space required for active I/O");
144 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
145 "Maximum amount of buffer space to usable for active I/O");
147 * Sysctls determining current state of the buffer cache.
149 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
150 "Total number of buffers in buffer cache");
151 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
152 "Pending number of dirty buffers (all)");
153 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffershw, CTLFLAG_RD, &numdirtybuffershw, 0,
154 "Pending number of dirty buffers (heavy weight)");
155 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
156 "Number of free buffers on the buffer cache free list");
157 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
158 "I/O bytes currently in progress due to asynchronous writes");
159 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
160 "I/O buffers currently in progress due to asynchronous writes");
161 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
162 "Hard limit on maximum amount of memory usable for buffer space");
163 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
164 "Soft limit on maximum amount of memory usable for buffer space");
165 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
166 "Minimum amount of memory to reserve for system buffer space");
167 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
168 "Amount of memory available for buffers");
169 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
170 0, "Maximum amount of memory reserved for buffers using malloc");
171 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
172 "Amount of memory left for buffers using malloc-scheme");
173 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
174 "New buffer header acquisition requests");
175 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
176 0, "New buffer header acquisition restarts");
177 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
178 "Buffer acquisition restarts due to fragmented buffer map");
179 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
180 "Amount of time KVA space was deallocated in an arbitrary buffer");
181 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
182 "Amount of time buffer re-use operations were successful");
183 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
184 "sizeof(struct buf)");
186 char *buf_wmesg = BUF_WMESG;
188 extern int vm_swap_size;
190 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
191 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
192 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
193 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
196 * numdirtywakeup:
198 * If someone is blocked due to there being too many dirty buffers,
199 * and numdirtybuffers is now reasonable, wake them up.
201 static __inline void
202 numdirtywakeup(void)
204 if (runningbufcount + numdirtybuffers <=
205 (lodirtybuffers + hidirtybuffers) / 2) {
206 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
207 spin_lock_wr(&needsbuffer_spin);
208 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
209 spin_unlock_wr(&needsbuffer_spin);
210 wakeup(&needsbuffer);
216 * bufspacewakeup:
218 * Called when buffer space is potentially available for recovery.
219 * getnewbuf() will block on this flag when it is unable to free
220 * sufficient buffer space. Buffer space becomes recoverable when
221 * bp's get placed back in the queues.
224 static __inline void
225 bufspacewakeup(void)
228 * If someone is waiting for BUF space, wake them up. Even
229 * though we haven't freed the kva space yet, the waiting
230 * process will be able to now.
232 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
233 spin_lock_wr(&needsbuffer_spin);
234 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
235 spin_unlock_wr(&needsbuffer_spin);
236 wakeup(&needsbuffer);
241 * runningbufwakeup:
243 * Accounting for I/O in progress.
246 static __inline void
247 runningbufwakeup(struct buf *bp)
249 if (bp->b_runningbufspace) {
250 runningbufspace -= bp->b_runningbufspace;
251 --runningbufcount;
252 bp->b_runningbufspace = 0;
253 if (runningbufreq && runningbufspace <= lorunningspace) {
254 runningbufreq = 0;
255 wakeup(&runningbufreq);
257 numdirtywakeup();
262 * bufcountwakeup:
264 * Called when a buffer has been added to one of the free queues to
265 * account for the buffer and to wakeup anyone waiting for free buffers.
266 * This typically occurs when large amounts of metadata are being handled
267 * by the buffer cache ( else buffer space runs out first, usually ).
270 static __inline void
271 bufcountwakeup(void)
273 ++numfreebuffers;
274 if (needsbuffer) {
275 spin_lock_wr(&needsbuffer_spin);
276 needsbuffer &= ~VFS_BIO_NEED_ANY;
277 if (numfreebuffers >= hifreebuffers)
278 needsbuffer &= ~VFS_BIO_NEED_FREE;
279 spin_unlock_wr(&needsbuffer_spin);
280 wakeup(&needsbuffer);
285 * waitrunningbufspace()
287 * runningbufspace is a measure of the amount of I/O currently
288 * running. This routine is used in async-write situations to
289 * prevent creating huge backups of pending writes to a device.
290 * Only asynchronous writes are governed by this function.
292 * Reads will adjust runningbufspace, but will not block based on it.
293 * The read load has a side effect of reducing the allowed write load.
295 * This does NOT turn an async write into a sync write. It waits
296 * for earlier writes to complete and generally returns before the
297 * caller's write has reached the device.
299 static __inline void
300 waitrunningbufspace(void)
302 if (runningbufspace > hirunningspace) {
303 crit_enter();
304 while (runningbufspace > hirunningspace) {
305 ++runningbufreq;
306 tsleep(&runningbufreq, 0, "wdrain", 0);
308 crit_exit();
313 * vfs_buf_test_cache:
315 * Called when a buffer is extended. This function clears the B_CACHE
316 * bit if the newly extended portion of the buffer does not contain
317 * valid data.
319 static __inline__
320 void
321 vfs_buf_test_cache(struct buf *bp,
322 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
323 vm_page_t m)
325 if (bp->b_flags & B_CACHE) {
326 int base = (foff + off) & PAGE_MASK;
327 if (vm_page_is_valid(m, base, size) == 0)
328 bp->b_flags &= ~B_CACHE;
333 * bd_wakeup:
335 * Wake up the buffer daemon if the number of outstanding dirty buffers
336 * is above specified threshold 'dirtybuflevel'.
338 * The buffer daemons are explicitly woken up when (a) the pending number
339 * of dirty buffers exceeds the recovery and stall mid-point value,
340 * (b) during bwillwrite() or (c) buf freelist was exhausted.
342 * The buffer daemons will generally not stop flushing until the dirty
343 * buffer count goes below lodirtybuffers.
345 static __inline__
346 void
347 bd_wakeup(int dirtybuflevel)
349 if (bd_request == 0 && numdirtybuffers &&
350 runningbufcount + numdirtybuffers >= dirtybuflevel) {
351 spin_lock_wr(&needsbuffer_spin);
352 bd_request = 1;
353 spin_unlock_wr(&needsbuffer_spin);
354 wakeup(&bd_request);
356 if (bd_request_hw == 0 && numdirtybuffershw &&
357 numdirtybuffershw >= dirtybuflevel) {
358 spin_lock_wr(&needsbuffer_spin);
359 bd_request_hw = 1;
360 spin_unlock_wr(&needsbuffer_spin);
361 wakeup(&bd_request_hw);
366 * bd_speedup:
368 * Speed up the buffer cache flushing process.
371 static __inline__
372 void
373 bd_speedup(void)
375 bd_wakeup(1);
379 * bufinit:
381 * Load time initialisation of the buffer cache, called from machine
382 * dependant initialization code.
384 void
385 bufinit(void)
387 struct buf *bp;
388 vm_offset_t bogus_offset;
389 int i;
391 spin_init(&needsbuffer_spin);
393 /* next, make a null set of free lists */
394 for (i = 0; i < BUFFER_QUEUES; i++)
395 TAILQ_INIT(&bufqueues[i]);
397 /* finally, initialize each buffer header and stick on empty q */
398 for (i = 0; i < nbuf; i++) {
399 bp = &buf[i];
400 bzero(bp, sizeof *bp);
401 bp->b_flags = B_INVAL; /* we're just an empty header */
402 bp->b_cmd = BUF_CMD_DONE;
403 bp->b_qindex = BQUEUE_EMPTY;
404 initbufbio(bp);
405 xio_init(&bp->b_xio);
406 buf_dep_init(bp);
407 BUF_LOCKINIT(bp);
408 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
412 * maxbufspace is the absolute maximum amount of buffer space we are
413 * allowed to reserve in KVM and in real terms. The absolute maximum
414 * is nominally used by buf_daemon. hibufspace is the nominal maximum
415 * used by most other processes. The differential is required to
416 * ensure that buf_daemon is able to run when other processes might
417 * be blocked waiting for buffer space.
419 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
420 * this may result in KVM fragmentation which is not handled optimally
421 * by the system.
423 maxbufspace = nbuf * BKVASIZE;
424 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
425 lobufspace = hibufspace - MAXBSIZE;
427 lorunningspace = 512 * 1024;
428 hirunningspace = 1024 * 1024;
431 * Limit the amount of malloc memory since it is wired permanently into
432 * the kernel space. Even though this is accounted for in the buffer
433 * allocation, we don't want the malloced region to grow uncontrolled.
434 * The malloc scheme improves memory utilization significantly on average
435 * (small) directories.
437 maxbufmallocspace = hibufspace / 20;
440 * Reduce the chance of a deadlock occuring by limiting the number
441 * of delayed-write dirty buffers we allow to stack up.
443 hidirtybuffers = nbuf / 4 + 20;
444 numdirtybuffers = 0;
445 numdirtybuffershw = 0;
447 * To support extreme low-memory systems, make sure hidirtybuffers cannot
448 * eat up all available buffer space. This occurs when our minimum cannot
449 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
450 * BKVASIZE'd (8K) buffers.
452 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
453 hidirtybuffers >>= 1;
455 lodirtybuffers = hidirtybuffers / 2;
458 * Try to keep the number of free buffers in the specified range,
459 * and give special processes (e.g. like buf_daemon) access to an
460 * emergency reserve.
462 lofreebuffers = nbuf / 18 + 5;
463 hifreebuffers = 2 * lofreebuffers;
464 numfreebuffers = nbuf;
467 * Maximum number of async ops initiated per buf_daemon loop. This is
468 * somewhat of a hack at the moment, we really need to limit ourselves
469 * based on the number of bytes of I/O in-transit that were initiated
470 * from buf_daemon.
473 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
474 bogus_page = vm_page_alloc(&kernel_object,
475 (bogus_offset >> PAGE_SHIFT),
476 VM_ALLOC_NORMAL);
477 vmstats.v_wire_count++;
482 * Initialize the embedded bio structures
484 void
485 initbufbio(struct buf *bp)
487 bp->b_bio1.bio_buf = bp;
488 bp->b_bio1.bio_prev = NULL;
489 bp->b_bio1.bio_offset = NOOFFSET;
490 bp->b_bio1.bio_next = &bp->b_bio2;
491 bp->b_bio1.bio_done = NULL;
493 bp->b_bio2.bio_buf = bp;
494 bp->b_bio2.bio_prev = &bp->b_bio1;
495 bp->b_bio2.bio_offset = NOOFFSET;
496 bp->b_bio2.bio_next = NULL;
497 bp->b_bio2.bio_done = NULL;
501 * Reinitialize the embedded bio structures as well as any additional
502 * translation cache layers.
504 void
505 reinitbufbio(struct buf *bp)
507 struct bio *bio;
509 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
510 bio->bio_done = NULL;
511 bio->bio_offset = NOOFFSET;
516 * Push another BIO layer onto an existing BIO and return it. The new
517 * BIO layer may already exist, holding cached translation data.
519 struct bio *
520 push_bio(struct bio *bio)
522 struct bio *nbio;
524 if ((nbio = bio->bio_next) == NULL) {
525 int index = bio - &bio->bio_buf->b_bio_array[0];
526 if (index >= NBUF_BIO - 1) {
527 panic("push_bio: too many layers bp %p\n",
528 bio->bio_buf);
530 nbio = &bio->bio_buf->b_bio_array[index + 1];
531 bio->bio_next = nbio;
532 nbio->bio_prev = bio;
533 nbio->bio_buf = bio->bio_buf;
534 nbio->bio_offset = NOOFFSET;
535 nbio->bio_done = NULL;
536 nbio->bio_next = NULL;
538 KKASSERT(nbio->bio_done == NULL);
539 return(nbio);
542 void
543 pop_bio(struct bio *bio)
545 /* NOP */
548 void
549 clearbiocache(struct bio *bio)
551 while (bio) {
552 bio->bio_offset = NOOFFSET;
553 bio = bio->bio_next;
558 * bfreekva:
560 * Free the KVA allocation for buffer 'bp'.
562 * Must be called from a critical section as this is the only locking for
563 * buffer_map.
565 * Since this call frees up buffer space, we call bufspacewakeup().
567 static void
568 bfreekva(struct buf *bp)
570 int count;
572 if (bp->b_kvasize) {
573 ++buffreekvacnt;
574 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
575 vm_map_lock(&buffer_map);
576 bufspace -= bp->b_kvasize;
577 vm_map_delete(&buffer_map,
578 (vm_offset_t) bp->b_kvabase,
579 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
580 &count
582 vm_map_unlock(&buffer_map);
583 vm_map_entry_release(count);
584 bp->b_kvasize = 0;
585 bufspacewakeup();
590 * bremfree:
592 * Remove the buffer from the appropriate free list.
594 void
595 bremfree(struct buf *bp)
597 int old_qindex;
599 crit_enter();
600 old_qindex = bp->b_qindex;
602 if (bp->b_qindex != BQUEUE_NONE) {
603 KASSERT(BUF_REFCNTNB(bp) == 1,
604 ("bremfree: bp %p not locked",bp));
605 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
606 bp->b_qindex = BQUEUE_NONE;
607 } else {
608 if (BUF_REFCNTNB(bp) <= 1)
609 panic("bremfree: removing a buffer not on a queue");
613 * Fixup numfreebuffers count. If the buffer is invalid or not
614 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
615 * the buffer was free and we must decrement numfreebuffers.
617 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
618 switch(old_qindex) {
619 case BQUEUE_DIRTY:
620 case BQUEUE_DIRTY_HW:
621 case BQUEUE_CLEAN:
622 case BQUEUE_EMPTY:
623 case BQUEUE_EMPTYKVA:
624 --numfreebuffers;
625 break;
626 default:
627 break;
630 crit_exit();
635 * bread:
637 * Get a buffer with the specified data. Look in the cache first. We
638 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
639 * is set, the buffer is valid and we do not have to do anything ( see
640 * getblk() ).
643 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
645 struct buf *bp;
647 bp = getblk(vp, loffset, size, 0, 0);
648 *bpp = bp;
650 /* if not found in cache, do some I/O */
651 if ((bp->b_flags & B_CACHE) == 0) {
652 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
653 bp->b_flags &= ~(B_ERROR | B_INVAL);
654 bp->b_cmd = BUF_CMD_READ;
655 vfs_busy_pages(vp, bp);
656 vn_strategy(vp, &bp->b_bio1);
657 return (biowait(bp));
659 return (0);
663 * breadn:
665 * Operates like bread, but also starts asynchronous I/O on
666 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
667 * to initiating I/O . If B_CACHE is set, the buffer is valid
668 * and we do not have to do anything.
671 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
672 int *rabsize, int cnt, struct buf **bpp)
674 struct buf *bp, *rabp;
675 int i;
676 int rv = 0, readwait = 0;
678 *bpp = bp = getblk(vp, loffset, size, 0, 0);
680 /* if not found in cache, do some I/O */
681 if ((bp->b_flags & B_CACHE) == 0) {
682 bp->b_flags &= ~(B_ERROR | B_INVAL);
683 bp->b_cmd = BUF_CMD_READ;
684 vfs_busy_pages(vp, bp);
685 vn_strategy(vp, &bp->b_bio1);
686 ++readwait;
689 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
690 if (inmem(vp, *raoffset))
691 continue;
692 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
694 if ((rabp->b_flags & B_CACHE) == 0) {
695 rabp->b_flags |= B_ASYNC;
696 rabp->b_flags &= ~(B_ERROR | B_INVAL);
697 rabp->b_cmd = BUF_CMD_READ;
698 vfs_busy_pages(vp, rabp);
699 BUF_KERNPROC(rabp);
700 vn_strategy(vp, &rabp->b_bio1);
701 } else {
702 brelse(rabp);
706 if (readwait) {
707 rv = biowait(bp);
709 return (rv);
713 * bwrite:
715 * Write, release buffer on completion. (Done by iodone
716 * if async). Do not bother writing anything if the buffer
717 * is invalid.
719 * Note that we set B_CACHE here, indicating that buffer is
720 * fully valid and thus cacheable. This is true even of NFS
721 * now so we set it generally. This could be set either here
722 * or in biodone() since the I/O is synchronous. We put it
723 * here.
726 bwrite(struct buf *bp)
728 int oldflags;
730 if (bp->b_flags & B_INVAL) {
731 brelse(bp);
732 return (0);
735 oldflags = bp->b_flags;
737 if (BUF_REFCNTNB(bp) == 0)
738 panic("bwrite: buffer is not busy???");
739 crit_enter();
741 /* Mark the buffer clean */
742 bundirty(bp);
744 bp->b_flags &= ~B_ERROR;
745 bp->b_flags |= B_CACHE;
746 bp->b_cmd = BUF_CMD_WRITE;
747 vfs_busy_pages(bp->b_vp, bp);
750 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
751 * valid for vnode-backed buffers.
753 bp->b_runningbufspace = bp->b_bufsize;
754 if (bp->b_runningbufspace) {
755 runningbufspace += bp->b_runningbufspace;
756 ++runningbufcount;
759 crit_exit();
760 if (oldflags & B_ASYNC)
761 BUF_KERNPROC(bp);
762 vn_strategy(bp->b_vp, &bp->b_bio1);
764 if ((oldflags & B_ASYNC) == 0) {
765 int rtval = biowait(bp);
766 brelse(bp);
767 return (rtval);
769 return (0);
773 * bdwrite:
775 * Delayed write. (Buffer is marked dirty). Do not bother writing
776 * anything if the buffer is marked invalid.
778 * Note that since the buffer must be completely valid, we can safely
779 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
780 * biodone() in order to prevent getblk from writing the buffer
781 * out synchronously.
783 void
784 bdwrite(struct buf *bp)
786 if (BUF_REFCNTNB(bp) == 0)
787 panic("bdwrite: buffer is not busy");
789 if (bp->b_flags & B_INVAL) {
790 brelse(bp);
791 return;
793 bdirty(bp);
796 * Set B_CACHE, indicating that the buffer is fully valid. This is
797 * true even of NFS now.
799 bp->b_flags |= B_CACHE;
802 * This bmap keeps the system from needing to do the bmap later,
803 * perhaps when the system is attempting to do a sync. Since it
804 * is likely that the indirect block -- or whatever other datastructure
805 * that the filesystem needs is still in memory now, it is a good
806 * thing to do this. Note also, that if the pageout daemon is
807 * requesting a sync -- there might not be enough memory to do
808 * the bmap then... So, this is important to do.
810 if (bp->b_bio2.bio_offset == NOOFFSET) {
811 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
812 NULL, NULL);
816 * Set the *dirty* buffer range based upon the VM system dirty pages.
818 vfs_setdirty(bp);
821 * We need to do this here to satisfy the vnode_pager and the
822 * pageout daemon, so that it thinks that the pages have been
823 * "cleaned". Note that since the pages are in a delayed write
824 * buffer -- the VFS layer "will" see that the pages get written
825 * out on the next sync, or perhaps the cluster will be completed.
827 vfs_clean_pages(bp);
828 bqrelse(bp);
831 * Wakeup the buffer flushing daemon if we have a lot of dirty
832 * buffers (midpoint between our recovery point and our stall
833 * point).
835 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
838 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
839 * due to the softdep code.
844 * bdirty:
846 * Turn buffer into delayed write request by marking it B_DELWRI.
847 * B_RELBUF and B_NOCACHE must be cleared.
849 * We reassign the buffer to itself to properly update it in the
850 * dirty/clean lists.
852 * Since the buffer is not on a queue, we do not update the
853 * numfreebuffers count.
855 * Must be called from a critical section.
856 * The buffer must be on BQUEUE_NONE.
858 void
859 bdirty(struct buf *bp)
861 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
862 if (bp->b_flags & B_NOCACHE) {
863 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
864 bp->b_flags &= ~B_NOCACHE;
866 if (bp->b_flags & B_INVAL) {
867 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
869 bp->b_flags &= ~B_RELBUF;
871 if ((bp->b_flags & B_DELWRI) == 0) {
872 bp->b_flags |= B_DELWRI;
873 reassignbuf(bp);
874 ++numdirtybuffers;
875 if (bp->b_flags & B_HEAVY)
876 ++numdirtybuffershw;
877 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
882 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
883 * needs to be flushed with a different buf_daemon thread to avoid
884 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
886 void
887 bheavy(struct buf *bp)
889 if ((bp->b_flags & B_HEAVY) == 0) {
890 bp->b_flags |= B_HEAVY;
891 if (bp->b_flags & B_DELWRI)
892 ++numdirtybuffershw;
897 * bundirty:
899 * Clear B_DELWRI for buffer.
901 * Since the buffer is not on a queue, we do not update the numfreebuffers
902 * count.
904 * Must be called from a critical section.
906 * The buffer is typically on BQUEUE_NONE but there is one case in
907 * brelse() that calls this function after placing the buffer on
908 * a different queue.
911 void
912 bundirty(struct buf *bp)
914 if (bp->b_flags & B_DELWRI) {
915 bp->b_flags &= ~B_DELWRI;
916 reassignbuf(bp);
917 --numdirtybuffers;
918 if (bp->b_flags & B_HEAVY)
919 --numdirtybuffershw;
920 numdirtywakeup();
923 * Since it is now being written, we can clear its deferred write flag.
925 bp->b_flags &= ~B_DEFERRED;
929 * bawrite:
931 * Asynchronous write. Start output on a buffer, but do not wait for
932 * it to complete. The buffer is released when the output completes.
934 * bwrite() ( or the VOP routine anyway ) is responsible for handling
935 * B_INVAL buffers. Not us.
937 void
938 bawrite(struct buf *bp)
940 bp->b_flags |= B_ASYNC;
941 bwrite(bp);
945 * bowrite:
947 * Ordered write. Start output on a buffer, and flag it so that the
948 * device will write it in the order it was queued. The buffer is
949 * released when the output completes. bwrite() ( or the VOP routine
950 * anyway ) is responsible for handling B_INVAL buffers.
953 bowrite(struct buf *bp)
955 bp->b_flags |= B_ORDERED | B_ASYNC;
956 return (bwrite(bp));
960 * bwillwrite:
962 * Called prior to the locking of any vnodes when we are expecting to
963 * write. We do not want to starve the buffer cache with too many
964 * dirty buffers so we block here. By blocking prior to the locking
965 * of any vnodes we attempt to avoid the situation where a locked vnode
966 * prevents the various system daemons from flushing related buffers.
968 void
969 bwillwrite(void)
971 int mid1 = hidirtybuffers / 2;
972 int mid2 = mid1 + hidirtybuffers / 4;
973 int delay;
974 int count;
975 int priority = 0;
977 count = runningbufcount + numdirtybuffers;
980 * Nothing to do if nothing is stressed.
982 if (count < mid1)
983 return;
986 * Get the buffer daemon heated up
988 bd_wakeup(1);
990 while (count >= mid2) {
992 * Start slowing down writes, down to 1 per second.
994 if (count < hidirtybuffers) {
995 delay = (count - mid2) * hz / (hidirtybuffers - mid2);
996 delay = delay * 10 / (10 + priority);
997 if (delay == 0)
998 delay = 1;
999 tsleep(&count, 0, "flstik", delay);
1000 return;
1004 * Now we are really in trouble.
1006 bd_wakeup(1);
1007 spin_lock_wr(&needsbuffer_spin);
1008 count = runningbufcount + numdirtybuffers;
1009 if (count >= hidirtybuffers) {
1010 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1011 msleep(&needsbuffer, &needsbuffer_spin, 0, "flswai", 0);
1012 spin_unlock_wr(&needsbuffer_spin);
1014 count = runningbufcount + numdirtybuffers;
1016 #if 0
1017 /* FUTURE - maybe */
1018 else if (runningbufcount + numdirtybuffershw > hidirtybuffers / 2) {
1019 bd_wakeup(1);
1021 while (runningbufcount + numdirtybuffershw > hidirtybuffers) {
1022 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1023 tsleep(&needsbuffer, slpflags, "newbuf",
1024 slptimeo);
1027 #endif
1031 * buf_dirty_count_severe:
1033 * Return true if we have too many dirty buffers.
1036 buf_dirty_count_severe(void)
1038 return(runningbufcount + numdirtybuffers >= hidirtybuffers);
1042 * brelse:
1044 * Release a busy buffer and, if requested, free its resources. The
1045 * buffer will be stashed in the appropriate bufqueue[] allowing it
1046 * to be accessed later as a cache entity or reused for other purposes.
1048 void
1049 brelse(struct buf *bp)
1051 #ifdef INVARIANTS
1052 int saved_flags = bp->b_flags;
1053 #endif
1055 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1057 crit_enter();
1060 * If B_NOCACHE is set we are being asked to destroy the buffer and
1061 * its backing store. Clear B_DELWRI.
1063 * B_NOCACHE is set in two cases: (1) when the caller really wants
1064 * to destroy the buffer and backing store and (2) when the caller
1065 * wants to destroy the buffer and backing store after a write
1066 * completes.
1068 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1069 bundirty(bp);
1072 if (bp->b_flags & B_LOCKED)
1073 bp->b_flags &= ~B_ERROR;
1076 * If a write error occurs and the caller does not want to throw
1077 * away the buffer, redirty the buffer. This will also clear
1078 * B_NOCACHE.
1080 if (bp->b_cmd == BUF_CMD_WRITE &&
1081 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
1083 * Failed write, redirty. Must clear B_ERROR to prevent
1084 * pages from being scrapped. If B_INVAL is set then
1085 * this case is not run and the next case is run to
1086 * destroy the buffer. B_INVAL can occur if the buffer
1087 * is outside the range supported by the underlying device.
1089 bp->b_flags &= ~B_ERROR;
1090 bdirty(bp);
1091 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1092 (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1094 * Either a failed I/O or we were asked to free or not
1095 * cache the buffer.
1097 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1098 * buffer cannot be immediately freed.
1100 bp->b_flags |= B_INVAL;
1101 if (LIST_FIRST(&bp->b_dep) != NULL)
1102 buf_deallocate(bp);
1103 if (bp->b_flags & B_DELWRI) {
1104 --numdirtybuffers;
1105 if (bp->b_flags & B_HEAVY)
1106 --numdirtybuffershw;
1107 numdirtywakeup();
1109 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1113 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1114 * If vfs_vmio_release() is called with either bit set, the
1115 * underlying pages may wind up getting freed causing a previous
1116 * write (bdwrite()) to get 'lost' because pages associated with
1117 * a B_DELWRI bp are marked clean. Pages associated with a
1118 * B_LOCKED buffer may be mapped by the filesystem.
1120 * If we want to release the buffer ourselves (rather then the
1121 * originator asking us to release it), give the originator a
1122 * chance to countermand the release by setting B_LOCKED.
1124 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1125 * if B_DELWRI is set.
1127 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1128 * on pages to return pages to the VM page queues.
1130 if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1131 bp->b_flags &= ~B_RELBUF;
1132 } else if (vm_page_count_severe()) {
1133 if (LIST_FIRST(&bp->b_dep) != NULL)
1134 buf_deallocate(bp);
1135 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1136 bp->b_flags &= ~B_RELBUF;
1137 else
1138 bp->b_flags |= B_RELBUF;
1142 * At this point destroying the buffer is governed by the B_INVAL
1143 * or B_RELBUF flags.
1145 bp->b_cmd = BUF_CMD_DONE;
1148 * VMIO buffer rundown. Make sure the VM page array is restored
1149 * after an I/O may have replaces some of the pages with bogus pages
1150 * in order to not destroy dirty pages in a fill-in read.
1152 * Note that due to the code above, if a buffer is marked B_DELWRI
1153 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1154 * B_INVAL may still be set, however.
1156 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1157 * but not the backing store. B_NOCACHE will destroy the backing
1158 * store.
1160 * Note that dirty NFS buffers contain byte-granular write ranges
1161 * and should not be destroyed w/ B_INVAL even if the backing store
1162 * is left intact.
1164 if (bp->b_flags & B_VMIO) {
1166 * Rundown for VMIO buffers which are not dirty NFS buffers.
1168 int i, j, resid;
1169 vm_page_t m;
1170 off_t foff;
1171 vm_pindex_t poff;
1172 vm_object_t obj;
1173 struct vnode *vp;
1175 vp = bp->b_vp;
1178 * Get the base offset and length of the buffer. Note that
1179 * in the VMIO case if the buffer block size is not
1180 * page-aligned then b_data pointer may not be page-aligned.
1181 * But our b_xio.xio_pages array *IS* page aligned.
1183 * block sizes less then DEV_BSIZE (usually 512) are not
1184 * supported due to the page granularity bits (m->valid,
1185 * m->dirty, etc...).
1187 * See man buf(9) for more information
1190 resid = bp->b_bufsize;
1191 foff = bp->b_loffset;
1193 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1194 m = bp->b_xio.xio_pages[i];
1195 vm_page_flag_clear(m, PG_ZERO);
1197 * If we hit a bogus page, fixup *all* of them
1198 * now. Note that we left these pages wired
1199 * when we removed them so they had better exist,
1200 * and they cannot be ripped out from under us so
1201 * no critical section protection is necessary.
1203 if (m == bogus_page) {
1204 obj = vp->v_object;
1205 poff = OFF_TO_IDX(bp->b_loffset);
1207 for (j = i; j < bp->b_xio.xio_npages; j++) {
1208 vm_page_t mtmp;
1210 mtmp = bp->b_xio.xio_pages[j];
1211 if (mtmp == bogus_page) {
1212 mtmp = vm_page_lookup(obj, poff + j);
1213 if (!mtmp) {
1214 panic("brelse: page missing");
1216 bp->b_xio.xio_pages[j] = mtmp;
1220 if ((bp->b_flags & B_INVAL) == 0) {
1221 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1222 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1224 m = bp->b_xio.xio_pages[i];
1228 * Invalidate the backing store if B_NOCACHE is set
1229 * (e.g. used with vinvalbuf()). If this is NFS
1230 * we impose a requirement that the block size be
1231 * a multiple of PAGE_SIZE and create a temporary
1232 * hack to basically invalidate the whole page. The
1233 * problem is that NFS uses really odd buffer sizes
1234 * especially when tracking piecemeal writes and
1235 * it also vinvalbuf()'s a lot, which would result
1236 * in only partial page validation and invalidation
1237 * here. If the file page is mmap()'d, however,
1238 * all the valid bits get set so after we invalidate
1239 * here we would end up with weird m->valid values
1240 * like 0xfc. nfs_getpages() can't handle this so
1241 * we clear all the valid bits for the NFS case
1242 * instead of just some of them.
1244 * The real bug is the VM system having to set m->valid
1245 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1246 * itself is an artifact of the whole 512-byte
1247 * granular mess that exists to support odd block
1248 * sizes and UFS meta-data block sizes (e.g. 6144).
1249 * A complete rewrite is required.
1251 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1252 int poffset = foff & PAGE_MASK;
1253 int presid;
1255 presid = PAGE_SIZE - poffset;
1256 if (bp->b_vp->v_tag == VT_NFS &&
1257 bp->b_vp->v_type == VREG) {
1258 ; /* entire page */
1259 } else if (presid > resid) {
1260 presid = resid;
1262 KASSERT(presid >= 0, ("brelse: extra page"));
1263 vm_page_set_invalid(m, poffset, presid);
1265 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1266 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1268 if (bp->b_flags & (B_INVAL | B_RELBUF))
1269 vfs_vmio_release(bp);
1270 } else {
1272 * Rundown for non-VMIO buffers.
1274 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1275 #if 0
1276 if (bp->b_vp)
1277 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1278 #endif
1279 if (bp->b_bufsize)
1280 allocbuf(bp, 0);
1281 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1282 if (bp->b_vp)
1283 brelvp(bp);
1287 if (bp->b_qindex != BQUEUE_NONE)
1288 panic("brelse: free buffer onto another queue???");
1289 if (BUF_REFCNTNB(bp) > 1) {
1290 /* Temporary panic to verify exclusive locking */
1291 /* This panic goes away when we allow shared refs */
1292 panic("brelse: multiple refs");
1293 /* do not release to free list */
1294 BUF_UNLOCK(bp);
1295 crit_exit();
1296 return;
1300 * Figure out the correct queue to place the cleaned up buffer on.
1301 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1302 * disassociated from their vnode.
1304 if (bp->b_flags & B_LOCKED) {
1306 * Buffers that are locked are placed in the locked queue
1307 * immediately, regardless of their state.
1309 bp->b_qindex = BQUEUE_LOCKED;
1310 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1311 } else if (bp->b_bufsize == 0) {
1313 * Buffers with no memory. Due to conditionals near the top
1314 * of brelse() such buffers should probably already be
1315 * marked B_INVAL and disassociated from their vnode.
1317 bp->b_flags |= B_INVAL;
1318 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1319 KKASSERT((bp->b_flags & B_HASHED) == 0);
1320 if (bp->b_kvasize) {
1321 bp->b_qindex = BQUEUE_EMPTYKVA;
1322 } else {
1323 bp->b_qindex = BQUEUE_EMPTY;
1325 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1326 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1328 * Buffers with junk contents. Again these buffers had better
1329 * already be disassociated from their vnode.
1331 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1332 KKASSERT((bp->b_flags & B_HASHED) == 0);
1333 bp->b_flags |= B_INVAL;
1334 bp->b_qindex = BQUEUE_CLEAN;
1335 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1336 } else {
1338 * Remaining buffers. These buffers are still associated with
1339 * their vnode.
1341 switch(bp->b_flags & (B_DELWRI|B_HEAVY|B_AGE)) {
1342 case B_DELWRI | B_AGE:
1343 bp->b_qindex = BQUEUE_DIRTY;
1344 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1345 break;
1346 case B_DELWRI:
1347 bp->b_qindex = BQUEUE_DIRTY;
1348 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1349 break;
1350 case B_DELWRI | B_HEAVY | B_AGE:
1351 bp->b_qindex = BQUEUE_DIRTY_HW;
1352 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY_HW], bp,
1353 b_freelist);
1354 break;
1355 case B_DELWRI | B_HEAVY:
1356 bp->b_qindex = BQUEUE_DIRTY_HW;
1357 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1358 b_freelist);
1359 break;
1360 case B_HEAVY | B_AGE:
1361 case B_AGE:
1362 bp->b_qindex = BQUEUE_CLEAN;
1363 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1364 break;
1365 default:
1366 bp->b_qindex = BQUEUE_CLEAN;
1367 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1368 break;
1373 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1374 * on the correct queue.
1376 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1377 bundirty(bp);
1380 * Fixup numfreebuffers count. The bp is on an appropriate queue
1381 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1382 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1383 * if B_INVAL is set ).
1385 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1386 bufcountwakeup();
1389 * Something we can maybe free or reuse
1391 if (bp->b_bufsize || bp->b_kvasize)
1392 bufspacewakeup();
1395 * Clean up temporary flags and unlock the buffer.
1397 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1398 B_DIRECT);
1399 BUF_UNLOCK(bp);
1400 crit_exit();
1404 * bqrelse:
1406 * Release a buffer back to the appropriate queue but do not try to free
1407 * it. The buffer is expected to be used again soon.
1409 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1410 * biodone() to requeue an async I/O on completion. It is also used when
1411 * known good buffers need to be requeued but we think we may need the data
1412 * again soon.
1414 * XXX we should be able to leave the B_RELBUF hint set on completion.
1416 void
1417 bqrelse(struct buf *bp)
1419 crit_enter();
1421 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1423 if (bp->b_qindex != BQUEUE_NONE)
1424 panic("bqrelse: free buffer onto another queue???");
1425 if (BUF_REFCNTNB(bp) > 1) {
1426 /* do not release to free list */
1427 panic("bqrelse: multiple refs");
1428 BUF_UNLOCK(bp);
1429 crit_exit();
1430 return;
1432 if (bp->b_flags & B_LOCKED) {
1434 * Locked buffers are released to the locked queue. However,
1435 * if the buffer is dirty it will first go into the dirty
1436 * queue and later on after the I/O completes successfully it
1437 * will be released to the locked queue.
1439 bp->b_flags &= ~B_ERROR;
1440 bp->b_qindex = BQUEUE_LOCKED;
1441 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1442 } else if (bp->b_flags & B_DELWRI) {
1443 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1444 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1445 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1446 } else if (vm_page_count_severe()) {
1448 * We are too low on memory, we have to try to free the
1449 * buffer (most importantly: the wired pages making up its
1450 * backing store) *now*.
1452 crit_exit();
1453 brelse(bp);
1454 return;
1455 } else {
1456 bp->b_qindex = BQUEUE_CLEAN;
1457 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1460 if ((bp->b_flags & B_LOCKED) == 0 &&
1461 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1462 bufcountwakeup();
1466 * Something we can maybe free or reuse.
1468 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1469 bufspacewakeup();
1472 * Final cleanup and unlock. Clear bits that are only used while a
1473 * buffer is actively locked.
1475 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1476 BUF_UNLOCK(bp);
1477 crit_exit();
1481 * vfs_vmio_release:
1483 * Return backing pages held by the buffer 'bp' back to the VM system
1484 * if possible. The pages are freed if they are no longer valid or
1485 * attempt to free if it was used for direct I/O otherwise they are
1486 * sent to the page cache.
1488 * Pages that were marked busy are left alone and skipped.
1490 * The KVA mapping (b_data) for the underlying pages is removed by
1491 * this function.
1493 static void
1494 vfs_vmio_release(struct buf *bp)
1496 int i;
1497 vm_page_t m;
1499 crit_enter();
1500 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1501 m = bp->b_xio.xio_pages[i];
1502 bp->b_xio.xio_pages[i] = NULL;
1504 * In order to keep page LRU ordering consistent, put
1505 * everything on the inactive queue.
1507 vm_page_unwire(m, 0);
1509 * We don't mess with busy pages, it is
1510 * the responsibility of the process that
1511 * busied the pages to deal with them.
1513 if ((m->flags & PG_BUSY) || (m->busy != 0))
1514 continue;
1516 if (m->wire_count == 0) {
1517 vm_page_flag_clear(m, PG_ZERO);
1519 * Might as well free the page if we can and it has
1520 * no valid data. We also free the page if the
1521 * buffer was used for direct I/O.
1523 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1524 m->hold_count == 0) {
1525 vm_page_busy(m);
1526 vm_page_protect(m, VM_PROT_NONE);
1527 vm_page_free(m);
1528 } else if (bp->b_flags & B_DIRECT) {
1529 vm_page_try_to_free(m);
1530 } else if (vm_page_count_severe()) {
1531 vm_page_try_to_cache(m);
1535 crit_exit();
1536 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1537 if (bp->b_bufsize) {
1538 bufspacewakeup();
1539 bp->b_bufsize = 0;
1541 bp->b_xio.xio_npages = 0;
1542 bp->b_flags &= ~B_VMIO;
1543 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1544 if (bp->b_vp)
1545 brelvp(bp);
1549 * vfs_bio_awrite:
1551 * Implement clustered async writes for clearing out B_DELWRI buffers.
1552 * This is much better then the old way of writing only one buffer at
1553 * a time. Note that we may not be presented with the buffers in the
1554 * correct order, so we search for the cluster in both directions.
1556 * The buffer is locked on call.
1559 vfs_bio_awrite(struct buf *bp)
1561 int i;
1562 int j;
1563 off_t loffset = bp->b_loffset;
1564 struct vnode *vp = bp->b_vp;
1565 int nbytes;
1566 struct buf *bpa;
1567 int nwritten;
1568 int size;
1570 crit_enter();
1572 * right now we support clustered writing only to regular files. If
1573 * we find a clusterable block we could be in the middle of a cluster
1574 * rather then at the beginning.
1576 * NOTE: b_bio1 contains the logical loffset and is aliased
1577 * to b_loffset. b_bio2 contains the translated block number.
1579 if ((vp->v_type == VREG) &&
1580 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1581 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1583 size = vp->v_mount->mnt_stat.f_iosize;
1585 for (i = size; i < MAXPHYS; i += size) {
1586 if ((bpa = findblk(vp, loffset + i)) &&
1587 BUF_REFCNT(bpa) == 0 &&
1588 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1589 (B_DELWRI | B_CLUSTEROK)) &&
1590 (bpa->b_bufsize == size)) {
1591 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1592 (bpa->b_bio2.bio_offset !=
1593 bp->b_bio2.bio_offset + i))
1594 break;
1595 } else {
1596 break;
1599 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1600 if ((bpa = findblk(vp, loffset - j)) &&
1601 BUF_REFCNT(bpa) == 0 &&
1602 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1603 (B_DELWRI | B_CLUSTEROK)) &&
1604 (bpa->b_bufsize == size)) {
1605 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1606 (bpa->b_bio2.bio_offset !=
1607 bp->b_bio2.bio_offset - j))
1608 break;
1609 } else {
1610 break;
1613 j -= size;
1614 nbytes = (i + j);
1616 * this is a possible cluster write
1618 if (nbytes != size) {
1619 BUF_UNLOCK(bp);
1620 nwritten = cluster_wbuild(vp, size,
1621 loffset - j, nbytes);
1622 crit_exit();
1623 return nwritten;
1627 bremfree(bp);
1628 bp->b_flags |= B_ASYNC;
1630 crit_exit();
1632 * default (old) behavior, writing out only one block
1634 * XXX returns b_bufsize instead of b_bcount for nwritten?
1636 nwritten = bp->b_bufsize;
1637 bwrite(bp);
1639 return nwritten;
1643 * getnewbuf:
1645 * Find and initialize a new buffer header, freeing up existing buffers
1646 * in the bufqueues as necessary. The new buffer is returned locked.
1648 * Important: B_INVAL is not set. If the caller wishes to throw the
1649 * buffer away, the caller must set B_INVAL prior to calling brelse().
1651 * We block if:
1652 * We have insufficient buffer headers
1653 * We have insufficient buffer space
1654 * buffer_map is too fragmented ( space reservation fails )
1655 * If we have to flush dirty buffers ( but we try to avoid this )
1657 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1658 * Instead we ask the buf daemon to do it for us. We attempt to
1659 * avoid piecemeal wakeups of the pageout daemon.
1662 static struct buf *
1663 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1665 struct buf *bp;
1666 struct buf *nbp;
1667 int defrag = 0;
1668 int nqindex;
1669 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1670 static int flushingbufs;
1673 * We can't afford to block since we might be holding a vnode lock,
1674 * which may prevent system daemons from running. We deal with
1675 * low-memory situations by proactively returning memory and running
1676 * async I/O rather then sync I/O.
1679 ++getnewbufcalls;
1680 --getnewbufrestarts;
1681 restart:
1682 ++getnewbufrestarts;
1685 * Setup for scan. If we do not have enough free buffers,
1686 * we setup a degenerate case that immediately fails. Note
1687 * that if we are specially marked process, we are allowed to
1688 * dip into our reserves.
1690 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1692 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1693 * However, there are a number of cases (defragging, reusing, ...)
1694 * where we cannot backup.
1696 nqindex = BQUEUE_EMPTYKVA;
1697 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1699 if (nbp == NULL) {
1701 * If no EMPTYKVA buffers and we are either
1702 * defragging or reusing, locate a CLEAN buffer
1703 * to free or reuse. If bufspace useage is low
1704 * skip this step so we can allocate a new buffer.
1706 if (defrag || bufspace >= lobufspace) {
1707 nqindex = BQUEUE_CLEAN;
1708 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1712 * If we could not find or were not allowed to reuse a
1713 * CLEAN buffer, check to see if it is ok to use an EMPTY
1714 * buffer. We can only use an EMPTY buffer if allocating
1715 * its KVA would not otherwise run us out of buffer space.
1717 if (nbp == NULL && defrag == 0 &&
1718 bufspace + maxsize < hibufspace) {
1719 nqindex = BQUEUE_EMPTY;
1720 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1725 * Run scan, possibly freeing data and/or kva mappings on the fly
1726 * depending.
1729 while ((bp = nbp) != NULL) {
1730 int qindex = nqindex;
1733 * Calculate next bp ( we can only use it if we do not block
1734 * or do other fancy things ).
1736 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1737 switch(qindex) {
1738 case BQUEUE_EMPTY:
1739 nqindex = BQUEUE_EMPTYKVA;
1740 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1741 break;
1742 /* fall through */
1743 case BQUEUE_EMPTYKVA:
1744 nqindex = BQUEUE_CLEAN;
1745 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1746 break;
1747 /* fall through */
1748 case BQUEUE_CLEAN:
1750 * nbp is NULL.
1752 break;
1757 * Sanity Checks
1759 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1762 * Note: we no longer distinguish between VMIO and non-VMIO
1763 * buffers.
1766 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1769 * If we are defragging then we need a buffer with
1770 * b_kvasize != 0. XXX this situation should no longer
1771 * occur, if defrag is non-zero the buffer's b_kvasize
1772 * should also be non-zero at this point. XXX
1774 if (defrag && bp->b_kvasize == 0) {
1775 kprintf("Warning: defrag empty buffer %p\n", bp);
1776 continue;
1780 * Start freeing the bp. This is somewhat involved. nbp
1781 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1782 * on the clean list must be disassociated from their
1783 * current vnode. Buffers on the empty[kva] lists have
1784 * already been disassociated.
1787 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1788 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1789 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1790 goto restart;
1792 if (bp->b_qindex != qindex) {
1793 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1794 BUF_UNLOCK(bp);
1795 goto restart;
1797 bremfree(bp);
1800 * Dependancies must be handled before we disassociate the
1801 * vnode.
1803 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1804 * be immediately disassociated. HAMMER then becomes
1805 * responsible for releasing the buffer.
1807 if (LIST_FIRST(&bp->b_dep) != NULL) {
1808 buf_deallocate(bp);
1809 if (bp->b_flags & B_LOCKED) {
1810 bqrelse(bp);
1811 goto restart;
1813 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1816 if (qindex == BQUEUE_CLEAN) {
1817 if (bp->b_flags & B_VMIO) {
1818 bp->b_flags &= ~B_ASYNC;
1819 vfs_vmio_release(bp);
1821 if (bp->b_vp)
1822 brelvp(bp);
1826 * NOTE: nbp is now entirely invalid. We can only restart
1827 * the scan from this point on.
1829 * Get the rest of the buffer freed up. b_kva* is still
1830 * valid after this operation.
1833 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1834 KKASSERT((bp->b_flags & B_HASHED) == 0);
1837 * critical section protection is not required when
1838 * scrapping a buffer's contents because it is already
1839 * wired.
1841 if (bp->b_bufsize)
1842 allocbuf(bp, 0);
1844 bp->b_flags = B_BNOCLIP;
1845 bp->b_cmd = BUF_CMD_DONE;
1846 bp->b_vp = NULL;
1847 bp->b_error = 0;
1848 bp->b_resid = 0;
1849 bp->b_bcount = 0;
1850 bp->b_xio.xio_npages = 0;
1851 bp->b_dirtyoff = bp->b_dirtyend = 0;
1852 reinitbufbio(bp);
1853 buf_dep_init(bp);
1854 if (blkflags & GETBLK_BHEAVY)
1855 bp->b_flags |= B_HEAVY;
1858 * If we are defragging then free the buffer.
1860 if (defrag) {
1861 bp->b_flags |= B_INVAL;
1862 bfreekva(bp);
1863 brelse(bp);
1864 defrag = 0;
1865 goto restart;
1869 * If we are overcomitted then recover the buffer and its
1870 * KVM space. This occurs in rare situations when multiple
1871 * processes are blocked in getnewbuf() or allocbuf().
1873 if (bufspace >= hibufspace)
1874 flushingbufs = 1;
1875 if (flushingbufs && bp->b_kvasize != 0) {
1876 bp->b_flags |= B_INVAL;
1877 bfreekva(bp);
1878 brelse(bp);
1879 goto restart;
1881 if (bufspace < lobufspace)
1882 flushingbufs = 0;
1883 break;
1887 * If we exhausted our list, sleep as appropriate. We may have to
1888 * wakeup various daemons and write out some dirty buffers.
1890 * Generally we are sleeping due to insufficient buffer space.
1893 if (bp == NULL) {
1894 int flags;
1895 char *waitmsg;
1897 if (defrag) {
1898 flags = VFS_BIO_NEED_BUFSPACE;
1899 waitmsg = "nbufkv";
1900 } else if (bufspace >= hibufspace) {
1901 waitmsg = "nbufbs";
1902 flags = VFS_BIO_NEED_BUFSPACE;
1903 } else {
1904 waitmsg = "newbuf";
1905 flags = VFS_BIO_NEED_ANY;
1908 needsbuffer |= flags;
1909 bd_speedup(); /* heeeelp */
1910 while (needsbuffer & flags) {
1911 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
1912 return (NULL);
1914 } else {
1916 * We finally have a valid bp. We aren't quite out of the
1917 * woods, we still have to reserve kva space. In order
1918 * to keep fragmentation sane we only allocate kva in
1919 * BKVASIZE chunks.
1921 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1923 if (maxsize != bp->b_kvasize) {
1924 vm_offset_t addr = 0;
1925 int count;
1927 bfreekva(bp);
1929 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1930 vm_map_lock(&buffer_map);
1932 if (vm_map_findspace(&buffer_map,
1933 vm_map_min(&buffer_map), maxsize,
1934 maxsize, &addr)) {
1936 * Uh oh. Buffer map is too fragmented. We
1937 * must defragment the map.
1939 vm_map_unlock(&buffer_map);
1940 vm_map_entry_release(count);
1941 ++bufdefragcnt;
1942 defrag = 1;
1943 bp->b_flags |= B_INVAL;
1944 brelse(bp);
1945 goto restart;
1947 if (addr) {
1948 vm_map_insert(&buffer_map, &count,
1949 NULL, 0,
1950 addr, addr + maxsize,
1951 VM_MAPTYPE_NORMAL,
1952 VM_PROT_ALL, VM_PROT_ALL,
1953 MAP_NOFAULT);
1955 bp->b_kvabase = (caddr_t) addr;
1956 bp->b_kvasize = maxsize;
1957 bufspace += bp->b_kvasize;
1958 ++bufreusecnt;
1960 vm_map_unlock(&buffer_map);
1961 vm_map_entry_release(count);
1963 bp->b_data = bp->b_kvabase;
1965 return(bp);
1969 * buf_daemon:
1971 * Buffer flushing daemon. Buffers are normally flushed by the
1972 * update daemon but if it cannot keep up this process starts to
1973 * take the load in an attempt to prevent getnewbuf() from blocking.
1975 * Once a flush is initiated it does not stop until the number
1976 * of buffers falls below lodirtybuffers, but we will wake up anyone
1977 * waiting at the mid-point.
1980 static struct thread *bufdaemon_td;
1981 static struct thread *bufdaemonhw_td;
1983 static struct kproc_desc buf_kp = {
1984 "bufdaemon",
1985 buf_daemon,
1986 &bufdaemon_td
1988 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1989 kproc_start, &buf_kp)
1991 static struct kproc_desc bufhw_kp = {
1992 "bufdaemon_hw",
1993 buf_daemon_hw,
1994 &bufdaemonhw_td
1996 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1997 kproc_start, &bufhw_kp)
1999 static void
2000 buf_daemon(void)
2003 * This process needs to be suspended prior to shutdown sync.
2005 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2006 bufdaemon_td, SHUTDOWN_PRI_LAST);
2009 * This process is allowed to take the buffer cache to the limit
2011 crit_enter();
2013 for (;;) {
2014 kproc_suspend_loop();
2017 * Do the flush. Limit the amount of in-transit I/O we
2018 * allow to build up, otherwise we would completely saturate
2019 * the I/O system. Wakeup any waiting processes before we
2020 * normally would so they can run in parallel with our drain.
2022 while (numdirtybuffers > lodirtybuffers) {
2023 if (flushbufqueues(BQUEUE_DIRTY) == 0)
2024 break;
2025 waitrunningbufspace();
2026 numdirtywakeup();
2028 if (runningbufcount + numdirtybuffers > lodirtybuffers) {
2029 waitrunningbufspace();
2031 numdirtywakeup();
2034 * Only clear bd_request if we have reached our low water
2035 * mark. The buf_daemon normally waits 5 seconds and
2036 * then incrementally flushes any dirty buffers that have
2037 * built up, within reason.
2039 * If we were unable to hit our low water mark and couldn't
2040 * find any flushable buffers, we sleep half a second.
2041 * Otherwise we loop immediately.
2043 if (runningbufcount + numdirtybuffers <= lodirtybuffers) {
2045 * We reached our low water mark, reset the
2046 * request and sleep until we are needed again.
2047 * The sleep is just so the suspend code works.
2049 spin_lock_wr(&needsbuffer_spin);
2050 bd_request = 0;
2051 msleep(&bd_request, &needsbuffer_spin, 0,
2052 "psleep", hz);
2053 spin_unlock_wr(&needsbuffer_spin);
2054 } else {
2056 * We couldn't find any flushable dirty buffers but
2057 * still have too many dirty buffers, we
2058 * have to sleep and try again. (rare)
2060 tsleep(&bd_request, 0, "qsleep", hz / 2);
2065 static void
2066 buf_daemon_hw(void)
2069 * This process needs to be suspended prior to shutdown sync.
2071 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2072 bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2075 * This process is allowed to take the buffer cache to the limit
2077 crit_enter();
2079 for (;;) {
2080 kproc_suspend_loop();
2083 * Do the flush. Limit the amount of in-transit I/O we
2084 * allow to build up, otherwise we would completely saturate
2085 * the I/O system. Wakeup any waiting processes before we
2086 * normally would so they can run in parallel with our drain.
2088 while (numdirtybuffershw > lodirtybuffers) {
2089 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2090 break;
2091 waitrunningbufspace();
2092 numdirtywakeup();
2094 if (runningbufcount + numdirtybuffershw > lodirtybuffers) {
2095 waitrunningbufspace();
2099 * Only clear bd_request if we have reached our low water
2100 * mark. The buf_daemon normally waits 5 seconds and
2101 * then incrementally flushes any dirty buffers that have
2102 * built up, within reason.
2104 * If we were unable to hit our low water mark and couldn't
2105 * find any flushable buffers, we sleep half a second.
2106 * Otherwise we loop immediately.
2108 if (runningbufcount + numdirtybuffershw <= lodirtybuffers) {
2110 * We reached our low water mark, reset the
2111 * request and sleep until we are needed again.
2112 * The sleep is just so the suspend code works.
2114 spin_lock_wr(&needsbuffer_spin);
2115 bd_request_hw = 0;
2116 msleep(&bd_request_hw, &needsbuffer_spin, 0,
2117 "psleep", hz);
2118 spin_unlock_wr(&needsbuffer_spin);
2119 } else {
2121 * We couldn't find any flushable dirty buffers but
2122 * still have too many dirty buffers, we
2123 * have to sleep and try again. (rare)
2125 tsleep(&bd_request_hw, 0, "qsleep", hz / 2);
2131 * flushbufqueues:
2133 * Try to flush a buffer in the dirty queue. We must be careful to
2134 * free up B_INVAL buffers instead of write them, which NFS is
2135 * particularly sensitive to.
2138 static int
2139 flushbufqueues(bufq_type_t q)
2141 struct buf *bp;
2142 int r = 0;
2144 bp = TAILQ_FIRST(&bufqueues[q]);
2146 while (bp) {
2147 KASSERT((bp->b_flags & B_DELWRI),
2148 ("unexpected clean buffer %p", bp));
2149 if (bp->b_flags & B_DELWRI) {
2150 if (bp->b_flags & B_INVAL) {
2151 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2152 panic("flushbufqueues: locked buf");
2153 bremfree(bp);
2154 brelse(bp);
2155 ++r;
2156 break;
2158 if (LIST_FIRST(&bp->b_dep) != NULL &&
2159 (bp->b_flags & B_DEFERRED) == 0 &&
2160 buf_countdeps(bp, 0)) {
2161 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2162 TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2163 b_freelist);
2164 bp->b_flags |= B_DEFERRED;
2165 bp = TAILQ_FIRST(&bufqueues[q]);
2166 continue;
2170 * Only write it out if we can successfully lock
2171 * it. If the buffer has a dependancy,
2172 * buf_checkwrite must also return 0.
2174 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2175 if (LIST_FIRST(&bp->b_dep) != NULL &&
2176 buf_checkwrite(bp)) {
2177 bremfree(bp);
2178 brelse(bp);
2179 } else {
2180 vfs_bio_awrite(bp);
2182 ++r;
2183 break;
2186 bp = TAILQ_NEXT(bp, b_freelist);
2188 return (r);
2192 * inmem:
2194 * Returns true if no I/O is needed to access the associated VM object.
2195 * This is like findblk except it also hunts around in the VM system for
2196 * the data.
2198 * Note that we ignore vm_page_free() races from interrupts against our
2199 * lookup, since if the caller is not protected our return value will not
2200 * be any more valid then otherwise once we exit the critical section.
2203 inmem(struct vnode *vp, off_t loffset)
2205 vm_object_t obj;
2206 vm_offset_t toff, tinc, size;
2207 vm_page_t m;
2209 if (findblk(vp, loffset))
2210 return 1;
2211 if (vp->v_mount == NULL)
2212 return 0;
2213 if ((obj = vp->v_object) == NULL)
2214 return 0;
2216 size = PAGE_SIZE;
2217 if (size > vp->v_mount->mnt_stat.f_iosize)
2218 size = vp->v_mount->mnt_stat.f_iosize;
2220 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2221 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2222 if (m == NULL)
2223 return 0;
2224 tinc = size;
2225 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2226 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2227 if (vm_page_is_valid(m,
2228 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2229 return 0;
2231 return 1;
2235 * vfs_setdirty:
2237 * Sets the dirty range for a buffer based on the status of the dirty
2238 * bits in the pages comprising the buffer.
2240 * The range is limited to the size of the buffer.
2242 * This routine is primarily used by NFS, but is generalized for the
2243 * B_VMIO case.
2245 static void
2246 vfs_setdirty(struct buf *bp)
2248 int i;
2249 vm_object_t object;
2252 * Degenerate case - empty buffer
2255 if (bp->b_bufsize == 0)
2256 return;
2259 * We qualify the scan for modified pages on whether the
2260 * object has been flushed yet. The OBJ_WRITEABLE flag
2261 * is not cleared simply by protecting pages off.
2264 if ((bp->b_flags & B_VMIO) == 0)
2265 return;
2267 object = bp->b_xio.xio_pages[0]->object;
2269 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2270 kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2271 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2272 kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2274 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2275 vm_offset_t boffset;
2276 vm_offset_t eoffset;
2279 * test the pages to see if they have been modified directly
2280 * by users through the VM system.
2282 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2283 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2284 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2288 * Calculate the encompassing dirty range, boffset and eoffset,
2289 * (eoffset - boffset) bytes.
2292 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2293 if (bp->b_xio.xio_pages[i]->dirty)
2294 break;
2296 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2298 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2299 if (bp->b_xio.xio_pages[i]->dirty) {
2300 break;
2303 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2306 * Fit it to the buffer.
2309 if (eoffset > bp->b_bcount)
2310 eoffset = bp->b_bcount;
2313 * If we have a good dirty range, merge with the existing
2314 * dirty range.
2317 if (boffset < eoffset) {
2318 if (bp->b_dirtyoff > boffset)
2319 bp->b_dirtyoff = boffset;
2320 if (bp->b_dirtyend < eoffset)
2321 bp->b_dirtyend = eoffset;
2327 * findblk:
2329 * Locate and return the specified buffer, or NULL if the buffer does
2330 * not exist. Do not attempt to lock the buffer or manipulate it in
2331 * any way. The caller must validate that the correct buffer has been
2332 * obtain after locking it.
2334 struct buf *
2335 findblk(struct vnode *vp, off_t loffset)
2337 struct buf *bp;
2339 crit_enter();
2340 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2341 crit_exit();
2342 return(bp);
2346 * getblk:
2348 * Get a block given a specified block and offset into a file/device.
2349 * B_INVAL may or may not be set on return. The caller should clear
2350 * B_INVAL prior to initiating a READ.
2352 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2353 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2354 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2355 * without doing any of those things the system will likely believe
2356 * the buffer to be valid (especially if it is not B_VMIO), and the
2357 * next getblk() will return the buffer with B_CACHE set.
2359 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2360 * an existing buffer.
2362 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2363 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2364 * and then cleared based on the backing VM. If the previous buffer is
2365 * non-0-sized but invalid, B_CACHE will be cleared.
2367 * If getblk() must create a new buffer, the new buffer is returned with
2368 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2369 * case it is returned with B_INVAL clear and B_CACHE set based on the
2370 * backing VM.
2372 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2373 * B_CACHE bit is clear.
2375 * What this means, basically, is that the caller should use B_CACHE to
2376 * determine whether the buffer is fully valid or not and should clear
2377 * B_INVAL prior to issuing a read. If the caller intends to validate
2378 * the buffer by loading its data area with something, the caller needs
2379 * to clear B_INVAL. If the caller does this without issuing an I/O,
2380 * the caller should set B_CACHE ( as an optimization ), else the caller
2381 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2382 * a write attempt or if it was a successfull read. If the caller
2383 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2384 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2386 * getblk flags:
2388 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2389 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2391 struct buf *
2392 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2394 struct buf *bp;
2395 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2397 if (size > MAXBSIZE)
2398 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2399 if (vp->v_object == NULL)
2400 panic("getblk: vnode %p has no object!", vp);
2402 crit_enter();
2403 loop:
2404 if ((bp = findblk(vp, loffset))) {
2406 * The buffer was found in the cache, but we need to lock it.
2407 * Even with LK_NOWAIT the lockmgr may break our critical
2408 * section, so double-check the validity of the buffer
2409 * once the lock has been obtained.
2411 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2412 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2413 if (blkflags & GETBLK_PCATCH)
2414 lkflags |= LK_PCATCH;
2415 if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2416 ENOLCK) {
2417 goto loop;
2419 crit_exit();
2420 return (NULL);
2424 * Once the buffer has been locked, make sure we didn't race
2425 * a buffer recyclement. Buffers that are no longer hashed
2426 * will have b_vp == NULL, so this takes care of that check
2427 * as well.
2429 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2430 kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2431 BUF_UNLOCK(bp);
2432 goto loop;
2436 * All vnode-based buffers must be backed by a VM object.
2438 KKASSERT(bp->b_flags & B_VMIO);
2439 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2442 * Make sure that B_INVAL buffers do not have a cached
2443 * block number translation.
2445 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2446 kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2447 clearbiocache(&bp->b_bio2);
2451 * The buffer is locked. B_CACHE is cleared if the buffer is
2452 * invalid.
2454 if (bp->b_flags & B_INVAL)
2455 bp->b_flags &= ~B_CACHE;
2456 bremfree(bp);
2459 * Any size inconsistancy with a dirty buffer or a buffer
2460 * with a softupdates dependancy must be resolved. Resizing
2461 * the buffer in such circumstances can lead to problems.
2463 if (size != bp->b_bcount) {
2464 if (bp->b_flags & B_DELWRI) {
2465 bp->b_flags |= B_NOCACHE;
2466 bwrite(bp);
2467 } else if (LIST_FIRST(&bp->b_dep)) {
2468 bp->b_flags |= B_NOCACHE;
2469 bwrite(bp);
2470 } else {
2471 bp->b_flags |= B_RELBUF;
2472 brelse(bp);
2474 goto loop;
2476 KKASSERT(size <= bp->b_kvasize);
2477 KASSERT(bp->b_loffset != NOOFFSET,
2478 ("getblk: no buffer offset"));
2481 * A buffer with B_DELWRI set and B_CACHE clear must
2482 * be committed before we can return the buffer in
2483 * order to prevent the caller from issuing a read
2484 * ( due to B_CACHE not being set ) and overwriting
2485 * it.
2487 * Most callers, including NFS and FFS, need this to
2488 * operate properly either because they assume they
2489 * can issue a read if B_CACHE is not set, or because
2490 * ( for example ) an uncached B_DELWRI might loop due
2491 * to softupdates re-dirtying the buffer. In the latter
2492 * case, B_CACHE is set after the first write completes,
2493 * preventing further loops.
2495 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2496 * above while extending the buffer, we cannot allow the
2497 * buffer to remain with B_CACHE set after the write
2498 * completes or it will represent a corrupt state. To
2499 * deal with this we set B_NOCACHE to scrap the buffer
2500 * after the write.
2502 * We might be able to do something fancy, like setting
2503 * B_CACHE in bwrite() except if B_DELWRI is already set,
2504 * so the below call doesn't set B_CACHE, but that gets real
2505 * confusing. This is much easier.
2508 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2509 bp->b_flags |= B_NOCACHE;
2510 bwrite(bp);
2511 goto loop;
2513 crit_exit();
2514 } else {
2516 * Buffer is not in-core, create new buffer. The buffer
2517 * returned by getnewbuf() is locked. Note that the returned
2518 * buffer is also considered valid (not marked B_INVAL).
2520 * Calculating the offset for the I/O requires figuring out
2521 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2522 * the mount's f_iosize otherwise. If the vnode does not
2523 * have an associated mount we assume that the passed size is
2524 * the block size.
2526 * Note that vn_isdisk() cannot be used here since it may
2527 * return a failure for numerous reasons. Note that the
2528 * buffer size may be larger then the block size (the caller
2529 * will use block numbers with the proper multiple). Beware
2530 * of using any v_* fields which are part of unions. In
2531 * particular, in DragonFly the mount point overloading
2532 * mechanism uses the namecache only and the underlying
2533 * directory vnode is not a special case.
2535 int bsize, maxsize;
2537 if (vp->v_type == VBLK || vp->v_type == VCHR)
2538 bsize = DEV_BSIZE;
2539 else if (vp->v_mount)
2540 bsize = vp->v_mount->mnt_stat.f_iosize;
2541 else
2542 bsize = size;
2544 maxsize = size + (loffset & PAGE_MASK);
2545 maxsize = imax(maxsize, bsize);
2547 if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) {
2548 if (slpflags || slptimeo) {
2549 crit_exit();
2550 return NULL;
2552 goto loop;
2556 * This code is used to make sure that a buffer is not
2557 * created while the getnewbuf routine is blocked.
2558 * This can be a problem whether the vnode is locked or not.
2559 * If the buffer is created out from under us, we have to
2560 * throw away the one we just created. There is no window
2561 * race because we are safely running in a critical section
2562 * from the point of the duplicate buffer creation through
2563 * to here, and we've locked the buffer.
2565 if (findblk(vp, loffset)) {
2566 bp->b_flags |= B_INVAL;
2567 brelse(bp);
2568 goto loop;
2572 * Insert the buffer into the hash, so that it can
2573 * be found by findblk().
2575 * Make sure the translation layer has been cleared.
2577 bp->b_loffset = loffset;
2578 bp->b_bio2.bio_offset = NOOFFSET;
2579 /* bp->b_bio2.bio_next = NULL; */
2581 bgetvp(vp, bp);
2584 * All vnode-based buffers must be backed by a VM object.
2586 KKASSERT(vp->v_object != NULL);
2587 bp->b_flags |= B_VMIO;
2588 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2590 allocbuf(bp, size);
2592 crit_exit();
2594 return (bp);
2598 * regetblk(bp)
2600 * Reacquire a buffer that was previously released to the locked queue,
2601 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2602 * set B_LOCKED (which handles the acquisition race).
2604 * To this end, either B_LOCKED must be set or the dependancy list must be
2605 * non-empty.
2607 void
2608 regetblk(struct buf *bp)
2610 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2611 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2612 crit_enter();
2613 bremfree(bp);
2614 crit_exit();
2618 * geteblk:
2620 * Get an empty, disassociated buffer of given size. The buffer is
2621 * initially set to B_INVAL.
2623 * critical section protection is not required for the allocbuf()
2624 * call because races are impossible here.
2626 struct buf *
2627 geteblk(int size)
2629 struct buf *bp;
2630 int maxsize;
2632 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2634 crit_enter();
2635 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2637 crit_exit();
2638 allocbuf(bp, size);
2639 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2640 return (bp);
2645 * allocbuf:
2647 * This code constitutes the buffer memory from either anonymous system
2648 * memory (in the case of non-VMIO operations) or from an associated
2649 * VM object (in the case of VMIO operations). This code is able to
2650 * resize a buffer up or down.
2652 * Note that this code is tricky, and has many complications to resolve
2653 * deadlock or inconsistant data situations. Tread lightly!!!
2654 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2655 * the caller. Calling this code willy nilly can result in the loss of data.
2657 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2658 * B_CACHE for the non-VMIO case.
2660 * This routine does not need to be called from a critical section but you
2661 * must own the buffer.
2664 allocbuf(struct buf *bp, int size)
2666 int newbsize, mbsize;
2667 int i;
2669 if (BUF_REFCNT(bp) == 0)
2670 panic("allocbuf: buffer not busy");
2672 if (bp->b_kvasize < size)
2673 panic("allocbuf: buffer too small");
2675 if ((bp->b_flags & B_VMIO) == 0) {
2676 caddr_t origbuf;
2677 int origbufsize;
2679 * Just get anonymous memory from the kernel. Don't
2680 * mess with B_CACHE.
2682 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2683 if (bp->b_flags & B_MALLOC)
2684 newbsize = mbsize;
2685 else
2686 newbsize = round_page(size);
2688 if (newbsize < bp->b_bufsize) {
2690 * Malloced buffers are not shrunk
2692 if (bp->b_flags & B_MALLOC) {
2693 if (newbsize) {
2694 bp->b_bcount = size;
2695 } else {
2696 kfree(bp->b_data, M_BIOBUF);
2697 if (bp->b_bufsize) {
2698 bufmallocspace -= bp->b_bufsize;
2699 bufspacewakeup();
2700 bp->b_bufsize = 0;
2702 bp->b_data = bp->b_kvabase;
2703 bp->b_bcount = 0;
2704 bp->b_flags &= ~B_MALLOC;
2706 return 1;
2708 vm_hold_free_pages(
2710 (vm_offset_t) bp->b_data + newbsize,
2711 (vm_offset_t) bp->b_data + bp->b_bufsize);
2712 } else if (newbsize > bp->b_bufsize) {
2714 * We only use malloced memory on the first allocation.
2715 * and revert to page-allocated memory when the buffer
2716 * grows.
2718 if ((bufmallocspace < maxbufmallocspace) &&
2719 (bp->b_bufsize == 0) &&
2720 (mbsize <= PAGE_SIZE/2)) {
2722 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2723 bp->b_bufsize = mbsize;
2724 bp->b_bcount = size;
2725 bp->b_flags |= B_MALLOC;
2726 bufmallocspace += mbsize;
2727 return 1;
2729 origbuf = NULL;
2730 origbufsize = 0;
2732 * If the buffer is growing on its other-than-first
2733 * allocation, then we revert to the page-allocation
2734 * scheme.
2736 if (bp->b_flags & B_MALLOC) {
2737 origbuf = bp->b_data;
2738 origbufsize = bp->b_bufsize;
2739 bp->b_data = bp->b_kvabase;
2740 if (bp->b_bufsize) {
2741 bufmallocspace -= bp->b_bufsize;
2742 bufspacewakeup();
2743 bp->b_bufsize = 0;
2745 bp->b_flags &= ~B_MALLOC;
2746 newbsize = round_page(newbsize);
2748 vm_hold_load_pages(
2750 (vm_offset_t) bp->b_data + bp->b_bufsize,
2751 (vm_offset_t) bp->b_data + newbsize);
2752 if (origbuf) {
2753 bcopy(origbuf, bp->b_data, origbufsize);
2754 kfree(origbuf, M_BIOBUF);
2757 } else {
2758 vm_page_t m;
2759 int desiredpages;
2761 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2762 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2763 newbsize + PAGE_MASK) >> PAGE_SHIFT;
2764 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2766 if (bp->b_flags & B_MALLOC)
2767 panic("allocbuf: VMIO buffer can't be malloced");
2769 * Set B_CACHE initially if buffer is 0 length or will become
2770 * 0-length.
2772 if (size == 0 || bp->b_bufsize == 0)
2773 bp->b_flags |= B_CACHE;
2775 if (newbsize < bp->b_bufsize) {
2777 * DEV_BSIZE aligned new buffer size is less then the
2778 * DEV_BSIZE aligned existing buffer size. Figure out
2779 * if we have to remove any pages.
2781 if (desiredpages < bp->b_xio.xio_npages) {
2782 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2784 * the page is not freed here -- it
2785 * is the responsibility of
2786 * vnode_pager_setsize
2788 m = bp->b_xio.xio_pages[i];
2789 KASSERT(m != bogus_page,
2790 ("allocbuf: bogus page found"));
2791 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2794 bp->b_xio.xio_pages[i] = NULL;
2795 vm_page_unwire(m, 0);
2797 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2798 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2799 bp->b_xio.xio_npages = desiredpages;
2801 } else if (size > bp->b_bcount) {
2803 * We are growing the buffer, possibly in a
2804 * byte-granular fashion.
2806 struct vnode *vp;
2807 vm_object_t obj;
2808 vm_offset_t toff;
2809 vm_offset_t tinc;
2812 * Step 1, bring in the VM pages from the object,
2813 * allocating them if necessary. We must clear
2814 * B_CACHE if these pages are not valid for the
2815 * range covered by the buffer.
2817 * critical section protection is required to protect
2818 * against interrupts unbusying and freeing pages
2819 * between our vm_page_lookup() and our
2820 * busycheck/wiring call.
2822 vp = bp->b_vp;
2823 obj = vp->v_object;
2825 crit_enter();
2826 while (bp->b_xio.xio_npages < desiredpages) {
2827 vm_page_t m;
2828 vm_pindex_t pi;
2830 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2831 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2833 * note: must allocate system pages
2834 * since blocking here could intefere
2835 * with paging I/O, no matter which
2836 * process we are.
2838 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2839 if (m == NULL) {
2840 vm_wait();
2841 vm_pageout_deficit += desiredpages -
2842 bp->b_xio.xio_npages;
2843 } else {
2844 vm_page_wire(m);
2845 vm_page_wakeup(m);
2846 bp->b_flags &= ~B_CACHE;
2847 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2848 ++bp->b_xio.xio_npages;
2850 continue;
2854 * We found a page. If we have to sleep on it,
2855 * retry because it might have gotten freed out
2856 * from under us.
2858 * We can only test PG_BUSY here. Blocking on
2859 * m->busy might lead to a deadlock:
2861 * vm_fault->getpages->cluster_read->allocbuf
2865 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2866 continue;
2869 * We have a good page. Should we wakeup the
2870 * page daemon?
2872 if ((curthread != pagethread) &&
2873 ((m->queue - m->pc) == PQ_CACHE) &&
2874 ((vmstats.v_free_count + vmstats.v_cache_count) <
2875 (vmstats.v_free_min + vmstats.v_cache_min))) {
2876 pagedaemon_wakeup();
2878 vm_page_flag_clear(m, PG_ZERO);
2879 vm_page_wire(m);
2880 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2881 ++bp->b_xio.xio_npages;
2883 crit_exit();
2886 * Step 2. We've loaded the pages into the buffer,
2887 * we have to figure out if we can still have B_CACHE
2888 * set. Note that B_CACHE is set according to the
2889 * byte-granular range ( bcount and size ), not the
2890 * aligned range ( newbsize ).
2892 * The VM test is against m->valid, which is DEV_BSIZE
2893 * aligned. Needless to say, the validity of the data
2894 * needs to also be DEV_BSIZE aligned. Note that this
2895 * fails with NFS if the server or some other client
2896 * extends the file's EOF. If our buffer is resized,
2897 * B_CACHE may remain set! XXX
2900 toff = bp->b_bcount;
2901 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2903 while ((bp->b_flags & B_CACHE) && toff < size) {
2904 vm_pindex_t pi;
2906 if (tinc > (size - toff))
2907 tinc = size - toff;
2909 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2910 PAGE_SHIFT;
2912 vfs_buf_test_cache(
2913 bp,
2914 bp->b_loffset,
2915 toff,
2916 tinc,
2917 bp->b_xio.xio_pages[pi]
2919 toff += tinc;
2920 tinc = PAGE_SIZE;
2924 * Step 3, fixup the KVM pmap. Remember that
2925 * bp->b_data is relative to bp->b_loffset, but
2926 * bp->b_loffset may be offset into the first page.
2929 bp->b_data = (caddr_t)
2930 trunc_page((vm_offset_t)bp->b_data);
2931 pmap_qenter(
2932 (vm_offset_t)bp->b_data,
2933 bp->b_xio.xio_pages,
2934 bp->b_xio.xio_npages
2936 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2937 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2940 if (newbsize < bp->b_bufsize)
2941 bufspacewakeup();
2942 bp->b_bufsize = newbsize; /* actual buffer allocation */
2943 bp->b_bcount = size; /* requested buffer size */
2944 return 1;
2948 * biowait:
2950 * Wait for buffer I/O completion, returning error status. The buffer
2951 * is left locked on return. B_EINTR is converted into an EINTR error
2952 * and cleared.
2954 * NOTE! The original b_cmd is lost on return, since b_cmd will be
2955 * set to BUF_CMD_DONE.
2958 biowait(struct buf *bp)
2960 crit_enter();
2961 while (bp->b_cmd != BUF_CMD_DONE) {
2962 if (bp->b_cmd == BUF_CMD_READ)
2963 tsleep(bp, 0, "biord", 0);
2964 else
2965 tsleep(bp, 0, "biowr", 0);
2967 crit_exit();
2968 if (bp->b_flags & B_EINTR) {
2969 bp->b_flags &= ~B_EINTR;
2970 return (EINTR);
2972 if (bp->b_flags & B_ERROR) {
2973 return (bp->b_error ? bp->b_error : EIO);
2974 } else {
2975 return (0);
2980 * This associates a tracking count with an I/O. vn_strategy() and
2981 * dev_dstrategy() do this automatically but there are a few cases
2982 * where a vnode or device layer is bypassed when a block translation
2983 * is cached. In such cases bio_start_transaction() may be called on
2984 * the bypassed layers so the system gets an I/O in progress indication
2985 * for those higher layers.
2987 void
2988 bio_start_transaction(struct bio *bio, struct bio_track *track)
2990 bio->bio_track = track;
2991 atomic_add_int(&track->bk_active, 1);
2995 * Initiate I/O on a vnode.
2997 void
2998 vn_strategy(struct vnode *vp, struct bio *bio)
3000 struct bio_track *track;
3002 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3003 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3004 track = &vp->v_track_read;
3005 else
3006 track = &vp->v_track_write;
3007 bio->bio_track = track;
3008 atomic_add_int(&track->bk_active, 1);
3009 vop_strategy(*vp->v_ops, vp, bio);
3014 * biodone:
3016 * Finish I/O on a buffer, optionally calling a completion function.
3017 * This is usually called from an interrupt so process blocking is
3018 * not allowed.
3020 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3021 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3022 * assuming B_INVAL is clear.
3024 * For the VMIO case, we set B_CACHE if the op was a read and no
3025 * read error occured, or if the op was a write. B_CACHE is never
3026 * set if the buffer is invalid or otherwise uncacheable.
3028 * biodone does not mess with B_INVAL, allowing the I/O routine or the
3029 * initiator to leave B_INVAL set to brelse the buffer out of existance
3030 * in the biodone routine.
3032 void
3033 biodone(struct bio *bio)
3035 struct buf *bp = bio->bio_buf;
3036 buf_cmd_t cmd;
3038 crit_enter();
3040 KASSERT(BUF_REFCNTNB(bp) > 0,
3041 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3042 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3043 ("biodone: bp %p already done!", bp));
3045 runningbufwakeup(bp);
3048 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3050 while (bio) {
3051 biodone_t *done_func;
3052 struct bio_track *track;
3055 * BIO tracking. Most but not all BIOs are tracked.
3057 if ((track = bio->bio_track) != NULL) {
3058 atomic_subtract_int(&track->bk_active, 1);
3059 if (track->bk_active < 0) {
3060 panic("biodone: bad active count bio %p\n",
3061 bio);
3063 if (track->bk_waitflag) {
3064 track->bk_waitflag = 0;
3065 wakeup(track);
3067 bio->bio_track = NULL;
3071 * A bio_done function terminates the loop. The function
3072 * will be responsible for any further chaining and/or
3073 * buffer management.
3075 * WARNING! The done function can deallocate the buffer!
3077 if ((done_func = bio->bio_done) != NULL) {
3078 bio->bio_done = NULL;
3079 done_func(bio);
3080 crit_exit();
3081 return;
3083 bio = bio->bio_prev;
3086 cmd = bp->b_cmd;
3087 bp->b_cmd = BUF_CMD_DONE;
3090 * Only reads and writes are processed past this point.
3092 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3093 brelse(bp);
3094 crit_exit();
3095 return;
3099 * Warning: softupdates may re-dirty the buffer.
3101 if (LIST_FIRST(&bp->b_dep) != NULL)
3102 buf_complete(bp);
3104 if (bp->b_flags & B_VMIO) {
3105 int i;
3106 vm_ooffset_t foff;
3107 vm_page_t m;
3108 vm_object_t obj;
3109 int iosize;
3110 struct vnode *vp = bp->b_vp;
3112 obj = vp->v_object;
3114 #if defined(VFS_BIO_DEBUG)
3115 if (vp->v_auxrefs == 0)
3116 panic("biodone: zero vnode hold count");
3117 if ((vp->v_flag & VOBJBUF) == 0)
3118 panic("biodone: vnode is not setup for merged cache");
3119 #endif
3121 foff = bp->b_loffset;
3122 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3123 KASSERT(obj != NULL, ("biodone: missing VM object"));
3125 #if defined(VFS_BIO_DEBUG)
3126 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3127 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3128 obj->paging_in_progress, bp->b_xio.xio_npages);
3130 #endif
3133 * Set B_CACHE if the op was a normal read and no error
3134 * occured. B_CACHE is set for writes in the b*write()
3135 * routines.
3137 iosize = bp->b_bcount - bp->b_resid;
3138 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3139 bp->b_flags |= B_CACHE;
3142 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3143 int bogusflag = 0;
3144 int resid;
3146 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3147 if (resid > iosize)
3148 resid = iosize;
3151 * cleanup bogus pages, restoring the originals. Since
3152 * the originals should still be wired, we don't have
3153 * to worry about interrupt/freeing races destroying
3154 * the VM object association.
3156 m = bp->b_xio.xio_pages[i];
3157 if (m == bogus_page) {
3158 bogusflag = 1;
3159 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3160 if (m == NULL)
3161 panic("biodone: page disappeared");
3162 bp->b_xio.xio_pages[i] = m;
3163 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3164 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3166 #if defined(VFS_BIO_DEBUG)
3167 if (OFF_TO_IDX(foff) != m->pindex) {
3168 kprintf(
3169 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3170 (unsigned long)foff, m->pindex);
3172 #endif
3175 * In the write case, the valid and clean bits are
3176 * already changed correctly ( see bdwrite() ), so we
3177 * only need to do this here in the read case.
3179 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3180 vfs_page_set_valid(bp, foff, i, m);
3182 vm_page_flag_clear(m, PG_ZERO);
3185 * when debugging new filesystems or buffer I/O methods, this
3186 * is the most common error that pops up. if you see this, you
3187 * have not set the page busy flag correctly!!!
3189 if (m->busy == 0) {
3190 kprintf("biodone: page busy < 0, "
3191 "pindex: %d, foff: 0x(%x,%x), "
3192 "resid: %d, index: %d\n",
3193 (int) m->pindex, (int)(foff >> 32),
3194 (int) foff & 0xffffffff, resid, i);
3195 if (!vn_isdisk(vp, NULL))
3196 kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3197 bp->b_vp->v_mount->mnt_stat.f_iosize,
3198 bp->b_loffset,
3199 bp->b_flags, bp->b_xio.xio_npages);
3200 else
3201 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3202 bp->b_loffset,
3203 bp->b_flags, bp->b_xio.xio_npages);
3204 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3205 m->valid, m->dirty, m->wire_count);
3206 panic("biodone: page busy < 0");
3208 vm_page_io_finish(m);
3209 vm_object_pip_subtract(obj, 1);
3210 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3211 iosize -= resid;
3213 if (obj)
3214 vm_object_pip_wakeupn(obj, 0);
3218 * For asynchronous completions, release the buffer now. The brelse
3219 * will do a wakeup there if necessary - so no need to do a wakeup
3220 * here in the async case. The sync case always needs to do a wakeup.
3223 if (bp->b_flags & B_ASYNC) {
3224 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3225 brelse(bp);
3226 else
3227 bqrelse(bp);
3228 } else {
3229 wakeup(bp);
3231 crit_exit();
3235 * vfs_unbusy_pages:
3237 * This routine is called in lieu of iodone in the case of
3238 * incomplete I/O. This keeps the busy status for pages
3239 * consistant.
3241 void
3242 vfs_unbusy_pages(struct buf *bp)
3244 int i;
3246 runningbufwakeup(bp);
3247 if (bp->b_flags & B_VMIO) {
3248 struct vnode *vp = bp->b_vp;
3249 vm_object_t obj;
3251 obj = vp->v_object;
3253 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3254 vm_page_t m = bp->b_xio.xio_pages[i];
3257 * When restoring bogus changes the original pages
3258 * should still be wired, so we are in no danger of
3259 * losing the object association and do not need
3260 * critical section protection particularly.
3262 if (m == bogus_page) {
3263 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3264 if (!m) {
3265 panic("vfs_unbusy_pages: page missing");
3267 bp->b_xio.xio_pages[i] = m;
3268 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3269 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3271 vm_object_pip_subtract(obj, 1);
3272 vm_page_flag_clear(m, PG_ZERO);
3273 vm_page_io_finish(m);
3275 vm_object_pip_wakeupn(obj, 0);
3280 * vfs_page_set_valid:
3282 * Set the valid bits in a page based on the supplied offset. The
3283 * range is restricted to the buffer's size.
3285 * This routine is typically called after a read completes.
3287 static void
3288 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3290 vm_ooffset_t soff, eoff;
3293 * Start and end offsets in buffer. eoff - soff may not cross a
3294 * page boundry or cross the end of the buffer. The end of the
3295 * buffer, in this case, is our file EOF, not the allocation size
3296 * of the buffer.
3298 soff = off;
3299 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3300 if (eoff > bp->b_loffset + bp->b_bcount)
3301 eoff = bp->b_loffset + bp->b_bcount;
3304 * Set valid range. This is typically the entire buffer and thus the
3305 * entire page.
3307 if (eoff > soff) {
3308 vm_page_set_validclean(
3310 (vm_offset_t) (soff & PAGE_MASK),
3311 (vm_offset_t) (eoff - soff)
3317 * vfs_busy_pages:
3319 * This routine is called before a device strategy routine.
3320 * It is used to tell the VM system that paging I/O is in
3321 * progress, and treat the pages associated with the buffer
3322 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3323 * flag is handled to make sure that the object doesn't become
3324 * inconsistant.
3326 * Since I/O has not been initiated yet, certain buffer flags
3327 * such as B_ERROR or B_INVAL may be in an inconsistant state
3328 * and should be ignored.
3330 void
3331 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3333 int i, bogus;
3334 struct lwp *lp = curthread->td_lwp;
3337 * The buffer's I/O command must already be set. If reading,
3338 * B_CACHE must be 0 (double check against callers only doing
3339 * I/O when B_CACHE is 0).
3341 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3342 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3344 if (bp->b_flags & B_VMIO) {
3345 vm_object_t obj;
3346 vm_ooffset_t foff;
3348 obj = vp->v_object;
3349 foff = bp->b_loffset;
3350 KASSERT(bp->b_loffset != NOOFFSET,
3351 ("vfs_busy_pages: no buffer offset"));
3352 vfs_setdirty(bp);
3355 * Loop until none of the pages are busy.
3357 retry:
3358 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3359 vm_page_t m = bp->b_xio.xio_pages[i];
3361 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3362 goto retry;
3366 * Setup for I/O, soft-busy the page right now because
3367 * the next loop may block.
3369 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3370 vm_page_t m = bp->b_xio.xio_pages[i];
3372 vm_page_flag_clear(m, PG_ZERO);
3373 if ((bp->b_flags & B_CLUSTER) == 0) {
3374 vm_object_pip_add(obj, 1);
3375 vm_page_io_start(m);
3380 * Adjust protections for I/O and do bogus-page mapping.
3381 * Assume that vm_page_protect() can block (it can block
3382 * if VM_PROT_NONE, don't take any chances regardless).
3384 bogus = 0;
3385 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3386 vm_page_t m = bp->b_xio.xio_pages[i];
3389 * When readying a vnode-backed buffer for a write
3390 * we must zero-fill any invalid portions of the
3391 * backing VM pages.
3393 * When readying a vnode-backed buffer for a read
3394 * we must replace any dirty pages with a bogus
3395 * page so we do not destroy dirty data when
3396 * filling in gaps. Dirty pages might not
3397 * necessarily be marked dirty yet, so use m->valid
3398 * as a reasonable test.
3400 * Bogus page replacement is, uh, bogus. We need
3401 * to find a better way.
3403 if (bp->b_cmd == BUF_CMD_WRITE) {
3404 vm_page_protect(m, VM_PROT_READ);
3405 vfs_page_set_valid(bp, foff, i, m);
3406 } else if (m->valid == VM_PAGE_BITS_ALL) {
3407 bp->b_xio.xio_pages[i] = bogus_page;
3408 bogus++;
3409 } else {
3410 vm_page_protect(m, VM_PROT_NONE);
3412 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3414 if (bogus)
3415 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3416 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3420 * This is the easiest place to put the process accounting for the I/O
3421 * for now.
3423 if (lp != NULL) {
3424 if (bp->b_cmd == BUF_CMD_READ)
3425 lp->lwp_ru.ru_inblock++;
3426 else
3427 lp->lwp_ru.ru_oublock++;
3432 * vfs_clean_pages:
3434 * Tell the VM system that the pages associated with this buffer
3435 * are clean. This is used for delayed writes where the data is
3436 * going to go to disk eventually without additional VM intevention.
3438 * Note that while we only really need to clean through to b_bcount, we
3439 * just go ahead and clean through to b_bufsize.
3441 static void
3442 vfs_clean_pages(struct buf *bp)
3444 int i;
3446 if (bp->b_flags & B_VMIO) {
3447 vm_ooffset_t foff;
3449 foff = bp->b_loffset;
3450 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3451 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3452 vm_page_t m = bp->b_xio.xio_pages[i];
3453 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3454 vm_ooffset_t eoff = noff;
3456 if (eoff > bp->b_loffset + bp->b_bufsize)
3457 eoff = bp->b_loffset + bp->b_bufsize;
3458 vfs_page_set_valid(bp, foff, i, m);
3459 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3460 foff = noff;
3466 * vfs_bio_set_validclean:
3468 * Set the range within the buffer to valid and clean. The range is
3469 * relative to the beginning of the buffer, b_loffset. Note that
3470 * b_loffset itself may be offset from the beginning of the first page.
3473 void
3474 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3476 if (bp->b_flags & B_VMIO) {
3477 int i;
3478 int n;
3481 * Fixup base to be relative to beginning of first page.
3482 * Set initial n to be the maximum number of bytes in the
3483 * first page that can be validated.
3486 base += (bp->b_loffset & PAGE_MASK);
3487 n = PAGE_SIZE - (base & PAGE_MASK);
3489 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3490 vm_page_t m = bp->b_xio.xio_pages[i];
3492 if (n > size)
3493 n = size;
3495 vm_page_set_validclean(m, base & PAGE_MASK, n);
3496 base += n;
3497 size -= n;
3498 n = PAGE_SIZE;
3504 * vfs_bio_clrbuf:
3506 * Clear a buffer. This routine essentially fakes an I/O, so we need
3507 * to clear B_ERROR and B_INVAL.
3509 * Note that while we only theoretically need to clear through b_bcount,
3510 * we go ahead and clear through b_bufsize.
3513 void
3514 vfs_bio_clrbuf(struct buf *bp)
3516 int i, mask = 0;
3517 caddr_t sa, ea;
3518 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3519 bp->b_flags &= ~(B_INVAL|B_ERROR);
3520 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3521 (bp->b_loffset & PAGE_MASK) == 0) {
3522 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3523 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3524 bp->b_resid = 0;
3525 return;
3527 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3528 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3529 bzero(bp->b_data, bp->b_bufsize);
3530 bp->b_xio.xio_pages[0]->valid |= mask;
3531 bp->b_resid = 0;
3532 return;
3535 ea = sa = bp->b_data;
3536 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3537 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3538 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3539 ea = (caddr_t)(vm_offset_t)ulmin(
3540 (u_long)(vm_offset_t)ea,
3541 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3542 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3543 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3544 continue;
3545 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3546 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3547 bzero(sa, ea - sa);
3549 } else {
3550 for (; sa < ea; sa += DEV_BSIZE, j++) {
3551 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3552 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3553 bzero(sa, DEV_BSIZE);
3556 bp->b_xio.xio_pages[i]->valid |= mask;
3557 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3559 bp->b_resid = 0;
3560 } else {
3561 clrbuf(bp);
3566 * vm_hold_load_pages:
3568 * Load pages into the buffer's address space. The pages are
3569 * allocated from the kernel object in order to reduce interference
3570 * with the any VM paging I/O activity. The range of loaded
3571 * pages will be wired.
3573 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3574 * retrieve the full range (to - from) of pages.
3577 void
3578 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3580 vm_offset_t pg;
3581 vm_page_t p;
3582 int index;
3584 to = round_page(to);
3585 from = round_page(from);
3586 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3588 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3590 tryagain:
3593 * Note: must allocate system pages since blocking here
3594 * could intefere with paging I/O, no matter which
3595 * process we are.
3597 p = vm_page_alloc(&kernel_object,
3598 (pg >> PAGE_SHIFT),
3599 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3600 if (!p) {
3601 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3602 vm_wait();
3603 goto tryagain;
3605 vm_page_wire(p);
3606 p->valid = VM_PAGE_BITS_ALL;
3607 vm_page_flag_clear(p, PG_ZERO);
3608 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3609 bp->b_xio.xio_pages[index] = p;
3610 vm_page_wakeup(p);
3612 bp->b_xio.xio_npages = index;
3616 * vm_hold_free_pages:
3618 * Return pages associated with the buffer back to the VM system.
3620 * The range of pages underlying the buffer's address space will
3621 * be unmapped and un-wired.
3623 void
3624 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3626 vm_offset_t pg;
3627 vm_page_t p;
3628 int index, newnpages;
3630 from = round_page(from);
3631 to = round_page(to);
3632 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3634 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3635 p = bp->b_xio.xio_pages[index];
3636 if (p && (index < bp->b_xio.xio_npages)) {
3637 if (p->busy) {
3638 kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3639 bp->b_bio2.bio_offset, bp->b_loffset);
3641 bp->b_xio.xio_pages[index] = NULL;
3642 pmap_kremove(pg);
3643 vm_page_busy(p);
3644 vm_page_unwire(p, 0);
3645 vm_page_free(p);
3648 bp->b_xio.xio_npages = newnpages;
3652 * vmapbuf:
3654 * Map a user buffer into KVM via a pbuf. On return the buffer's
3655 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3656 * initialized.
3659 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3661 caddr_t addr;
3662 vm_offset_t va;
3663 vm_page_t m;
3664 int vmprot;
3665 int error;
3666 int pidx;
3667 int i;
3670 * bp had better have a command and it better be a pbuf.
3672 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3673 KKASSERT(bp->b_flags & B_PAGING);
3675 if (bytes < 0)
3676 return (-1);
3679 * Map the user data into KVM. Mappings have to be page-aligned.
3681 addr = (caddr_t)trunc_page((vm_offset_t)udata);
3682 pidx = 0;
3684 vmprot = VM_PROT_READ;
3685 if (bp->b_cmd == BUF_CMD_READ)
3686 vmprot |= VM_PROT_WRITE;
3688 while (addr < udata + bytes) {
3690 * Do the vm_fault if needed; do the copy-on-write thing
3691 * when reading stuff off device into memory.
3693 * vm_fault_page*() returns a held VM page.
3695 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3696 va = trunc_page(va);
3698 m = vm_fault_page_quick(va, vmprot, &error);
3699 if (m == NULL) {
3700 for (i = 0; i < pidx; ++i) {
3701 vm_page_unhold(bp->b_xio.xio_pages[i]);
3702 bp->b_xio.xio_pages[i] = NULL;
3704 return(-1);
3706 bp->b_xio.xio_pages[pidx] = m;
3707 addr += PAGE_SIZE;
3708 ++pidx;
3712 * Map the page array and set the buffer fields to point to
3713 * the mapped data buffer.
3715 if (pidx > btoc(MAXPHYS))
3716 panic("vmapbuf: mapped more than MAXPHYS");
3717 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3719 bp->b_xio.xio_npages = pidx;
3720 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3721 bp->b_bcount = bytes;
3722 bp->b_bufsize = bytes;
3723 return(0);
3727 * vunmapbuf:
3729 * Free the io map PTEs associated with this IO operation.
3730 * We also invalidate the TLB entries and restore the original b_addr.
3732 void
3733 vunmapbuf(struct buf *bp)
3735 int pidx;
3736 int npages;
3738 KKASSERT(bp->b_flags & B_PAGING);
3740 npages = bp->b_xio.xio_npages;
3741 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3742 for (pidx = 0; pidx < npages; ++pidx) {
3743 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3744 bp->b_xio.xio_pages[pidx] = NULL;
3746 bp->b_xio.xio_npages = 0;
3747 bp->b_data = bp->b_kvabase;
3751 * Scan all buffers in the system and issue the callback.
3754 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3756 int count = 0;
3757 int error;
3758 int n;
3760 for (n = 0; n < nbuf; ++n) {
3761 if ((error = callback(&buf[n], info)) < 0) {
3762 count = error;
3763 break;
3765 count += error;
3767 return (count);
3771 * print out statistics from the current status of the buffer pool
3772 * this can be toggeled by the system control option debug.syncprt
3774 #ifdef DEBUG
3775 void
3776 vfs_bufstats(void)
3778 int i, j, count;
3779 struct buf *bp;
3780 struct bqueues *dp;
3781 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3782 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3784 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3785 count = 0;
3786 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3787 counts[j] = 0;
3788 crit_enter();
3789 TAILQ_FOREACH(bp, dp, b_freelist) {
3790 counts[bp->b_bufsize/PAGE_SIZE]++;
3791 count++;
3793 crit_exit();
3794 kprintf("%s: total-%d", bname[i], count);
3795 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3796 if (counts[j] != 0)
3797 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3798 kprintf("\n");
3801 #endif
3803 #ifdef DDB
3805 DB_SHOW_COMMAND(buffer, db_show_buffer)
3807 /* get args */
3808 struct buf *bp = (struct buf *)addr;
3810 if (!have_addr) {
3811 db_printf("usage: show buffer <addr>\n");
3812 return;
3815 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3816 db_printf("b_cmd = %d\n", bp->b_cmd);
3817 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3818 "b_resid = %d\n, b_data = %p, "
3819 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3820 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3821 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3822 if (bp->b_xio.xio_npages) {
3823 int i;
3824 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3825 bp->b_xio.xio_npages);
3826 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3827 vm_page_t m;
3828 m = bp->b_xio.xio_pages[i];
3829 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3830 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3831 if ((i + 1) < bp->b_xio.xio_npages)
3832 db_printf(",");
3834 db_printf("\n");
3837 #endif /* DDB */